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ABSTRACT

For the case of Bernstein polynomials� the re�nement mask is calculated recursively�
and the re�nement matrices are given explicitely� Moreover� the eigenvectors of
the transposed re�nement matrices are constructed� whereas the eigenvectors of the
re�nement matrices themselves can be determined by a theorem of Micchelli and
Prautzsch�

�� INTRODUCTION

Let n � N and let bn�t� �� �bn
�
�t�� � � � � bnn�t��

T be a vector of uniformly re�nable real
functions on 	
� ��� i�e�� there are �n
����n
�� matrices An

�
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is satis�ed for m � 
� � � � � k� � and t � 	
� ��� These equations are called re�nement
equations� and the matrices An

m re�nement matrices �cf� Micchelli and Prautzsch
	���� It is well�known that the re�nement equations ����� are closely connected
with corresponding subdivision algorithms which provide important techniques for
the fast generation of curves �cf� 	�� ���� In 	�� and 	��� some applications of such
equations in the theory of wavelets are discussed�
For polynomials bni �t� �i � 
� � � � � n� spanning the vector space of all polynomials of
degree n� the matrices An

m in ����� always exist and are uniquely determined�
Here� we consider these matrices in the case of Bernstein polynomials
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�
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and study their spectral properties� In particular� we prove a recursion formula for
the re�nement mask of bn

A
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m zm� z � C � �����

�



Furthermore� we derive explicit formulas for the entries of the re�nement matrices
A

n
m as well as for their eigenvalues and corresponding eigenvectors� Note that for

the special case k � �� the corresponding subdivision algorithm is the de Casteljau
algorithm �cf� 	����

�� RECURSIVE COMPUTATION OF THE REFINEMENT MASK

First� we derive a simple recursion formula for the Fourier transform of the vector
b
n�t� of Bernstein polynomials bni �t� �t � 	
� ��� i � 
� � � � � n�� For convenience�
outside of 	
� �� the polynomials are de�ned by zero� Denoting the Fourier transform
of a function f � L��R� by

�f�u� �
Z
�

�

f�t� e�iut dt� u � R�

we have�
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Proof
 We put bn��
�� �t� �� ��t��n and bn��n �t� �� ��t� ���n �n � ��� where � denotes

the Dirac distribution� Then the known formula for the derivative of Bernstein
polynomials bni �t� �i � �� � � � � n� ��

Dbni �t� � n�bn��i�� �t�� bn��i �t��

can also be used for i � 
 and i � n� in view of the jumps of bn� �t� at t � 
� and
bnn�t� at t � �� Hence� we obtain for the vector bn�t�
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Taking the Fourier transform� we infer
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Remark ��� �� Note that

det Cn�z� � nn�� ��� z��

�� The Bernstein polynomials bni �t� �i � 
� � � � � n� on 	
� �� can also be considered as
B�splines de�ned by the multiple knots
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Generalizing this de�nition� we �nd that bn
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� � � � � 
� 	z 
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and

analogously bnn�� by �� � � � � �� 	z 

n��

� Thus� the above de�nition of bn
��

and bnn�� according

to the distribution theory makes sense� also from this point of view �cf� 	����
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Now� we shall investigate the re�nement equations ����� for the vector of Bernstein
polynomials� Let k � N � k � � be given� After a substitution� we �nd that ����� is
equivalent to the equation

b
n�t� �

k��X
m��

A
n
m b

n�kt�m�� t � 	
� ���

since at the right�hand side at most one term is di�erent from zero� Fourier trans�
form yields

�b
n
�u� � An�e�iu�k� �b

n
�u�k� �����

with An de�ned in ������ The re�nement mask An can be characterized in the
following way�
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Theorem ��� For n � 
� we have
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For n � � and z �� �� the recursion formula
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is satis�ed� where the matrices Cn are given in ������ and where � is a zero vector
of suitable dimension


Proof
 For n � 
� we observe that

b
��t� � b���t� � �� t � 	
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i�e�� we have A�

m � � �m � 
� � � � � k � ��� Formula ����� implies that
A
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m� so that ����� is proved�
Now let n � 
� Then from ����� and ����� we obtain for u �� 
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Hence� since Cn�z� is regular for z �� ���
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On the other hand� ����� with n� � instead of n implies�
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In these two equations� all entries are rational functions in u and z � e�iu�k� Since
z is a transcendent function in u� the both equations are identities too� if we con�
sider u and z as independent variables� Moreover� the components of the vectors

���n� �b
n��

�u��T and ���n� �b
n��

�u�k��T are linearly independent in u� and the en�
tries of the matrices can be considered as constants with respect to u� This implies�
that the corresponding matrices are equal� i�e���

