
Periodic spline interpolation with shifted nodes

Gerlind Plonka

Abstract

Interpolation problems with periodic splines of defect 2 on an equidistant lattice
with two shifted interpolation nodes in each knot interval are considered. Then the
periodic Hermite-spline interpolation problem is obtained as a special case. Using
generalized Euler-Frobenius polynomials and exponential Euler splines, a simple
criterion for the existence and uniqueness of solutions of the considered interpolation
problem can be given. This solves an old open problem and generalizes the well-
known result on periodic Lagrange-spline interpolation obtained by G. Meinardus,
G. Merz and H. ter Morsche. An extension to cardinal spline interpolation is also
described.

1. Introduction

It has been known for a long time that the investigations concerning the construction of
spline interpolants as well as the problem of existence and uniqueness of solutions of spline
interpolation problems on an equidistant lattice unavoidably lead to the Euler-Frobenius
polynomials and their generalizations (cf. [11]). Recently we have described an efficient
algorithm for the computation of periodic Hermite-spline interpolants on the equidistant
lattice Z (cf. [8]). This method uses a generalization of Euler-Frobenius polynomials
which is based on B-splines with multiple knots, and can be extended to shifted nodes
too.
Now we are mainly interested in the investigation of the existence and uniqueness of
solutions. This problem has been completely solved only in the case of Lagrange-spline
interpolation (r = 1) [4], [7]. For r ≥ 2 results on the correctness of cardinal and periodic
Hermite-spline interpolation on an equidistant lattice without shifted nodes may be found
in [3], [2] and [5].
In this paper we consider a periodic spline interpolation problem based on spline functions
of defect 2 with two shifted interpolation nodes τ0 + j and τ1 + j (τ0, τ1 ∈ (0, 1]) in each
knot interval [j, j+ 1]. Then we obtain the periodic Hermite-spline interpolation problem
in the special case τ0 = τ1.
The purpose of this paper is to present a simple criterion for the existence and uniqueness
of solutions of our extended spline interpolation problem. Contrary to [6], [9] and [10] we
prefer a new generalization of Euler-Frobenius polynomials which is based on B-splines
with double knots. A representation of the symbol of the considered interpolation problem
will be given and its behaviour on the unit circle will be studied. Our result can easily be
extended to cardinal spline interpolation.
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2. Main results

Let N,m ∈ N and r ∈ {1, ...,m} be fixed. By SNm,r we denote the linear space of all
N -periodic real functions s ∈ Cm−r(R) with

s(j + t) = pj(t), pj = pj+N ∈ Pm

for all t ∈ [0, 1] and for all j ∈ Z, where Pm signifies the set of all real polynomials of
degree ≤ m defined on [0, 1]. The elements of SNm,r are called N -periodic spline functions of
degree m and defect r on the equidistant lattice Z. It is well-known that dim SNm,r = rN .

Furthermore, let y
(k)
j ∈ R (j ∈ Z, k = 0, ..., r − 1) with y

(k)
j = y

(k)
j+N be given N -periodic

data, which can be completely described by the vectors

y(k) = (y
(k)
0 , y

(k)
1 , ..., y

(k)
N−1)

T ∈ RN (k = 0, ..., r − 1).

In the case of Lagrange-spline interpolation (r = 1) with shift parameter τ ∈ (0, 1], we
wish to find a N -periodic spline function s ∈ SNm,1 satisfying the interpolation conditions

s(j + τ) = y
(0)
j (j = 0, ..., N − 1). (1)

Then the well-known existence- and uniqueness theorem of G. Meinardus, G. Merz and
H. ter Morsche holds :

Theorem 1 (cf. [4], [7]) . Let N,m ∈N and τ ∈ (0, 1] be fixed. Then the interpolation
problem (1) is uniquely solvable for any data vector y(0) ∈ RN if and only if one of the
following conditions is satisfied:

(i) N odd,

(ii) N even and m even and τ ∈ (0, 1),

(iii) N even and m odd and τ 6= 1/2.

Remark: The m-th Euler polynomial Em on [0, 1] may be defined by

E0(t) ≡ 1 (t ∈ [0, 1]),

E ′m(t) = Em−1(t) (m ∈N ), Em(0) + Em(1) = 0, (m ∈N ).

Then the conditions (ii) and (iii) of Theorem 1 are equivalent to the condition

(iv) N even and Em(τ) 6= 0. ♠

In the case r = 2, we consider the following spline interpolation problem: For given shift
parameters τ0, τ1 ∈ R with 0 < τ0 ≤ τ1 ≤ 1, we try to find a N -periodic spline function
s ∈ SNm,2 such that

s(j + τ0) = y
(0)
j (j ∈ Z),

s[j + τ0, j + τ1] = y
(1)
j (j ∈ Z), (2)
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where s[j + τ0, j + τ1] denotes the second order divided difference.

