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In this survey, we describe the classical Prony method and whose relatives. We sketch a fre-
quently used Prony–like method for equispaced sampled data, namely the ESPRIT method.
The case of nonequispaced sampled data is discussed too. For the reconstruction of a sparse
eigenfunction expansion, a generalized Prony method is presented. The Prony methods are
applied to the recovery of structured functions (such as exponential sums and extended ex-
ponential sums) and of sparse vectors. The recovery of spline functions with arbitrary knots
from Fourier data is also based on Prony methods. Finally, some numerical examples are
given.
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1 Introduction

The recovery of a structured function from noisy sampled data is a fundamental problem in
applied mathematics and signal processing. In this survey, we describe the Prony methods
and present the numerical solution of three recovery problems. The first problem arises in
electrical engineering, signal processing, and mathematical physics and is known as frequency
analysis problem (see [6, 23]):

(i) Recover the positive integer M , distinct numbers fj ∈ [−α, 0] + i [−π, π) with α > 0,
and complex coefficients cj 6= 0, j = 1, . . . ,M , in the exponential sum of order M

h(x) :=

M∑
j=1

cj e
fjx , x ≥ 0 , (1)

if noisy sampled data hk := h(k) + ek (k = 0, . . . , 2N − 1) with N ≥ M are given,
where ek are small error terms. Note that the real part of fj is the damping factor and that
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2 G. Plonka and M. Tasche: Prony Methods

the imaginary part of fj is the angular frequency of the exponential efjx. Supposed that a
function h(x) is a priori known to be a sparse linear combination of exponentials from the set
{efx : f ∈ [−α, 0] + i [−π, π)}, the problem (i) can be seen as a nonlinear approximation
problem to recover the best M–term approximation of h.

The reconstruction of a compactly supported, structured function from the knowledge of
samples of its Fourier transform is a common problem in several scientific areas such as radio
astronomy, computerized tomography, and magnetic resonance imaging. If the structured
function is a piecewise polynomial, then the second problem appears (see [2, 3, 27]):

(ii) Determine the breakpoints and the associated jump magnitudes of a compactly sup-
ported, piecewise polynomial, if finitely many values of its Fourier transform are given.

In different applications as e.g. seismic exploration and nondestructive testing of materials,
one is concerned with the problem whether a signal vector x can be completely reconstructed
from a small amount of suitable linear measurements if it satisfies the a priori assumption to
be sparse. This problem is of special interest if the measurements are time–consuming or very
expensive. This approach can be seen as a new paradigm, called compressive sensing (see
[10]), and has been extensively investigated within the last years. A vector x ∈ CD is called
M–sparse, if M � D and if only M components of x are different from zero. Then the third
problem reads as follows (see [24]):

(iii) Recover an M–sparse vector x ∈ CD with M � D, if only few scalar products aTk x
with suitable chosen vectors ak ∈ CD are given.

In this paper, we will show that all three problems can be solved by deterministic Prony
methods. The outline of this paper is as follows. In Section 2, we describe the classical
Prony method and some equivalent procedures. In Section 3, we sketch a frequently used
stable Prony–like method, namely the ESPRIT method [29] (ESPRIT = Estimation of Signal
Parameters via Rotational Invariance Technique). The standard application of this Prony–like
method is the solution of the problem (i) with equispaced sampled data. The case of non-
equispaced sampled data is discussed in Section 4. The reconstruction of a sparse sum of
eigenfunctions of a linear operator is solved by a generalized Prony method in Section 5. A
solution of problem (ii) is presented in Section 6, where a spline is recovered from given
Fourier data. Section 7 is devoted to the solution of problem (iii). Finally, some numerical
examples are given in Section 8.

In the following we use standard notations. By R resp. C, we denote the set of all real
resp. complex numbers. The set of all integers is Z. By N0 resp. N we denote the set of all
nonnegative resp. positive integers. The linear space of all column vectors with N complex
components is denoted by CN , where o is the corresponding zero vector. The linear space
of all complex M -by-N matrices is denoted by CM×N , where 0M,N is the corresponding
zero matrix. A superscript ∗ denotes conjugate transpose. For a matrix AM,N ∈ CM×N , its
Moore–Penrose pseudoinverse is denoted by A†M,N . A square matrix AM,M is abbreviated
by AM . By IM we denote the M -by-M identity matrix. Further we use the known submatrix
notation. For example, AM,M+1(1 : M, 2 : M + 1) is the quadratic M -by-M submatrix
of AM,M+1 obtained by extracting rows 1 through M and columns 2 through M + 1. Note
that the first row or column of AM,N can be indexed by zero. Other notations are introduced
when needed.
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2 Classical Prony method

