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Abstract

We derive a new generalization of Prony’s method to reconstruct M -sparse expansions of
(generalized) eigenfunctions of linear operators from only O(M) suitable values in a determin-
istic way. The proposed method covers the well-known reconstruction methods for M -sparse
sums of exponentials as well as for the interpolation of M -sparse polynomials by using special
linear operators in C(R). Further, we can derive new reconstruction formulas for M -sparse
expansions of orthogonal polynomials using the Sturm-Liouville operator. The method is also
applied to the recovery of M -sparse vectors in finite-dimensional vector spaces.
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1 Introduction

In signal analysis, we often have some a priori knowledge about the underlying structure of
the wanted signal that we need to exploit suitably. Using this structure, we are faced with the
problem of determining a certain number of parameters from the given signal measurements.
Considering for example a structured function of the form

f(ω) =

M∑
j=1

cj eωTj (1.1)

with (unknown) complex parameters cj and Tj , j = 1, . . . ,M , and assuming that −π <
ImT1 < . . . < ImTM < π, we aim to reconstruct cj and Tj from a given small amount of
(possibly noisy) measurement values f(`). Using Prony’s method [30] or one of its stabilized
variants, we are able to reconstruct f with only 2M function values f(`), ` = 0, . . . , 2M − 1,
see [5, 18, 25, 26, 31]. The solution of this problem involves the determination of a so-called
Prony polynomial

P (z) :=

M∏
j=1

(z − λj)
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with λj := eTj . Assuming that P (z) has the monomial representation

P (z) =

M∑
k=0

pkz
k,

and using the structure of f , a short computation yields for m = 0, . . . ,M − 1,

M∑
k=0

pkf(k +m) =

M∑
k=0

pk

M∑
j=1

cje
(k+m)Tj =

M∑
j=1

cjλ
m
j

(
M∑
k=0

pkλ
k
j

)

=

M∑
j=1

cjλ
m
j P (λj)︸ ︷︷ ︸

=0

= 0.

With pM = 1 we obtain the linear Hankel system

M−1∑
k=0

pk f(k +m) = −f(M +m), m = 0, . . . ,M − 1, (1.2)

providing the coefficients pk of the Prony polynomial P (z). Now, the unknown parameters Tj
can be extracted from the zeros λj = eTj of P (z). Afterwards, the coefficients cj are obtained
by solving the overdetermined linear system

f(`) =

M∑
j=1

cje
i`Tj , ` = 0, . . . , 2M − 1.

In recent years, the Prony method has been successfully applied to different inverse problems
as e.g. for approximation of Green functions in quantum chemistry [35] or fluid dynamics [4],
for localization of particles in inverse scattering [17], for parameter estimation of dispersion
curves of guided waves [32], and for analysis of ultrasonic signals [7]. The renaissance of Prony’s
method originates from some modifications of the algorithm described above that considerably
stabilize the original approach, as e.g. the ESPRIT method, the matrix pencil method or the
approximate Prony method, [31, 18, 26]. These techniques can also be applied if the number
M of relevant frequencies is not known beforehand, provided that a sufficiently large number of
measurements f(`) is given, and the applications in practice show that they work well even in
case of noisy measurements. Error estimates for the performance of Prony-like methods with
noisy measurements are derived in [26, 11, 2]. Just recently, the reconstruction of functions
of the form (1.1) (with Re Tj = 0) using a total variation minimization has been proposed
in [8]. To tackle this minimization problem, a semidefinite program is applied to solve the
dual problem in a first step. The obtained vector is used to define a special polynomial that
possesses exactly M zeros on the unit circle which are related to the wanted frequencies Im Tj .
The exact connections between the minimization approach in the context of super-resolution
and the direct algorithms for the Prony method will be subject of further research.

Searching the literature, one finds different further reconstruction methods that are closely
related to Prony’s method at second glance.

In spectral analysis the annihilating filter method is frequently applied. This idea has been
used already long ago for the construction of cyclic codes, [33]. For a given signal S[n], the
FIR filter A[n] is called annihilating filter of S[n], if

(A ∗ S)[n] =
∑
j∈Z

A[j]S[n− j] =
∑
j∈Z

A[−j]S[n+ j] = 0.

Using the z-transform A(z) =
∑M
n=0A[−n]zn and comparing this convolution equation to

(1.2), we observe that A(z) undertakes the task of the Prony-polynomial. Vetterli et al. [34]
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introduced signals with finite rate of innovation, i.e., signals with a special structure having
only a finite number of degrees of freedom per time unit. Using the annihilating filter method,
these signals can be completely reconstructed, see also [21, 6].

In some applications, one needs to apply an integral transform in order to obtain functions
of the form (1.1), then the Prony method can be applied in the transform domain, see e.g.
[14, 10, 23, 1, 24].

In computer algebra, one is faced with the computation and processing of multivariate
polynomials of high order. But if the polynomial f is M -sparse, i.e.,

f(x1, . . . , xn) =

M∑
j=1

cjx
dj1
1 x

dj2
2 · · ·xdjnn

with c1, . . . , cM ∈ C and with M pairwise different vectors (dj1 , . . . , djn) ∈ Nn, f can be
completely recovered using only 2M suitably chosen function values. Here again, the number
of needed evaluations does not depend on the degree of the polynomial f but on the number
M of active terms. A stochastic approach to the problem was given in [36]. A deterministic
algorithm goes back to Ben-Or and Tiwari [3], and has been shown to be closely related to the
Prony method, see e.g. [19, 13].

Only a few papers have been concerned with the question whether the above interpolation
problem can be also solved efficiently if the polynomial is sparse in a different polynomial basis.
This problem turned out to be difficult to solve and suitable methods were only given for the
Pochhammer basis and the basis of Chebyshev polynomials of first kind, [20, 12, 29].

Recently, we considered in [22] the function reconstruction problem for sparse Legendre
expansions of order N of the form

f(x) =

M∑
j=1

cjPnj (x)

with 0 ≤ n1 < n2 . . . < nM = N , where M � N , aiming at a generalization of Prony’s method
for this case. We derived a reconstruction algorithm involving the function and derivative
values f (`)(1), ` = 0, . . . , 2M − 1. The reconstruction in [22] is based on special properties
of Legendre polynomials, but it does not provide a direct approach for further generalization
of the method to other sparse orthogonal polynomial expansions or to other function systems
apart from exponentials and monomials.

In [9], the idea of efficient sparse polynomial interpolation has been transferred to the more
general case of M -term sums of characters of abelian monoids. This approach has been also
used in [16] for the reconstruction of functions being linear combinations of eigenfunctions of
linear operators on suitable algebras on integral domains. This last paper can be seen as one
starting point of our considerations.

