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Prony Method: Reconstruction of Sparse Exponential Sums

Function f (x) =
M∑

j=1
cj eαj x

We have M, f (`), ` = 0, . . . , 2M − 1
We want cj , αj ∈ C, where −π ≤ Imαj < π, j = 1, . . . ,M.

Consider the Prony polynomial

P(z) :=
M∏

j=1
(z − eαj ) =

M∑

`=0
p` z`

with unknown parameters αj and pM = 1.
M∑

`=0
p`f (`+ m) =

M∑
`=0

p`
M∑

j=1
cjeαj (`+m) =

M∑
j=1

cj eαj m
M∑
`=0

p` eαj`

=
M∑

j=1
cjeαj mP(eαj ) = 0, m = 0, . . . ,M − 1.
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Reconstruction Algorithm
Input: f (`), ` = 0, . . . , 2M − 1

Solve the Hankel system



f (0) f (1) . . . f (M − 1)
f (1) f (2) . . . f (M)
...

...
...

f (M − 1) f (M) . . . f (2M − 2)







p0
p1
...

pM−1




= −




f (M)
f (M + 1)

...
f (2M − 1)




Compute the zeros of the Prony polynomial P(z) =
∑M
`=0 p`z` and

extract the parameters αj from its zeros zj = eαj , j = 1, . . . ,M.
Compute cj solving the linear system

f (`) =
M∑

j=1
cjeαj`, ` = 0, . . . , 2M − 1.

Output: Parameters αj and cj , j = 1, . . . ,M.
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(Almost) Equivalent Models

If we can reconstruct

f (x) =
M∑

j=1
cj eαj x ,

then we can also reconstruct

g(t) =
M∑

j=1
cj δ(t − tj) ⇒ ĝ(x) =

M∑

j=1
cj e−itj x

g(t) =
M∑

j=1
cj φ(t − tj) ⇒ ĝ(x) =

( M∑

j=1
cj e−itj x

)
φ̂(x)

g(t) =
M∑

j=1

cj
t − αj

⇒ L−1(g)(x) =
M∑

j=1
cj eαj x

Gerlind Plonka (University of Göttingen) Prony’s Method Nashville 2019 5 / 34



Literature
[Prony] (1795): Reconstruction of difference equations
[Schmidt] (1979): MUSIC (Multiple Signal Classification)
[Roy, Kailath] (1989): ESPRIT (Estimation of signal parameters

via rotational invariance techniques)
[Hua, Sakar] (1990): Matrix-pencil method
[Stoica, Moses] (2000): Annihilating filters
[Vetterli, Marziliano, Blu (2002): Finite rate of innovation signals
[Potts, Tasche] (2010, 2011): Approximate Prony method
[Peter, Plonka] (2013): Generalized Prony Method

Sidi (’75,’82,’85); Golub, Milanfar, Varah (’99); Maravić, Vetterli (’04);
Elad, Milanfar, Golub (’04); Beylkin, Monzon (’05,’10);
Andersson, Carlsson, de Hoop (’10), Berent, Dragotti, Blu (’10),
Batenkov, Sarg, Yomdin (’12,’13); Filbir, Mhaskar, Prestin (’12);
Peter, Potts, Tasche (’11,’12,’13); Plonka, Wischerhoff (’13);
Plonka, Tasche (’14); Kunis, Peter, Römer, von der Ohe (’16);
Wei, Dragotti (’16); Sauer (’17); Cuyt, Lee (’17), Mourrain (’17), . . .
Very incomplete list !!!

Gerlind Plonka (University of Göttingen) Prony’s Method Nashville 2019 6 / 34



Other Talks in this Conference

A. Aldroubi, L. Huang, K. Kornelson, and I. Krishtal: A
Prony-Laplace Method for Identifying Burst-like Forcing Terms
G. Plonka, K. Stampfer and I. Keller: Reconstruction of
Non-Stationary Signals by the Generalized Prony Method
Sui Tang: Recovery of Linear Dynamics from Undersampled Time
Series Data
Z.M. Wu and R. Zhang: Learning Physics by Data for the Motion
of a Sphere Falling in a Non-Newtonian Fluid

Gerlind Plonka (University of Göttingen) Prony’s Method Nashville 2019 7 / 34



Maximum Likelihood Modification of Prony’s Method

Let y = (yk)L
k=0 ∈ CL+1 be a given.

