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ABSTRACT

For the case of Bernstein polynomials, the refinement mask is calculated recursively,
and the refinement matrices are given explicitely. Moreover, the eigenvectors of
the transposed refinement matrices are constructed, whereas the eigenvectors of the
refinement matrices themselves can be determined by a theorem of Micchelli and
Prautzsch.

1. INTRODUCTION

Let n € Nand let b"(¢) := (b2(2),...,b"(¢))T be a vector of uniformly refinable real
functions on [0, 1], i.e., there are (n+1) X (n+1) matrices A?,..., A} , (ke N k>
2) such that

t
B (%) _ A™ b(1) (1.1)
is satisfied for m = 0,...,k—1 and ¢ € [0,1]. These equations are called refinement

equations, and the matrices A7 refinement matrices (cf. Micchelli and Prautzsch
[5]). It is well-known that the refinement equations (1.1) are closely connected
with corresponding subdivision algorithms which provide important techniques for
the fast generation of curves (cf. [3, 5]). In [6] and [8], some applications of such
equations in the theory of wavelets are discussed.

For polynomials b%(¢) (¢ = 0,...,n) spanning the vector space of all polynomials of
degree n, the matrices A in (1.1) always exist and are uniquely determined.
Here, we consider these matrices in the case of Bernstein polynomials

bE(t) = (7)# 1-t""  i=0,...n (1.2)

7

and study their spectral properties. In particular, we prove a recursion formula for
the refinement mask of b"

A"(z) = % Y AL, 2eC (1.3)



Furthermore, we derive explicit formulas for the entries of the refinement matrices
A7 as well as for their eigenvalues and corresponding eigenvectors. Note that for
the special case k = 2, the corresponding subdivision algorithm is the de Casteljau
algorithm (cf. [2]).

2. RECURSIVE COMPUTATION OF THE REFINEMENT MASK

First, we derive a simple recursion formula for the Fourier transform of the vector
b"(t) of Bernstein polynomials b}(¢) (¢ € [0,1]; 4 = 0,...,n). For convenience,
outside of [0, 1] the polynomials are defined by zero. Denoting the Fourier transform

of a function f € L*(R) by

fwy= [T fwe dat, weR

(o9}

we have:
Lemma 2.1 Forn =0,

~0 A 1—e™

b (u) = b)(u) = — : (2.1)

mu

For n > 0, the following recursion formula holds:

~n ) 1
iub (u) =Cp(e™™) Aég , u€ R (2.2)
b (u)
where the matriz C,(z) with z € Cis an (n + 1) x (n + 1)-matriz of the form
1 -1 0 0
0o 1 -1 .
C.(z):=n R § , n=>1 (2.3)
0 O 1 -1
-z 0 0 1

Proof. We put b™7%(¢) := 6(t)/n and b"~1(t) := §(t — 1)/n (n > 1), where § denotes
the Dirac distribution. Then the known formula for the derivative of Bernstein
polynomials b7(¢) (i =1,...,n — 1)

Db; (t) = n(bi (t) — b7 (1))

can also be used for i = 0 and ¢ = n, in view of the jumps of bf(¢) at t = 0, and
b (t) at t = 1. Hence, we obtain for the vector b"(¢)

Db™(t) = n ( bf?}(l 4 ) —n ( bz;(f) ) .



Taking the Fourier transform, we infer
n 1/n Bn_l(u) . 1/n
u b = ~n— - . — Cn T An— .
iub (u) =n < i l(u) > n ( e it/ (e™™) i l(u) "

Remark 2.2 1. Note that
det C,(z) = n"*! (1 - 2).

2. The Bernstein polynomials b?(¢) (i = 0,...,n) on [0, 1] can also be considered as
B—splines defined by the multiple knots

n—i+1 i+1
Generalizing this definition, we find that 4", is determined by the knots 0,...,0 and
———

n+2
analogously b7, by 1,...,1. Thus, the above definition of 4", and b, according
——

n+2
to the distribution theory makes sense, also from this point of view (cf. [7]).

Example 2.3 For n = 0, we have (2.1). For n =1 and n = 2, we find

o= () ()

B 1 iu— 1+ et
T Gu)? \ 1— (1 +iu)e )

1 -1 0 (du)?/2
-2 2 . —
b(u) = 0 1 -1 iu—1+e"™
0 A 1— (1+iu)e ™
1 (iu)? — 2iu + 2 — 2~
= | 2(iu—2)+2(2 +iu)e™™
)\ 9 (2 4 250 + (iu)?)e—

Now, we shall investigate the refinement equations (1.1) for the vector of Bernstein
polynomials. Let k € N k£ > 2 be given. After a substitution, we find that (1.1) is
equivalent to the equation

k-1

b (t) = Y. Apb"(kt—m), te0,1],

m=0
since at the right-hand side at most one term is different from zero. Fourier trans-
form yields " . "

b (u) = A"(e ") b (u/k) (2.4)

with A" defined in (1.3). The refinement mask A" can be characterized in the
following way:



Theorem 2.4 Forn =0, we have

1k1 1—Zk

= Z 2™ = = (2.5)

Form > 1 and z # 1, the recursion formula

A = 1O (4 ) Cole 26

is satisfied, where the matrices C,, are given in (2.3), and where 0 is a zero vector
of suitable dimension.