In this paper, we want to present a new very general approach for the reconstruction of
sparse expansions of eigenfunctions of suitable linear operators. This new insight provides us
with a tool to unify all Prony-like methods on the one hand and to essentially generalize the
Prony approach on the other hand. Thus it will establish a much broader field of applications of
the method. In particular, we will show that all well-known Prony-like reconstruction methods
for exponentials and polynomials known so far, can be seen as special cases of this approach.
Moreover, the new insight into Prony-like methods enables us to derive new reconstruction
algorithms for orthogonal polynomial expansions including Jacobi, Laguerre, and Hermite
polynomials. The approach also applies to finite dimensional vector spaces, and we derive a
deterministic reconstruction method for M -sparse vectors from only 2M measurements.

We point out that the provided generalized Prony method can also be applied to other
operators and eigenfunctions. In particular, one may apply it e.g. to Bessel or Hermite functions
that are eigenfunctions of special differential operators, to orthogonal polynomials that are
eigenfunctions of difference equations, and to eigenfunctions of suitable integral operators.
However, in this paper we restrict ourselves to the examples described above.
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We will concentrate on the representation of the generalized Prony method for recovering
expansions of eigenfunctions, where the number M of terms in the sum is known in advance.
Of course, our ideas can also be generalized to the case of an unknown number of terms
in the considered expansion. The construction and analysis of stabilized algorithms for the
generalized Prony approach will be subject of further research.

The paper is organized as follows. In Section 2, we derive the general reconstruction method
for sparse expansions of eigenfunctions of suitable linear operators. We also consider the case
of generalized eigenfunctions. In Section 3, we revisit the well-known reconstruction methods
for sparse sums of exponentials and for sparse polynomials, where the exponentials can be
regarded as eigenfunctions of the translation operator, and the monomials are eigenfunctions
of the dilation operator in C(R). Moreover, we show that also sparse linear combinations
of wk(x)eTjx can be recovered using the general approach with generalized eigenfunctions,
where wk(x) is a polynomial of order k. Further, exponentials as well as monomials can also
be seen as eigenfunctions of suitable differential operators yielding new types of Prony-like
reconstructions. Section 4 is dedicated to the reconstruction of sparse expansions of orthogonal
polynomials that can be seen as eigenfunctions of the Sturm-Liouville operator. In particular,
we show that the reconstruction algorithm for Legendre expansions derived in [22] can be seen
as a special example of this general method. Finally, we consider the recovery of M -sparse
vectors x ∈ CN with N � M from y = FN,2Mx, where FN,2M ∈ C2M×N contains the first
2M rows of the Fourier matrix FN .

2 Prony’s method for sparse expansions of eigenfunctions

We want to generalize the Prony method to sparse expansions of eigenfunctions of certain
linear operators. Let V be a normed vector space over C, and let A : V → V be a linear
operator.

Assume that A possesses eigenvalues, and let Λ := {λj : j ∈ I} be a (sub)set of pairwise
distinct eigenvalues of A, where I is a suitable index set. We consider the eigenspaces Vj =
{v : Av = λjv} to the eigenvalues λj , and for each j ∈ I, we predetermine a one-dimensional

subspace Ṽj of Vj that is spanned by the normalized eigenfunction vj . In particular, we assume
that there is a unique correspondence between λj and vj , j ∈ I.

An expansion f of eigenfunctions of the operator A is called M -sparse if its representation
consists of only M non-vanishing terms, i.e. if

f =
∑
j∈J

cjvj , with J ⊂ I and |J | = M. (2.1)

Due to the linearity of the operator A, the k-fold application of A to f yields

Akf =
∑
j∈J

cjAkvj =
∑
j∈J

cjλ
k
j vj . (2.2)

Further, let F : V → C be a linear functional with the property Fvj 6= 0 for all j ∈ I. We
show that the expansion f in (2.1) can be reconstructed using only the 2M values F (Akf),
k = 0, . . . , 2M − 1.

Theorem 2.1 With the above assumptions, the expansion f in (2.1) of eigenfunctions vj ∈ Ṽj,
j ∈ J ⊂ I, of the linear operator A, with cj 6= 0 for all j ∈ J , can be uniquely reconstructed
from the values F (Akf), k = 0, . . . , 2M − 1, i.e., the “active” eigenfunctions vj as well as the
coefficients cj ∈ C, j ∈ J , in (2.1) can be determined uniquely.

Proof. We give a constructive proof.
1. We define the so-called Prony polynomial

P (z) :=
∏
j∈J

(z − λj),
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where the roots λj , j ∈ J , are the eigenvalues corresponding to the (unknown) active eigen-

functions vj in the representation of f . Further, let P (z) =
∑M
k=0 pkz

k, with pM = 1, be the
monomial representation of the Prony polynomial. Combining the unknown coefficients pk
with the given values F (Akf), k = 0, . . . , 2M − 1, and using (2.2) we observe the following
relation for m = 0, 1, . . . ,

M∑
k=0

pkF (Ak+mf) =

M∑
k=0

pkF

∑
j∈J

cjλ
k+m
j vj

 =
∑
j∈J

cjλ
m
j

(
M∑
k=0

pkλ
k
j

)
Fvj

=
∑
j∈J

cjλ
m
j P (λj)︸ ︷︷ ︸

=0

Fvj = 0.

Together with pM = 1, the coefficients pk, k = 0, . . . ,M − 1, of the Prony polynomial can now
be determined via the linear system

M−1∑
k=0

pkF (Ak+mf) = −F (AM+mf), m = 0, . . . ,M − 1.

Indeed, the coefficient matrix G := (F (Ak+mf))M−1,M−1k,m=0 is an invertible Hankel matrix since
(2.2) yields

G = Vλ · diag(c) · diag(Fv) ·VT
λ

with the Vandermonde matrix

Vλ :=
(
λkj
)M−1
k=0,j∈J

and with the diagonal matrices diag(c) = diag(cj)j∈J , diag(Fv) = diag(Fvj)j∈J , where the
indices j ∈ J are assumed to be given in a fixed order. By assumption, Vλ as well as the
diagonal matrices diag(c) and diag(Fv) have full rank yielding the invertibility of G.

2. Having determined the Prony polynomial

P (z) =

M∑
k=0

pkz
k =

∏
j∈J

(z − λj),

we can evaluate the eigenvalues λj , j ∈ J , that are the zeros of P (z). Since the eigenspaces Ṽj
are assumed to be one-dimensional we can uniquely determine the corresponding eigenfunctions
vj , j ∈ J .

3. In the last step we compute the coefficients cj , j ∈ J , of the expansion (2.1) by solving
the overdetermined linear system

F (Akf) =
∑
j∈J

cjλ
k
j vj , k = 0, . . . , 2M − 1,

using the eigenvalues λj and eigenfunctions vj found in the previous step.
This general approach to the Prony method enables us to derive reconstruction algorithms

for a variety of different systems of eigenfunctions. We summarize the algorithm as follows.