Goal: Approximate y by f = (fk)L
k=0 ∈ CL+1 where

fk =
M∑

j=1
dj eαj k =

M∑

j=1
dj zk

j , k = 0, . . . , L, M ≤ L/2

with dj , zj = eαj ∈ C, j = 1, . . . ,M, such that

‖y− f‖22 =
L∑

k=0
|yk − fk |2

is minimal.
Survey: Zhang & Plonka ’19
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Maximum Likelihood Modification of Prony’s Method

With d := (d1, . . . , dM)T , z := (z1, . . . , zM)T , and

Vz :=




1 1 . . . 1
z1 z2 . . . zM
z21 z22 . . . z2M
...

...
...

zL
1 zL

2 . . . zL
M



∈ C(L+1)×M , (1)

we have
f = Vz d.

Thus, we want to solve the nonlinear least squares problem

argmin
z,d∈CM

‖y− Vzd‖22 = argmin
z,d∈CM

L∑

k=0
|yk −

M∑

j=1
dj zk

j |2.
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Maximum Likelihood Modification of Prony’s Method
Variable projection gives

d = V+
z y = [V∗zVz]−1V∗zy.

Thus, solve

argmin
z∈CM

‖y− VzV+
z y‖22 = argmax

z∈CM

(
y∗VzV+

z y
)
.

Let

XT
p :=




p0 p1 . . . pM
p0 p1 . . . pM

. . . . . .
p0 p1 . . . pM




such that XT
p Vz = 0. Then, we have to solve

p̃ := argmin
p∈CM+1
‖p‖2=1

y∗XpX
+
p y.
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Maximum Likelihood Modification of Prony’s Method

Theorem
For given y = (y0, . . . , yL)T the vectors z̃ and d̃ solving

min
z,d∈CM

‖y− Vzd‖22

are obtained by:
1. Solve p̃ = argmin

p∈CM+1
‖p‖2=1

y∗XpX
+
p y = argmin

p∈CM+1
‖p‖2=1

p∗H∗y[XT
p Xp]−1Hyp.

2. Compute the vector of zeros z̃ = (z̃1, . . . , z̃M)T of p(z) =
M∑

k=0
p̃kzk

with p̃ = (p̃0, . . . , p̃M)T .
3. Compute

d̃ = V+
z̃ y = [V∗z̃Vz̃]−1V∗z̃y.
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Maximum Likelihood Modification of Prony’s Method
Solve p̃ = argmin

p∈CM+1
‖p‖2=1

p∗H∗y[XT
p Xp]−1Hyp.

Approaches:
Pisarenko ’73 method solves only argmin

p∈CM+1
‖p‖2=1

p∗H∗yHyp.

Levenberg-Marquardt Iteration (weighted structured low-rank
approximation) (Markovsky & Usevich ’14)
Iterative Quadratic Maximum Likelihood (IQML):
(Bressler & Macovski ’86, Z. Dogan et al. ’15)

pj+1 = argmin
p∈CM+1
‖p‖=1

p∗H∗y[XT
pjXpj ]−1Hyp.

Gradient Condition Reweighting Algorithm (GRA):
(Osborne & Smith ’91,’95)
Simultaneous Minimization (SIMI) (Zhang & Plonka ’19)
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Maximum Likelihood Modification of Prony’s Method

Example: Consider

yk = exp(0.95kh) + exp(0.5kh) + exp(0.2kh) + εk k = 0, 1, . . . , L

with εk ∼ N(0, σ2), σ = 0.01, L = 69, h = 5/L.
Results:

APM GRA IQML VARPRO SIMI IGRA
α̃1 12.13 0.957 0.939 0.939 0.953 0.957
α̃2 1.014 0.566 0.4+43.4 i 0.8+43.4 i 0.500 0.565
α̃3 0.532 0.214 0.338 0.338 0.165 0.214
2-error 4.646 0.0013 0.0014 0.0014 0.0013 0.0013

Using the correct parameters 0.95, 0.5, 0.2 we get a 2-error 0.0013. The
parameter reconstruction is ill-posed but we get very good approximations.
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Towards a Generalization
of Prony’s Method

Gerlind Plonka (University of Göttingen) Prony’s Method Nashville 2019 14 / 34



Revisiting Prony’s Method Using the Shift Operator
Let Sh f := f (·+ h), h ∈ R \ {0}. Then

(Sh eα·)(x) = eα(h+x) = eαh eαx (eigenfunction).