� �T

� A
n���e�iu�k�

�
� kCn�e

�iu���An�e�iu�k�Cn�e
�iu�k��

so that also ����� is proved�
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Remark ��� �� For z � �� the re�nement mask An�z� can be found by a limiting
process z � �� since the elements of An�z� are continuous in z�
�� From the recursion formula in Theorem ��� and Remark ���� we can easily derive
the determinant of An�z��

det An�z� �

�
�� zk

k ��� z�

�n��

�

�� For z �� �� the inverse matrix Cn�z�
�� is explicitly given by
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This formula can be generalized in the following way� By means of the direct sum

of two quadratic matrices A�B ��

�
A �T

� B

�
with a suitable zero matrix �� and

the ��dimensional unit matrix I� � we de�ne for � � 
� � � � � n�

X
n
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where I� is dummy� Then ����� immediately implies
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For the matrix product Xn
n�z�� � � � �X

n
�
�z� occuring in ����� we easily �nd

X
n
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�
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where �jn �� �� �jn with the Kronecker symbol �jn� The product
Y

n
�
�z� � � �Y n

n�z� has not such a simple explicit representation�

�� EXPLICIT REPRESENTATION OF REFINEMENT MATRICES

The determination of the re�nement matrices An
m �m � 
� � � � � k � �� by means

of the re�nement mask ����� is not quite easy� so that we shall give an explicit
representation of them in this section� By

A
n
m � �aij�� i� j � 
� � � � � n� �����

we introduce the entries aij of A
n
m� which also depend on n� k and m�

Theorem ��� The entries aij �i� j � 
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� the left�hand side of ����� can be written as
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n�j
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 j � i� formula ����� makes also sense for m � 
�
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aij �
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Analogously� for m � k � �� only the term with � � 
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�
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The formulas ����� and ����� show that An
�
is an upper and An

k�� a lower triangular
matrix� Moreover� we only have one single term in ����� in the four cases
i � 
 with � � j�
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Remark ��� The equations ����� and ����� show that the last column ofAn
m equals

to the �rst column ofAn
m��

�m � 
� � � � � k���� This follows also from the statement
�a� of Theorem ��� in 	��� if one uses the fact that ��� 
� � � � � 
�T and �
� � � � � 
� ��T

are eigenvectors of the matrices An
� and An

k��� respectively� corresponding to the
eigenvalue one� The last fact can easily be seen from a�� � � for m � 
� ann � � for
m � k � �� and the triangular structure of An

� and An
k���

�� SPECTRAL PROPERTIES OF THE REFINEMENT MATRICES

The columns of An
m �m � 
� � � � � k � �� possess simple generating functions�
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Lemma ��� For an arbitrary parameter � we have for j � 
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Corollary ��� 
 Equation ����� immediately implies that AnT
m has the eigenvalue

� with the eigenvector ��� � � � � ��T � and the eigenvalue k�n with the eigenvector
��� �� � � � � �n�T and � � � 
 �� � k��m� so that An

m is a stochastic matrix with
respect to the rows


By means of ����� it is also possible to construct eigenvectors of all eigenvalues k�j

�j � 
� � � � � n�� but it is easier to derive them from the eigenvectors of An
m� which

were found in 	���

Theorem ��� The matrix AnT
m has the eigenvalues k�j �j � 
� � � � � n� �where k � �

is the dilation parameter in the re�nement equation ������ with the corresponding
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Proof
 Let Dn be the diagonal matrix of the eigenvalues

Dn �� diag ��� k��� � � � � k�n��
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and Gn� Un matrices of the corresponding eigenvectors of �An
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T and An
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�An

m�
T
Gm � GmDn� A

n
mUm � UmDn

and therefore �An
m�

T U
�T
m � U�Tm Dn with U�Tm �� �UT

m�
��� Hence� we �nd

Gm � U�Tm Fm �����

with a diagonal matrix Fm� According to Theorem ��� in 	�� we have �after a
correction of a misprint�

Um � U � T n

�
m

�� k

�
with

U � �

��
n

j

��
j

i

�
����i�j

�
� T n�a� �

�
��a�i�j

�
i

j

��
�

Here and in the following matrices� we always denote the row index by i and the
column index by j �i� j � 
� � � � � n�� It is easy to see that T��n �a� � T n��a� and

U
��

� �

�
�
�
j
i

�
�
n
i

�
�
A �

In order to obtain a simple result� we choose

Fm �� diag

��
n




�
�

�
n

�

�
� � � � �

�
n

n

��
�

so that ����� and U�Tm � U�T
�
T n��

m
��k

�T imply

Gm �

�
�
�
i
j

�
�
n
j

�
�
A 	

��
m

�� k

�j�i
�
j

i

��
n

j

��
�

The entries of the matrix product on the right�hand side are
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with � � j � l� these are exactly the entries of ������

Remark ��� �� For j � n the components of the vector ����� are
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Thus� for the eigenvalue k�n we get� up to a constant factor� indeed the same
eigenvector as in Corollary ����
�� Eigenvectors for matrices composed by binomial coe�cients are also determined
in 	�� and 	���
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