Algorithm 2.2 (Reconstruction of the sparse expansion (2.1))

Input: M , F (Akf), k = 0, . . . , 2M − 1.

1. Solve the linear system

M−1∑
k=0

pkF (Ak+mf) = −F (AM+mf), m = 0, . . . ,M − 1. (2.3)
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2. Form the Prony polynomial P (z) =
M∑
k=0

pkz
k using the obtained values pk, k = 0, . . . ,M−

1 from step 1 and pM = 1. Compute the zeros λj, j ∈ J , of P (z) and determine the
corresponding (normalized) eigenfunctions vj, j ∈ J .

3. Compute the coefficients cj by solving the overdetermined system

F (Akf) =
∑
j∈J

cjλ
k
j vj k = 0, . . . , 2M − 1.

Output: cj, vj, j ∈ J , determining f in (2.1).

Remark 2.3 Just recently, Potts and Tasche [28] presented a unified approach to Prony type
algorithms for exponential sums that are numerically stable, as e.g. ESPRIT [31] and the matrix
pencil method [18]. The approach even applies if the parameter M (the number of active basis
functions) is unknown, supposed that we have a given set of 2N suitable values, where N ≥M is
an upper bound for M . This idea to derive a more stable algorithm can also be transferred to our
general Prony method. Consider the Hankel matrix G := (F (Ak+mf))M−1k,m=0 = (g0 . . .gM−1),

where gk, k = 0, . . . ,M − 1, denote the columns of G. Further let gM := (F (AM+mf))M−1m=0 .
Then (2.3) can be written as

Gp = −gM ,

where p := (p0, . . . , pM−1)T . Using the companion matrix C(P ) of the Prony polynomial P (z),
we obtain

G C(P ) = G̃,

where G̃ = (g1 . . .gM ) is a shifted Hankel matrix. The eigenvalues of the companion matrix
C(P ) are the wanted zeros λj, j = 1, . . . ,M , of the Prony polynomial P (z). From the above
relation, it follows that the λj are also the eigenvalues of the matrix pencil, see [15], p. 251,

zG− G̃, z ∈ C.

Using this approach, the wanted values λj, j = 1, . . .M , can be obtained from a QR decompo-
sition or a singular value decomposition of the rectangular Hankel matrix (g0 . . .gM ). Since

the proofs in [28] are based only on rank arguments of Hankel matrices G and G̃ whose entries
are the given input data, the case of unknown order M can be applied directly to our approach
too.

Let us also consider the case of generalized eigenfunctions. Let r ≥ 1 be a fixed integer.
Analogously as for linear operators in finite-dimensional vector spaces, we say that ṽ`, ` =
1, . . . , r, are generalized eigenfunctions of multiplicity ` of a linear operator A : V → V to the
eigenvalue λ, if

(A− λI)`ṽ` = 0, ` = 1, . . . , r,

and

Aṽ` = λṽ` +

`−1∑
s=1

α`,sṽs, ` = 1, . . . , r, (2.4)

with some constants α`,s ∈ C. Again, let Λ = {λj , j ∈ I} be a (sub)set of pairwise distinct
eigenvalues of A, and for each j ∈ I, let {ṽj,` : ` = 1, . . . , r} be a predetermined set of linearly
independent generalized eigenfunctions to the eigenvalue λj . Further, let F : V → C be a
functional with F (ṽj,`) 6= 0 for j ∈ I, ` = 1, . . . , r.
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Theorem 2.4 With the above assumptions, the expansion

f =
∑
j∈J

r∑
`=1

cj,`ṽj,`, J ⊂ I, |J | = M, r ≥ 1,

of generalized eigenfunctions of the linear operator A to the eigenvalues λj, j ∈ J ⊂ I, with∑r
`=1 |cj,`|2 6= 0 for all j ∈ J , can be uniquely reconstructed from the values F (Akf), k =

0, . . . , 2rM − 1, supposed that the matrix (F (Ak+mf))rM−1,rM−1k,m=0 is invertible.

Proof. We only consider the special case, where, instead of (2.4), the generalized eigenfunc-
tions ṽj,` to the eigenvalue λj satisfy

Aṽj,` = λṽj,` + αj,`−1ṽj,`−1, ` = 2, . . . , r. (2.5)

with constants αj,`−1 ∈ C. Using an induction argument, equation (2.5) implies that

Akṽj,` =

`−1∑
s=0

(
k

k − s

)
λk−sj

(
s∏

ν=1

αj,`−ν

)
ṽj,`−s,

where we set
(
k
k−s
)

:= 0 if s > k.
We consider now a generalized Prony polynomial of the form

P (z) :=
∏
j∈J

(z − λj)r =

Mr∑
k=0

pkz
k, (2.6)

where again λj denote the unknown eigenvalues of A that determine the active sets of (gener-
alized) eigenfunctions. Then we obtain the following relation for m = 0, . . . ,Mr − 1,

Mr∑
k=0

pkF (Ak+mf) =

Mr∑
k=0

pkF

∑
j∈J

r∑
`=1

cj,`Ak+mṽj,`


=

Mr∑
k=0

pkF

∑
j∈J

r∑
`=1

cj,`

`−1∑
s=0

(
k +m

k +m− s

)
λk+m−sj

(
s∏

ν=1

αj,`−ν

)
ṽj,`−s


=
∑
j∈J

r∑
`=1

cj,`

`−1∑
s=0

(
Mr∑
k=0

pk

(
k +m

k +m− s

)
λk+m−sj

(
s∏

ν=1

αj,`−ν

))
F (ṽj,`−s).

Now, for each j ∈ J , ` = 1, . . . , r and s = 0, . . . , `− 1, the term

Mr∑
k=0

pk

(
k +m

k +m− s

)
λk+m−sj

(
s∏

ν=1

αj,`−ν

)
can be written as a linear combination of the Prony polynomial P (z) and its first r − 1

derivatives P (ν)(z) =
∑Mr
k=ν pk

k!
(k−ν)!z

k−ν evaluated at λj . For this purpose, we only have to

show that there exists coefficients cj,s,ν such that

min{k,r−1}∑
ν=0

cj,s,ν
k!

(k − ν)!
=

(
k +m

k +m− s

)( s∏
ν=1

αj,`−ν

)
holds for each k = 0, . . . ,Mr, where the coefficients cj,s,ν are independent of k. This is
obviously possible, since each polynomial in k of degree up to r− 1 can be written in the form∑r−1
ν=0 cj,s,ν

k!
(k−ν)! . Hence, by P (ν)(λj) = 0 for j ∈ J, ν = 0, . . . , r − 1, it follows that

Mr∑
k=0

pkF (Ak+mf) = 0
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for m = 0, . . .Mr − 1. In this way, we obtain again a linear Hankel system of the form

rM−1∑
k=0

pkF (Ak+mf) = −F (ArM+mf), m = 0, . . . , rM − 1

in order to determine the coefficients pk of the Prony polynomial. Having found the zeros λj of
the Prony polynomial, we obtain the corresponding eigenfunctions ṽj,1, . . . , ṽj,r, and afterwards
compute the complex coefficients cj,` by solving the overdetermined system

F (Akf) =
∑
j∈J

r∑
`=1

cj,`Akṽj,`, k = 0, . . . , 2rM − 1.

