Spline Wavelets with Higher Defect

G. Plonka

Abstract. In this paper a generalized multiresolution analysis,
generated by cardinal B-splines of degree m and defect r, is con-
sidered. Using the cardinal Hermite fundamental splines of degree
2m+1 and defect r new spline wavelets with defect r are represented.
In contrast with other papers dealing with wavelets with higher de-
fect (cf. [3, 4]) the two—scale symbol Q,, of the wavelet vector can
explicitly be given.

§1. Introduction

The subject of this paper is a natural generalization of the concept of inter-
polatory spline wavelets introduced in [2, pp. 177]. Let {V}m} (j € ZZ) be the
multiresolution analysis of Ly(IR) generated by the cardinal B-spline N,, of
degree m. Further, with {W]m} (j € 7ZZ) we denote the sequence of wavelet
spaces, in the sense that

Viti =V & Wy,

where @ indicates the orthogonal summation.
Let 7 := {2 € C, |z] = 1}. With the help of the Euler—Frobenius
polynomial of degree 2m + 1

D31 (2) Z Nomyr (D' (2 €T)

we introduce the cardinal fundamental spline Ly, 1 of degree 2m + 1

N m 4
L2m+1 = —/ 2 +1 ) e " du

2m+1 (em)
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satisfying

L2m+1(n) = 50n (n € Z)

with the Kronecker symbol §. For m € IN the interpolatory wavelet 1, is
defined by

Yrm :=D" T Loy (2 —1),

where D denotes the differential operator. Then 7 ,, generates the wavelet
spaces W™ (j € 7Z)

W = closy, (span{g/)Lm(Qj - —1); 1 € 7ZY})

J

(cf. 2], p. 178).

We want to generalize this concept in the following way.
Let m € INg and r € IN be given integers. We consider equidistant knots of

multiplicity r
r ! (1.1)
xrp = . y .

where |z | means the integer part of 2 € R.

Let NJ"" € C"™"(R) (r < m, k € 7ZZ) denote the normalized B-splines
of degree m and defect r with the knots zp,...,2p4rme1. Forr = m + 1
the B-splines N;n’m+1 (k=0,...,m) coincide with the well-known Bernstein
polynomials. According to the distribution theory, let N;™" be defined for
r>m+1land k=0,....,r —m — 2 as follows

1
N i=—— _DprmTithy 1.2
k r— 1 _ k' Y ( )
where § denotes the Dirac distribution.
Using the ideas in [3, 4] in Section 2, we shall consider the generalized
multiresolution analysis {V}m’r} (j € 7Z) of multiplicity r of L2(IR) generated
by the linearly independent scaling functions N;"" (k= 0,...,r — 1), that is

V™" = closg, (span {N""(27 - =1); k= 0,...,r — 1}). (1.3)

In particular, an explicit formula for the two—scale symbol P} of the B-spline
vector NI, := (N"")_{ can be given (cf. [7]).
Let {W]m’r} (j € 7Z) denote the sequence of wavelet spaces determined

by
m,r __ yrm,r m,r
Vigr =V @
In Section 3 we shall introduce the cardinal Hermite fundamental splines
Lim—H’T (k=0,...,r — 1) satisfying for n € Z the interpolation conditions

D Lim—}-l,r(n) — 50n 51/]{,‘ (y)k — 07 N ]_) (14)
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We put
=DM 0L 1) (B =0,...,r = 1).

Contrary to [3, 4] we can firstly give an explicit formula for the two-scale
symbol Q) of the wavelet vector W = (x"");_{. This two-scale symbol
Q,, can be used for the computation of the wavelets ¢,"" (k= 0,...,r — 1)
with defect r as well as for deriving the Riesz basis property in the wavelet
space W', For r > m+1 the wavelets ¢);"" (k = 0,...,r —1) are compactly
supported, for r < m they have exponential decay.

Note that in [3] other wavelets are constructed, which are derived from
special compactly supported splines, firstly introduced in [9].

