Deterministic Sparse FFT Algorithms

Gerlind Plonka

Institute for Numerical and Applied Mathematics University of Göttingen
based on joint work with

Katrin Wannenwetsch (Göttingen), Annie Cuyt, and Wen-Shin Lee (Antwerpen)

Glasgow
June 2017

Deterministic Sparse FFT Algorithms

Outline

- Introduction
- Sparse FFT: A first trial
- General multi-scale algorithm
- Adaptive approach for stable reconstruction
- Vandermonde matrices on the unit circle
- Numerical results
- Summary

Problem

Let $\mathbf{x}=\left(x_{j}\right)_{j=0}^{N-1} \in \mathbb{C}^{N}$ be given.
Let $\omega_{N}:=e^{-2 \pi i / N}$ and

$$
\widehat{\mathbf{x}}:=\mathbf{F}_{N} \mathbf{x} \quad \text { with } \quad \mathbf{F}_{N}:=\left(\omega_{N}^{j k}\right)_{j, k=0}^{N-1} .
$$

Assume $\widehat{\mathbf{x}}=\mathbf{F}_{N} \mathbf{x}$ is M-sparse, i.e., $\|\widehat{\mathbf{x}}\|_{0}:=M$. Sparsity $M \leq N$ is unknown.

Problem

Find a stable deterministic algorithm to compute $\widehat{\mathbf{x}}$ with a small number of arithmetical operations (sublinear sparse FFT).

Recent approaches

Basis pursuit denoise. Minimize $\|\widehat{\mathbf{x}}\|_{1}$ s.t. $\left\|\mathbf{A}_{L} \widehat{\mathbf{x}}-\mathbf{x}_{L}\right\|_{2} \leq \sigma$
Chen, Donoho, Saunders (98); Donoho, Tanner (05); Candès, Donoho, Tao (06); Tropp (04,06); van den Berg, Friedlander (08,11);...
Random Fourier measurements $\mathbf{A}_{L}=\mathbf{F}_{N, L}$
Candes, Tao (06); Rudelson, Vershynin (08); Rauhut (07); Foucart, Rauhut (13);...

Deterministic Fourier CS-matrices

DeVore (07); Haupt, Applebaum, Nowak (10); Xu, Xu (13); ...
Deterministic and randomized sparse FFT
Iwen, Spencer (08); Akavia (08); Iwen (10,13), Hassanieh et al. (12); Gilbert et al. (14); Plonka, Wannenwetsch (16,17), Bittens (16),...

Prony approaches, Super-Resolution

Roy, Kailath (89); Pereyra, Scherer (10); Heider, Kunis, Potts, Veit (13); Peter, Plonka (13); Candès, Fernandez-Granda (14); Potts, Volkmer, Tasche (16),...

Sparse FFT: A first trial

How to recover $\widehat{\mathbf{x}}$ if it contains only one nonzero component?
Let $\mathbf{e}_{j}, j=0, \ldots, N-1$, be the unit vectors in \mathbb{C}^{N}.

$$
\widehat{\mathbf{x}}=\widehat{x}_{k_{0}} \mathbf{e}_{k_{0}}=\left(\begin{array}{c}
0 \\
\vdots \\
\widehat{x}_{k_{0}} \\
\vdots \\
0
\end{array}\right) \Rightarrow \mathbf{x}=\widehat{x}_{k_{0}} \mathbf{F}_{N}^{-1} \mathbf{e}_{k_{0}}=\frac{\widehat{x}_{k_{0}}}{N}\left(\begin{array}{c}
\omega_{N}^{0} \\
\omega_{N}^{-k_{0}} \\
\vdots \\
\omega_{N}^{-(N-2) k_{0}} \\
\omega_{N}^{-(N-1) k_{0}}
\end{array}\right)
$$

We find

$$
x_{0}=\frac{1}{N} \widehat{x}_{k_{0}}, \quad x_{1}=\frac{1}{N} \widehat{x}_{k_{0}} \omega_{N}^{-k_{0}}
$$

Thus, two components of \mathbf{x} are sufficient to recover $\widehat{\mathbf{x}}$:

$$
\widehat{x}_{k_{0}}=N x_{0}, \quad \omega_{N}^{-k_{0}}=\frac{x_{1}}{x_{0}} .
$$

Observe that for noisy data the determination of k_{0} is not stable.