Remark 2.5 Generalized Prony polynomials of the form (2.6) have already been used for the
reconstruction of spline functions in [34] and [24].

3 Sparse sums of exponentials and monomials revisited

Using the general Prony approach introduced in Section 2, we would like to revisit the well-
known methods for reconstruction of sparse exponential sums and sparse monomial sums.

3.1 Sparse exponential sums

Let us consider the vector space C(R) of continuous functions, and let Sa : C(R)→ C(R) with

Saf(x) := f(x+ a), a ∈ R\{0}

be the shift operator on C(R). We observe that {eTa : T ∈ C, ImT ∈ [−πa ,
π
a )} is a set of

pairwise distinct eigenvalues of Sa, and by

Saex(T+ 2πik
a ) = e(x+a)(T+ 2πik

a ) = eTaex(T+ 2πik
a ), x ∈ R, k ∈ Z,

we find for each eigenvalue λT := eTa, T ∈ I := {T ∈ C, ImT ∈ [−πa ,
π
a )}, the eigenspace

VT := span {ex(T+ 2πik
a ) : k ∈ Z}. In order to obtain a unique correspondence between λT

and its eigenfunction, we consider only the subeigenspaces ṼT = span {eTx}. Further, let the
functional F : C(R)→ C be given by

F (f) := f(x0), ∀f ∈ C(R),

with an arbitrarily fixed x0 ∈ R. Hence F (eT ·) = eTx0 6= 0 for all T ∈ I. Applying Theorem
2.1 yields that the sparse sum of exponentials

f(x) =

M∑
j=1

cje
Tjx (3.1)

with pairwise different Tj ∈ C and Im Tj ∈ [−πa ,
π
a ) can be uniquely reconstructed from the

values

F (Skaf) = F (f(·+ ka)) = f(x0 + ka), k = 0, . . . , 2M − 1,

e.g., from 2M equidistant sampling points with sampling distance a, starting at point x0.
Moreover, Theorem 2.4 also admits efficient recovery of sums of the form

f(x) =

M∑
j=1

r∑
`=0

cj,`w`(x)eTjx
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with r ≥ 0, where w`, ` = 0, . . . , r denote algebraic polynomials of exact degree `. Indeed we
easily observe, that w`(x)eTx, ` = 0, . . . , r are linearly independent generalized eigenfunctions
of multiplicity ` + 1 of the shift operator Sa to the eigenvalue eTa. Therefore, we can apply
Theorem 2.4 for the reconstruction of f using the 2M(r + 1) function values f(x0 + ka),
k = 0, . . . , 2M(r + 1)− 1.

Remarks 3.1 1. There are other operators that also possess eigenfunctions of the form eTx.
For example, the shift operator Sa in the above considerations can be replaced by the differ-
ence operator ∆af(x) = f(x + a) − f(x) or even by an m-fold difference operator ∆m

a f :=
∆m−1
a (∆af), (m ∈ N). Using again Ff := f(x0), the reconstruction then involves the values

F (∆mk
a f) = ∆mk

a f(x0) =

mk∑
`=0

(
mk

`

)
(−1)`f(x0 + `a).

2. Instead of using the functional Ff = f(x0) for some fixed x0 ∈ R one can use also

a different functional. The functional Ff :=
∫ x0+a

x0
f(x)dx leads to a reconstruction method,

where f in (3.1) can be reconstructed from the values∫ x0+a

x0

Skaf(x) dx =

∫ x0+a

x0

f(x+ ka) dx =

∫ x0+(k+1)a

x0+ka

f(x) dx, k = 0, . . . , 2M − 1.

3. The reconstruction method also applies to the multivariate case. Let Sa : C(Rd)→ C(Rd)
be the shift operator with

Saf(x1, . . . , xd) = f(x1 + a1, x2 + a2, . . . , xd + ad),

with the set of eigenfunctions {eT·x = eT1x1+···+Tdxd : T` ∈ C, ImT` ∈ [−πa ,
π
a ), ` = 1, . . . , d}.

The corresponding eigenvalues eT·a allow a unique conclusion to the corresponding eigenfunc-
tion eT·x if there exists an injective linear mapping that maps T to T · a. This condition can
be satisfied by a suitable restriction of T and a special choice of a. Let f(x) be of the form

f(x) =

M∑
j=1

cje
Tj ·x

with Tj = (Tj,1, . . . , Tj,d)
T, where Tj,` ∈ N for j = 1, . . . ,M, ` = 1, . . . , d. Choose now

pairwise relatively prime numbers p1, . . . , pd with p` > max
j=1,...,M

Tj,` for ` = 1, . . . , d. Further,

let N = p1p2 · · · pd, and a := ( b1Np1 , . . . ,
bdN
pd

), where b` is determined from b`
N
p`
≡ 1 mod p` for

` = 1, . . . , d. Then each variable Tj ∈ Nd can be uniquely determined from τj := Tj · a using
the reverse steps of the Chinese remainder theorem. We have

τj =

d∑
`=1

Tj,`b`N

p`
.

Hence, τj ≡ Tj,` mod p` for 1 ≤ ` ≤ d, and we can recover Tj from τj by Tj,` = τj − p`
⌊
τj
p`

⌋
,

see [13]. Unfortunately, this procedure is highly unstable.
Another procedure for recovery of multivariate exponential sums is based on the determi-

nation of Tj ∈ Cd, Im Tj ∈ [−πa ,
π
a )d, from different scalar products Tj · a1, Tj · a2, etc., see

[27, 24].

Finally, we want to mention that the exponentials can also be seen as eigenfunctions of dif-
ferential operators. Let us consider the vector space C∞(R) of infinitely differentiable functions,
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and let d
dx : C∞(R) → C∞(R) be the differentiation operator. We observe that {T : T ∈ C}

is a set of pairwise distinct eigenvalues of d
dx and by

d

dx
eTx = T eTx

we can uniquely relate the eigenfunction eTx to the eigenvalue T . Let x0 be a fixed real number.
Then, with F (f) := f(x0), ∀f ∈ C∞(R), we can again apply Theorem 2.1 for recovering the
sparse sum of exponentials

f(x) =

M∑
j=1

cje
Tjx

with pairwise different Tj ∈ C. The reconstruction of f can be uniquely performed using the
values

F

(
dk

dxk
f

)
= f (k)(x0), k = 0, . . . , 2M − 1,

where x0 ∈ R can be chosen arbitrarily.
Moreover, let {w`}r`=0 be a basis of the space of polynomials of degree at most r and deg(w`) =
`, ` = 0, . . . , r. Then we easily check that the functions w`(x)eTx, ` = 0, . . . , r, form linearly
independent generalized eigenfunctions of multiplicity ` + 1 of the linear operator d

dx , and
Theorem 2.4 applies for the recovery of sparse expansions of the form

f(x) =

M∑
j=1

r∑
`=0

cj,`w`(x)eTjx

using the derivative values f (k)(x0), k = 0, . . . , 2M(r + 1)− 1, for r ≥ 0.