The classical Prony method works with exactly sampled data of the exponential sum (1) in the
case of known order M . Following an idea of G.R. de Prony from 1795 (see [9]), we recover
all parameters of the exponential sum (1), if sampled data

h(k) :=

M∑
j=1

cj e
fj k =

M∑
j=1

cj z
k
j , k = 0, . . . , 2M − 1 (2)

are given, where zj := efj are distinct values in D. Here D := {z ∈ C : e−α ≤ |z| ≤ 1}
denotes a circular ring. We introduce the Prony polynomial

p(z) :=

M∏
j=1

(z − zj) =
M−1∑
k=0

pk z
k + zM , z ∈ C (3)

with corresponding coefficients pk. Further we define the companion matrix CM (p) ∈
CM×M of the Prony polynomial p(z) by

CM (p) :=


0 0 . . . 0 −p0
1 0 . . . 0 −p1
0 1 . . . 0 −p2
...

...
...

...
0 0 . . . 1 −pM−1

 . (4)

It is known that the companion matrix CM (p) has the property

det
(
z IM −CM (p)

)
= p(z), z ∈ C .

Hence the zeros of the Prony polynomial (3) coincide with the eigenvalues of the companion
matrix CM (p). Setting pM := 1, we observe the following relation for all m ∈ N0,

M∑
k=0

pk h(k +m) =

M∑
k=0

pk

( M∑
j=1

cj z
k+m
j

)

=

M∑
j=1

cj z
m
j

( M∑
k=0

pk z
k
j

)
=

M∑
j=1

cjz
m
j p(zj) = 0 . (5)

Using the known values h(k), k = 0, . . . , 2M−1, this assertion implies that the homogeneous
linear difference equation

M−1∑
k=0

pk h(k +m) = −h(M +m), m = 0, . . . ,M − 1 (6)

is fulfilled. In matrix–vector notation, we obtain the linear system

HM (0)
(
pk
)M−1
k=0

= −
(
h(M +m)

)M−1
m=0

(7)
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with the square Hankel matrix

HM (0) :=


h(0) h(1) . . . h(M − 1)
h(1) h(2) . . . h(M)

...
...

...
h(M − 1) h(M) . . . h(2M − 2)

 =
(
h(k+m)

)M−1
k,m=0

. (8)

The matrix HM (0) is invertible, since using the structure of h(k) we have

HM (0) = VM (z)
(
diag c

)
VM (z)T,

where the diagonal matrix diag c with c = (cj)
M
j=1 contains the nonzero coefficients of the

exponential sum (1), and where VM (z) :=
(
zj−1k

)M
j,k=1

denotes the Vandermonde matrix
generated by z := (zj)

M
j=1. We summarize:

Algorithm 2.1 (Classical Prony method)

Input: M ∈ N, sampled values h(k), k = 0, . . . , 2M − 1, of the exponential sum (1).

1. Solve the linear system (7).
2. Compute all zeros zj ∈ D, j = 1, . . . ,M , of the Prony polynomial (3), i.e., calculate all
eigenvalues of the associated companion matrix (4), and form fj := log zj for j = 1, . . . ,M ,
where log is the principal value of the complex logarithm.
3. Solve the Vandermonde system

VM (z) (cj)
M
j=1 = (h(k))M−1k=0 .

Output: fj ∈ [−α, 0] + i [−π, π), cj ∈ C, j = 1, . . . ,M .

As shown, Prony’s idea is mainly based on the separation of the unknown exponents fj
from the unknown coefficients cj .

Remark 2.2 The Prony method can be also applied to the recovery of an extended expo-
nential sum

h(x) :=

M∑
j=1

cj(x) e
fjx , x ≥ 0 ,

where cj(x) are polynomials of low degree (see [1]). For simplicity, we sketch only the case
of linear polynomials cj(x) = cj,0 + cj,1x. An application is described in Section 6. With
distinct zj = efj , j = 1, . . . ,M , the corresponding Prony polynomial reads as follows

p(z) :=

M∏
j=1

(z − zj)2 =

2M−1∑
k=0

pk z
k + z2M .