Let $\mathbf{x} \in \mathbb{C}^{N}, N=2^{J}$, and let $\widehat{\mathbf{x}} \in \mathbb{C}^{N}$ be M-sparse, $M \leq N$.
Consider the periodized vectors

$$
\widehat{\mathbf{x}}^{(j)}:=\left(\widehat{x}_{k}^{(j)}\right)_{k=0}^{2^{j}-1}:=\left(\sum_{\ell=0}^{2^{J-j}-1} \widehat{x}_{k+2^{j} \ell}\right)_{k=0}^{2^{j}-1}
$$

Then

$$
\begin{gathered}
\widehat{\mathbf{x}}^{(J)}=\widehat{\mathbf{x}}, \quad \widehat{\mathbf{x}}^{(J-1)}=\left(\widehat{x}_{k}+\widehat{x}_{k+N / 2}\right)_{k=0}^{N / 2-1}, \ldots, \\
\widehat{\mathbf{x}}^{(1)}=\left(\sum_{\ell=0}^{N / 2-1} \widehat{x}_{2 \ell}, \sum_{\ell=0}^{N / 2-1} \widehat{x}_{2 \ell+1}\right)^{T}, \quad \widehat{\mathbf{x}}^{(0)}=\sum_{\ell=0}^{N-1} \widehat{x}_{\ell} .
\end{gathered}
$$

Further, let

$$
\mathbf{x}^{(j)}:=\mathbf{F}_{2^{j}}^{-1} \widehat{\mathbf{x}}^{(j)}=2^{J-j}\left(x_{2^{J-j} k}\right)_{k=0}^{2^{j}-1}
$$

Stabilized evaluation with $j+1$ samples
Example. $\quad \widehat{\mathbf{x}}=\widehat{\mathbf{x}}^{(3)}=(0,0,0,0,0,0,1,0)^{T} \quad$ with $\quad k_{0}=k_{0}^{(3)}=6$,

$$
\begin{array}{ll}
\widehat{\mathbf{x}}^{(2)}=(0,0,1,0)^{T} & \text { with } k_{0}^{(2)}=2 \\
\widehat{\mathbf{x}}^{(1)}=(1,0)^{T} & \text { with } k_{0}^{(1)}=0 \\
\widehat{\mathbf{x}}^{(0)}=(1) & \text { with } k_{0}^{(0)}=0 .
\end{array}
$$

Idea. Compute $k_{0}^{(j)}$ iteratively, starting with $k_{0}^{(0)}=0$. We observe

$$
k_{0}^{(j)}= \begin{cases}k_{0}^{(j+1)} & 0 \leq k_{0}^{(j+1)} \leq 2^{j}-1 \\ k_{0}^{(j+1)}-2^{j} & 2^{j} \leq k_{0}^{(j+1)} \leq 2^{j+1}-1\end{cases}
$$

If $\quad \omega_{2^{j+1}}^{-k_{0}^{(j+1)}}:=\frac{x_{1}^{(j+1)}}{x_{0}^{(j+1)}}=\frac{x_{2} J-j-1}{x_{0}}=\omega_{2^{j+1}}^{-k_{0}^{(j)}} \quad$ then $\quad k_{0}^{(j+1)}=k_{0}^{(j)}$.
If $\quad \omega_{2^{j+1}}^{-k_{0}^{(j+1)}}:=\frac{x_{1}^{(j+1)}}{x_{0}^{(j+1)}}=\frac{x_{2^{J-j-1}}}{x_{0}}=-\omega_{2^{j+1}}^{-k_{0}^{(j)}} \quad$ then $\quad k_{0}^{(j+1)}=k_{0}^{(j)}+2^{j}$.