3.2 Sparse monomial sums

Let us consider the Banach space C(R) of continuous functions and let Da : C(R) → C(R)
with

Daf(x) := f(ax), a ∈ R+\{1}

be the dilatation operator on C(R). By

Dax
p = (ax)p = apxp

we observe that {xp : p ∈ C} is a set of eigenfunctions to Da with corresponding eigenvalues
ap. In order to ensure that the eigenvalues ap are pairwise distinct, we assume that Im p ∈
[− π

ln a ,
π

ln a ). Therefore, we consider only the “admissible” set of eigenfunctions {xp : p ∈
C, Im p ∈ [− π

ln a ,
π

ln a )}. Further, let the functional F : C(R) → C be given by F (f) := f(x0)
for all f ∈ C(R), where x0 ∈ R\{0} is arbitrary but fixed, such that F (·)p = xp0 6= 0.

With Theorem 2.1, we can uniquely reconstruct the sparse sum of monomials

f(x) =

M∑
j=1

cjx
pj

with cj ∈ C\{0} and pairwise different pj ∈ C which satisfy Im pj ∈ [− π
ln a ,

π
ln a ), using the 2M

values F (Dk
af) = f(akx0), k = 0, . . . , 2M − 1.
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Remarks 3.2 1. The above approach generalizes the Ben-Or and Tiwari algorithm [3] for
interpolating sparse polynomials in the sense that we are not restricted to integer exponents
pj. It can be applied to multivariate sums, where some restrictions to the set of admissible
eigenfunctions are needed in order to ensure an injective mapping from the eigenvalues to the
eigenfunctions, see Remarks 3.1 for the similar case of multivariate exponential sums.

2. By using a different functional F , a further generalization of the Ben-Or and Tiwari

reconstruction method is possible. As before, for example Ff :=
∫ 1

0
f(x)dx leads to a recon-

struction method using the values

F (Dk
af) =

∫ 1

0

f(akx) dx =
1

ak

∫ ak

0

f(x) dx, k = 0, . . . , 2M − 1.

We may admit also generalized eigenfunctions of the dilation operator Da : C((0,∞)) →
C((0,∞)). Assuming that a > 0, a 6= 1, we observe that functions of the form (lnx)`xp,
` = 0, . . . , r are generalized eigenfunctions of multiplicity `+ 1 of Da (as defined in Section 2),
since

Da

(
(lnx)`xp

)
= (ln ax)`(ax)p = (ln a+ lnx)`apxp

= ap(lnx)`xp +

`−1∑
s=0

(
`

s

)
(ln a)`−sap(lnx)sxp.

Thus, by Theorem 2.4, we are able to recover also expansions of the form

f(x) =

M∑
j=1

r∑
`=0

cj,`(lnx)`xpj

from the measurements f(akx0), k = 0, . . . , 2(r + 1)M − 1 for r ≥ 0, where x0 > 0 is fixed.

Eigenfunctions of monomial form can also be obtained using suitable differential operators.
Let dx : C∞(R)→ C∞(R) be the differential operator of the form

dxf(x) :=
d

dx
(xf(x)) = f(x) + xf ′(x).

Then we have

dx(xp) =
d

dx
(xp+1) = (p+ 1)xp, p ∈ R,

and the operator dx possesses the set {p + 1 : p ∈ R} of pairwise different eigenvalues with
corresponding eigenfunctions xp. We consider now a sparse monomial expansion of the form

f(x) =

M∑
j=1

cjx
pj

with cj ∈ C \ {0} and pairwise different pj ∈ R. Using Theorem 2.1, this expansion can be
completely recovered from F ((dx)kf) = (dx)kf(x0), k = 0, . . . 2M − 1. A simple induction ar-
gument shows that these values can be obtained recursively from the derivative values f (`)(x0),
` = 0, . . . , 2M − 1, where x0 ∈ R \ {0} can be arbitrarily chosen.

4 Sparse sums of orthogonal polynomials

Let us again consider the Banach space C∞(R) of infinitely differentiable functions. Let
Lp,q : C∞(R)→ C∞(R) be the Sturm-Liouville differential operator of the form

Lp,qf(x) := p(x)f ′′(x) + q(x)f ′(x), f ∈ C∞(R), (4.1)
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where p(x) and q(x) are polynomials of degree 2 and 1, respectively. It is well-known, that
suitably defined orthogonal polynomials Qn are eigenfunctions of this differential operator for
special sets of eigenvalues λn, n ∈ N0, i.e., Lp,qQn = λnQn. For convenience, we list the most
prominent orthogonal polynomials with their corresponding p(x), q(x) and their eigenvalues
λn, n ∈ N in Table 1.

p(x) q(x) λn name symbol

(1− x2) (β − α− (α+ β + 2)x) −n(n+ α+ β + 1) Jacobi P
(α,β)
n

(1− x2) −(2α+ 1)x −n(n+ 2α) Gegenbauer C
(α)
n

(1− x2) −2x −n(n+ 1) Legendre Pn
(1− x2) −x −n2 Chebyshev 1. kind Tn
(1− x2) −3x −n(n+ 2) Chebyshev 2. kind Un

1 −2x −2n Hermite Hn

x (α+ 1− x) −n Laguerre L
(α)
n

Table 1. Polynomials p(x) and q(x) defining the Sturm-Liouville operator,

corresponding eigenvalues λn and eigenfunctions.

Obviously, Gegenbauer, Legendre, and Chebyshev polynomials are special cases of Jacobi

polynomials, where we have C
(α)
n := P

(α−1/2,α−1/2)
n , Pn := P

(0,0)
n , Tn := P

(− 1
2 ,−

1
2 )

n and Un :=

P
( 1
2 ,

1
2 )

n .
We observe easily that for a set of eigenfunctions {Qn : n ∈ N0}, the corresponding eigen-

values are pairwise different and well separated, i.e. λn 6= λm for n 6= m. Further, we choose
the functional F : C∞(R) → C that returns f at a fixed value x0 ∈ R, i.e., F (f) := f(x0),
with the condition that Qn(x0) 6= 0 for all n ∈ N0.