Assuming that the sampled values h(k), k = 0, . . . , 4M − 1 are given, one has to solve the
linear system (6) (where M is replaced by 2M ) and to compute all double zeros zj ∈ D of
the above Prony polynomial (resp. all double eigenvalues of the corresponding companion
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matrix (4)). Introducing the confluent Vandermonde matrix

Vc
2M (z1, . . . , zM ) :=


1 0 . . . 1 0
z1 1 . . . zM 1
z21 2z1 . . . z2M 2zM
...

...
...

...
z2M−11 (2M − 1)z2M−21 . . . z2M−1M (2M − 1)z2M−2M

 ,

one has to solve finally the confluent Vandermonde system

Vc
2M (z1, . . . , zM ) (c0,1, z1c1,1, . . . , cM,0, z1cM,1)

T =
(
h(k)

)2M−1
k=0

.

Remark 2.3 The Prony method is closely related to Padé approximation (see [33]). Let
(fk)k∈N0 be a complex sequence with ρ := lim supk→∞ |fk|1/k < ∞. The z-transform
of such a sequence is the Laurent series

∑∞
k=0 fk z

−k which converges in the neighborhood
{z ∈ C : |z| > ρ} of z = ∞. Observe that the z-transform of each sequence (zkj )k∈N0

with
zj ∈ D is equal to z

z−zj , j = 1, . . . ,M . Since the z-transform is linear, the z-transform maps

the data sequence
(
h(k)

)
k∈N0

=
(∑M

j=1 cjz
k
j

)
k∈N0

into the rational function

∞∑
k=0

h(k) z−k =

M∑
j=1

cj
z

z − zj
=
a(z)

p(z)
, (9)

where p(z) is the Prony polynomial (3) and a(z) := aM zM + . . .+ a1 z. Now we substitute
z for z−1 in (9) and form the reverse Prony polynomial rev p(z) := zM p(z−1) of degree M
with rev p(0) = 1 as well as the reverse polynomial rev a(z) := zM a(z−1) of degree at least
M − 1. Then we obtain that

∞∑
k=0

h(k) zk =
rev a(z)

rev p(z)

in a certain neighborhood of z = 0. In other words, the rational function rev a(z)
rev p(z) is an (M −

1,M) Padé approximant of the power series
∑∞
k=0 h(k) z

k (with vanishing O(z2M ) term)
and it holds ( ∞∑

k=0

h(k) zk
)
rev p(z) = rev a(z)

in a neighborhood of z = 0. Equating the coefficients of like powers of z yields

M∑
k=M−m

pk h(k +m−M) = aM−m , m = 0, . . . ,M − 1 ,

M∑
k=0

pk h(k +m) = 0 , m ∈ N0 . (10)

Now the equations (10) for m = 0, . . . ,M − 1 coincide with (6). Hence the Prony method
may also be regarded as a Padé approximation.
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6 G. Plonka and M. Tasche: Prony Methods

Remark 2.4 In signal processing, the Prony method is also known as the annihilating filter
method, see e.g. [11, 32]. For distinct zj ∈ D and complex coefficients cj 6= 0, j = 1, . . . ,M ,
we consider the discrete signal h = (hn)n∈Z with

hn :=

M∑
j=1

cj z
n
j , n ∈ Z . (11)

For simplicity, we assume that M is known. Then a discrete signal a = (an)n∈Z is called an
annihilating filter of the signal h, if the discrete convolution of the signals a and h vanishes,
i.e.

(a ∗ h)n :=

∞∑
`=−∞

a` hn−` = 0, n ∈ Z .

For the construction of a we consider

a(z) :=

M∏
j=1

(1− zj z−1) =
M∑
n=0

an z
−n (z ∈ C \ {0}) ,

then a = (an)n∈Z with an := 0 (n ∈ Z \ {0, . . . , M}) is an annihilating filter of h in (11).
Note that a(z) is the z–transform of the annihilating filter a. Furthermore, a(z) and the Prony
polynomial p(z) in (3) have the same zeros zj ∈ D, j = 1, . . . ,M , since zM a(z) = p(z) for
all z ∈ C\{0}. Hence the Prony method and the method of annihilating filters are equivalent.
For details see e.g. [11, 32].