General case: Recovery of M-sparse vectors

Let $\mathbf{x} \in \mathbb{C}^{N}, N=2^{J}$, and let $\widehat{\mathbf{x}} \in \mathbb{C}^{N}$ be M-sparse, $M \leq N$.
Assumption: There is no cancellation by periodizations of \widehat{x}. If $\widehat{x}_{k} \neq 0$ is significant, then $\widehat{x}_{k \bmod 2^{j}}^{(j)} \neq 0$ is significant.

Example

$$
\widehat{\mathbf{x}}=\left(\widehat{x}_{k}\right)_{k=0}^{N-1} \quad \text { with } \quad \operatorname{Re} \widehat{x}_{k} \geq 0, \quad \operatorname{Im} \widehat{x}_{k} \geq 0, \quad k=0, \ldots, N-1 .
$$

For example

$$
\begin{aligned}
\widehat{\mathbf{x}}=\widehat{\mathbf{x}}^{(3)} & =(0,0,3,0,1,0,-3,0)^{T} \\
\widehat{\mathbf{x}}^{(2)} & =(1,0,0,0)^{T}
\end{aligned}
$$

is not allowed!

General case: Recovery of M-sparse vectors

Idea

Iterative reconstruction of the periodized vectors $\widehat{\mathbf{x}}^{(j)}$ for $j=0,1, \ldots, J$. Observations
1.

$$
\widehat{\mathbf{x}}^{(j)} \text { is } M_{j}-\text { sparse : } M_{0} \leq M_{1} \leq \ldots \leq M_{J}=M
$$

2.

$$
\widehat{x}_{k}^{(j+1)}+\widehat{x}_{k+2^{j}}^{(j+1)}=\widehat{x}_{k}^{(j)}, \quad k=0, \ldots, 2^{j}-1
$$

Example

Idea of the algorithm

1. Choose the sample x_{0} and compute $\widehat{\mathbf{x}}^{(0)}=\sum_{k=0}^{N-1} \widehat{x}_{k}=N x_{0}$. If $x_{0}=0$ then $\widehat{\mathbf{x}}=\mathbf{0}$ (no cancellation), $M=0$, done.
2. If $x_{0}>\epsilon$ then compute

$$
\widehat{\mathbf{x}}^{(1)}=\binom{\widehat{x}_{0}^{(1)}}{\widehat{x}_{1}^{(1)}}=\frac{N}{2} \mathbf{F}_{2}\binom{x_{0}}{x_{N / 2}} .
$$

Then

$$
\begin{aligned}
& \widehat{x}_{0}^{(1)}+\widehat{x}_{1}^{(1)}=\widehat{\mathbf{x}}_{0}^{(0)}, \\
& \widehat{x}_{0}^{(1)}-\widehat{x}_{1}^{(1)}=\frac{N}{2} x_{N / 2} .
\end{aligned}
$$

If $\widehat{x}_{0}^{(1)}=0$ all even components of $\widehat{\mathbf{x}}$ vanish.
If $\widehat{x}_{1}^{(1)}=0$ all odd components of $\widehat{\mathbf{x}}$ vanish.

General step

Let $M_{j} \leq M$ be the number of significant entries of $\widehat{\mathbf{x}}^{(j)}$. Indices of non-zero components:

$$
0 \leq n_{0}<n_{1}<\ldots<n_{M_{j}-1} \leq 2^{j}-1 .
$$

We have

$$
\widehat{x}_{k}^{(j+1)}+\widehat{x}_{k+2^{j}}^{(j+1)}=\widehat{x}_{k}^{(j)}, \quad k=0, \ldots, 2^{j}-1 .
$$

Hence, only the components $\widehat{x}_{n_{\ell}}^{(j+1)}$ and $\widehat{x}_{n_{\ell}+2^{j}}^{(j+1)}$ are candidates for nonzero entries in $\widehat{\mathbf{x}}^{(j+1)}$.