For

f (x) =
M∑

j=1
cj eαj x with P(z) :=

M∏

j=1
(z − eαj h) =

M∑

`=0
p`z`

we have

P(Sh)f =
M∑

`=0
p` (S`hf ) =

M∑

`=0
p` Sh`

M∑

j=1
cj eαj · =

M∑

`=0
p`

M∑

j=1
cj Sh`eαj ·

=
M∑

`=0
p`

M∑

j=1
cj eαj h` eαj · =

M∑

j=1
cj eαj ·

M∑

`=0
p` eαj h` = 0.
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Revisiting Prony’s Method Using the Shift Operator

Thus, f (x) =
M∑

j=1
cj eαj x solves the difference equation P(Sh)f = 0.

Moreover,

Sk
h P(Sh)f = P(Sh)Sk

h f =
M∑

`=0
p` S`+k

h f = 0, k ∈ Z.

With the point evaluation functional F0f := f (0),

F0(Sk
h P(Sh)f ) =

M∑

`=0
p` F0(S`+k

h f ) =
M∑

`=0
p` f (h(`+ k)) = 0, k ∈ Z.

We can compute the coefficients p` of the Prony polynomial from M of
these equations, i.e., using f (hk), k = 0, . . . , 2M − 1.
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Change the Sampling Scheme

Thus, f (x) =
M∑

j=1
cj eαj x solves the difference equation P(Sh)f = 0.

Moreover, for each linear operator T : C∞(R) 7→ C∞(R)

T kP(Sh)f = T kP(Sh)f =
M∑

`=0
p` T kS`hf = 0, k ∈ Z.

With the linear functional F : C∞(R) 7→ C

F (T kP(Sh)f ) =
M∑

`=0
p` F (T kS`hf ) =

M∑

`=0
p`F (T k f (h(`+·))) = 0, k ∈ Z.

We can compute the coefficients p` of the Prony polynomial from M of
these equations, i.e., using F (T kS`hf ), ` = 0, . . . ,M, k = 1, . . . ,M.
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Revisiting Prony’s Method Using the Shift Operator

Example: Choose h = 1, T = Sh/2 = S1/2, F = F0, then the linear
system reads (for even M))



f (0) f (1) . . . f (M − 1)
f (12) f (32) . . . f (M−1

2 )
f (1) f (2) . . . f (M)
...

...
...

f (M
2 − 1) f (M

2 ) . . . f (3M
2 − 2)







p0
p1
p2
...

pM−1




= −




f (M)
f (M + 1

2)
f (M + 1)

...
f (3M

2 − 1)




This matrix ist not longer of Hankel form.
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Revisiting Prony’s Method Using the Differential Operator
Let d

dx : C∞(R) 7→ C∞(R), d
dx f := f ′. Then

( d
dx eα·)(x) = α eαx (eigenfunction).

For

f (x) =
M∑

j=1
cj eαj x with P̃(z) :=

M∏

j=1
(z − αj) =

M∑

`=0
p̃`z`

we have

P̃( d
dx )f =

M∑

`=0
p̃` ( d

dx )`f =
M∑

`=0
p̃` ( d

dx )`
M∑

j=1
cj eαj · =

M∑

`=0
p̃`

M∑

j=1
cj ( d

dx )`eαj ·

=
M∑

`=0
p̃`

M∑

j=1
cj α

`
j eαj · =

M∑

j=1
cj eαj ·

M∑

`=0
p̃` α`j = 0.
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Revisiting Prony’s Method Using the Differential Operator

Thus, f (x) =
M∑

j=1
cj eαj x solves the differential equation P̃( d

dx )f = 0.

Moreover,

( d
dx )k P̃( d

dx )f =
M∑

`=0
p̃` ( d

dx )`+k f = 0, k ∈ Z.

With the point evaluation functional F0f := f (0),

F0(( d
dx )k P̃( d

dx )f ) =
M∑

`=0
p̃` F0(( d

dx )`+k f ) =
M∑

`=0
p̃` f (`+k)(0) = 0, k ∈ Z.

We can compute the coefficients p̃` of the Prony polynomial from M of
these equations, i.e., using f (k)(0), k = 0, . . . , 2M − 1.
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Switch Between Operators with the Same Eigenfunctions

What is the connection between Prony’s method using the shift operator
or the differential operator?
We have

d
dx eα· = α eα·, Sheα· = eαh eα·.