Proof. For n = 0, we observe that
bo(t) = bg(t) =1, te [07 1])

i.e., we have A? =1 (m =0,...,k—1). Formula (1.3) implies that
A’(z) = L vkl 2™ so that (2.5) is proved.
Now let n > 0. Then from (2.2) and (2.4) we obtain for u # 0

1 —iu 1/” _qr _ AN/, —tu/k
— Cule )(Bn_l(u)> = b (u) = A"(e™™*)b" (u/k)

= A Mo ( z;“‘lléZ/m ) |

Hence, since C,,(z) is regular for z # 1,

(57 ) rosem e o (g, )

On the other hand, (2.4) with n — 1 instead of n implies

(0 )= (o ey ) ()

In these two equations, all entries are rational functions in v and z = e . Since
z is a transcendent function in u, the both equations are identities too, if we con-
sider u and z as independent variables. Moreover, the components of the vectors
(1/n, i)n_l(u))T and (1/n, Bn_l(u/k))T are linearly independent in u, and the en-
tries of the matrices can be considered as constants with respect to u. This implies,
that the corresponding matrices are equal, i.e.,

—iu/k

1 0” —tu\—1 An/, —iu/k —iu/k
0 A" l(emin/k) =kCu(e ™) A"(e ) C(e );

so that also (2.6) is proved. m



Remark 2.5 1. For z = 1, the refinement mask A"(z) can be found by a limiting
process z — 1, since the elements of A"(z) are continuous in z.

2. From the recursion formula in Theorem 2.4 and Remark 2.2, we can easily derive
the determinant of A"(z):

det A™(2) — (%)nﬂ,

3. For z # 1, the inverse matrix C,(z)~! is explicitly given by

1 ... 11

z 1 11

C (z)_l— 1 .
" a1l -2)

z z 11

zZ oz z 1

4. For n =1, (2.6) simplifies to

=g (2 ) (9570 ()

This formula can be generalized in the following way. By means of the direct sum

: : A of) . : .
of two quadratic matrices A @ B := 0 B with a suitable zero matrix 0, and
the v—dimensional unit matrix I,, we define for v = 0,...,n,

1
X (2)=I,_,® - C.,(2"), Yi2)=1I,,0v(l—-2)C,(2)",

where I is dummy. Then (2.6) immediately implies

A"(z) = e (11_ 2 X (2)...X7(2) Bo(2) YT(2)... Y (2) (2.7)

with
B(2) = diag (k”(l ) R L — ) k(1= 2), 1 — zk).

In particular, we have

) 1 -1 1 k2(1 — 2)? 0 0
Al = ——— 0 1+42F =2 0 k(1 -z 0
) RL=2 \ _p  _ 6 g 0 (0 ) 1 — 2k
1 1 1

X 2z z+1 2
2242 2z z+41



For the matrix product X (z), ..., X7 (2z) occuring in (2.7) we easily find

X"(2)...X"2) = ((—1)i+f (Z) — (—1)in (nj_ Z) e]-nzk>i7j:0 R

.....

where €, := 1 — ¢, with the Kronecker symbol ¢;,. The product
Y7 (z)...Y(z) has not such a simple explicit representation.

3. EXPLICIT REPRESENTATION OF REFINEMENT MATRICES

The determination of the refinement matrices A, (m = 0,...,k — 1) by means
of the refinement mask (1.3) is not quite easy, so that we shall give an explicit
representation of them in this section. By

AL = (ay), $,5=0,...,n, (3.1)

we introduce the entries a;; of A}, which also depend on n, k and m.

Theorem 3.1 The entries a;; (i,j =0,...,n) of A}, have the representation

-t 0)(112) (o) (o2 e

Proof. The equations (1.1) and (1.2) imply

(CL) <1_HTm) <t+m> Z% () (1—t" 7. (3.3)

t+m k—m 1
1—-— = — (11— 1— —
k k ( t+( k—m>t>’

1
t+m = m(l—t+<1+—>t>,
m

for m # 0, the left-hand side of (3.3) can be written as
n\ (k—m\"" /m\i 2 (n—i , I\
- - 1_t n—i—v 1_ - tl/
() (57 YR )e-o (- 20)

xZ() 1—t)"~ “(1+%)Nt“.