The j-th Bernoulli polynomial Bj on [0, 1] may be defined by

B0(t) ≡ 1 (t ∈ [0, 1]),

and

B′j+1(t) = Bj(t) (j ∈N 0),
∫ 1

0
Bj(t)dt = 0 (j ∈N ).

Our main result, proved in Section 6, is the following

Theorem 2 . Let N,m ∈ N (N,m ≥ 2) and τ0, τ1 ∈ R with 0 < τ0 ≤ τ1 ≤ 1 be fixed.
Then the spline interpolation problem (2) possesses a unique solution for any given data
vectors y(0) , y(1) ∈ RN if and only if

Bm[τ0, τ1] 6= 0. (3)

Here Bm[τ0, τ1] denotes the divided difference of the m-th Bernoulli polynomial.

Remark: In the case τ = τ0 = τ1 of Hermite-spline interpolation, the condition (3) is
equivalent to

Bm−1(τ) 6= 0.

The behaviour of the zeros of the Bernoulli polynomials on [0, 1] is known. In particular,
if m is even, then the Hermite-spline interpolation problem (2) is uniquely solvable if and
only if τ 6∈ {1/2, 1}. ♠

Examples: In the case of quadratic spline interpolation (m, r) = (2, 2), the condition (3)
is equivalent to

τ0 + τ1 − 1 6= 0.

In the cubic case (m, r) = (3, 2), we obtain from (3):

2(τ 20 + τ0τ1 + τ 21 )− 3(τ0 + τ1) + 1 6= 0.

In particular, if τ = τ0 = τ1, then the corresponding Hermite-spline interpolation problem
(2) has a unique solution if and only if

τ 6∈

1

2
(1 +

√
1

3
) ,

1

2
(1−

√
1

3
)

 . ♠

3. Generalized Euler-Frobenius polynomials

Now we will introduce the generalized Euler-Frobenius polynomials with the help of B-
splines. Consider equidistant knots with multiplicity r:

xj+rk := k (k ∈ Z, j = 0, ..., r − 1).
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Let Br
k,m ∈ Cm−r(R) denote the normalized B-spline of degree m and defect r with the

knots xk, xk+1, ..., xk+m+1. Then the N -periodic B-spline P r
k,m is given by

P r
k,m(x) :=

∞∑
n=−∞

Br
k,m(x+ nN), (x ∈ R).

Observe that the N -periodic B-splines

P r
j+rk,m(x) = P r

j,m(x− k) (j = 0, ..., r − 1; k = 0, ..., N − 1)

form a basis of the spline space SNm,r.
The m-th Euler-Frobenius polynomial H1

m of multiplicity 1 and with shift parameter t ∈
[0, 1] is defined by the equation (cf. [12])

H1
m(t, z) :=

m∑
ν=0

B1
0,m(ν + t)zν ,

where z ∈ C , m ∈ N . Note that the classical Euler-Frobenius polynomial reads
m!H1

m(1, z) (cf. [11]).
If s ∈ SNm,1 of the form

s(x) =
N−1∑
k=0

ckP
1
0,m(x− k)

satisfies the Lagrange-interpolation condition (1), then it holds

H1
m(τ,V )c = y(0)

with c := (c0, ..., cN−1)
T ∈ RN , where

V :=


0 . . . 0 1
1 . . . 0 0
...

. . .
...

...
0 . . . 1 0


denotes the fundamental circulant matrix (cf. [8]). Therefore the interpolation problem
(1) is uniquely solvable if and only if the circulant matrix H1

m(τ,V ) is nonsingular. This
is satisfied, if all eigenvalues of H1

m(τ,V ) are different from zero, i.e., if H1
m(τ, wj) 6= 0 for

j = 0, 1, ..., N − 1, where w := e2πi/N . We call the polynomial H1
m the symbol of periodic

Lagrange-spline interpolation with shift parameter τ .

The following hold:
zH1

m(1, z) = H1
m(0, z) (m ≥ 1), (4)

H1
m(t, 1) = 1 (m ≥ 1), (5)

H1
m(t, 0) =

1

m!
tm (m ≥ 1), (6)

∂

∂t
H1
m(t, z) = (1− z)H1

m−1(t, z) (m ≥ 2). (7)

A list of properties of m!H1
m can be found in [12].
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Now it is our goal to define a symbol for the generalized interpolation problem (2) like
H1
m in the Lagrange case.

With the help of the generalized Euler-Frobenius polynomials of multiplicity 2 with shift
parameter t ∈ [0, 1] , given by

H2
0,m(t, z) :=

bm
2
c∑

j=0

B2
0,m(j + t)zj,

H2
1,m(t, z) :=

bm
2
c∑

j=0

B2
1,m(j + t)zj ,

we define for m ≥ 2:

H2
m(t0, t1, z) :=

∣∣∣∣∣ H2
0,m(t0, z) H2

1,m(t0, z)
H2

0,m[t0, t1](z) H2
1,m[t0, t1](z)

∣∣∣∣∣
with t0, t1 ∈ [0, 1], z ∈ C.
Again H2

0,m[t0, t1](z) and H2
1,m[t0, t1](z) denote divided differences with respect to t.

Theorem 3 . Let N,m ∈ N (N,m ≥ 2) and 0 < τ0 ≤ τ1 ≤ 1 be given. Then the
interpolation problem (2) is uniquely solvable if and only if

H2
m(τ0, τ1, w

j) 6= 0 (j = 0, ..., N − 1),

where w := e2πi/N .