In Section 4 we show the close connection between the wavelet space
W™ and the subspace Vlzgl+1’r C V12m+1,r7 which contains splines with
degree 2m—+1 and defect r sajcisfying some interpolation conditions. Analogous
assertions for the simple case r = 1 can be found in [2].

Finally, in Section 5 the obtained formulas are applied to the case of cubic
spline wavelets (m = 3) with defect r = 2.

§2. Multiresolution Analysis of Multiplicity r

For a summary of basic properties of B-splines with multiple knots we refer
to [1, 7]. Here we recall only the following important relations.

Let Nrm = (]\ATIT’T)Z;%) be the vector of Fourier transformed B-splines
A o .
NV = / N (z)e T da.
—

For the Fourier transformed B-spline vector Nrm of length r >m + 1> 1 we
find by (1.2)

9

) e () T
Nm(u)_< e N (u))

where Nz—H denotes the vector of the m + 1 Bernstein polynomials of degree
m. Further, we put

N = (W) e (2.1)

r—1 1
Then for m € Ny and r € IN the following recursion relation can be found:

~ T ~ T

(iu) N, (u) = AL (e7™)N, _,(u) (u€R). (2.2)

The (r,r)-matrices A,,(z) (z € T) are defined for m > r — 1 hy
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1 1 0 0
o, Tt
0 le 0 0
m41
AL () i=m ; @3
0 0 1 _ 1
me-}-T—Q me-}-T—l
—-Z 0 0 —
m m4r—1
where 27 . (k=0,...,7r — 1) are given in (1.1). Form =r — 1> 0 let
1 -1 0 O
0 1 ... 0 0
APty =m0 0 (2.4)
0 0 1 -1
—z 0 0 1
andfor0<m<r—1
r i Ir—m—l 0

where A(lj(z) := 1—z. Further, I,_,,_1 denotes the (r —m — 1)-th unit matrix
and 0 a zero matrix (cf. [7]).

Note that det A} (z) = ¢’ (1 — z). The Fourier transformed two-scale
relation of N7 is given by

AT

N, =P (e7"/)N, (-/2) (m € No, r e N).
The two-scale symbol (or refinement mask) of N,

P (z):= % Z P,:" (z€T) (2.6)

n=—oo

is a finite sum and satisfies for m > 0 the following recursion formula

P, () = SALI)Ph ()AL (eT, 241

r ]- . r 2 r ) r ) 1 (27)
P, (1) = 5 lim Al (e Pl ()AL ™) T (n e R)
with A7 (z) defined in (2.3) — (2.5) and
P",(z) := diag (277',..., 29T (2.8)

(cf. [7]). In particular, the two—scale symbol P, (2) is a matrix polynomial in
z with

det P7 (z) = 27mmHr(r=8)/2 (1 L, ym+1 (2 e T).
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The functions N,"'"(- — I) form a Riesz basis (or Ls(IR)-stable basis) of
V™" (cf. [1]). The Riesz basis property is equivalent to the assertion that
the autocorrelation symbol ®; . defined by

q)rm(e_i”) = Z Nrm(u + 27n) Nrm(u + 27n)* (2.9)

n=—oo

with Nrm(u)* = N;(U)T is positive definite (cf. [4, 5, 7]).

Further, we introduce the following Fuler—Frobenius matriz

H;m+1 = (Hk)y k=0 (2-10)
with

HY(z Z DYN;" PN (D) (kv =0,1,...,0 =1, 2€T).  (2.11)
I=—c
For 2m+1—v <r—1, the functions D”N;m—H’T are understood according to

the distribution theory. For r = 1 we obtain the well-known Euler-Frobenius
polynomial

Hy i1 (2) = Hyp (2) Z Nama (1
l=—
By the Poisson summation formula the matrix Hj, |, reads for z = e as
follows
. el r—1 .,
() = Y (GG 2e0)") Mo (w2 (e R). (2.12)
I=—c
For m € Ny and r € IN we have the following relationship:
D, (2) = Drm,o(Z)Dr H;,1(2) (D:n,l(z)*)_l (€T, z#1), (2.13)
®,,(1) = lim D, o(e™") D, Hy,, 4y (™) (D], 1 (7)) (weR)
with
D,, =A, (2)A,,_ CAg(2),
o)1= AL AL ) AL -