Obviously, the spectra are connected by the map exp(h·) : α 7→ ehα.

Moreover, for all monomials xm,

exp(h d
dx ) xm =

∞∑

k=0

hk

k! ( d
dx )kxm =

m∑

k=0

hk

k!
m!

(m − k)! xm−k

=
m∑

k=0

(
m
k

)
hk xm−k = (x + h)m = Shxm.

Thus,
exp(h d

dx ) f (x) = Shf (x).
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Generalized Prony method (Peter & Plonka ’13)

V : normed vector space
A : V → V linear operator
{vλ : λ ∈ σ(A)} set of eigenfunctions of A to pairwise different eigen-
values λ ∈ σ(A) ⊂ C,

A vλ = λ vλ.

Let

f =
∑

λ∈Λf

cλ vλ, Λf ⊂ σ(A) with |Λf | = M, cλ ∈ C.

Let G : V → C be a linear functional with G(vλ) 6= 0 for all λ ∈ σ(A).

We have M, G(A`f ) for ` = 0, . . . , 2M − 1
We want Λf ⊂ σ(A), cλ ∈ C for λ ∈ Λf
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Generalized Prony Method
Theorem (Peter & Plonka ’13)
The expansion

f =
∑

λ∈Λf

cλ vλ, Λf ⊂ σ(A) with |Λf | = M, cλ ∈ C.

of eigenfunctions vλ of the linear operator A can be uniquely recovered
by G(A`f ), ` = 0, . . . , 2M − 1, where G : V → C is a linear functional
with G(vλ) 6= 0 for all λ ∈ σ(A).

Example: Let V = C∞, A := Sh with Shf = f (h + ·), and

f =
∑

λ∈Λf

cλ vλ =
∑

λ∈Λf

cλ eλ·,

where Λf ⊂ R + i[−π, π). Choose the functional Gf := f (0), then f can
be recovered from the samples

G(A`f ) = S`hf (0) = f (h`), ` = 0, . . . , 2M − 1.
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Generalized Operator Based Prony Method
(Stampfer & Plonka ’19)
Assume, you want to recover a sparse expansion

f =
M∑

j=1
cj vj , vj ∈ V , cj ∈ C.

Idea:
Find a linear operator A such that vj are eigenfunctions of A to
pairwise different eigenvalues.
Check, whether G(A`f ), ` = 0, . . . , 2M − 1 can be computed from
the given information.
If not, transfer to a different operator B = ϕ(A) and suitable
functionals Gk such that Gk(B`f ), ` = 0, . . . ,M, k = 1, . . . ,M that
can be computed from the given information.
Apply the generalized Prony method to recover vj and cj ,
j = 1, . . . ,M.
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Generalized Operator Based Prony Method
Example:

f (x) =
M∑

j=1
cj xαj , αj ∈ R, cj ∈ R.

Find a linear operator A on C∞(R):

A f (x) := x f ′(x) ⇒ A xαj = αj xαj .

However, A`f involves higher order derivatives.

Choose ϕ(z) := exp(τz) with τ ∈ R \ {0}.

exp(τx d
dx )xm =

∞∑

`=0

τ `

`! (x d
dx )`xm =

∞∑

`=0

τ `

`! m`xm = eτmxm = (eτx)m.

Thus Bf (x) = ϕ(A)f (x) = f (eτx) (dilation operator).

Choose f (e`τx0), ` = 0, . . . , 2M − 1 to recover f .
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Example: dilation operator
Consider

f (x) = 6
x9 +

√
x
5 + 1.3 x .

Choose G(f ) := f (x0) with x0 = −0.7− 0.7i and h = 1.1ei/5
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Differential Operators of First Order and Generalized Shifts
Reconstruct

f (x) =
M∑

j=1
cj eαj G(x),

i.e., find cj , αj , j = 1, . . . ,M, where G is differentiable and strictly mono-
tone on [a, b].

Find a linear operator with eigenfunctions eαj G(x):
Let g(x) := 1/G ′(x) and

Af (x) := g(x) d
dx f (x).

Then
A eαG(x) = g(x) d

dx eαG(x) = α eαG(x).

Using the generalized Prony method, f can be recovered using

F ((g(·) d
dx )k f ), k = 0, . . . , 2M − 1.