Proof: We follow the ideas in [8] for the computation of Hermite-spline interpolants. Let
y(0),y(1) ∈ R be the given data vectors. If s ∈ SNm,2 of the form

s(x) =
N−1∑
k=0

(ckP
2
0,m(x− k) + dkP

2
1,m(x− k))

satisfies the interpolation conditions (2), then we get(
H2

0,m(τ0,V ) H2
1,m(τ0,V )

H2
0,m[τ0, τ1](V ) H2

1,m[τ0, τ1](V )

)(
c
d

)
=

(
y(0)

y(1)

)

with c := (c0, ..., cN−1)
T , d := (d0, ..., dN−1)

T ∈ RN . By definition of H2
m it follows

immediately that

H2
m(τ0, τ1,V )c = H2

1,m[τ0, τ1](V )y(0) −H2
1,m(τ0,V )y(1),

H2
m(τ0, τ1,V )d = H2

0,m(τ0,V )y(1) −H2
0,m[τ0, τ1](V )y(0).

Hence, our periodic interpolation problem (2) is uniquely solvable for any data vec-
tors y(0) and y(1) if and only if the circulant matrix H2

m(τ0, τ1,V ) is nonsingular, i.e.,
if H2

m(τ0, τ1, w
j) 6= 0 for j = 0, ..., N − 1.

We call the polynomial H2
m the symbol of the spline interpolation problem (2).
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Examples: For m = 2 we have:

H2
0,2(t, z) = 2t(1− t), H2

1,2(t, z) = t2 + (1− t)2z,

H2
2 (t0, t1, z) = 2(t0t1 − (1− t0)(1− t1)z).

For m = 3:

H2
0,3(t, z) = t2(3− 5

2
t) +

1

2
(1− t)3z,

H2
1,3(t, z) =

t3

2
+ (1− t)2(5

2
t+

1

2
)z,

H2
3 (t0, t1, z) =

3

2
{t20t21 − [t0(1− t0) + t1(1− t1) + 2t0t1(1− t0)(1− t1)]z

+(1− t0)2(1− t1)2z2}. ♠

4. Euler-Frobenius polynomials of multiplicity 1 and 2

First we establish some properties of the Euler-Frobenius polynomials H2
0,m and H2

1,m.

Lemma 1 . Let m ∈N (m ≥ 2), t ∈ [0, 1] be fixed. Then we have

zH2
j,m(1, z) = H2

j,m(0, z) (j = 0, 1), (8)

H2
0,m(t, 1) +H2

1,m(t, 1) ≡ 1, (9)

∂

∂t
H2

0,m(t, z) = m

{
1

bm
2
c
H2

0,m−1(t, z)−
1

bm+1
2
c
H2

1,m−1(t, z)

}
,

∂

∂t
H2

1,m(t, z) = m

{
1

bm+1
2
c
H2

1,m−1(t, z)−
z

bm
2
c
H2

0,m−1(t, z)

}
. (10)

Proof: 1◦. Since B2
0,m(0) = B2

1,m(0) = 0 and B2
0,m(bm

2
c+ 1) = B2

1,m(bm
2
c+ 1) = 0, we see

for m ≥ 2 and j = 1, 2 that

H2
j,m(0, z) =

bm
2
c∑

k=1

B2
j,m(k)zk =

bm
2
c−1∑

k=0

B2
j,m(k + 1)zk+1

= z

bm
2
c∑

k=0

B2
j,m(k + 1)zk = zH2

j,m(1, z).

2◦. Let t ∈ [0, 1]. By the well-known partition of unity property of the B-splines we get

H2
0,m(t, 1) +H2

1,m(t, 1) =

bm
2
c∑

k=0

(B2
0,m(k + t) +B2

1,m(k + t)) ≡ 1.
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3◦. The relation (10) follows immediately from the recursion formulas for B-splines with
double knots

d

dx
B2

0,m(x) = m

{
1

bm
2
c
B2

0,m−1(x)− 1

bm+1
2
c
B2

1,m−1(x)

}
,

d

dx
B2

1,m(x) = m

{
1

bm+1
2
c
B2

1,m−1(x)− 1

bm
2
c
B2

0,m−1(x− 1)

}
(x ∈ R).

In order to analyze H2
m we introduce the determinant ∆2

m by

∆2
m(t0, t1, z) :=

∣∣∣∣∣ H1
m(t0, z) H1

m−1(t0, z)
H1
m[t0, t1](z) H1

m−1[t0, t1](z)

∣∣∣∣∣
with t0, t1 ∈ [0, 1], z ∈ C, where H1

n[t0, t1](z) (n = m,m − 1) denotes the divided
difference of H1

n(t, z) with respect to the variable t.

Theorem 4 . Let t0, t1 ∈ (0, 1] and z ∈ C be given. Then we have

∆2
m(t0, t1, z) = cm(1− z)mH2

m(t0, t1, z)

with

c2n := − (n!)4

(2n)!n
, c2n+1 := −(n!)4(n+ 1)

(2n+ 1)!
.

