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Abstract

The Fourier transforms of B-splines with multiple integer knots are shown to satisfy a sim-
ple recursion relation. This recursion formula is applied to derive a generalized two–scale
relation for B-splines with multiple knots. Furthermore, the structure of the correspond-
ing autocorrelation symbol is investigated.
In particular, it can be observed that the solvability of the cardinal Hermite spline in-
terpolation problem for spline functions of degree 2m + 1 and defect r, first considered
by P.R. Lipow and I.J. Schoenberg [9], is equivalent to the Riesz basis property of our
B-splines with degree m and defect r. In this way we obtain a new, simple proof for
the assertion that the cardinal Hermite spline interpolation problem in [9] has a unique
solution.
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1 Introduction

Letm ∈ N0 and r ∈ N be given integers. We consider equidistant knots with multiplicity r

xr
l := ⌊l/r⌋ (l ∈ Z), (1.1)

where ⌊x⌋ means the integer part of x ∈ R.
Let Nm,r

k ∈ Cm−r(R) (m ≥ r, k ∈ Z) denote the normalized B-splines of degree m and
defect r with the knots xk, ..., xk+m+1. The class Sm,r(Z) (m ≥ r) of cardinal B-splines of
degreem with integer knots of multiplicity r consists of functions s, which are polynomials
of degree m in each interval [ν, ν + 1] (ν ∈ Z) and belong to Cm−r(R).
Note that the B-splines

Nm,r
k+rl = Nm,r

k (· − l) (k = 0, ..., r − 1; l ∈ Z) (1.2)

form a basis of the spline space Sm,r(Z) (cf. [1]). For the well-known normalized B-splines
Nm of defect 1 it follows the notation Nm(· − l) := Nm,1

l .
We introduce the B-spline vector N r

m := (Nm,r
k )r−1

k=0 of length r. The Fourier transform of

N r
m is denoted by N̂

r

m := (N̂m,r
k )r−1

k=0 with

N̂m,r
k :=

∫ ∞

−∞

Nm,r
k (x) e−i·x dx (k = 0, ..., r − 1).

In Section 2 we shall derive a recursion formula for the Fourier transformed B-spline vector
N̂

r

m. This recursion formula can now be applied to various problems in Sections 3 – 5.

In Section 3, we are going to find a recursive scheme for the computation of the (r, r)-
symbol

P r
m(z) =

1

2

∞
∑

n=−∞

P nz
n (1.3)

which is defined by the generalized two–scale relation (refinement equation)

N r
m :=

∞
∑

n=−∞

P n N
r
m(2 · −n). (1.4)

Here and in the following let z ∈ T with T := {̥ ∈ C, |̥| = 1}. The two–scale relation
(1.4) is needed for a generalized multiresolution analysis with r scaling functions Nm,r

k

(k = 0, ..., r − 1) and for the construction of Hermite spline wavelets. In this way new
spline wavelets with very small support can be found (cf. [4, 5]).
The well-known two–scale relation for the normalized B-splines Nm := N 1

m of defect 1

N̂m =

(

1 + e−i·

2

)m+1

N̂m(·/2)

will be obtained in the special case r = 1 (cf. [2, 3]).

In Section 4 we consider the autocorrelation functions

Fk,l :=

∫ ∞

−∞

Nm,r
k (·+ y)Nm,r

l (y) dy (k, l = 0, ..., r − 1) (1.5)
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and the corresponding (r, r)-matrices F (n) := (Fk,l(n))
r−1
k,l=0 (n ∈ Z). The autocorrelation

symbol is defined by

Φr
m(z) :=

∞
∑

n=−∞

F (n)zk. (1.6)

We shall investigate the structure of Φr
m. Some interesting properties of Φr

m can be
observed which are reminiscent of the well-known case with one scaling function. In
particular, the equivalence between invertibility of Φr

m(z) for z ∈ T and the Riesz basis
property of Nm,r

k (· − l) (l ∈ Z; k = 0, ...,r−1) in Sm,r(Z)
⋂

L2(R) can be shown. Note
that Φ1

m coincides with the well-known Euler–Frobenius polynomial

Φ1
m(z) :=

∞
∑

n=−∞

N2m+1(n) z
n

(cf. [2, 3, 13]).

Finally, in Section 5 the cardinal Hermite spline interpolation problem, first considered
by P.R. Lipow and I.J. Schoenberg [9], will be handled. With the help of results of the
previous sections a new, simple proof will be given for the assertion that the cardinal
Hermite spline interpolation problem in [9] is uniquely solvable. Furthermore, the new
conclusions will be compared with known results in [9] and [8].

2 Fourier transform of the B-spline vector N r
m

The B-splines Nm,r
k (k ∈ Z) of degree m ∈ N0 and defect r ∈ N possess the following

properties:

Theorem 2.1 For m ∈ N0, r ∈ N and k = 0, ..., r − 1 we have:

(i) Nm,r
k ∈ Cm−r(R) (⋗ ≥ r),

(ii)
supp Nm,r

k = [0, ⌊(m+ 1 + k)/r⌋],

Nm,r
k (x) > 0 (x ∈ (0, ⌊(m+ 1 + k)/r⌋)),

(iii) Nm,r
k |[j, j + 1] ∈ Pm (j ∈ Z),

(iv)
∞
∑

j=−∞

r−1
∑

k=0

Nm,r
k (· − j) = 1

(v)

N̂m,r
k (0) =

∫ ∞

−∞

Nm,r
k (x) dx =

⌊(m+ k + 1)/r⌋

m+ 1
.