Remark 2.5 Prony methods arise also from problems of science and engineering, where
one is interested in predicting future information from previous ones using a linear model. Let
h = (hn)n∈N0

be a discrete signal. The linear prediction method, see e.g. [5, 21], aims at
finding suitable predictor parameters pj ∈ C so that the signal value h`+M can be expressed
as a linear combination of the previous signal values hj , j = `, . . . , `+M − 1, i.e.

h`+M =

M−1∑
j=0

(−pj)h`+j , ` ∈ N0.

Therefore these equations are also called linear prediction equations. Setting pM := 1, we
observe that this representation is equivalent to the homogeneous linear difference equation
(6). Assuming that

hk =

M∑
j=1

cj z
k
j , k ∈ N0 ,

we obtain the problem (i), i.e., the Prony polynomial (3) coincides with the negative value of
the forward predictor polynomial. The associated companion matrix CM (p) in (4) is hence
equal to the forward predictor matrix. Thus the linear prediction method can also be consid-
ered as a Prony method.

Unfortunately, the classical Prony method has some numerical drawbacks. Often the order
M of the exponential sum (1) is unknown. Further the classical Prony method is known to
perform poorly when noisy sampled data are given, since the Hankel matrix HM (0) as well
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as the Vandermonde matrix VM (z) are usually badly conditioned. We will show in Section 3
that one can attenuate these problems by using more sampled data. But then one has to deal
with rectangular matrices.

3 Prony–like method for equispaced sampling

In practice, the order M of the exponential sum (1) is often unknown and only noisy sampled
data hk = h(k)+ek, k = 0, . . . , 2N−1 are given. Let L ∈ N be a convenient upper bound of
M and M ≤ L ≤ N . In applications, such an upper bound L of M is often known a priori.
With the 2N sampled data hk ∈ C, k = 0, . . . , 2N − 1, we form the rectangular Hankel
matrix

H2N−L,L+1 :=
(
h`+m

)2N−L−1, L
`,m=0

∈ C(2N−L)×(L+1) . (12)

For exactly sampled data, it follows from (5) that H2N−L,L+1 is rank deficient with rank M ,
see [28].

In the following, we sketch a frequently used Prony–like method, namely the ESPRIT
method (see [29]), based on the singular value decomposition (SVD) of the rectangular Hankel
matrix (12). For a detailed description of this method see Section 3 in [28].

Going back to the case of exactly sampled data for a moment, we can observe the following
relations. Using the common submatrix notation, let us also consider the matrix

H2N−L,L+1(1) := (H2N−L,L+1(0 : 2N − L− 1, 1 : L),o) ∈ C(2N−L)×(L+1) ,

where, compared with H2N−L,L+1, the first column is removed and a zero vector o is added
as a last column. According to (5), we have for exact data hk = h(k)

H2N−L,L+1 p̃ = −(h`+M )2N−L−1`=0 , (13)

where p̃ = (p0, p1, . . . , pM−1, 0, . . . , 0)
T ∈ CL+1 contains the coefficients of the Prony

polynomial (3). We introduce the modified companion matrix

CL+1 = CL+1(p) :=

(
CM (p) 0M,L+1−M

0L+1−M,M VL+1−M

)
.

with V1 := (0) and

VL+1−M :=

(
oT 0

IL−M o

)
for L > M . Then CL+1 possesses the zeros of p(z) as eigenvalues and L+1−M additional
eigenvalues zero. By (13) we observe that

H2N−L,L+1 CL+1 = H2N−L,L+1(1). (14)

Now equation (14) leads us to the following procedure. We consider the singular value
factorization

H2N−L,L+1 = U2N−LD2N−L,L+1 WL+1 ,
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where U2N−L and WL+1 are unitary matrices and where D2N−L,L+1 is a rectangular diag-
onal matrix. Observe that this decomposition also implies

H2N−L,L+1(1) = U2N−LD2N−L,L+1 WL+1(1)

for the modified matrix H2N−L,L+1(1), where WL+1(1) := (WL+1(1 : L+1, 2 : L+1),o).
Let the diagonal entries of D2N−L,L+1, i.e. the singular values of H2N−L,L+1, be ar-

ranged in nonincreasing order

σ1 ≥ σ2 ≥ . . . ≥ σM > σM+1 = . . . = σL+1 = 0 .