D;, ( ) = A‘2m+1( 2)As(2). --Arm+1(2)a
where the (r, r)—matrlces A; (k=0,...,2m + 1) are defined in (2.3) — (2.5),

0 o .. o ez
0 0o ... &=

D, = (-1 | . : : : (r>1)
0 (—1) 0 0
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and Dy := (—=1)™*!'. In particular, the invertibility of the autocorrelation
matrix @], (z) for z € T causes the invertibility of the Euler—Frobenius matrix
H),. . (2) for z € T (cf. [7]).

Since V}m’r contains the space V}m’l generated by the cardinal B-spline

Np, (cf. [2]), it follows that

closy, U V}m’T:Lg(IR).

j=—o00

The Riesz basis property and the partition of unity property for the B-
splines N;""(- = 1) (k=0,...,r — 1, [ € 7ZZ) also lead to

v =0y

J=—oc0

Thus, the sequence {V}m’r} (j € 7ZZ) generates a multiresolution analysis

of Ly(R) with multiplicity r (cf. [3,4]).

§3. The Wavelet Space W™"

In this section we want to find spline wavelets with defect r

o k=0, —1), (3.1)

such that the integer translates of (3.1) form a Riesz basis of the wavelet space
Wom,r = Vlm,r 6 Vom,r.
First we want to introduce cardinal Hermite fundamental splines.

Let ]Z;m_H = (f)im+1’r)2;é be the Fourier transformed vector of spline func-
tions Lim—H’T (k=0,...,r — 1) defined by

AT ~ T

L2m+1(u) = (H;m+1(e_m)T)_l N2m+1(u)7 (3.2)

and Ly, = (L7"")3Zi. Then we have:

Theorem 3.1. The spline functions Lim—H’T (k=0,...,r — 1) are cardinal

Hermite fundamental splines in V02m+1,r7 i.e., for n € 7 the interpolation
conditions

DVLim+17r(n) = Oon Ouk (V7k =0,...,r— 1) (33)
are satisfied.

Proof: By W we define the Wiener class. Since det Hj,, () € W, it follows
that there exists a representation

[H;m+1(e_iu)]_1: Z Hne_iun7

n=—oo
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where the elements of the (r,r)-matrices H,, (n € 7Z) lie in {y. Thus, (3.2)
implies that the functions L2m—H "(k=0,...,r—1) are contained in Vzm—H "
It remains to show that the mterpolation condltlons (3.3) hold. Putting

[D¥ Lypyq]™ = Z [D¥ L;m+1]A(' +2mn)

n=—oo

it follows by the Poisson summation formula that

[DV L;m—i-l]N = Z DV L;m—i-l(l) e_i.l'
I=—c
Therefore we have to show that [D” L}, . ]~ = e,, where e, := (Jx,);_; are
the unit vectors. By
[DyNgm—i-l Z D N2m+1 _Z : (Hk)

I=—c

the relation (3.2) leads to

([DO L;m+1]N(u)a SR [Dr_l L;m—H]N(u))

= [Hyp (7)1 ((HR (™™ ) RZ00 -+ (Hy ' (€7™)iZ0)
= [ 2m+1( _ZU)T]_I H;m+1(6_w)T

I [ |

Now let

=DMt oL 1)y (k=0,...,r —1) (3.4)

and ¥, = (g/);n’r);;é We shall show that the spline wavelets ¢/ (k =
0,...,7 — 1) and their integer translates form a Riesz basis of """

Using the relations (2.2) and (3.2) we obtain for the vector
Wr = (")} of Fourier transformed wavelets

xi;”m(u) = [DmH L;m+1(2 : _1)]A(u)
= 1/2(iu/2)"* e/ Ly (u)2)
—1/2¢ /2 [Hy,, 1 (72171, (e 2N (u)/2)

with Dy, ; defined in (2.14). Thus, we have the two-scale relation

= Q7N (+/2) (3.5)
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with the two—scale symbol of W7,