In particular,
r−1
∑

k=0

N̂m,r
k (0) =

∫ ∞

−∞

r−1
∑

k=0

Nm,r
k (x) dx = 1.
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Furthermore,
r−1
∑

k=0

N̂m,r
k (2πl) = 0 (l ∈ Z \ {0}).

(vi) For m > r − 1 we have

Nm,r
k (x) =

x− xr
k

xr
k+m − xr

k

Nm−1,r
k (x) +

xr
k+m+1 − x

xr
k+m+1 − xr

k+1

Nm−1,r
k+1 (x). (x ∈ R).

(vii) For m > r − 1 we obtain

DNm,r
k = m

(

1

xr
k+m − xr

k

Nm−1,r
k −

1

xr
k+m+1 − xr

k+1

Nm−1,r
k+1

)

,

where D denotes the differential operator D := d/ d · .

For a proof of Theorem 2.1 we refer to [1].

For r = m+ 1, the B-splines Nm,m+1
k (k = 0, . . . , m) coincide with the Bernstein polyno-

mials

Nm,m+1
k (x) = Bm

k (x) :=

{ (

m
k

)

xk(1− x)m−k x ∈ [0, 1],
0 x 6∈ [0, 1].

(2.1)

According to the distribution theory let Nm,r
k be defined for r > m+1 and k = 0, . . . , r−

m− 2 as follows

Nm,r
k :=

Dr−m−2−k δ

r − 1− k
,

where δ denotes the Dirac distribution. For the Fourier transformed B-spline vector N̂
r

m

of length r > m+ 1 we find

N̂
r

m(u) =
((iu)r−m−2

r − 1
, . . . ,

(iu)0

m+ 1
, N̂

m+1

m (u)T
)T

, (2.2)

where Nm+1
m denotes the vector of the m + 1 Bernstein polynomials of degree m. In

particular, we have

N̂
r

0(u) =
((iu)r−2

r − 1
, . . . ,

(iu)0

1
,
(1− e−iu)

iu

)T

. (2.3)

Further, we put

N̂
r

−1(u) :=
((iu)r−1

r − 1
, . . . ,

(iu)1

1
, 1
)T

(u ∈ R). (2.4)

The following recursion relation for N̂
r

m can be found:
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Theorem 2.2 For m ∈ N0, r ∈ N we have

(iu) N̂
r

m(u) = Ar
m(e

−iu) N̂
r

m−1(u) (u ∈ R). (2.5)

The (r, r)-matrices Ar
m(z) (z ∈ T) are defined for m > r − 1 by

Ar
m(z) := m

















1
xr
m

− 1
xr

m+1

. . . 0 0

0 1
xr

m+1

. . . 0 0
...

...
. . .

...
...

0 0 . . . 1
xr

m+r−2

− 1
xr

m+r−1

− z
xr
m

0 . . . 0 1
xr

m+r−1

















, (2.6)

where xr
m+k (k = 0, . . . , r − 1) are given in (1.1). For m = r − 1 > 0 let

Am+1
m (z) := m















1 −1 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 −1
−z 0 . . . 0 1















(2.7)

and for 0 ≤ m < r − 1

Ar
m(z) :=

(

Ir−m−1 0

0 Am+1
m (z)

)

, (2.8)

where A1
0(z) := 1 − z. Further, Ir−m−1 denotes the (r −m − 1)-th unit matrix and 0 a

zero matrix.

Proof:

1. Applying the Fourier transform to the relation (vii) of Theorem 2.1 we obtain for
k = 0, . . . , r − 1 and m > r − 1:

(iu)N̂m,r
k (u) = m

( 1

xr
k+m

N̂m−1,r
k (u)−

1

xr
k+m+1 − xr

k+1

N̂m−1,r
k+1 (u)

)

.

Using (1.2) it follows that

N̂m−1,r
r (u) = [Nm−1,r

0 (· − 1)]∧(u) = e−iuN̂m−1,r
0 (u)

and thus
(iu)N̂

r

m(u) = Ar
m(e

−iu)N̂
r

m−1(u) (u ∈ R) (2.9)

with Ar
m(e

−iu) in (2.6).
2. For m = r − 1 we find

DNm,m+1
k = m

(

Nm−1,m+1
k −Nm−1,m+1

k+1

)

(k = 0, . . . , m)

with Nm−1,m+1
0 := δ/m and Nm−1,m+1

m+1 := Nm−1,m+1
0 (· − 1) = δ(· − 1)/m, where δ denotes

the Dirac distribution. For the vector Nm+1
m it follows by (Nm−1,m+1

k )mk=1 = Nm
m−1

( DNm+1
m )∧(u) = (iu)N̂

m+1

m (u) = Am+1
m (e−iu)N̂

m+1

m−1(u) (2.10)
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with the (m+ 1, m+ 1)-matrix Am+1
m (e−iu) in (2.7) and N̂

m+1

m−1(u) = (1/m, N̂
m

m−1(u)
T )T .

3. The formula (2.10) and the definitions (2.2) – (2.4) lead for 0 ≤ m < r − 1 to

(iu)N̂
r

m(u) = Ar
m(e

−iu)N̂
r

m−1(u)

with Ar
m(e

−iu) defined in (2.8) and A1
0(z) = (1− z).

Example 2.3

For r = 1 and m ≥ 0 we have A1
m(z) = (1− z).

For r = 2 and even m > 1 we find

A2
m(z) = 2

(

1 −1
−z 1

)

.

For r = 2 and odd m = 2n+ 1 > 1 it follows

A2
m(z) =

(

2 + 1/n −2 + 1/(n+ 1)
−z(2 + 1/n) 2− 1/(n+ 1)

)

.