Proof: The proof will follow from several statements.
1◦. The Euler-Frobenius polynomial H1

m (m ≥ 2) is uniquely determined by H1
m−1, if the

relations (4),(5) and (7) are satisfied, where H1
1 (t, z) := t(1− z) + z.

Assume that the functions P1(t, z) and P2(t, z) satisfy the relations

∂

∂t
P1(t, z) =

∂

∂t
P2(t, z) = (1− z)H1

m−1(t, z), (11)

zP1(1, z) = P1(0, z), zP2(1, z) = P2(0, z) (12)

and
P1(t, 1) = P2(t, 1) = 1. (13)

We consider Q(t, z) := P1(t, z) − P2(t, z). Then (11) implies that ∂
∂t
Q(t, z) = 0, i.e.,

Q(t, z) = q(z). Using (12), we find that (1− z)q(z) = 0. Hence q(z) ≡ 0 for z ∈ C, z 6= 1.
Finally from (13) we have q(1) = 0 and therefore Q(t, z) ≡ 0.

2◦. Let 0 < t ≤ 1 and z ∈ C be fixed. Furthermore let Am (m ≥ 2) denote the square
matrix which is recursively determined by

Am(z) =
1

m
Am−1(z)

(
bm

2
c bm

2
c

bm+1
2
cz bm+1

2
c

)
(m ≥ 3),

where

A2(z) :=
1

2

(
2z 1 + z

1 + z 2

)
.
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Then for m ≥ 2, (
H1
m(t, z)

H1
m−1(t, z)

)
= Am(z)

(
H2

0,m(t, z)
H2

1,m(t, z)

)
.

For m = 2 we have

A2(z)

(
H2

0,2(t, z)
H2

1,2(t, z)

)
=

1

2

(
2z 1 + z

1 + z 2

)(
2t(1− t)

t2 + (1− t)2z

)

=
1

2

(
t2(1− z)2 + 2t(1− z)z + z2 + z

2[t(1− z) + z]

)
=

(
H1

2 (t, z)
H1

1 (t, z)

)
.

Using 1◦ we shall prove inductively, that for m ≥ 3, the components of Am(H2
0,m, H

2
1,m)T

satisfy the relations (4), (5) and (7). From (10) we get

Am(z)

(
∂
∂t
H2

0,m(t, z)
∂
∂t
H2

1,m(t, z)

)

=
1

m
Am−1(z)

(
bm

2
c bm

2
c

bm+1
2
cz bm+1

2
c

)
m

 1
bm

2
cH

2
0,m−1(t, z)− 1

bm+1
2
cH

2
1,m−1(t, z)

1
bm+1

2
cH

2
1,m−1(t, z)− z

bm
2
cH

2
0,m−1(t, z)


= (1− z)Am−1(z)

(
H2

0,m−1(t, z)
H2

1,m−1(t, z)

)
= (1− z)

(
H1
m−1(t, z)

H1
m−2(t, z)

)
.

Hence (7) holds.
The relation (4) follows immediately from (8).

By (9) the relation (5) is established if Am(1) =

(
1 1
1 1

)
holds. But this is a simple

consequence of the definition of Am and the fact that bm
2
c+ bm+1

2
c = m. Now 2◦ follows

from 1◦.

3◦.The assertion of Theorem 4 holds.
From 2◦ it follows that(

H1
m(t0, z) H1

m−1(t0, z)
H1
m[t0, t1](z) H1

m−1[t0, t1](z)

)
=

(
H2

0,m(t0, z) H2
1,m(t0, z)

H2
0,m[t0, t1](z) H2

1,m[t0, t1](z)

)
Am(z)T .

Applying the multiplication rule of determinants we obtain

∆2
m(t0, t1, z) = det (Am(z)) H2

m(t0, t1, z).

We will prove inductively that for m ≥ 2

det (Am(z)) = cm(1− z)m (14)

with

c2n = − (n)!4

(2n)!n
, c2n+1 = −(n)!4(n+ 1)

(2n+ 1)!
.
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For m = 2 we have
1

2
det

(
2z 1 + z

1 + z 2

)
= −1

2
(1− z)2.

Assume that the assertion holds for m− 1. Then

det (Am(z)) =
1

m
det (Am−1(z)) det

(
bm

2
c bm

2
c

bm+1
2
cz bm+1

2
c

)

=
1

m
bm

2
cbm+ 1

2
c(1− z) det (Am−1(z)).

Using the induction hypothesis we arrive at (14).

5. A property of the symbol H2
m

In order to establish Theorem 2, we have to investigate the eigenvalues of H2
m(t0, t1,V ).

In Section 6 we will find that |H2
m(t0, t1, w

j)| > 0 for j = 1, ..., N − 1, t0, t1 ∈ (0, 1]. The
remaining case j = 0 is treated by

Theorem 5 . Let t0, t1 ∈ (0, 1] be fixed. Then for m ≥ 2 we have

H2
m(t0, t1, 1) = dmBm[t0, t1],

where Bm[t0, t1] denotes the divided difference of the Bernoulli polynomial Bm. The con-
stant dm is independent of t0 and t1.