Q. (2) = 2/2[Hyp 14 (2) 7' D (2) (2 €T). (3.6)

Observe that the elements of the matrix Q. belong to the Wiener class. The
two—scale relation (3.5) implies that the functions ¢;"" (k= 0,...,r—1) liein
V,™". The functions ¢,"" belong to Wy™" if and only if for k,v =0,...,r—1
and [ € 7Z,

(N (- =1),0007) = / N (2= 1)y (2)de =0,
i.e., if and only if the condition

Pl (2) @5, (2) Qu(2)" + P (=2) @5, (=2) Q(—2)" =0 (2 €T) (3.7)

is satisfied (cf. [4]).
Theorem 3.2. The functions ¢;"" (k =0,...,r — 1) belong to W"".
Proof: From the recursion relation (2.7) it follows with (2.8) and (2.14)

Pl.(z) = D, o(*)PL Dy, o(2)7" (2 €T), (3.8)

2m+1

where for z = 1, (3.8) is understood according to (2.7). Using the relations
(2.13) and (3.6) we obtain

P}, (=) ®}, () Q ()" = 5075 Do) PL, Dy,

where P” ; and D, do not depend on z. Thus, the relation (3.7) is satisfied.
|

We can even prove:

Theorem 3.3. The functions ;""" (k = 0,...,r — 1) form a Riesz basis of
Wo, i.e., there exist Riesz bounds 0 < o < 3 < oo such that

a ) Z|Cl|2<” > Z =Dl <8 Y Zlcﬂ2

I=—00 k=0 I=—00 k=0 I=—00 k=0

for any sequences (cF)°___€ly (k=0,...,r —1).

Proof: For (cF)2___ €ly (k=0,...,r — 1) let C) denote their 2x-periodic
symbols,

o0

Cr = Z chem™ (k=0,...,r—1).

I=—c0
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Put C:= (Co,...,Cr—1)T. Then by the Parseval identity we find

”ZZ v ( —lHL2=—/ ()T B ()] du

I=—00 k=0

0 27
- . / C(u)" W7, (v + 2rl) W7, (u + 271)* Clu) du.
T J=—o0 0

Using the two—scale relation it follows

o0

> Z v (=D,

I=—00 k=0

Z / Clu) " QL (e )R, (u/2 + 7) N, (u/2 + m])*
l

: Q'"m(e_l( [24m0)* Clu) du

— o [ ClT (@ @ e Q) Sl
bom [ O Qe B e Q)

(3.9)
Recall that ®] (z) is Hermitian and positive definite for z € 7. Thus,
the matrix Q,,(z) ®%,(2)Q,,(2)* is Hermitian and positive definite for » €
T, z # 1 and positive semidefinite for = = 1. It follows that for HCH2L2 =

ZZ;E |Ck||7, > 0 the terms in (3.9) are nonnegative for all z € T and at least
one term in (3.9) is positive. By the definitions of Q) and ®’ the terms in
(3.9) are bounded for fixed m and r. W

. 2m—+1,r
§4. The Spline Space V|

In view of the preceding result let us consider the subspace
Vﬁg&l’r ={s € V12m+1,r : D¥s(n) =0, v=0,....,r—1; n € 7}

of cardinal splines of degree 2m + 1 and defect  with the knot sequence 271 7Z.
Then the functions
2m—+1,r ,_ 72m+41,r
A = L (2--1)

belong to Vlzgl+1’r and we have:

Theorem 4.1. For m € INg and r € IN the functions

AN (k=0,..,r = 1; 1 € 7) (4.1)
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) ) 2m+1
form a Riesz basis of V| gl+ o
9