From the recursion relation (2.5) it follows in the special case r = 1 the well-known
formula

N̂
1

m(u) = N̂m(u) =
1

iu
(1− e−iu)N̂m−1(u),

i.e.

N̂m(u) =
(1− e−iu

iu

)m+1

(u ∈ R).

In the case r = 2 we have

N̂
2

0(u) =
1

iu

(

1 0
0 1− e−iu

)(

iu
1

)

=

(

1
(1− e−iu)/iu

)

,

N̂
2

1(u) =
1

iu

(

1 −1
−e−iu 1

)(

1
(1− e−iu)/iu

)

=
1

(iu)2

(

iu− 1 + e−iu

1− (1 + iu)e−iu

)

,

N̂
2

2(u) =
2

iu

(

1 −1
−e−iu 1

)

1

(iu)2

(

iu− 1 + e−iu

1− (1 + iu)e−iu

)

=
2

(iu)3

(

iu− 2 + (2 + iu)e−iu

1− 2iue−iu − e−2iu

)

(u ∈ R). ♠

Remark 2.4

1. Note that for m > r − 1

det Ar
m(z) = (1− z)

r−1
∏

l=0

m

xr
m+l

and for 0 < m ≤ r − 1

det Ar
m(z) = det Am+1

m (z) = mm+1 (1− z).
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2. By Theorem 2.2 we have the recursion formula for the computation of all Fourier
transforms of B-spline vectors with multiple knots. Since N̂

r

m is continuous at 0 we
obtain

N̂
r

m(0) = lim
u→0

1

iu
Ar

m(e
−iu)N̂

r

m−1(u) =
(⌊(m+ 1 + k)/r⌋

m+ 1

)r−1

k=0
(u ∈ R).

3. Fourier transforms of special B-splines and fundamental splines for cardinal Hermite
spline interpolation, introduced in [9] and [14], were already treated in [7]. In contrast
to our approach, in [7] an integral representation for the Fourier transforms, based on
exponential Hermite Euler splines, was given. ♠

3 Two–scale symbol matrix

A central role in the construction of multiresolution analysis and wavelets is played by
the following two–scale relation or refinement equation of a given function φ ∈ L2(R):

φ =
∞
∑

n=−∞

pnφ(2 · −n) ((pn) ∈ l2).

The Fourier transformed two–scale relation reads

φ̂ = P (e−i·/2) φ̂(·/2)

with the two–scale symbol

P (z) :=
1

2

∞
∑

n=−∞

pn z
n.

We want to generalize this two–scale relation for more than one scaling function and wish
to find matrices P n (n ∈ Z) with

N r
m =

∞
∑

n=−∞

P nN
r
m(2 · −n) (3.1)

or
N̂

r

m = P r
m(e

−i·/2) N̂
r

m(·/2) (m ∈ N0, r ∈ N). (3.2)

The (r, r)-matrix

P r
m(z) :=

1

2

∞
∑

n=−∞

P nz
n

is called two–scale symbol or refinement mask of N r
m.

We are going to find a recursive scheme for the computation of P r
m for all vectors N r

m

(m ∈ N0, r ∈ N). The well-known two–scale relation for the normalized B-splines of
defect 1

N̂m =

(

1 + e−i·

2

)m+1

N̂m(·/2)

will be obtained in the special case r = 1. Furthermore, for r = m + 1 we will find the
two–scale relation for the vector of Bernstein polynomials Nm+1

m = Bm := (Bm
0 , . . . , Bm

m)T

(see (2.1)).
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Theorem 3.1 Let m ∈ N0 and r ∈ N be given. Then the two–scale symbol P r
m is finite

and satisfies for m ≥ 0 the following recursion formula

P r
m(z) =

1

2
Ar

m(z
2)P r

m−1(z)A
r
m(z)

−1 (z ∈ T \ {1}) (3.3)

with Ar
m(z) defined in (2.6) – (2.8) and the (r, r)-diagonal matrix

P r
−1(z) := diag (2r−1, . . . , 20)T .

For z = 1 we have

P r
m(1) =

1

2
lim
u→0

Ar
m(e

−2iu)P r
m−1(e

−iu)Ar
m(e

−iu)−1 (u ∈ R).

Proof: By Remark 2.4 the matrix Ar
m is invertible for z 6= 1. Applying the formula (3.3)

for m = 0 we obtain

P r
0(z) =

1

2
Ar

0(z
2)P r

−1(z)A
r
0(z)

−1

=
1

2











1 . . . 0 0
...

. . .
...

...
0 . . . 1 0
0 . . . 0 1− z2





















2r−1 . . . 0 0
...

. . .
...

...
0 . . . 2 0
0 . . . 0 1





















1 . . . 0 0
...

. . .
...

...
0 . . . 1 0
0 . . . 0 (1− z)−1











=

(

P r−1
−1 (z) 0

0 P 1
0(z)

)

. (3.4)

With (2.3) it can be easily verified that the assertion is true for m = 0, i.e., the matrix
P r

0 computed in (3.4) satisfies

N̂
r

0 = P r
0(e

−i·/2)N̂
r

0(·/2).

Now let m > 0 and let (3.3) be satisfied for m− 1. On the one hand, by (3.2) and using
the recursion (2.5) it follows for u ∈ R \ {0} that

N̂
r

m(u) =
1

iu
Ar

m(e
−iu)N̂

r

m−1(u) = P r
m(e

−iu/2)N̂
r

m(u/2)

= P r
m(e

−iu/2)
2

iu
Ar

m(e
−iu/2)N̂

r

m−1(u/2),

i.e.
N̂

r

m−1(u) = 2Ar
m(e

−iu)−1P r
m(e

−iu/2)Ar
m(e

−iu/2) N̂
r

m−1(u/2).

