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Outline of the talk

• Phase retrieval: Formulation of the problem

• Trivial and non-trivial ambiguities

• Characterization of solutions

• Ensuring uniqueness (nonnegativity, additional moduli, interference)

• Reconstruction of sparse signals by Prony’s method
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Formulation of the problem

Problem (Phase retrieval)

Recover the unknown complex-valued signal

x ≔ (x [n])n∈Ú

with finite support from the Fourier intensity

| x̂ (ω) | (ω ∈ Ò).

Definition (Discrete-time Fourier transform)

x̂ (ω) ≔
∑

n∈Ú

x [n] e−iωn (ω ∈ Ò)
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Trivial ambiguities

Example

Let x be a complex-valued signal. Then

• the rotated signal

(y [n]) ≔
(
eiα x [n]

)
,

• the shi�ed signal

(y [n]) ≔ (x [n − n0]),

• the reflected, conjugated signal

(y [n]) ≔
(
x [−n]

)

have the same Fourier intensity | x̂ |.

Definition (Trivial and non-trivial ambiguities)

A trivial ambiguity is caused by rotation, shi�, or reflection and conjugation.

All other occurring ambiguities are called non-trivial.
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Non-trivial ambiguities
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Characterizing the solutions

Definition (Autocorrelation signal)

a[n] ≔
∑

k ∈Ú

x [k ] x [k + n] (n ∈ Ú).

• The autocorrelation signal is conjugate symmetric, i.e.

a[−n] =
∑

k ∈Ú

x [k ] x [k − n] =
∑

k ∈Ú

x [k + n] x [k ] = a[n] (n ∈ Ú).

Definition (Autocorrelation function)

A(ω) ≔
∑

n∈Ú

a[n] e−iωn =

N−1∑

n=−N+1

a[n] e−iωn .

• The autocorrelation function is a non-negative trigonometric

polynomial of degree N − 1.
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Phase retrieval in the frequency domain

• Relationship to the Fourier transform:

| x̂ (ω) |2 =
(∑

n∈Ú

x [n] e−iωn
) (∑

k ∈Ú

x [k ] eiωk
)

=

∑

n∈Ú

∑

k ∈Ú

x [k + n] x [k ] e−iωn = A(ω).

Equivalent problem

Find a trigonometric polynomial B such that

|B(ω) |2 = A(ω).
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Phase retrieval in the frequency domain Fejér, Riesz [1916]

7



Associated polynomial Fejér, Riesz [1916]

Definition (Associated polynomial)

PA

(
e−iω

)
= e−iω(N−1) A(ω)

• The algebraic polynomial PA is thus defined by

PA(z ) ≔

2N−2∑

n=0

a[n − N + 1] z n with a[−n] = a[n].

• Obviously, we have

A(ω) =
���PA

(
e−iω

) ��� .

• Factorize A with respect to the roots of the polynomial PA.
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Factorization of the associated polynomial Fejér, Riesz [1916]

• If γ is a root of PA, then we have

PA(γ
−1) =

2N−2∑

n=0

a[n − N + 1] γ −n

= γ
−2N+2

2N−2∑

n=0

a[N − 1 − n] γ 2N−2−n

= γ
−2N+2

2N−2∑

n=0

a[n − N + 1] γn

= γ
−2N+2

PA(γ)

• PA has the factorization

PA(z ) = a[N − 1]

N−1∏

j=1

(
z − γj

) (
z − γ

−1
j

)
.
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Factorization of the autocorrelation function Fejér, Riesz [1916]

• For z ≔ e−iω , the absolute value of the linear factors is���
(
e−iω − γj

) (
e−iω − γ

−1
j

) ��� =
��e−iω − γj

��
���γ −1

j

���
��γ j − eiω

��

=
��γj

��−1 ��e−iω − γj
��2 .

• A has the factorization

A(ω) =
���PA

(
e−iω

) ��� = | a[N − 1] |

N−1∏

j=1

���
(
e−iω − γj

) (
e−iω − γ

−1
j

) ���

= | a[N − 1] |

N−1∏

j=1

��βj
��−1

���
N−1∏

j=1

(
e−iω − βj

) ���
2

= |B(ω) |2

with βj ∈ (γj , γ
−1
j ).
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Non-trivial ambiguities Real case: Bruck, Sodin [1979]

Theorem (Beinert, Plonka [2015])

Let A be a non-negative trigonometric polynomial. Then the problem

|B(ω) |2 = A(ω)

has at least one solution. Every solution has a representation of the form

B(ω) = eiα+iωn0

√√√
| a[N − 1] |

N−1∏

j=1

��βj
��−1 ·

N−1∏

j=1

(
e−iω − βj

)
,

where βj can be chosen from the zero pair (γj , γ
−1
j ) of the associated polyno-

mial PA.