Thus one can determine the rank M of the Hankel matrix (12) which coincides with the order
of the exponential sum (1). For noisy sampled data, we arrange the singular values of (12) in
the form

σ1 ≥ σ2 ≥ . . . ≥ σM ≥ σM+1 ≥ . . . ≥ σL+1 ≥ 0 .

Then we determine the numerical rankM of H2N−L,L+1 by fixing the largest integerM with
σM/σ1 ≥ ε. Depending on the noise level, there is usually an obvious gap in the singular
value distribution such that ε can be suitably chosen.

Introducing the submatrices

D2N−L,M := D2N−L,L+1(1 : 2N − L, 1 :M) =

(
diag (σj)

M
j=1

02N−L−M,M

)
,

WM,L+1 := WL+1(1 :M, 1 : L+ 1) ,

WM,L+1(1) := WL+1(1)(1 :M, 1 : L+ 1) ,

we replace the original matrices H2N−L,L+1 and H2N−L,L+1(1) above by H̃2N−L,L+1 resp.
H̃2N−L,L+1(1) with exact rank M ,

H̃2N−L,L+1 = U2N−LD2N−L,M WM,L+1 ,

H̃2N−L,L+1(1) = U2N−LD2N−L,M WM,L+1(1) .

Hence (14) implies

D2N−L,M WM,L+1 CL+1 = D2N−L,M WM,L+1(1).

Multiplying the conjugate transposed equation with (D∗2N−L,M )†, it follows that

C∗L+1 W
∗
M,L+1 = WM,L+1(1)

∗ .

Setting

WM,L(s) := WM,L+1(1 :M, 1 + s : L+ s), s = 0, 1 , (15)

we remove the zero columns in the last equation and arrive at

C∗LWM,L(0)
∗ = WM,L(1)

∗
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with CL := CL+1(1 : L, 1 : L). Since rank(CL) = M , the nonzero eigenvalues of the
modified companion matrix CL are now equal to the eigenvalues of the square matrix

FM :=
(
WM,L(0)

∗)†WM,L(1)
∗ , (16)

where
(
WM,L(0)

∗)† denotes the Moore–Penrose pseudoinverse of WM,L(0)
∗. Thus we can

determine the wanted nodes zj ∈ D, j = 1, . . . ,M , as eigenvalues of the matrix FM . Hence
the ESPRIT algorithm reads as follows:

Algorithm 3.1 (ESPRIT method for equispaced sampling)
Input: L, N ∈ N, N � 1, 3 ≤ L ≤ N , L is upper bound of the order M of the exponential
sum (1), noisy sampled values hk, k = 0, . . . , 2N − 1, of the exponential sum (1).
1. Compute the SVD of the rectangular Hankel matrix (12). Determine the numerical rank of
(12) as largest integer M with σM/σ1 ≥ ε and form the matrices (15).
2. Compute all eigenvalues zj ∈ D, j = 1, . . . ,M , of the square matrix (16) and evaluate
fj := log zj , j = 1, . . . ,M .
3. Compute the coefficients cj ∈ C, j = 1, . . . ,M , as least squares solution of the overdeter-
mined linear Vandermonde–like system

V2N,M (z) (cj)
M
j=1 = (hk)

2N−1
k=0

with the rectangular Vandermonde matrix V2N,M (z) := (zk−1j )2N,Mk,j=1 .

Output: M ∈ N, fj ∈ [−α, 0] + i [−π, π), cj ∈ C, j = 1, . . . ,M .
Remark 3.2 For various numerical examples as well as for a comparison between Algo-

rithm 3.1 and another Prony–like method see [26]. The Algorithm 3.1 is very similar to the
Algorithm 3.2 in [28]. Note that one can also use the QR decomposition of the rectangular
Hankel matrix (12) instead of the SVD. In that case one obtains an algorithm that is similar to
the matrix pencil method [18, 31], see also Algorithm 3.1 in [28]. The matrix pencil method
has been also applied to reconstruction of shapes from moments, see e.g. [13].

In [4], the condition number of a rectangular Vandermonde matrix is estimated. It is shown
that this matrix is well conditioned, provided the nodes zj are close to the unit circle, but not
extremely close to each other and provided N is large enough.