The polynomial f is now an M -sparse expansion of orthogonal polynomials Qn, n ≥ 0, if
it has the form

f(x) =

M∑
j=1

cnjQnj (x) (4.2)

where cnj ∈ C\{0}, 0 ≤ n1 < · · · < nM = N are the indices of the “active” basis polynomials
Qnj in the expansion, and nM = N �M is the polynomial degree of f .

Now Theorem 2.1 yields that f(x) can be uniquely recovered using the values

F (Lkp,qf) = Lkp,qf(x0) =

M∑
j=1

cnjλ
k
njQnj (x0), k = 0, . . . , 2M − 1.

We will show that these values Lkp,qf(x0), (k = 0, . . . , 2M − 1) can be determined uniquely

by the derivative values f (m)(x0) for m = 0, . . . , 4M − 2, and this assertion holds not only for
sparse but for all expansions of orthogonal polynomials f .

Theorem 4.1 Let f ∈ C∞(R) be an arbitrary polynomial of degree N ∈ N and let Lp,q :
C∞(R) → C∞(R) be the Sturm-Liouville differential operator as given in (4.1). Then, for
each fixed x ∈ R, the values Lkp,qf(x), k = 0, . . . , 2M − 1, can be determined uniquely by the

derivative values f (m)(x), m = 0, . . . , 4M − 2, and we have

Lkp,qf(x) =

2k∑
`=1

g`,k(x) f (`)(x)

for k ≥ 1. Here g1,1(x) = q(x), g2,1(x) = p(x), and for k ≥ 2, g`,k(x) satisfies the recursion

g`,k(x) = `

(
`− 1

2
p′′(x) + q′(x)

)
g`,k−1(x) (4.3)

+ ((`− 1)p′(x) + q(x))g`−1,k−1(x) + p(x)g`−2,k−1(x), ` = 1, . . . , 2k,
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with the convention g`,k(x) = 0 for k ≥ 1, ` 6∈ {1, . . . , 2k}.

Proof. 1. Let {Qn : n ∈ N0} be the set of orthogonal polynomials that are eigenfunctions of
the operator Lp,q to the eigenvalues λn, i.e.

Lp,qQn = λnQn.

Since {Qn : n ∈ N0} forms a basis of the space of polynomials we find a unique expansion of
f ,

f(x) =

N∑
n=0

αnQn(x).

2. For k = 0, we observe that L0
p,qf(x) = f(x), i.e. L0

p,q is the identity operator. Since the
operator Lp,q is a differential operator of order 2, we can use for k ≥ 1 the ansatz

Lkp,qf(x) =

2k∑
`=1

g`,k(x)f (`)(x), k ≥ 1, (4.4)

with polynomials g`,k, k ∈ N, ` = 1, . . . , 2k. In particular, for k = 1 we have

Lp,qf(x) = p(x)f ′′(x) + q(x)f ′(x),

i.e., g1,1(x) = q(x) and g2,1(x) = p(x). We now prove by induction on k that the coefficients
g`,k(x) in (4.4) satisfy the recursion (4.3) for k ≥ 2 and ` = 1, . . . , 2k. Using (4.4) and the
general Leibniz rule, we find for all n ∈ N0,

Lkp,qQn(x) =Lk−1p,q (λnQn(x)) =

2k−2∑
`=1

g`,k−1(x)λnQ
(`)
n (x)

=

2k−2∑
`=1

g`,k−1(x)[p(x)Q′′n(x) + q(x)Q′n(x)](`)

=

2k−2∑
`=1

g`,k−1(x)[p(x)Q(`+2)
n (x) + `p′(x)Q(`+1)

n (x)

+

(
`

2

)
p′′(x)Q(`)

n (x) + q(x)Q(`+1)
n (x) + `q′(x)Q(`)

n (x)]

=

2k∑
`=1

g`,k(x)Q(`)
n (x)

due to the vanishing higher derivatives of p(x), q(x). A comparison of coefficients leads to the
recursion formula for g`,k in (4.3). Hence, we finally obtain

Lkp,qf(x) =

N∑
n=0

αnL
k
p,qQn(x) =

N∑
n=0

αn

2k∑
`=1

g`,k(x)Q(`)
n (x) =

2k∑
`=1

g`,k(x)f (`)(x)

with g`,k(x) as given in the theorem.

Corollary 4.2 If x0 ∈ R is a zero of the polynomial p(x) in the definition (4.1) of the Sturm-
Liouville operator, i.e., if p(x0) = 0, then Lp,qf(x0) reduces to Lp,qf(x0) = q(x0)f ′(x0), and
the values Lkp,qf(x0), k = 0, . . . , 2M − 1 can be determined by f (m)(x0), m = 0, . . . , 2M − 1
only. More precisely, we have

Lkp,qf(x0) =

k∑
`=1

g`,k(x0)f (`)(x0)

13



with g1,1(x0) = q(x0) and

g`,k(x0) = `

(
`− 1

2
p′′(x0) + q′(x0)

)
g`,k−1(x0) + ((`− 1)p′(x0) + q(x0))g`−1,k−1(x0)

for k ≥ 2, ` ∈ {1, . . . , k}, where we assume that g`,k(x0) = 0 for k ≥ 1, ` 6∈ {1, . . . , k}. In
particular, for the Sturm-Liouville operator for Jacobi polynomials with p(x) = (1 − x2), we
need only the values f (m)(1) (respectively f (m)(−1)), m = 0, . . . , 2M−1, in order to reconstruct
Lkp,qf(1), (respectively Lkp,qf(−1)), k = 0, . . . , 2M − 1.

The proof of Corollary 4.2 is similar to that of Theorem 4.1 and is therefore omitted.
We summarize the algorithm for reconstructing orthogonal polynomial expansions as fol-

lows.

Algorithm 4.3 (Reconstruction of f in (4.2))

Input: Sturm Liouville operator with p(x), q(x) and λn as well as the basis {Qn : n ∈ N0},
M , x0 ∈ R, f (m)(x0), m = 0, . . . , 4M − 2.

Preprocessing: Construct G = (g`,k)2M−1,4M−2k,`=1 ∈ R(2M−1)×(4M−2) with g1,1 := q(x0), g2,1 :=
p(x0), g`,1 := 0 for ` 6∈ {1, 2}, and

g`,k :=


`
(
`−1
2 p′′(x0) + q′(x0)

)
g`,k−1

+((`− 1)p′(x0) + q(x0))g`−1,k−1 + p(x0)g`−2,k−1, k > 1, ` ∈ {1, . . . , 2k},
0, k > 1, ` 6∈ {1, . . . , 2k}.

Observe that the construction of G only depends on the chosen basis and not on the given data
f (m)(x0).

1. Calculate h1 := Gf1, where f1 := (f (m)(x0))4M−2m=1 . Put now

h :=

(
f(x0)

h1

)
such that h = (h`)

2M−1
`=0 = (L`p,qf(x0))2M−1`=0 ∈ C2M .