• Each non-trivial solution is completely determined by its

corresponding zero set {β1, . . . , βN−1}.
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Number of non-trivial ambiguities

Example
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Number of non-trivial ambiguities

Corollary

The number of non-trivial ambiguities may vary from 1 up to 2N−2.

Proposition (Beinert, Plonka [2015])

Let L be the number of distinct zero pairs (γℓ , γ
−1
ℓ ) of PA not lying on the unit

circle, and let mℓ be the multiplicity of these zero pairs. The corresponding

phase retrieval problem has
⌈
1

2

L∏

ℓ=1

(mℓ + 1)

⌉

non-trivial ambiguities.
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Representation of the ambiguities in time domain

Definition (Convolution of signals)

(x1 ∗ x2)[n] ≔
∑

k ∈Ú

x1[k ] x2[n − k ].

Theorem (Beinert, Plonka [2015])

Let x be a signal with finite support and factorization

x = x1 ∗ x2.
Then the signal

y ≔ eiα
(
x1[−·]

)
∗ (x2[· − n0])

has the same Fourier intensity | x̂ | and all signals with the Fourier intensity

| x̂ | can be represented in this manner.
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Ensuring uniqueness



Phase retrieval of non-negative signals

Example
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• The solutions of the phase retrieval problem have the form

x̂ (ω) = eiα+iωn0

√√√
| a[N − 1] |

N−1∏

j=1

��βj
��−1 ·

N−1∏

j=1

(
e−iω − βj

)
.

• A solution is non-negative if and only if all coe�icients of

Q (z ) ≔

N−1∏

j=1

(
z − βj

)

are non-negative.
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Phase retrieval of non-negative signals

Example
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Phase retrieval of non-negative signals

Theorem (Beinert [2015])

The sets of non-negative signals with support length N > 3 that

• can be recovered uniquely up to reflection

• cannot be recovered uniquely up to reflection

from their Fourier intensities are unbounded sets of infinite Lebesgue mea-

sure.
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Knowledge of additional moduli
Real case, end point: Xu, Yan, Chang [1987]

Applications: Langemann, Tasche [2008]

• Recover x from | x̂ | and |x [N − 1 − ℓ] | for an ℓ , where x has the

support {0, . . . ,N − 1}.

• Assume that there exist two non-trivial solutions x and x̃ .

• The Fourier transform of x can be wri�en as

x̂ (ω) = eiα

√√√
| a[N − 1] |

N−1∏

j=1

��βj
��−1 ·

N−1∏

j=1

(
e−iω − βj

)
,

and ̂̃x has an analogous representation with β̃j ∈ {βj , β
−1
j

}

• For |x [N − 1 − ℓ] | = | x̃ [N − 1 − ℓ] |, Vieta’s formulae yield the

condition
N−1∏

j=1

��βj
��− 1

2 ·

�����
∑

1≤k1< · · ·<kℓ ≤N−1

βk1 · · · βkℓ

����� =
N−1∏

j=1

��� β̃j
���
− 1

2

·

�����
∑

1≤k1< · · ·<kℓ ≤N−1

β̃k1 · · · β̃kℓ

�����.
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Knowledge of additional moduli
Real case, end point: Xu, Yan, Chang [1987]

Applications: Langemann, Tasche [2008]

• Under the assumption β̃j = β −1
j

(j = 1, . . . , J ) and β̃j = βj otherwise,

we obtain
�����

∑

1≤k1< · · ·<kℓ ≤N−1

βk1 · · · βkℓ

�����

2

=

J∏

j=1

���β j

���·
�����

∑

1≤k1< · · ·<kℓ ≤N−1

β̃k1 · · · β̃kℓ

�����

2

.

• Identify {β1, . . . , βN−1} with the real vector

(ℜβ1,ℑβ1, . . . ,ℜβN−1,ℑβN−1)
T
,

and consider the polynomial equation above.

Theorem (Beinert, Plonka [2015])

Almost every signal x can be recovered from | x̂ | and |x [N − 1 − ℓ] | for an ar-

bitrary ℓ , (N−1)/2 up to rotations, for ℓ = (N−1)/2 up to reflection/conjugation

and rotation.
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Knowledge of additional moduli

Example
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Knowledge of additional phases

• Recover x with the fixed support {0, . . . ,N − 1} from | x̂ |,

arg x [N − 1 − ℓ1], and arg x [N − 1 − ℓ2] for ℓ1 , ℓ2, where x has the

support {0, . . . ,N − 1}.

• Assume that there exist two non-trivial solutions x and x̃ .

• Rewrite phase conditions into the equation

ℜ
[
Sℓ1(B)

]
ℑ
[
Sℓ2(B̃ ) Sℓ2(B) Sℓ1 (B̃ )

]

− ℑ
[
Sℓ1(B)

]
ℜ

[
Sℓ2(B̃ ) Sℓ2(B) Sℓ1 (B̃ )

]
= 0

with

B ≔ {β1, . . . , βN−1} and B̃ ≔ {β̃1, . . . , β̃N−1}.