On the other hand, we have

N̂
r

m−1(u) = P r
m−1(e

−iu/2)N̂
r

m−1(u/2).

Thus,

P r
m(z) =

1

2
Ar

m(z
2)P r

m−1(z)A
r
m(z)

−1 (z ∈ T \ {1}).
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Since the B-splines Nm,r
k (k ∈ Z) are spline functions of Sm,r(Z) with minimal support

and in particular

clos (supp

∞
∑

k=−∞

αkN
m,r
k ) = clos (

⋃

αk 6=0

supp Nm,r
k )

(cf. [1]), the two–scale relation is finite. It follows that P r
m(z) is a matrix polynomial in

z. By continuity of N̂
r

m(u) at u = 0 we obtain P r
m(1) by the limiting process

P r
m(1) = lim

u→0

1

2
Ar

m(e
−2iu)P r

m−1(e
−iu)Ar

m(e
−iu)−1 (u ∈ R).

By Theorem 3.1 all two–scale symbol matrices P r
m (m ∈ N0; r ∈ N) can be recursively

computed. The inverse (Ar
m)

−1 can be explicitly given.

Lemma 3.2 For z ∈ T \ {1} the (r, r)-matrix Ar
m(z) (r > 1) is invertible and we have

for m > r − 1

Ar
m(z)

−1 =
1

m(1− z)















xr
m xr

m . . . xr
m xr

m

zxr
m+1 xr

m+1 . . . xr
m+1 xr

m+1
...

...
. . .

...
...

zxr
m+r−2 zxr

m+r−2 . . . xr
m+r−2 xr

m+r−2

zxr
m+r−1 zxr

m+r−1 . . . zxr
m+r−1 xr

m+r−1















. (3.5)

For m = r − 1 we obtain

Am+1
m (z)−1 =

1

m(1− z)















1 1 . . . 1 1
z 1 . . . 1 1
...

...
. . .

...
...

z z . . . 1 1
z z . . . z 1















(3.6)

and for m < r − 1

Ar
m(z)

−1 =

(

Ir−m−1 0

0 Am+1
m (z)−1

)

, (3.7)

where Ir−m−1 denotes the (r −m− 1)-th unit matrix and 0 a zero matrix.

Proof: The assertion immediately follows by the observation that the matrices Ar
m(z)

−1

defined in (3.5) – (3.7) satisfy the identity

Ar
m(z)A

r
m(z)

−1 = Ir.

Example 3.3 For r = 1 we only have (1, 1)-matrices. Since

A1
m(z

2)A1
m(z)

−1 =
1− z2

1− z
= 1 + z,
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it follows that

P 1
m(z) =

1 + z

2
P 1

m−1(z),

that is

P 1
m(z) = Pm(z) =

(

1 + z

2

)m+1

.

For r = 2 we obtain for m = 0, 1, 2:

P 2
0(z) =

(

1 0
0 (1 + z)/2

)

,

P 2
1(z) =

1

2(1− z)

(

1 −1
−z2 1

)(

1 0
0 (1 + z)/2

)(

1 1
z 1

)

=
1

4

(

2 + z 1
z 2z + 1

)

,

P 2
2(z) =

1

2(1− z)

(

1 −1
−z2 1

)

1

4

(

2 + z 1
z 2z + 1

)(

1 1
z 1

)

=
1

8

(

2 + 2z 2
2z + 2z2 1 + 4z + z2

)

.

For r = 3 and m = 2 we find

P 3
2(z) =

1

2(1− z)





1 −1 0
0 1 −1

−z2 0 1





1

4





4 0 0
0 2 + z 1
0 z 2z + 1









1 1 1
z 1 1
z z 1





=
1

8





4 + z 2 1
2z 2z + 2 2
z 2z 4z + 1



 . ♠

Furthermore, using the recursion relation (3.3) we find

Corollary 3.4 For m ∈ N0 and r ∈ N we have

det P r
m(z) = 2−rm+r(r−3)/2 (1 + z)m+1 (z ∈ T). (3.8)

Proof: For m = 0 we have by (3.4)

det P r
0(z) =

1

2r
(1− z2)2r(r−1)/2(1− z)−1

= 2r(r−3)/2(1 + z).

Now let (3.8) be satisfied for P r
m−1 (m > 0). Then we obtain by (3.3) and Remark 2.4

det P r
m(z) =

1

2r
(1 + z)det P r

m−1(z)

= 2−mr+r(r−3)/2 (1 + z)m+1.
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4 Autocorrelation symbol of N r
m

As in the simple case with one scaling function let us consider the autocorrelation functions

Fk,l :=

∫ ∞

−∞

Nm,r
k (·+ y)Nm,r

l (y) dy (k, l = 0, . . . , r − 1). (4.1)

The autocorrelation symbol of N r
m is defined by the sequences F (n) := (Fk,l(n))

r−1
k,l=0

(n ∈ Z), namely

Φr
m(z) :=

∞
∑

n=−∞

F (n)zn. (4.2)

The following properties hold:

Theorem 4.1 Let m ∈ N0 and r ∈ N. Then we have
(i) For all u ∈ R

Φr
m(e

−iu) =
∞
∑

k=−∞

N̂
r

m(u+ 2πk) N̂
r

m(u+ 2πk)⋆ (4.3)

with N̂
r

m(u)
⋆ := N̂

r

m(u)
T . In particular, Φr

m(z) is Hermitian and positive semidefinite.
(ii) For z ∈ T,

Φr
m(z

2) = P r
m(z)Φ

r
m(z)P

r
m(z)

⋆ + P r
m(−z)Φr

m(−z)P r
m(−z)⋆

with P r
m(z)

⋆ := P r
m(z)

T .