However, these may be difficult to provide.
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Differential Operators of First Order and Generalized Shifts

Change the operator:

exp(τ A)f (x) = exp
(
τ g(x) d

dx

)
f (x)

=
∞∑

`=0

τ `

`!
(
g(x) d

dx

)`



M∑

j=1
cj eαj G(x)




=
M∑

j=1
cj

( ∞∑

`=0

τ `

`! α
`
j

)
eαj G(x)

=
M∑

j=1
cj eαjτ eαj G(x)

=
M∑

j=1
cj eαj G(G−1(τ+G(x))) = f (G−1(τ + G(x))).
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Differential Operators of First Order and Generalized Shifts

Theorem (Stampfer & Plonka ’19)
Let

f (x) =
M∑

j=1
cj eαj G(x),

where G(x) is continuous and monotone on an interval [a, b|. Let
τk + G(x0) ∈ G([a, b]) for k = 0, . . . , 2M − 1. Then f (x) can be
uniquely reconstructed from the function samples

f (G−1(τk + G(x0))), k = 0, . . . , 2M − 1.
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Differential Operators of First Order and Generalized Shifts

g(x) G(x) eigenfunctions sampling values

1/x −1
2x2 exp

(
−α

2 x2) f
(√

x0 − kτ
)

1 x exp(αx) f (τk + x0)

x log(x) xα f
(
eτkx0

)

−
√
1− x2 arccos x exp(α arccos x) f (cos(kτ + arccos(x0)))

√
1− x2 arcsin x exp(α arcsin x) f (sin(kτ + arcsin(x0)))
1

cos(x) sin x exp(α sin x) f (arcsin(kτ + sin(x0)))

− 1
sin(x) cos x exp(α cos x) f (arccos(kτ + cos(x0)))

Examples of operators A = g(·) d
dx , corresponding eigenfunctions exp(αG(·))

and sampling values for k = 0, . . . , 2M−1 with sampling parameter τ to recover
expansions f .
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Example: Recovery of shifts of Gaussians
(Plonka, Stampfer, Keller ’19)
f (x) =

5∑
j=1

cj ei(x−αj )2

25

7 Numerical examples

In this section we want to illustrate the recovery method for non-stationary signals
with some examples.

Example 7.1. We start with considering the recovery of an expansion of complex
shifted Gaussians,

f(x) =

MX

j=1

cj G(x � ↵j) =

MX

j=1

cj e��(x�↵j)
2
,

with M = 5, G(x) = eix2
, i.e., � = �i, and with complex coe�cients cj and real

shifts ↵j given in Table 1. The coe�cients have been obtained by applying a uniform
random choice from the intervals (�5, 5) + i(�2, 2) for cj and from (�⇡,⇡) for ↵j .
For reconstruction, we have used the 10 signal values f(j), j = �1, . . . , 8, indicated
by ⇤ in Figure 1 (left). The maximal error for recovering the parameters is given by

max
j

|cj � c̃j | = 1.5 · 10�10, max
j

|↵j � ↵̃j | = 3.5 · 10�12,

where c̃j and ↵̃j denote the computed parameters.

j = 1 j = 2 j = 3 j = 4 j = 5

Re cj �2.37854 �4.55545 2.54933 �2.57214 �0.57597

Im cj 0.75118 �0.56308 0.94536 0.42117 0.73366

↵j 0.64103 �0.18125 �1.50929 �0.53137 �0.23778

Table 1 Coe�cients cj 2 C and ↵j 2 R for the expansion of shifted Gaussians in Example 7.1.
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Figure 1 Left: Real and imaginary part of the signal f(x) consisting of shifted Gaussians given in Example
7.1. Right: Real and imaginary part of the Gabor expansion considered in Example 7.2. Stars indicate
the used signal values.

Example 7.2. Next, we consider the recovery of a Gabor expansion of the form

f(x) =
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Summary

Prony’s method can be used in many contexts, since sparse
representations can be often transformed to the form of exponential
sums, e.g.,

g(t) =
M∑

j=1
cj φ(t − tj) ⇒ ĝ(x) =

( M∑

j=1
cj e−itj x

)
φ̂(x)

The underlying recovery problem is ill-posed.
For noisy samples, one should use the modified Prony method.
Prony’s method can be generalized to recover sparse expansions of
eigenfunctions of linear operators.
One can use different operators with the same (sub)set of
eigenfunctions.
One can employ the generalized Prony method to find new more
general sampling schemes.
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