2. Solve the Hankel system
h0 h1 . . . hM−1
h1 h2 . . . hM
...

...
hM−1 hM . . . h2M−2




p0
p1
...

pM−1

 = −


hM
hM+1

...
h2M−1

 .

3. Put pM = 1 and compute the zeros λnj , j = 1, . . . ,M , of the Prony-polynomial

P (z) =

M∑
k=0

pkz
k.

4. Extract the indices nj, j = 1, . . . ,M , from the obtained eigenvalues λnj and compute
the coefficients cnj of the sparse orthogonal polynomial expansion in (4.2) by solving the
overdetermined Vandermonde-type system

M∑
j=1

cnjQ
(`)
nj (x0) = f (`)(x0), ` = 0, . . . , 2M − 1.

Output: nj , cnj , j = 1, . . . ,M , determining f in (4.2).
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Example 4.4 Sparse Laguerre expansions
The Laguerre polynomials with parameter α are solutions of the second order differential

equation

x(L(α)
n )′′(x) + (α+ 1− x)(L(α)

n )′(x) = −nL(α)
n (x),

with eigenvalues λn = −n. Using Theorems 2.1 and 4.1 a sparse Laguerre expansion of the
form

f(x) =

M∑
j=1

cnjL
(α)
nj (x)

with cnj ∈ C\{0} and active indices 0 ≤ n1 < · · · < nM = N can be reconstructed from

f (m)(x0), m = 0, . . . , 4M − 2. Here, x0 has to satisfy L
(α)
n (x0) 6= 0 for all n ∈ N0. If we choose

x0 = 0, formula (4.3) simplifies to

g1,1(0) = α+ 1,

g`,k(0) = (`+ α)g`−1,k−1(0)− `g`,k−1(0), k > 1, ` = 1, . . . , k,

g`,k(0) = 0, k ≥ 1, ` 6∈ {1, . . . , k}.

For example, for M = 2, this leads to the triangular matrix

G =

 (1 + α) 0 0
−(1 + α) (1 + α)(2 + α) 0
(1 + α) −3(1 + α)(2 + α) (1 + α)(2 + α)(3 + α)


in the preprocessing step of Algorithm 4.3. Let us give a small numerical example. For α = 0
and given values f(0), f ′(0), . . . , f (11)(0) of the function

f(x) =

6∑
j=1

cnjLnj (x),

we use Algorithm 4.3 to calculate approximations ñj , c̃nj of the original parameters nj , cnj for
j = 1, . . . , 6, as shown in Table 2.

j nj cnj ñj c̃nj
1 142 −3 142.0000000018223 −2.999999999999987
2 125 −1 125.0000000494359 −1.000000000000034
3 91 2 90.9999998114290 2.000000000000063
4 69 −3 69.0000003316075 −3.000000000000058
5 53 −1 53.0000003445395 −0.999999999999988
6 11 2 10.9999999973030 2.000000000000004

Table 2. Numerical evaluation of indices of active basis polynomials and coefficients of a
sparse Laguerre expansion using Algorithm 4.3.

Here, since we know that the orders nj of the polynomials are integers, we have rounded the
values ñj to the next integer before proceeding with the last step of Algorithm 4.3. While the
degree of the polynomial f(x) is 142, the 12 function and derivative values f (m), m = 0, . . . , 11,
are sufficient for reconstruction of the sparse expansion.

Example 4.5 Sparse Legendre expansions
We consider sparse Legendre expansions that have already been studied in [22]. The n-th

Legendre polynomial Pn satisfies the operator equation

(1− x2)P ′′n (x)− 2xP ′n(x) = −n(n+ 1)Pn(x). (4.5)
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Hence, a sparse Legendre expansion of the form

f(x) =

M∑
j=1

cnjPnj (x)

with cnj ∈ C\{0} and active indices 0 ≤ n1 < · · · < nM = N can be reconstructed from the

values f (m)(x0), m = 0, . . . , 4M − 2, for arbitrarily chosen x0 ∈ R satisfying Pn(x0) 6= 0 for
all n ∈ N0. In particular, for x0 = 1 (or x0 = −1) we need only the values from f (m)(1)
(resp. f (m)(1)), m = 0, . . . , 2M − 1, for the unique reconstruction of f . Multiplying (4.5) with
a constant α 6= 0 does not change the solutions. Thus we can consider

Lkp,q,αPn(x) := α(1− x2)P ′′n (x)− 2αxP ′n(x) = −n(n+ 1)αPn(x),

where pα(x) = α(1− x2), qα(x) = −2αx and λn,α = −n(n+ 1)α. Hence

Lkp,q,αf(1) =

k∑
`=1

gα`,k(1)f (`)(1)

with

gα1,1(1) = −2α,

gα`,k(1) = −`(`+ 1)αgα`,k−1(1)− 2α`gα`−1,k−1(1), k > 1, ` = 1, . . . , k,

gα`,k(1) = 0, k ≥ 1, ` 6∈ {1, . . . , k}.

The constant α can be chosen suitably in order to improve the condition of the matrix G. In
particular, for α = − 1

2 we obtain

g
−1/2
`,k (1) =

`(`+ 1)

2
g
−1/2
`,k−1(1) + `g

−1/2
`−1,k−1(1)

yielding for M = 3,

G =


1 0 0 0 0
1 2 0 0 0
1 8 6 0 0
1 26 60 24 0
1 80 438 480 120

 ,

see also [22]. We use Algorithm 4.3 in order to recover the sparse Legendre expansion

f(x) = −3P5492(x)− P465(x) + 2P54(x)

of degree 5492 from the given values f(1), f ′(1), . . . , f (5)(1). Table 3 contains the computed
approximations ñj , c̃nj of the original parameters nj , cnj for j = 1, 2, 3.

j nj cnj ñj c̃nj
1 54 2 53.983951125658 2.000000000000048
2 465 −1 465.000054039331 −1.000000000000048
3 5492 −3 5491.999999999999 −3.000000000000000

Table 3. Numerical evaluation of indices of active basis polynomials and coefficients of a
sparse Legendre expansion using Algorithm 4.3.

Here again, since we know that the orders nj of the polynomials are integers, we have
rounded the values ñj to the next integer before proceeding with the last step of Algorithm
4.3.
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Remark 4.6 In the recent preprint [29], the authors consider a Prony-like method for the
reconstruction of M -sparse Chebyshev expansions with Chebyshev polynomials of first kind of
the form Tn(x) = cosn(arccosx), for x ∈ [−1, 1] and n ∈ N0. In their approach, an expansion
of the form

f =

M∑
j=1

cnj Tnj

is reconstructed from the function values f
(

cos( kπ
2N−1 )

)
, k = 0, . . . , 2M − 1, where N > M is

the true degree of the polynomial f . Obviously, this reconstruction algorithm is different from
the Prony method that is based on the Sturm-Liouville operator. Instead we have to take the
so-called “Chebyshev-shift operator” Sh : C(R)→ C(R) with h ∈ [−1, 1],

(Shf)(x) :=
1

2

(
f(hx− (1− h2)1/2(1− x2)1/2) + f(hx+ (1− h2)1/2(1− x2)1/2)

)
.