Hence $M_{j+1} \leq 2 M_{j}$ and only M_{j} "suitable" further conditions are needed to recover $\widehat{\mathbf{x}}^{(j+1)}$.

Theorem (P., Wannenwetsch, Cuyt, Lee (2017)

Let $\widehat{\mathbf{x}}^{(j)}$ be the periodized vectors with $\widehat{\mathbf{x}}^{(J)}=\mathbf{x}$ satisfying the noncancellation property. If $\widehat{\mathbf{x}}^{(j)} \in \mathbb{C}^{2}{ }^{j}$ is M_{j}-sparse with support indices

$$
0 \leq n_{0}<n_{1}<\ldots<n_{M_{j}-1} \leq 2^{j}-1,
$$

then $\widehat{\mathbf{x}}^{(j+1)}$ can be uniquely recovered from $\widehat{\mathbf{x}}^{(j)} \in \mathbb{C}^{2^{j}}$ and M_{j} components of $\mathbf{x}=\mathbf{F}_{N}^{-1} \widehat{\mathbf{x}}$, where the indices $k_{0}, \ldots, k_{M_{j}-1}$ are taken from the set $\left\{2^{J-j-1}(2 k+1), k=0, \ldots, 2^{j}-1\right\}$ such that

$$
\left(\omega_{2^{j}}^{-k_{p} n_{r}}\right)_{p, r=0}^{M_{j}-1}=\left(\exp \left(\frac{2 \pi \mathrm{i} k_{p} n_{r}}{2^{j}}\right)\right)_{p, r=0}^{M_{j}-1} \in \mathbb{C}^{M_{j} \times M_{j}}
$$

is invertible and has small condition number. Then $\widehat{\mathbf{x}}^{(j+1)}$ can be obtained from $\widehat{\mathbf{x}}^{(j)}$ by solving a linear system of size M_{j}.

We need less than $M\left(2+\log \frac{N}{M}\right)$ signal values to recover x ! We need $\mathcal{O}(M \log M \log N)$ arithmetical operations to compute $\widehat{\mathbf{x}}$ using inverse NFFT!

Remaining problem

For given $N=2^{j}, M \leq N$ and given indices

$$
0 \leq n_{0}<n_{1}<\ldots<n_{M-1} \leq N-1
$$

how to choose a new set of indices

$$
0 \leq k_{0}<k_{1}<\ldots<k_{M-1} \leq N-1
$$

such that

$$
\left(\omega_{N}^{-k_{p} n_{r}}\right)_{p, r=0}^{M-1}
$$

is optimally well conditioned?

Remaining problem

For given $N=2^{j}, M \leq N$ and given indices

$$
0 \leq n_{0}<n_{1}<\ldots<n_{M-1} \leq N-1
$$

how to choose a new set of indices

$$
0 \leq k_{0}<k_{1}<\ldots<k_{M-1} \leq N-1
$$

such that

$$
\left(\omega_{N}^{-k_{p} n_{r}}\right)_{p, r=0}^{M-1}
$$

is optimally well conditioned?

We strongly simplify the problem

Let $k_{p}:=\sigma p \bmod N$. How to choose $\sigma \in\left\{1, \ldots, 2^{j}\right\}$ such that

$$
\left(\omega_{N}^{-k_{p} n_{r}}\right)_{p, r=0}^{M-1}=\left(\omega_{N}^{-\sigma n_{r} p}\right)_{p, r=0}^{M-1}=\mathbf{V}_{M}
$$

is optimally well conditioned?

Vandermonde matrices on the unit circle

We know

1. The Vandermonde matrix $\mathbf{V}_{M}=\left(\omega_{N}^{\sigma n_{r} p}\right)_{p, r=0}^{M-1}$ is invertible iff $\sigma n_{r} \bmod N$ are pairwise distinct.
Hence invertibility of \mathbf{V}_{M} already follows for $\sigma=1$.
2. The condition number of \mathbf{V}_{M} strongly depends on the distribution of the values $\omega_{N}^{\sigma n_{r}}, r=0, \ldots, M-1$ on the unit circle.
3. cond $\mathbf{V}_{M}=1$ iff $\omega_{N}^{\sigma n_{r}}$ are equidistantly distributed on the unit circle (see e.g. Berman, Feuer (07)).