Proof: The assertion (4.3) follows from the Poisson summation formula. Applying (4.3)
and the two–scale relation (3.2) we find for u ∈ R

Φr
m(e

−iu) =

∞
∑

k=−∞

P r
m(e

−i(u/2+kπ))N̂
r

m(u/2 + kπ)N̂
r

m(u/2 + kπ)⋆P r
m(e

−i(u/2+kπ))⋆

=
∞
∑

l=−∞

P r
m(e

−iu/2)N̂
r

m(u/2 + 2πl)N̂
r

m(u/2 + 2πl)⋆P r
m(e

−iu/2)⋆

+
∞
∑

l=−∞

P r
m(−e−iu/2)N̂

r

m(u/2 + (2l + 1)π)N̂
r

m(u/2 + (2l + 1)π)⋆P r
m(−e−iu/2)⋆

= P r
m(e

−iu/2)Φr
m(e

−iu/2)P r
m(e

−iu/2)⋆ + P r
m(−e−iu/2)Φr

m(−e−iu/2)P r
m(−e−iu/2)⋆.

Example 4.2 For r = 1 we have

Φ1
0(z) = 1,

6Φ1
1(z) = z−1 + 4 + z,

120Φ1
2(z) = z−2 + 26z−1 + 66 + 26z + z2,

5040Φ1
3(z) = z−3 + 120z−2 + 1191z−1 + 2416 + 1191z + 120z2 + z3.
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For r = 2 we obtain

6Φ2
1(z) =

(

2 1
1 2

)

, 30Φ2
2(z) =

(

4 3z−1 + 3
3 + 3z z−1 + 12 + z

)

,

560Φ2
3(z) =

(

9z−1 + 128 + 9z 53z−1 + 80 + z
z−1 + 80 + 53z 9z−1 + 128 + 9z

)

. ♠

Now we want to analyze the structure of Φr
m using the recursion formula (2.5) for N̂

r

m.
Therefore we introduce the following (r, r)-matrix

Hr
2m+1 :=

(

Hν
µ

)r−1

ν,µ=0
(4.4)

with

Hν
µ(z) :=

∞
∑

l=−∞

DνN2m+1,r
µ (l)zl (µ, ν = 0, 1, . . . , r − 1, z ∈ T), (4.5)

where Dνf denotes the ν-th derivative of f . For 2m + 1 − ν ≤ r − 1 the functions
DνN2m+1,r

µ are understood according to the distribution theory. The functions H0
µ in

(4.5) are called Euler–Frobenius functions of N2m+1,r
µ . Therefore we call Hr

2m+1 the Euler–
Frobenius matrix of N r

2m+1.
For r = 1 we obtain the well-known Euler–Frobenius polynomial

H1
2m+1(z) = H0

2m+1(z) =
∞
∑

l=−∞

N2m+1(l)z
l.

For r = 2 and m ≥ 1 the matrix

H2
2m+1(z) =

( ∑∞
k=−∞N2m+1,2

0 (k)zk
∑∞

k=−∞N2m+1,2
1 (k)zk

∑∞
k=−∞ DN2m+1,2

0 (k)zk
∑∞

k=−∞ DN2m+1,2
1 (k)zk

)

is found. By the Poisson summation formula the matrix Hr
2m+1 reads for z = e−iu as

follows

Hr
2m+1(e

−iu) =

∞
∑

l=−∞

(

(i(u+ 2πl))k
)r−1

k=0
N̂

r

2m+1(u+ 2πl)T (u ∈ R). (4.6)

Example 4.3 In particular, we have

H1
1 (z) = z,

6H1
3 (z) = z(1 + 4z + z2),

120H1
5(z) = z(1 + 26z + 66z2 + 26z3 + z4),

2H2
3 (z) = z

(

1 1
−3 3

)

, 12H2
5(z) = z

(

5 + z 1 + 5z
10− 5z 5− 10z

)

. ♠

Later, in Section 5 we will see that the Euler–Frobenius matrix Hr
2m+1 plays a crucial

role in solving the cardinal Hermite spline interpolation problem.
The following connection between Hr

2m+1 and Φr
m can be shown:
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Theorem 4.4 For m ∈ N0 and r ∈ N we have

Φr
m(z) = Dr

m,0(z)Dr H
r
2m+1(z) (D

r
m,1(z)

⋆)−1 (z ∈ T \ {1}) (4.7)

with

Dr
m,0(z) := Ar

m(z)A
r
m−1(z) . . .A

r
0(z),

Dr
m,1(z) := Ar

2m+1(z)A
r
2m(z) . . .A

r
m+1(z),

where the (r, r)-matrices Ar
k (k = 0, . . . , 2m+ 1) are defined in (2.6) – (2.8),

Dr := (−1)m+1















0 0 . . . 0 (−1)r−1

r−1

0 0 . . . (−1)r−2

r−2
0

...
...

...
...

0 (−1)1 . . . 0 0
(−1)0 0 . . . 0 0















(r > 1)

and D1 := (−1)m+1. For z = 1 we have

Φr
m(1) = lim

u→0
Dr

m,0(e
−iu)DrH

r
2m+1(e

iu)(Dr
m,1(e

−iu)⋆)−1 (u ∈ R).