21



Knowledge of additional phases

Theorem (Beinert [2015])

Let ℓ1 and ℓ2 two di�erent integers in {0, . . . ,N −1}. Then almost every signal

x can be uniquely recovered from | x̂ | and the phases

arg x [N − 1 − ℓ1] and arg x [N − 1 − ℓ2] (ℓ1 + ℓ2 , N − 1).

For ℓ1 + ℓ2 = N − 1, the recovery of the unknown signal is only unique up to

reflection/conjugation, except for the case where the phase of both end points

is given.
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Interference with reference signal
Real case: Kim, Hayes [1993]

Complex case: Raz, Dudovich, Nadler [2013]

Theorem (Beinert, Plonka [2015])

Let x and h be complex-valued signals with finite support, and assume that

the factorization of their symbols

x̂ (ω) = eiωn1 x [N1 − 1]

N1−1∏

j=1

(
e−iω − ηj

)

and

ĥ(ω) = eiωn2 h[N2 − 1]

N2−1∏

j=1

(
e−iω − γj

)

have no common zeros. Then x and h can be uniquely recovered from | x̂ (ω) |,

| ĥ(ω) | and | x̂ (ω) + ĥ(ω) | up to common trivial ambiguities.
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Interference with reference signal

Sketch of proof

• Assume there are two solutions x [n], h[n] and x̃ [n], h̃[n].

• Use the factorization in the frequency domain:

x̂ (ω) = eiωn1 x̂1(ω) x̂2(ω) and ̂̃x (ω) = eiα1eiωk1 x̂1(ω) x̂2(ω),

ĥ(ω) = eiωn2 ĥ1(ω) ĥ2(ω) and
̂̃
h(ω) = eiα2eiωk2 ĥ1(ω) ĥ2(ω).

• Consider the identity
��� x̂ (ω) + ĥ(ω)

���
2

=

���� ̂̃x (ω) +
̂̃
h(ω)

����
2

.
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Interference with reference signal Candes et al. [2013]

Theorem (Beinert [2015])

Let x be a discrete-time signal with finite support of length N . If µ ,
2πp

q
for

all p ∈ Ú and q ∈ {1, . . . ,N − 1}, then the signal x can be uniquely recov-

ered up to a rotation from its Fourier intensity | x̂ | and the two interference

measurements
��F (x + eiα1eiµ ·x )

�� and
��F (x + eiα2eiµ ·x )

�� ,

where α1 and α2 are two real numbers satisfying α1 − α2 , πk for all integer

k .
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Phase retrieval for sparse spike functions

• Let the unknown signal f be of the form

f (t ) ≔

N∑

j=1

c
(0)

j
δ(t −Tj ) with f̂ (ω) =

N∑

j=1

c
(0)

j
e−iωTj ,

where δ denotes the Dirac delta function.

• The (distributional, squared) Fourier intensity of f is given by

��� f̂ (ω)
���
2

=

N∑

j=1

N∑

k=1

c
(0)

j
c
(0)

k
e−iω(Tj −Tk ) (ω ∈ Ò).

• Assuming that the di�erencesTj −Tk with j , k are pairwise distinct,

we can write the (squared) Fourier intensity as exponential sum

��� f̂ (ω)
���
2

=

N (N−1)/2∑

ℓ=−N (N−1)/2

γℓ e
−iωτℓ

with τ−ℓ = −τℓ and γ−ℓ = γℓ . 26



Uniqueness for sparse spike functions Ranieri, Chebira, Lu, Vetterli [2013]

Theorem (Beinert, Plonka [2017])

Let f be a spike function. If

• the knot di�erencesTj −Tk di�er pairwise for j , k ∈ {1, . . . ,N }, j , k

• the coe�icients satisfy |c
(0)
1

| , |c
(0)
N

|

• the step size h > 0 fulfils h(Tj −Tk ) ∈ (−π, π) for all j , k

then f can be uniquely recovered from its Fourier intensities | F [f ](hℓ) | with

ℓ = 0, . . . , 3/2N (N − 1) up to trivial ambiguities.

Corollary

Almost all spike functions f can be uniquely recovered from their Fourier in-

tensities | F [f ] | up to trivial ambiguities.
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Numerical example (sparse spike function)

Example
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Summary/Outlook

• Characterization of the ambiguities in the one-dimensional

discrete-time phase retrieval problem.

• Investigation of the quality of di�erent a priori conditions and

additional data.

• Phase retrieval in higher dimensions.

• Transferring further results between the discrete-time and

continuous-time problem.

• Investigation and development of numerical algorithms.
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Thank you for the a�ention.
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