Proof: 1◦.For fixed t0, t1 ∈ (0, 1] and m ≥ 2, the following hold:

H2
m(t0, t1, 1) = H2

1,m[t0, t1](1).

First we show the relation

H2
0,m[t0, t1](1) = −H2

1,m[t0, t1](1). (15)

For t0 = t1 we get (15) differentiating of (9). For t0 6= t1 we have

H2
0,m[t0, t1](1) +H2

1,m[t0, t1](1) =
1

t0 − t1
(H2

0,m(t0, 1) +H2
1,m(t0, 1)−H2

0,m(t1, 1)

−H2
1,m(t1, 1)) = 0.

Thus, from (9) it follows that

H2
m(t0, t1, 1) = H2

1,m[t0, t1](1) (H2
0,m(t0, 1) +H2

1,m(t0, 1))

= H2
1,m[t0, t1](1).

2◦.The assertion of Theorem 5 holds for t0 = t1 = t ∈ (0, 1], i.e.,

H2
m(t, t, 1) = dmB

′
m(t) = dmBm−1(t).
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From 1◦ and (10) we conclude that

d

dt
H2
m(t, t, 1) =

d2

dt2
H2

1,m(t, 1)

=
d

dt

{
m

(
1

bm+1
2
c
H2

1,m−1(t, 1)− 1

bm
2
c
H2

0,m−1(t, 1)

)}

Now, by (9) we have

d

dt
H2
m(t, t, 1) =

d

dt

{
m

(
1

bm+1
2
c

+
1

bm
2
c

)
H2

1,m−1(t, 1)

}

= m

(
1

bm+1
2
c

+
1

bm
2
c

)
H2
m−1(t, t, 1). (16)

Furthermore (8) implies that∫ 1

0
H2
m(t, t, 1) dt = H2

1,m(1, 1)−H2
1,m(0, 1) = 0. (17)

Note that H2
1,m[t, t](1) is a polynomial of degree m − 1 with respect to t. Therefore, by

the definition of Bm the assertion 2◦ follows from (16),(17) and the fact

H2
2 (t, t, 1) = 4t− 2 = 4B1(t).

3◦. The assertion of Theorem 5 holds for t0 6= t1.
From 1◦ and 2◦ it follows that

H2
1,m[t, t](1) =

d

dt
H2

1,m(t, 1) = dmBm−1(t).

By integration we find
H2

1,m(t, 1) = dmBm(t) + rm,

with constants dm and rm. Thus,

H2
m(t0, t1, 1) = dmBm[t0, t1].

Remark: The constant dm can easily be computed. We find

d2n =
4n((2n− 1)!!)2

((n− 1)!)2n
, d2n+1 =

4n((2n+ 1)!!)2

(n!)2(n+ 1)
. ♠

6. Exponential Euler splines

Now we will show that for any fixed t0, t1 ∈ (0, 1] andBm[t0, t1] 6= 0 the matrixH2
m(t0, t1,V )

is nonsingular, i.e., that

H2
m(t0, t1, w

j) 6= 0 (j = 0, 1, ..., N − 1)
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with w := e2πi/N .
Unfortunately, similar ideas as in [4] and [7] can not be applied, because we are not able
to describe the zeros of H2

m for any t0, t1 ∈ [0, 1] and for any m ≥ 2.
Indeed, we are only interested in the case when |z| = 1. Our main tool will be the symbol
of cardinal interpolation with centered B-splines of degree m ∈N , which is defined for a
fixed shift parameter x ∈ R by

ϕ1
m(x, u) :=

∑
j∈Z

B1
0,m(x+

m+ 1

2
− j) eiju, u ∈ [−π, π].

(cf. [1]). The following identities and properties of ϕ1
m will be used in our further consid-

erations.

Theorem 6 ( cf. [1]) . For m ∈N , x ∈ R and −π ≤ u ≤ π, we have
(i).

ϕ1
m(x± 1, u) = e±iuϕ1

m(x, u),

ϕ1
m(x,−u) = ϕ1

m(−x, u) = ϕ1
m(x, u),

e−iuϕ1
m(x+

1

2
, u) = ϕ1

m(
1

2
− x, u),

(ii).
∂

∂x
ϕ1
m(x, u) = (1− e−iu)ϕ1

m−1(x+
1

2
, u) (m ≥ 2).

(iii). For 0 ≤ x ≤ 1/2 and 0 < u < π,

ϕ1
m(x, u) = αm−1(x, u)eiu/2 + βm−1(x, u),

where

αm−1(x, u) = 2
∫ 1/2

1/2−x
Re[e−iu/2ϕ1

m−1(τ, u)] dτ,

βm−1(x, u) = 2
∫ 1/2−x

0
Re[ϕ1

m−1(τ, u)] dτ.

Now let m ≥ 1 and 0 < u0 < π be fixed. Then we have
(iv). The function argϕ1

m(x, u0) is strictly increasing for x ∈ [0, 1]. In particular,
argϕ1

m(0, u0) = 0, argϕ1
m(1/2, u0) = u0/2, argϕ1

m(1, u0) = u0.