$N=32$, left: $\sigma=1$, cond $\mathbf{V}_{5}=8841$, right: $\sigma=6$, cond $\mathbf{V}_{5}=1.415$

Conditions on σ

Theorem (Moitra (2015)

Let $0 \leq n_{0}<n_{1}<\ldots<n_{M-1}<N$ be a given set of indices. For a given $\sigma \in\{1, \ldots, N\}$ let

$$
d_{\sigma}:=\min _{0 \leq k<\ell \leq M-1}\left(\pm \sigma\left(n_{\ell}-n_{k}\right)\right) \bmod N
$$

be the smallest (periodic) distance between two indices σn_{ℓ} and σn_{k}, and assume that $d_{\sigma}>0$. Then the condition number $\kappa_{2}\left(\mathbf{V}_{M^{\prime}, M}(\sigma)\right)$ of the Vandermonde matrix $V_{M^{\prime}, M}(\sigma):=\left(\omega_{N}^{\sigma n_{k} \ell}\right)_{\ell=0, k=0}^{M^{\prime}-1, M-1}$ satisfies

$$
\kappa_{2}\left(\mathbf{V}_{M^{\prime}, M}(\sigma)\right)^{2} \leq \frac{M^{\prime}+N / d_{\sigma}}{M^{\prime}-N / d_{\sigma}}
$$

provided that $M^{\prime}>\frac{N}{d_{\sigma}}$.
Proof: based on Hilbert's inequality, see e.g. Moitra (2015).

Method to choose the optimal σ
Idea
Choose σ such that for $N=2^{j}$ the distance

$$
d_{\sigma}:=\min _{0 \leq k<\ell \leq M-1}\left(\pm \sigma\left|n_{\ell}-n_{k}\right|\right) \bmod N
$$

is maximal.
Brute force method $\mathcal{O}\left(M 2^{j}\right)$ operations at level $j=0, \ldots, J-1$.
Open problem
Is there a smart method to find the optimal σ with $\mathcal{O}\left(M^{2}\right)$ operations at each level?

Up to now

We have only heuristic algorithms to find an (almost) optimal σ with $\mathcal{O}\left(M^{2}\right)$ operations.

Worst case distance

To get $\mathbf{V}_{M}=\left(\omega_{N}^{\sigma n_{k} p}\right)_{p, k=0}^{M-1}$ with small condition number we want

$$
d:=\max _{\sigma} d_{\sigma} \approx \frac{N}{M}
$$

where

$$
d_{\sigma}:=\min _{0 \leq k<\ell \leq M-1}\left(\pm \sigma\left|n_{\ell}-n_{k}\right|\right) \bmod N .
$$

What is the worst case that can happen for d and optimized σ ?

Worst case distance

To get $\mathbf{V}_{M}=\left(\omega_{N}^{\sigma n_{k} p}\right)_{p, k=0}^{M-1}$ with small condition number we want

$$
d:=\max _{\sigma} d_{\sigma} \approx \frac{N}{M}
$$

where

$$
d_{\sigma}:=\min _{0 \leq k<\ell \leq M-1}\left(\pm \sigma\left|n_{\ell}-n_{k}\right|\right) \bmod N .
$$

What is the worst case that can happen for d and optimized σ ?