Putting v + p = j, we obtain from (3.3) by a comparison of coefficients

(o= C)mtemmrm 2 () G) C-2m) (043"

ptv=j

In view of

6



and in view of . . .
(066 005)
finally (3.2). ~

According to (Hiﬂ.) = 0 for v < j — i, formula (3.2) makes also sense for m = 0,
where only the term with v = 7 — ¢ remains:

aij ! <]> (k—1yY"" for m=0. = (3.4)

AV

Analogously, for m = k — 1, only the term with v = 0 remains:

1 -7 o
aij = . (n ]> (k=17 for m=k—1 (3.5)
t—=1J
The formulas (3.4) and (3.5) show that Af is an upper and A}_; a lower triangular
matrix. Moreover, we only have one single term in (3.2) in the four cases
¢ =0 with v = 7,
1 : .
o0y = o (k= m)"™ (k= m — 1’

1 =n with v =0,

1
Qnj = ﬁmn J(m—i—l)J’
j =0 with v =0,
1 (n
Gio = (z) (k—m)""*m’, (3.6)
and j = n with v =n — 1,
1 (n » .
in = 75 <2> (k—m—1)""(m+1). (3.7)

Remark 3.2 The equations (3.6) and (3.7) show that the last column of A} equals
to the first column of A} ., (m =0,...,k—2). This follows also from the statement
(a) of Theorem 5.1 in [5], if one uses the fact that (1,0,...,0)T and (0,...,0,1)
are eigenvectors of the matrices Ay and Aj_,, respectively, corresponding to the
eigenvalue one. The last fact can easily be seen from agy = 1 for m = 0, a,, = 1 for

m = k — 1, and the triangular structure of Ay and A} _,.

4. SPECTRAL PROPERTIES OF THE REFINEMENT MATRICES

The columns of A7 (m =0,...,k — 1) possess simple generating functions.



Lemma 4.1 For an arbitrary parameter X we have for j =0,...,n,

n—j

;ai]’ A= k_ln (k+()\—1)(m—|—1)>j <k—|—m()\— 1)) . (4.1)

Proof. From (3.2) it follows that

Since (f/) (Viﬂj) #0only for 0 <j—v <i<n-—v<n,the sum over ¢ equals to

l_: (n ! j) (= m)"= 7 ()97 = (k= m)” Am)’™ (k = m + Am)"™

with [ = v + ¢ — j, and the assertion follows from
J j ) )
Z()(k—m—1)”(A(m+1))7_”:(k—m—1+)\(m+1))7. ]

v=0 v

Corollary 4.2 . Equation (4.1) immediately implies that A™" has the eigenvalue
1 with the eigenvector (1,...,1)T, and the eigenvalue k™™ with the eigenvector
(LA, ..., AT and A = 1+ (1 — k)/m, so that A?, is a stochastic matriz with
respect to the rows.

By means of (4.1) it is also possible to construct eigenvectors of all eigenvalues k=7
(j =0,...,n), but it is easier to derive them from the eigenvectors of A , which
were found in [5].

Theorem 4.3 The matriz AT has the eigenvalues k™9 (j =0,...,n) (where k > 2
is the dilation parameter in the refinement equation (1.1)) with the corresponding

etgenvectors
J ; g v
(Z(z )+ J)(L)), 42)
= \J—v v 1—-k
where 1 = 0, ...,n denotes the row index.

Proof. Let D,, be the diagonal matrix of the eigenvalues

D, :=diag (1,k7%,...,k™™),



and G, U,, matrices of the corresponding eigenvectors of (Al )" and A}

sy Tespec-
tively. Then

(A7) G =GunD,, A,Un=Un,D,
and therefore (A" )T U T = U.;T D, with U,” := (UL)~!. Hence, we find
G,=U."F, (4.3)

with a diagonal matrix F,,. According to Theorem 7.1 in [5] we have (after a
correction of a misprint)

m
== T _
Un =Uo ”(1—k>

o () e ())

Here and in the following matrices, we always denote the row index by ¢ and the
column index by j (3,7 =0,...,n). It is easy to see that T, '(a) = T',,(—a) and

- (§)
roese (5 0)--0)

In order to obtain a simple result, we choose
so that (4.3) and U,," = Uy" T\,(— =) imply
e _(O)Y. (Y OV
" (") 1—k i)\ji))"
j

The entries of the matrix product on the right-hand side are

S0 = 00)

w00

with v = j — [, these are exactly the entries of (4.2). n

and in view of

Remark 4.4 1. For j = n the components of the vector (4.2) are

:in—i <u+f_n> <£> = <1+£)" <£)n
- ) ()

v



Thus, for the eigenvalue k™" we get, up to a constant factor, indeed the same
eigenvector as in Corollary 4.2.

2. Eigenvectors for matrices composed by binomial coefficients are also determined
in [1] and [4].
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