(v). The function |ϕ1
m(x, u0)| is strictly decreasing for x ∈ [0, 1/2] and strictly increasing

for x ∈ [1/2, 1]. Particularly, |ϕ1
m(x, u0)| > 0 for x ∈ [0, 1].

(vi). We have

0 < argϕ1
m(x, u0) < xu0 for 0 < x < 1/2,

xu0 < argϕ1
m(x, u0) < u0 for 1/2 < x < 1.

(vii). Further, ϕ1
m(x, π) is a real and for x ∈ [0, 1] strictly decreasing function with

ϕ1
m(1/2, π) = 0.

11



We consider the determinant

ϕ2
m(x0, x1, u) :=

∣∣∣∣∣ ϕ1
m(x0, u) ϕ1

m−1(x0 + 1/2, u)
ϕ1
m[x0, x1](u) ϕ1

m−1[x0 + 1/2, x1 + 1/2](u)

∣∣∣∣∣ (m ≥ 2)

with x0, x1 ∈ R , u ∈ [−π, π], where ϕ1
m[x0, x1](u) and ϕ1

m−1[x0, x1](u) denote the divided
differences with respect to the variable x. The connection between ϕ2

m and ∆2
m is de-

scribed in the following

Lemma 2 . For t0, t1 ∈ (0, 1], −π < u ≤ π and m ∈N (m ≥ 2), we have

∆2
m(t0, t1, e

iu) =

{
eiu(m−2) ϕ2

m(1− t0, 1− t1, u) if m is odd ,
eiu(m−1) ϕ2

m(1/2− t0, 1/2− t1, u) if m is even .

Proof: Using (i) and the symmetry relation B1
0,m(x) = B1

0,m(m + 1 − x) it follows from
the definition of ϕ1

m that for m ≥ 1

H1
m(x, eiu) =

{
eiu(m−1)/2 ϕ1

m(1− x, u) if m is odd ,
eium/2 ϕ1

m(1/2− x, u) if m is even .

For m ≥ 2 odd we see from (i) that:

∆2
m(t0, t1, e

iu) = eiu(m−1)
∣∣∣∣∣ ϕ1

m(1− t0, u) ϕ1
m−1(1/2− t0, u)

ϕ1
m[1− t0, 1− t1](u) ϕ1

m−1[1/2− t0, 1/2− t1](u)

∣∣∣∣∣
= eiu(m−2) ϕ2

m(1− t0, 1− t1, u).

The relation follows analogously for m ≥ 2 even.

By Theorems 4 and 5 and Lemma 2 it suffices to show that

ϕ2
m(x0, x1,

2πj

N
) 6= 0 (j = 1, ..., N − 1, x0, x1 ∈ R, |x0 − x1| < 1).

The following identities are immediate consequences of the definition of ϕ2
m and (i).

Lemma 3 . For m ∈N (m ≥ 2), x0, x1 ∈ R, −π < u ≤ π , we have

ϕ2
m(x0, x1, u) = ϕ2

m(x1, x0, u), (18)

ϕ2
m(x0, x1,−u) = −e−iuϕ2

m(−x0,−x1, u) = ϕ2
m(x0, x1, u), (19)

ϕ2
m(1/2 + x0, 1/2 + x1, u) = −e3iu ϕ2

m(1/2− x0, 1/2− x1, u). (20)

For x1 − x0 6∈ Z,

(x1 − (x0 ± 1))ϕ2
m(x0 ± 1, x1, u) = e±iu(x1 − x0)ϕ2

m(x0, x1, u),

(x1 ± 1− x0)ϕ2
m(x0, x1 ± 1, u) = e±iu(x1 − x0)ϕ2

m(x0, x1, u). (21)

For x1 − x0 = k ∈ Z \ {0},
ϕ2
m(x0 + k, x0, u) = 0.

For x0 = x1,
ϕ2
m(x0 + 1, x0 + 1, u) = e2iu ϕ2

m(x0, x0, u),

ϕ2
m(x0 − 1, x0 − 1, u) = e−2iu ϕ2

m(x0, x0, u). (22)
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By Lemma 3 we may restrict our investigations to the intervals 0 < u ≤ π and x0, x1 ∈
(0, 1].

Theorem 7 . Let x0, x1 ∈ (0, 1] be fixed. Then for m ≥ 3 and 0 < u ≤ π , we have

|ϕ2
m(x0, x1, u)| > 0.

Proof: Since (18) we only have to consider the case 0 < x0 ≤ x1 ≤ 1.
1◦.First let x = x0 = x1.
By (20) it can be supposed that 0 ≤ x ≤ 1/2. From the definition we have

ϕ2
m(x, x, u) = ϕ1

m(x, u)
∂

∂x
ϕ1
m−1(x+ 1/2, u)− ϕ1

m−1(x+ 1/2, u)
∂

∂x
ϕ1
m(x, u).

Using the properties (i) and (ii) it follows for m ≥ 3 that

ϕ2
m(x, x, u) = (1− e−iu)(eiu ϕ1

m(x, u)ϕ1
m−2(x, u)− (ϕ1

m−1(x+ 1/2, u))2).