Proof: Let z 6= 1. The relations (2.5) and (4.3) lead to

Φr
m(e

−iu) =

∞
∑

l=−∞

N̂
r

m(u+ 2πl)N̂
r

m(u+ 2πl)⋆

=
∞
∑

l=−∞

(−i)(u + 2πl)

i(u+ 2πl)
Ar

m(e
−iu)N̂

r

m−1(u+ 2πl)N̂
r

m+1(u+ 2πl)⋆(Ar
m+1(e

−iu)⋆)−1

= (−1)Ar
m(e

−iu)
(

∞
∑

l=−∞

N̂
r

m−1(u+ 2πl)N̂
r

m+1(u+ 2πl)⋆
)

(Ar
m+1(e

−iu)⋆)−1.

Repeating this procedure we finally obtain

Φr
m(e

−iu) = (−1)m+1Dr
m,0(e

−iu)
(

∞
∑

l=−∞

N̂
r

−1(u+ 2πl)N̂
r

2m+1(u+ 2πl)⋆
)

(Dr
m,1(e

−iu)⋆)−1

with N̂
r

−1 defined in (2.4). By

Dr

(

(−i(u+ 2πl))k
)r−1

k=0
= (−1)m+1 N̂

r

−1(u+ 2πl)

and by the definition (4.6) of Hr
2m+1 it follows the assertion for z 6= 1.

Since Φr
m(1) and Hr

2m+1(1) are well-defined we also have

Φr
m(1) = lim

u→0
Dr

m,0(e
−iu)DrH

r
2m+1(e

iu)(Dr
m,1(e

−iu)⋆)−1 (u ∈ R).

In particular, Theorem 4.4 yields by Φr
m(z) = Φr

m(z)
⋆:

Corollary 4.5 Let m ∈ N0 and r ∈ N be given. Then for z ∈ T we have

det Φr
m(z) = cm,r z

−(m+1) det Hr
2m+1(z)

with a constant cm,r not depending on z.

The proof directly follows from Theorem 4.4 and Remark 2.4.
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5 Riesz basis and Hermite interpolation

In this section we will show that there is a strong connection between the Riesz basis
property for the B-splines Nm,r

k (k ∈ Z) and the unique solvability of the following cardinal
Hermite spline interpolation problem:
Let m ∈ N and r ≤ m + 1 be fixed. For given data sequences (ykn)

∞
n=−∞ ∈ l1 (k =

0, . . . , r − 1) we wish to find a spline function s ∈ S2m+1,r(Z)
⋂

L1(R) such that the
Hermite interpolation conditions

Dks(n) = ykn (n ∈ Z; k = 0, . . . ,r− 1) (5.1)

are satisfied.

It is well-known that the problem of existence and uniqueness of solutions of spline in-
terpolation problems on an equidistant lattice unavoidably leads to the Euler–Frobenius
functions. However, we want to give a short proof for the following

Theorem 5.1 Let m ∈ N and 1 ≤ r ≤ m+ 1 be fixed. Then the cardinal Hermite spline
interpolation problem (5.1) possesses a unique solution s ∈ S2m+1,r(Z)

⋂

L1(R) for any
given data sequences (ykn)

∞
n=−∞ ∈ l1 (k = 0, . . . , r − 1) if and only if the Euler–Frobenius

matrix Hr
2m+1(z) is invertible for z ∈ T, i.e.

det Hr
2m+1(z) 6= 0 (z ∈ T).

Proof: The spline function s ∈ S2m+1,r(Z)
⋂

L1(R) can uniquely be represented in the
form

s =

∞
∑

l=−∞

r−1
∑

k=0

akl N
2m+1,r
k (· − l)

with (akl )
∞
l=−∞ ∈ l1 (k = 0, . . . , r − 1). From the interpolation conditions (5.1) it follows

for n ∈ Z
∞
∑

l=−∞

r−1
∑

k=0

akl DνN2m+1,r
k (n− l) = yνn (ν = 0, . . . , r − 1). (5.2)

We put

ãk :=
∞
∑

l=−∞

akl e
−i·l, ỹk :=

∞
∑

l=−∞

ykl e
−i·l (k = 0, . . . , r − 1).

The functions ãk, ỹk (k = 0, . . . , r − 1) are continuous. By (5.2) we find

Hr
2m+1(e

−i·)(ãk)
r−1
k=0 = (ỹk)

r−1
k=0,

i.e., the functions ãk (k = 0, . . . , r − 1) are uniquely determined by (5.2) for any data
sequences (ykl )

∞
l=−∞ ∈ l1 (k = 0, . . . , r− 1) if and only if Hr

2m+1(z) is invertible for z ∈ T.

It is well-known that the B-splines satisfy the following Riesz basis property:
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Theorem 5.2 Let m ∈ N0 and 1 ≤ r ≤ m + 1 be fixed. The functions Nm,r
k (· − l)

(l ∈ Z; k = 0, . . . ,r−1) form a Riesz basis (or L2(R)-stable basis) of Sm,r(Z)
⋂

L2(R),
i.e. there exist positive constants 0 < A ≤ B < ∞ such that

A

∞
∑

l=−∞

r−1
∑

k=0

|ckl |
2 ≤ ‖

∞
∑

l=−∞

r−1
∑

k=0

ckl N
m,r
k (· − l)‖2L2(R) ≤ B

∞
∑

l=−∞

r−1
∑

k=0

|ckl |
2 (5.3)

for all sequences (ckl )
∞
l=−∞ ∈ l2 (k = 0, . . . , r − 1).

For a proof we refer to [1]. As for one scaling function we can prove the following equiv-
alence:

Theorem 5.3 Let m ∈ N0 and 1 ≤ r ≤ m+1. The Riesz basis property (5.3) with Riesz
bounds A and B is equivalent to the following condition:
The eigenvalues λk(z) (k = 0, . . . , r − 1) of the autocorrelation symbol Φr

m(z) satisfy for
z ∈ T

A ≤ λk(z) ≤ B (k = 0, . . . , r − 1). (5.4)

In particular, the integer translates of Nm,r
k (k = 0, . . . , r − 1) form a Riesz basis of

Sm,r(Z)
⋂

L2(R) if and only if the autocorrelation symbol Φr
m(z) is positive definite on

the unit circle z ∈ T.