Proof: The cardinal Hermite fundamental splines Lim—H’T(Q =) (k=0,...,

r—1;1 € 7Z) form a basis of V12m+1’r, i.e., an arbitrarily chosen element
G € Vfg”“”" C V12m+1,r can be uniquely represented in the form

r—1 o
G=> > afL7"r(2. ).
k=0l]l=—c0

The conditions D*G(n) = 0 (v = 0,...,r — 1;n € Z) imply that af, = 0
(k=0,...,r—1;1 €7), ie.,

r—1 oo
G=> > bATT( =)

k=0l=—c0

with bF := a§l+1 (k=0,...,r —1; 1 € 7). Thus, the functions in (4.1) form

a basis of Vfgl—H’r. To show the Riesz basis property we note that

~ 1

AT r2m41,r\r—1 r —;-
At 1= (Ai i )kzo = R2m+1(e /2)N2m+1('/2)

with R}, 1(2) = 2z (Hy,,41(2)T)™" (2 € T). Following the ideas in the proof
of Theorem 3.3, we only have to consider the matrices

R;m+1(2) q)gm+1(2)Rgm+1(2)* (z€T),

where ®; . ,(2) denotes the autocorrelation symbol for N;m—u-

Since Hj, . ,(2) is invertible and ®5 ., (z) is positive definite for z € T,
it follows that Rj,, 1 (2) ®5,,.1(2) R}, 11(2)" is positive definite for z € T.
Thus, the Riesz basis property is satisfied. ll

As a consequence of Theorems 4.1 and 3.3 we have the following result

(cf. 2], p. 190 for r = 1).

Theorem 4.2. For m € Ny and r € IN the (m + 1)-th order differential

Vlzgl—H’r one—to—one onto the wavelet

operator D™ maps the spline space
space W02m+1’r. Moreover, the Riesz basis {Aim—H’r(- — 1)k =0,...,r —
;1 €7} of Vﬁg&l’r corresponds to the Riesz basis {}"" (- —=1); k =0,...,

r—1; 1 € ZZ} of Wy"" via the relation ;""" = D™*! Aim—H’T (k=0,...,r=1).
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65. An Example

We want to apply the obtained formulas to the case m = 3, r = 2 of cubic
spline wavelets with defect 2.

With N2_1 = (iu, 1)T and

D;O(z)

As(2) Ay(2) A (2) Ag(2)
1

(L) (L (6L

_3< 2+ 4z —5—}—42—}—z2>

—4z—9222 144z —52?

it follows from (2.2) that

N2( - 3 (26w — 5) + 4(iu + 1)~ 4 72"
U Gt \ 14 4(—iu 4 1)e™™ + (—2iu — 5)e2™

For the two—scale symbol satisfying N§ = Pg(e_i'ﬂ) N§ (-/2) we find with (2.8)
and (3.8)

1 _
P(2) = 75 D3 o(+") PLy(2) Dy (=)™

_i 2+ 62+ 22 5422
16 2z + 522 14624222 )"

The autocorrelation symbol reads

2(,) = 1 /92714128492 5327 +80+ =2
V560 \ 2P 4+804+532 92714128492 )

The Euler—Frobenius matrix H? is given by

Hg(z) _ L 372 + 17622 + 323 32+ 17622 + 3728
7 432 \ 1752 — 22422 — 2123 212 + 22422 — 17H23 )

such that (2.13) can simply be verified with

D;1(2) = A7(2) Ag(2) A5 (2) Aj(2)

_ﬁ 6+ 262 + 322 —17 — 182
9 —182 — 1722 3+262+62% )"

The matrix H2(z) is invertible on the unit circle z € 7 and we have

12 ( 21 + 2242 — 17522 -3 — 1762 — 37z2>

2 -1 _
H-(2) T ToAZ(z) \ —175+ 224z + 2127 374 1762 + 322

with
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AZ(2) = 1 — 722 426227 — 722° 4 24,

Thus, the two—scale symbol Qg of the wavelet vector W3 is given by

Qs(2) = 2/2(Hz(2)") 7' D5 4 (2)
7(1+40z 4+ 3022 7(—=7— 642 + 3022

60 —642% — 72%) +402% + z4)
= A2
A7) | Z(14 1002 + 47822 94 2522 4 47822
+25223 4924 +10023 + 24)
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