Remark 3.3 The given data sequence {h0, h1, . . . , h2N−1} can be also interpreted as time
series. A powerful tool of time series analysis is the singular spectrum analysis (see [14, 15]).
Similarly as step 1 of the Algorithm 3.1, this technique is based on the singular value decom-
position of a rectangular Hankel matrix constructed upon the given time series hk. By this
method, the original time series can be decomposed into a sum of interpretable components
such as trend, oscillatory components, and noise. For further details and numerous applica-
tions see [14, 15].

Remark 3.4 The considered Prony–like method can also be interpreted as a model reduc-
tion based on low–rank approximation of Hankel matrices, see [22]. The structured low–rank
approximation problem reads as follows: For a given structure specification S : CK → CL×N
with L < N , a parameter vector h ∈ CK and an integer M with 0 < M < L, find a vector

ĥ∗ = argmin
ĥ

‖h− ĥ‖ subject to rank(S(ĥ)) ≤M ,
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10 G. Plonka and M. Tasche: Prony Methods

where ‖·‖ denotes a suitable norm in CK . In the special case of a Hankel matrix structure, the
Hankel matrix S(h) = (h`+k)

L−1,N−1
`=0,k=0 is rank–deficient of order M if there exists a nonzero

vector p = (pk)
M−1
k=0 so that

M−1∑
k=0

pk h(m+ k) = −h(M +m)

for allm = 0, . . . , N+L−M−1. Equivalently, the values h(k) can be interpreted as function
values of an exponential sum of order M in (1). The special kernel structure of rank–deficient
Hankel matrices can already be found in [17].

4 Prony–like method for nonequispaced sampling

In the following we generalize the Prony–like method to the case of nonequispaced sampled
data. More precisely, as in Sections 2 and 3 we recover all parameters of the exponential sum
(1) of order M , but now we assume that the sampled data h(xk) are given at nonequispaced
distinct nodes

0 ≤ x0 < x1 < · · · < x2N−2 < x2N−1 = 2L− 1 , M ≤ L ≤ N . (17)

While the Prony method is reliant on equispaced data, and sensitive to data errors, this problem
is quite delicate. Fortunately, the exponential sum (1) is a smooth function with a moderate
oscillatory part with bounded frequency. Note that a Prony–like method for nonequispaced
sampling was already proposed in [7]. There the unknown parameters of the exponential sum
(1) were estimated by a linear regression equation using filtered signals.

Assuming that the given data are (almost) exact, we can apply another technique based
on interpolation and we compute approximate values hj of h(j), j = 0, . . . , 2L − 1 in a
preprocessing step. This can be done by one of the following procedures.

The first method is based on interpolation with integer translates of a window function. Let
M2m be the centered cardinal B–spline of order 2m with support [−m,m], where m ∈ N and
1 < m ≤ N − L+ 1. Then we approximate the exponential sum (1) by a linear combination
of integer translates of M2m,

g(x) :=

2L+m−2∑
`=1−m

g`M2m(x− `) .

For this purpose, we compute the coefficients g` as (least squares) solution of the (overdeter-
mined) sparse linear system

2L+m−2∑
`=−m+1

g`M2m(xk − `) = h(xk), k = 0, . . . , 2N − 1 .

We assume here that the coefficient matrix (M2m(xk − `))2N−1,2L+m−2k=0,`=−m+1 has full rank 2(L+

m − 1). By the Schoenberg–Whitney theorem on spline interpolation this is true if there is
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a subsequence {xk`}
2L+m−2
`=−m+1 of {xk}2N−1k=0 so that M2m(xk` − `) 6= 0 for all ` = −m +

1, . . . , 2L+m− 2, see [8]. Then we set hk := g(k), k = 0, . . . , 2L− 1.

The second method is based on piecewise cubic polynomial interpolation. Let pk, k =
1, . . . , 2N − 3 be cubic interpolation polynomials being uniquely determined by

pk(xj) = h(xj), j = k − 1, . . . , k + 2 .

Then each polynomial pk has the form

pk(x) = h(xk) + ak (x− xk) + bk (x− xk)2 + ck (x− xk)3 ,

where the coefficients ak, bk, ck solve the linear system

ak + bk (xk−1 − xk) + ck (xk−1 − xk)2 =
h(xk−1)− h(xk)

xk−1 − xk
,

ak + bk (xk+1 − xk) + ck (xk+1 − xk)2 =
h(xk+1)− h(xk)

xk+1 − xk
,

ak + bk (xk+2 − xk) + ck (xk+2 − xk)2 =
h(xk+2)− h(xk)

xk+2 − xk
.