Theorem (P., Wannenwetsch (2017)

For arbitrarily distributed $0 \leq n_{0}<n_{1}<\ldots<n_{M-1} \leq N-1$ and optimally chosen σ maximizing

$$
d_{\sigma}=\min _{0 \leq k<\ell \leq M-1}\left(\pm \sigma\left|n_{\ell}-n_{k}\right|\right) \bmod N
$$

we have

$$
d=\max _{\sigma} d_{\sigma} \geq \frac{N}{M^{2}}
$$

Worst case example
Let $N=16, M=4$, found indices $\left(n_{0}, n_{1}, n_{2}, n_{3}\right)=(0,1,3,8)$.
$\sigma=1: \Rightarrow d_{1}=1$

$\sigma=3: \Rightarrow d_{3}=1$

$\sigma=5: \Rightarrow d_{5}=1$

Therefore $d=\frac{N}{M^{2}}=1$.

Numerical example

Let $N=128, M=4$
Number of different choices of ordered positions: $\binom{128}{4}=10668000$

Cases for which $d \geq 16$: $10641376(99.75 \%)$
Cases for which $8 \leq d<16: \quad 26624(0.25 \%)$
Cases for which $d<8$:
0

The worst case $d \approx \frac{N}{M^{2}}$ is rare!
To avoid bad condition numbers in these cases, we have two options:
a) We use further measurements to improve the condition number of the Vandermonde matrix.
b) We consider another strategy for extracting a suitable partial Fourier matrix (e.g. a second parameter σ_{2} leading to a generalized Vandermonde-type matrix).

Numerical example: Adaptivity helps!

$N=16384(J=14), M=17$ (adaptive versus nonadaptive) active indices: $6,7,8,9,10,11,12,13,56,57,58,79,80,81,345,1234,1235$

j	M	σ	cond \mathbf{V}_{M}
1	1	1	1
2	2	1	1
3	4	1	1
4	8	1	1
5	13	3	11.64
6	16	3	51.17
7	17	11	97.37
8	17	22	97.37
9	17	44	97.37
10	17	88	97.37
11	17	285	14.41
12	17	570	14.41
13	17	203	7.98
14	17	406	7.98

used signal values: 181 adaptive choice of σ

j	M	σ	cond \mathbf{V}_{M}
1	1	1	1
2	2	1	1
3	4	1	1
4	8	1	1
5	13	1	11.64
6	16	1	$1.4425 e+05$
7	17	1	$8.8402 e+09$
8	17	1	$2.7140 e+07$
9	17	1	$4.5243 e+12$
10	25	1	$6.3748 e+15$
11	39	1	$1.2212 e+17$
12	60	1	$3.4276 e+16$
13	114	1	$2.1692 e+17$
14	193	1	$3.4942 e+17$

used signal values: 351 nonadaptive choice of σ

Runtime experiments

Figure 1: Runtime comparison (in seconds) of the FFT (blue line) and our algorithm with $M=5$ (red line), $M=10$ (black dotted line), $M=20$ (cyan dash-dots line) and $M=30$ (green dashed line) for length $N=2^{j}$ with $j=12, \ldots, 22$.

Summary

1. We propose a new multi-scale algorithm for sparse vector reconstruction.
2. The sparsity $M \leq N$ does not need to be known a priori.
3. We need less than $\min \left(M\left(2+\log \frac{N}{M}\right), N\right)$ signal values for reconstruction.
4. We need less than $\min \left(\mathcal{O}\left(M^{2} \log N\right), \mathcal{O}(N \log N)\right)$ arithmetical operations for reconstruction (sparse FFT!).
5. At each iteration step only a linear system of size at most $M \times M$ needs to be solved.
6. Adaptivity is used to improve the numerical stability of the procedure.
7. Even a simple strategy optimizing only one parameter usually gives good numerical results.

References

- Gerlind Plonka, Katrin Wannenwetsch.

A deterministic sparse FFT algorithm for vectors with small support.
Numer. Algorithms 71(4) (2016), 889-905.

- Gerlind Plonka and Katrin Wannenwetsch.

A sparse Fast Fourier algorithm for real nonnegative vectors.
J. Comput. Appl. Math. 321 (2017), 532-539.

- Gerlind Plonka, Katrin Wannenwetsch, Annie Cuyt, Wen-Shin Lee. Deterministic sparse FFT for M-sparse vectors.
Numer. Algorithms, to appear.

\thankyou