Proof: For (ckl )
∞
l=−∞ ∈ l2 (k = 0, . . . , r− 1) let Ck denote their 2π-periodic symbols, that

is

Ck :=
∞
∑

l=−∞

ckl e
−i·l (k = 0, . . . , r − 1).

Put
C := (C0, . . . , Cr−1)

T .

Then by the Parseval identity we find

‖
∞
∑

l=−∞

r−1
∑

k=0

ckl N
m,r
k (· − l)‖2L2(R)

=
1

2π

∫ ∞

−∞

|C(u)TN̂
r

m(u)|
2 du

=
1

2π

∞
∑

l=−∞

∫ 2π

0

|C(u)TN̂
r

m(u+ 2πl)|2 du

=
1

2π

∞
∑

l=−∞

∫ 2π

0

C(u)TN̂
r

m(u+ 2πl)N̂
r

m(u+ 2πl)⋆C(u) du

=
1

2π

∫ 2π

0

C(u)TΦr
m(u)C(u) du.

Considering

gk :=
Ck

(
∑r−1

k=0 ‖Ck‖
2
L2(R)

)1/2
, g := (g0, . . . , gr−1)

T

and appealing to the Parseval identity

∞
∑

l=−∞

r−1
∑

k=0

|ckl |
2 =

r−1
∑

k=0

‖ckl ‖
2
l2
=

1

2π

∫ 2π

0

r−1
∑

k=0

|Ck(u)|
2 du =

r−1
∑

k=0

‖Ck‖
2
L2(R)
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it follows that (5.3) is equivalent to the assertion that

A ≤
1

2π

∫ 2π

0

g(u)TΦr
m(e

−iu)g(u) du ≤ B (5.5)

is satisfied for any 2π-periodic function g(u) with

‖g‖2L2(R)
:=

r−1
∑

k=0

‖gk‖
2
L2(R)

= 1.

For the matrix of eigenvalues of the Hermitian matrix Φr
m(z)

Λ(z) := diag (λ0(z), . . . , λr−1(z))
T

we obtain

A ≤
1

2π

∫ 2π

0

h(u)TΛ(e−iu)h(u) du ≤ B

for any 2π-periodic function h(u) := (h0(u), . . . , hr−1(u))
T with

‖h‖2 =
r−1
∑

k=0

‖hk‖
2
L2(R)

= 1.

Thus, it follows by appropriate choice of h that

A ≤ λk(z) ≤ B (z ∈ T; k = 0, . . . ,r− 1).

To see that (5.5) follows from (5.4) we notice that

A ≤
1

2π

∫ 2π

0

r−1
∑

k=0

|hk(u)|
2λk(e

−iu) du ≤ B.

Remark 5.4 A result analogous to Theorem 5.3 can also be found in [6], where more
general scaling functions gk (k = 0, . . . , r − 1) are considered. ♠

As a result of Theorems 5.2 and 5.3 we have

Corollary 5.5 Let m ∈ N0 and 1 ≤ r ≤ m+ 1. Then the autocorrelation symbol Φr
m(z)

is positive definite for z ∈ T and in particular

det Φr
m(z) > 0 (z ∈ T).

We observe the following interesting equivalence between the Riesz basis property for the
integer translates of Nm,r

k (k = 0, . . . , r − 1) and the unique solvability of the cardinal
Hermite spline interpolation problem (5.1):

Theorem 5.6 Let m ∈ N0 and 1 ≤ r ≤ m + 1 be fixed. The following assertions are
equivalent:
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(i) The integer translates Nm,r
k (· − l) (l ∈ Z; k = 0, . . . ,r − 1) form a Riesz basis of

Sm,r(Z)
⋂

L2(R).

(ii) The autocorrelation symbol Φr
m(z) is invertible on the unit circle z ∈ T.

(iii) The Hermite interpolation problem (5.1) is uniquely solvable for any given data
sequences (ykl )

∞
l=−∞ ∈ l1 (k = 0, . . . , r − 1).

(iv) The Euler–Frobenius matrix Hr
2m+1(z) is invertible on the unit circle z ∈ T.

Proof: The equivalence of (i) and (ii) is shown in Theorem 5.3. The assertions (iii)
and (iv) are equivalent by Theorem 5.1. Finally, from Corollary 4.5 it follows that the
autocorrelation symbol Φr

m(z) is invertible on z ∈ T if and only if the Euler–Frobenius
matrix Hr

2m+1(z) is invertible on z ∈ T.

Theorem 5.6 and Corollary 5.5 imply the following important

Corollary 5.7 Let m ∈ N0 and 1 ≤ r ≤ m + 1 be fixed. Then the Hermite inter-
polation problem (5.1) is uniquely solvable for any given data sequences (ykl )

∞
l=−∞ ∈ l1

(k = 0, . . . , r − 1).

Finally, we want to compare our result with known results in the literature. A similar
cardinal Hermite spline interpolation problem in Sm,r(Z), but for lp data sequences and
data sequences with power growth, was firstly considered by P.R. Lipow and I.J. Schoen-
berg [9]. The unique solvability of the cardinal Hermite interpolation problem was proved
in [9] by showing that the reciprocal polynomial Ωr

2m+1(z) defined by the determinant of
a (2m+ 1− r, 2m+ 1− r)-matrix

Ωr
2m+1(z) := det



























(

r
0

) (

r
1

)

. . .
(

r
r−1

)

1− z 0 . . . 0
(

r+1
0

) (

r+1
1

)

. . .
(

r+1
r−1

) (

r+1
r

)

1− z
. . .