We consider x ∈ [−1, 1] and set x = cos t with t ∈ [0, π] as well as h = cosα with α ∈ [0, π].
Then, for Chebyshev polynomials of first kind we obtain indeed

ShTn(x) =
1

2

(
Tn(hx− (1− h2)1/2(1− x2)1/2) + Tn(hx+ (1− h2)1/2(1− x2)1/2)

)
=

1

2
(Tn(cos(t+ α)) + Tn(cos(t− α)))

= cos(nα) cos(nt) = cos(nα)Tn(x).

Hence, the Chebyshev polynomials of first kind are eigenfunctions of the Chebyshev-shift op-
erator Scosα with the corresponding eigenvalues cos(nα). We define F (f) := f(1) and set
h := cos( π

2N−1 ). Applying Theorem 2.1 yields that the sparse Chebyshev expansion can be

uniquely reconstructed from the values F (Skhf), k = 0, . . . , 2M − 1, where

F (S0hf) = f(1),

F (S1hf) = f(cos(
π

2N − 1
)),

F (S2hf) =
1

2

(
f(1) + f(cos

2π

2N − 1
)

)
,

F (S3hf) =
1

4

(
3f(cos

π

2N − 1
) + f(cos

3π

2N − 1
)

)
,

etc. Indeed, one can simply prove by induction, that the values F (Skhf), k = 0, . . . , 2M−1, can

be represented as linear combinations of the function values f
(

cos( kπ
2N−1 )

)
, k = 0, . . . , 2M−1.

5 Recovery of sparse vectors

The generalized Prony method considered in Section 2 can also be applied to finite dimensional
vector spaces. Let x ∈ CN be M -sparse, i.e., only M components of x = (x0, . . . , xN−1)T are
different from zero.

We want to recover x from only 2M samples yk = aT
k x, (k = 0, . . . , 2M − 1), where the

vectors ak ∈ CN need to be chosen suitably. The problem of reconstructing sparse vectors
using only a small amount of measurements has been heavily studied in the research field of
compressed sensing, where the recovery algorithms are usually based on `1-minimization or
greedy methods. In this regard, often a stochastic matrix A ∈ CM1×N is used in order to
recover x from y = Ax ∈ CM1 , (M1 ≥ 2M) with high probability.

Here we want to derive a deterministic method to recover x, where A ∈ C2M×N with
rows aT

k ∈ CN is explicitly given and of minimal dimension. For this purpose, we use a linear
operator D : CN → CN that can be represented by a diagonal matrix D = diag(d0, . . . , dN−1)
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with pairwise different entries dj , (j = 0, . . . , N−1). Obviously, the unit vectors ej := (δj,`)
N−1
`=0

form a system of eigenvectors of D with Dej = djej for j = 0, . . . , N − 1. Further we choose a

linear functional F : CN → C of the form Fx = 1
Tx :=

∑N−1
j=0 xj . Hence, Fej = 1

Tej = 1 6= 0
holds.

Using Theorem 2.1, we can now reconstruct a sparse vector x of the form

x =

M∑
j=1

cnjenj

with 0 ≤ n1 < · · · < nM ≤ N − 1 from the values

F (Dkx) = 1
T ·Dkx = aT

k x,

where aT
k = (dk0 , . . . , d

k
N−1), k = 0, . . . , 2M − 1.

Algorithm 5.1 (Reconstruction of a sparse vector)

Input: M , yk = aT
k x, k = 0, . . . , 2M − 1.

1. Solve the Hankel system
y0 y1 . . . yM−1
y1 y2 . . . yM
...

...
yM−1 yM . . . y2M−2




p0
p1
...

pM−1

 = −


yM
yM+1

...
y2M−1

 .

2. Set pM = 1 and compute the zeros λj, j = 1, . . . ,M , of the Prony polynomial

P (z) =

M∑
k=0

pkz
k.

3. The set of zeros {λ1, . . . , λM} of P (z) is a subset of the set of eigenvalues {d0, . . . , dN−1}
of D. Determine the eigenvectors enj , j = 1, . . . ,M , respectively the indices nj, that
correspond to the zeros/eigenvalues λ1, . . . , λM .

4. Compute the coefficients cnj , j = 1, . . . ,M , from the overdetermined system

yk =

M∑
j=1

cnjd
k
nj , k = 0, . . . , 2M − 1.

Output: nj , cnj , j = 1, . . . ,M , determining x.

To demonstrate this approach we want to present a small numerical example. Let x ∈ R128

be a 3-sparse vector with x28 = 3, x71 = −1, x99 = 4, and let D = diag(k/32)64k=−63 ∈ R128×128.

For a given vector of values f = (fk)5k=0 with fk = 1 ·Dkx we compute approximations ñj and
x̃nj according to Algorithm 5.1. The results are shown in the Table 4.

nj xnj ñj x̃nj
28 3 27.99999999999999 3
71 −1 71.00000000000001 −1
99 4 99.00000000000000 4

Table 4. Numerical evaluation of the indices and the coefficients of a sparse vector x using
Algorithm 5.1.

18



Remarks 5.2 1. In order to obtain a stable algorithm, the operator D may for example be
chosen as

D = diag(ω0
N , ω

1
N , . . . , ω

N−1
N ),

where ωN := e−2πi/N denotes the N -th root of unity. For this choice of D, the vector y =
(yk)2M−1k=0 of needed input values for Algorithm 5.1 is given by

y = FN,2Mx,

where FN,2M = (ωk`N )2M−1,N−1k,`=0 ∈ C2M×N contains the first 2M rows of the Fouriermatrix of
order N .

2. In the above considerations, the canonical basis can be replaced by any other basis
B = {b1, . . . ,bN} of CN . Choose a diagonal matrix D with pairwise different (complex) entries
λ1, . . . , λN . Then the operator A := BDB−1 : CN → CN , where B = (b1 . . .bN ) ∈ CN×N
contains the columns bj, possesses the eigenvalues λ1, . . . , λN with corresponding eigenvectors

b1, . . . ,bN by construction. Further, we define a functional F : CN → C satisfying Fb` 6= 0
for ` = 1, . . . , N . We can e.g. choose Fx := aTx for all x ∈ CN , where a is taken suitably.
Hence, a sparse expansion

x =

M∑
j=1

cnj bnj

in the basis B can by Theorem 2.1 be recovered by

F (Akx) = aTAkx, k = 0, . . . , 2M − 1.

3. Using Theorem 2.4, we can apply the recovery procedure also when the given opera-
tor possesses eigenvalues with higher multiplicity, where also generalized eigenvectors can be
incorporated.
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