Thus it remains to show that for m ≥ 3 and 0 < u ≤ π,

eiu ϕ1
m(x, u)ϕ1

m−2(x, u) 6= (ϕ1
m−1(x+ 1/2, u))2. (23)

The case u = π follows readily from property (vii). Now let u0 ∈ (0, π) be fixed.
1◦.1. The assertion holds for x = 0 and x = 1/2.
On the one hand for 0 < t < 1/2 and m ≥ 1 we have from (vi)

0 < arg ϕ1
m(t, u0) < u0t <

π

2
.

Therefore, we obtain Im ϕ1
m(t, u0) > 0 and Re ϕ1

m(t, u0) > 0. Hence we may write

0 <
Im [ϕ1

m(t, u0)]

Re [ϕ1
m(t, u0)]

< tan u0t.

This yields

|ϕ1
m(t, u0)| < Re [ϕ1

m(t, u0)](1 + tan2 u0t)
1/2 =

Re [ϕ1
m(t, u0)]

cosu0t
,

i.e.,
Re [ϕ1

m(t, u0)] > |ϕ1
m(t, u0)| cosu0t. (24)

On the other hand it follows from (vi) that

−π
2
< −u0

2
< arg[e−iu0/2ϕ1

m(t, u0)] < u0t−
u0
2
< 0.

Thus, we get Im [e−iu0/2ϕ1
m(t, u0)] < 0 and Re [e−iu0/2ϕ1

m(t, u0)] > 0. Hence,

tan
u0
2
> − Im [e−iu0/2ϕ1

m(t, u0)]

Re [e−iu0/2ϕ1
m(t, u0)]

> tan(1/2− t)u0,

which implies

|ϕ1
m(t, u0)| > Re [e−iu0/2ϕ1

m(t, u0)](1 + tan2(1/2− t)u0)1/2 =
Re [e−iu0/2ϕ1

m(t, u0)]

cos(1/2− t)u0
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and therefore

Re [e−iu0/2ϕ1
m(t, u0)] < |ϕ1

m(t, u0)| cos(1/2− t)u0. (25)

Now, using the recursion relation (iii) and monotonicity property (v) we find from (24)
and (25):

|ϕ1
m+1(0, u0)| = |βm(0, u0)| > 2

∫ 1/2

0
|ϕ1
m(t, u0)| cosu0t dt

> |ϕ1
m(1/2, u0)| sinc u0/2

and

|ϕ1
m+1(1/2, u0)| = |αm(1/2, u0)| < 2

∫ 1/2

0
|ϕ1
m(t, u0)| cos(1/2− t)u0 dt

< |ϕ1
m(0, u0)| sinc u0/2.

The required inequality (23) follows for x = 0 and x = 1/2, since

|ϕ1
m(0, u0)ϕ

1
m−2(0, u0)|

|ϕ1
m−1(1/2, u0)|2

>
|ϕ1
m−1(1/2, u0)ϕ

1
m−2(0, u0)| sinc u0/2

|ϕ1
m−1(1/2, u0)ϕ

1
m−2(0, u0)| sinc u0/2

= 1,

|ϕ1
m(1/2, u0)ϕ

1
m−2(1/2, u0)|

|ϕ1
m−1(0, u0)|2

<
|ϕ1
m−1(0, u0)ϕ

1
m−2(1/2, u0)| sinc u0/2

|ϕ1
m−1(0, u0)ϕ

1
m−2(1/2, u0)| sinc u0/2

= 1.

1◦.2. The assertion holds for 0 < x < 1/2.
Let m ≥ 3 and u0 ∈ (0, π) be fixed. For 0 < x < 1/2 we have from (vi),

u0 < arg[eiu0ϕ1
m(x, u0)ϕ

1
m−2(x, u0)] < 2xu0 + u0.

Furthermore,
(x+ 1/2)u0 < arg[ϕ1

m−1(x+ 1/2, u0)] < u0,

i.e.,
u0 + 2xu0 < arg[(ϕ1

m−1(x+ 1/2, u0))
2] < 2u0.

Hence,
arg[eiu0ϕ1

m(x, u0)ϕ
1
m−2(x, u0)] < arg[(ϕ1

m−1(x+ 1/2, u0))
2].

Together with (v) this completes the proof of 1◦.2.

2◦. Now let x0 < x1.
Then ϕ2

m can be simplified to

ϕ2
m(x0, x1, u) =

1

(x1 − x0)

∣∣∣∣∣ ϕ1
m(x0, u) ϕ1

m−1(x0 + 1/2, u)
ϕ1
m(x1, u) ϕ1

m−1(x1 + 1/2, u)

∣∣∣∣∣
with m ≥ 2 and u ∈ (0, π].
Thus it remains to show that for any m ≥ 3, 0 < u ≤ π,

ϕ1
m(x0, u)ϕ1

m−1(x1 + 1/2, u) 6= ϕ1
m(x1, u)ϕ1

m−1(x0 + 1/2, u). (26)
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First let 0 < x0 < x1 ≤ 1/2. Then it follows from (v) and (vii) that for 0 < u0 ≤ π and
m ≥ 2,

|ϕ1
m(x0, u0)| > |ϕ1

m(x1, u0)|, |ϕ1
m−1(x1 + 1/2, u0)| > |ϕ1

m−1(x0 + 1/2, u0)|.