...
...

...
. . . 0

(

2m+1−r
0

) (

2m+1−r
1

)

. . . . . .
(

2m+1−r
2m−r

)

1− z
(

2m+2−r
0

) (

2m+2−r
1

)

. . . . . .
(

2m+2−r
2m−r

) (

2m+2−r
2m+1−r

)

...
...

...
...

(

2m+1
0

) (

2m+1
1

)

. . . . . . . . . . . .
(

2m+1
2m−r

) (

2m+1
2m+1−r

)



























only possesses real, simple zeros. In particular, it follows the needed assertion that
Ωr

2m+1(z) does not vanish on the unit circle z ∈ T. The proof in [9] is rather difficult
and uses the theory of oscillating matrices.

In [8] (Theorem 4) it could be shown that the determinant of the matrix

∆r
2m+1(z) :=

(

Dν H1
2m+1−µ(z)

)r−1

ν,µ=0
(z ∈ T)

defined by the Euler–Frobenius polynomials and their derivatives

DνH1
n(z) :=

∞
∑

l=−∞

DνNn,1
0 (l) zl (n = 2m+ 2− r, . . . , 2m+ 1; ν = 0, . . . , r − 1)
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satisfies for 1 ≤ r ≤ m+ 1 the relation

det ∆r
2m+1(z) = cr z

r (1− z)(r−1)(4m+4−r)/2 Ωr
2m+1(z)

with
cr := (−1)⌊r/2⌋ 1! 2! 3! . . . (r − 1)! .

The connection between ∆r
2m+1 and the Euler–Frobenius matrix Hr

2m+1 can easily be
shown.

Lemma 5.8 Let m ∈ N0 and 1 ≤ r ≤ m+ 1 be fixed. Then we have

det ∆r
2m+1(z) = cm,r (1− z)(r−1)(4m+4−r)/2 det Hr

2m+1(z) (z ∈ T), (5.6)

where the constant cm,r does not depend on z.

Proof:

1. The Poisson summation formula yields for u ∈ R

DνH1
n(e

−iu) =
∞
∑

l=−∞

DνNn,1
0 (l) e−iul =

∞
∑

l=−∞

(i(u+ 2πl))ν N̂n,1
0 (u+ 2πl)

(ν = 0, . . . , r − 1; n = 2m+ 2− r, . . . , 2m+ 1).

Thus, the matrix ∆r
2m+1(e

−iu) can be written as

∆r
2m+1(e

−iu) =
∞
∑

l=−∞

(

(i(u+ 2πl))k
)r−1

k=0
M̂

r

2m+1(u+ 2πl)T

with the vector of normalized B-splines of defect 1

M̂
r

2m+1(u+ 2πl) :=
(

N̂2m+1,1
0 (u+ 2πl), . . . , N̂2m+2−r,1

0 (u+ 2πl)
)T

=







(1− z)2m+2 . . . 0
...

. . .
...

0 . . . (1− z)2m+3−r













(i(u+ 2πl))−2m−2

...
(i(u+ 2πl))−2m−3+r







with z = e−iu. For the determinant of ∆r
2m+1(z) it follows

det ∆r
2m+1(z)

= (1− z)(4m+5−r)r/2 det

(

∞
∑

l=−∞

(

(i(u+ 2πl))k
)r−1

k=0

(

(i(u+ 2πl))k
)−2m−3+r T

k=−2m−2

)

. (5.7)

2. Using the recursion formula (2.5) we obtain with z = e−iu that

N̂
r

2m+1(u+ 2πl) =
1

(i(u+ 2πl))2m+2
Ar

2m+1(z) . . .A
r
0(z) N̂

r

−1(u+ 2πl)

= Ar
2m+1(z) . . .A

r
0(z)







0 . . . 1
r−1

...
...

1 . . . 0













(i(u+ 2πl))−2m−2

...
(i(u+ 2πl))−2m−3+r






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with matrices Ar
n (n = 0, . . . , 2m+ 1) defined in (2.6) – (2.8). By definition (4.6) of the

Euler–Frobenius matrix Hr
2m+1 and Remark 2.4 we find for the determinant with z = e−iu

det Hr
2m+1(z)

= c′m,r (1− z)2m+2 det

(

∞
∑

l=−∞

(

(i(u+ 2πl))k
)r−1

k=0

(

(i(u+ 2πl))k
)−2m−3+r T

k=−2m−2

)

, (5.8)

where the constant c′m,r does not depend on z. Comparing (5.7) and (5.8) it follows the
assertion.

Lemma 5.8 yields that

det Hr
2m+1(z) = cm,r z

r Ωr
2m+1(z) (z ∈ T)

with a constant cm,r not depending on z. That is, the invertibility of Hr
2m+1(z) on the

unit circle z ∈ T is equivalent to the assertion that Ωr
2m+1(z) does not vanish on the unit

circle z ∈ T, proved by P.R. Lipow and I.J. Schoenberg.

Remark 5.9 It is well-known that the invertibility of the Euler–Frobenius matrix
Hr

2m+1(z) for z ∈ T also causes the existence and uniqueness of solutions in the case
of periodic Hermite spline interpolation (cf. [10, 11, 12]). Thus, from the Riesz basis
property of Nm,r

k (· − l) (l ∈ Z; k = 0, . . . ,r− 1) in Sm,r(Z)
⋂

L2(R) it also follows that
the periodic Hermite spline interpolation problem is uniquely solvable. ♠
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