Hence the inequality (26) holds.
Analogously the assertion can be shown for 1/2 ≤ x0 < x1 ≤ 1. Therefore we only have
to consider the case 0 < x0 < 1/2 < x1 ≤ 1.
For 0 < x0 < 1/2 and x1 = 1 we find from (i), (v) and (vii)

|ϕ1
m(1, u0)| = |ϕ1

m(0, u0)| > |ϕ1
m(x0, u0)|,

|ϕ1
m−1(x0 + 1/2, u0)| > |ϕ1

m−1(1/2, u0)| = |ϕ1
m−1(3/2, u0)| (m ≥ 2),

which implies (26).
Finally, for 0 < x0 < 1/2 < x1 < 1 and 0 < u0 < π it follows from (i) and (vi) that

u0 < arg[ϕ1
m(x0, u0)ϕ

1
m−1(x1 + 1/2, u0)] <

u0
2

+ (x0 + x1)u0

and

u0
2

+ (x0 + x1)u0 < arg[ϕ1
m(x1, u0)ϕ

1
m−1(x0 + 1/2, u0)] < 2u0 (m ≥ 2).

Thus, by (v), we have |ϕ2
m(x0, x1, u0)| > 0.

For u0 = π and 0 < x0 < 1/2 < x1 < 1 we find from (vii) that

ϕ1
m(x0, π)ϕ1

m−1(x1 + 1/2, π) < 0 < ϕ1
m−1(x0 + 1/2, π)ϕ1

m(x1, π).

Remark: Let Ej denote the j-th Euler polynomial restricted to the interval [0, 1]. Then
we have

ϕ1
m(1/2 + t, π) = (−1)(m+2)/2 2mEm(t) if m is even,

ϕ1
m(t, π) = (−1)(m+1)/2 2mEm(t) if m is odd .

Hence the statement |ϕ2
m(x0, x1, π)| > 0 is equivalent to the Haar condition for the poly-

nomials Em(.) and Em−1(.) . ♠

Now we can show the following

Theorem 8 . Let τ0, τ1 ∈ (0, 1] be fixed. Then for m ≥ 2, we have

H2
m(τ0, τ1, e

iu) = 0 (−π < u ≤ π)

if and only if
Bm[τ0, τ1] = 0.
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Proof: The case m = 2 follows from the example. Consider m ≥ 3. First assume
that u 6= 0. Using (21), (19) and (22) it follows from Theorem 7 that for m ≥ 3 and
t0, t1 ∈ R, t0 − t1 6∈ Z \ {0}:

|ϕ2
m(t0, t1, u)| > 0

with −π < u ≤ π, u 6= 0. Thus by Lemma 2,

|∆2
m(τ0, τ1, e

iu)| > 0 (−π < u ≤ π, u 6= 0)

with 0 < τ0 ≤ τ1 ≤ 1. Hence, by Theorem 4 we find

|H2
m(τ0, τ1, e

iu)| > 0 (−π < u ≤ π, u 6= 0).

Together with Theorem 5 this completes the proof.

Now the assertion of Theorem 2 follows readily from Theorem 3 and Theorem 8.

7. Cardinal spline interpolation

The result of Theorem 2 on existence and uniqueness of solutions in the periodic case can
be extended to cardinal spline interpolation. Let m ∈ N (m ≥ 2) and r ∈ {1, ...,m} be
fixed. By Sm,r we denote the linear space of all real functions s ∈ Cm−r(R) with

s(j − 1 + t) = pj(t) (pj ∈ Pm)

for all t ∈ [0, 1].
We consider the following cardinal spline interpolation problem: For fixed real data se-
quences (y

(0)
j )j∈Z , (y

(1)
j )j∈Z and given shift parameters τ0, τ1 ∈ R with 0 < τ0 ≤ τ1 ≤ 1,

we wish to find a spline function s ∈ Sm,2 , such that

s(j − τ0) = y
(0)
j (j ∈ Z),

s[j + τ0, j + τ1] = y
(1)
j (j ∈ Z). (27)

Introducing the linear operator U by

U (y
(k)
j )j∈Z := (y

(k)
j−1)j∈Z , (k = 0, 1),

it follows that the spline interpolation problem (27) is uniquely solvable if and only if the
infinite Toeplitz matrix H2

m(τ0, τ1,U) is nonsingular, i.e., if

H2
m(τ0, τ1, z) 6= 0, (|z| = 1).

Hence we have as an immediate consequence of Theorem 8:

Theorem 9 . Let m ∈ N (m ≥ 2) and τ0, τ1 ∈ R with 0 < τ0 ≤ τ1 ≤ 1 be fixed. Then
the cardinal spline interpolation problem (27) possesses a unique solution s ∈ Sm,2 for any

data sequences (y
(0)
j )j∈Z , (y

(1)
j )j∈Z ∈ l2 if and only if Bm[τ0, τ1] 6= 0.
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