We set for each j = 0, . . . , 2L− 1 ,

hj :=

 p1(j) j ∈ [0, x2) ,
pk(j) j ∈ [xk, xk+1) for k ∈ {2, . . . , 2N − 4} ,
p2N−3(j) j ∈ [x2N−3, 2L− 1] .

Observe that in this way not each polynomial pk will be used. For N � L one may therefore
replace the procedure by a local cubic polynomial approximation that involves more than four
data points.

Algorithm 4.1 (ESPRIT method for nonequispaced sampling)
Input: L, N ∈ N, N � 1, 3 ≤ L ≤ N , L is an upper bound of the order M of the exponen-
tial sum (1), nonequispaced sampling nodes (17), sampled data h(xk), k = 0, . . . , 2N − 1 of
the exponential sum (1).
1. Precompute the approximate values hk of h(k) for k = 0, . . . , 2L− 1 by one of the above
methods.
2. Use the Algorithm 3.1 (with L = N ) in order to determine the order M , all exponents fj
and all coefficients cj , j = 1, . . . ,M , of the exponential sum (1).
Output: M ∈ N, fj ∈ [−α, 0] + i [−π, π), cj ∈ C, j = 1, . . . ,M .

5 Generalized Prony method

The Prony method can be simply transferred to a more general setting, namely to recover
an element f of a given complex vector space V , if f can be represented as an M -sparse
expansion of eigenfunctions of a linear operator A : V → V . More precisely, let W = {vj :
j ∈ I} be a given set of eigenfunctions (resp. eigenvectors) of A to distinct eigenvalues λj ,
i.e.,

A vj = λj vj
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12 G. Plonka and M. Tasche: Prony Methods

for all j ∈ I . Further, let F : V → C be a linear functional with Fvj 6= 0 for all j ∈ I . Then,
according to [24], an M -sparse representation

h =
∑
j∈J

cj vj with J ⊂ I and |J | =M (18)

can be uniquely reconstructed from the values F (Akh), k = 0, . . . , 2M − 1, i.e., the active
eigenfunctions vj as well as the coefficients cj ∈ C, j ∈ J in (18) can be uniquely determined,
see [24]. Similarly as in Section 2 this can be seen as follows.

We define the Prony polynomial

p(z) :=
∏
j∈J

(z − λj) =
M−1∑
k=0

pkz
k + zM , z ∈ C , (19)

where the roots λj , j ∈ J , are the (unknown) eigenvalues corresponding to the active eigen-
functions vj in the representation of h. With pM := 1, we observe for m ∈ N0 that

M∑
k=0

pk F (Ak+mh) =

M∑
k=0

pk F
(∑
j∈J

cjλ
k+m
j vj

)
=
∑
j∈J

cjλ
m
j

( M∑
k=0

pkλ
k
j

)
Fvj

=
∑
j∈J

cjλ
m
j p(λj)Fvj = 0 ,

yielding the linear system

M−1∑
k=0

pk F (Ak+mh) = −F (AM+mh) , m = 0, . . . ,M − 1 .

As for the classical case, the coefficient matrix GM := (F (Ak+mh))M−1,M−1k=0,m=0 is an invert-
ible Hankel matrix, since

GM = VM (λ) diag (cj)j∈J diag (Fvj)j∈J VM (λ)T

with VM (λ) := (λkj )
M−1
k=0,j∈J . Hence the algorithm for the generalized Prony method can be

summarized as follows.
Algorithm 5.1 (Generalized Prony method)

Input: M ∈ N, values F (Akh), k = 0, . . . , 2M − 1, of the sparse eigenfunction expansion
(18).

1. Solve the linear system GM (pk)
M−1
k=0 = −(F (AM+m))M−1m=0 .

2. Compute all zeros λj , j = 1, . . . ,M , of the Prony polynomial (19), i.e., calculate all
eigenvalues of the associated companion matrix (4).
3. Solve the generalized Vandermonde system

(λkj )
2M−1
k=0,j∈J diag (Fvj)j∈J (cj)j∈J = (F (Akh))2M−1k=0 .

Output: vj ∈W , cj ∈ C, j ∈ J .
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Assume now that the number M of terms in the eigenfunction representation of h is not
known a priori and can only be bounded by Lwhile the data F (Akh) ∈ C, k = 0, . . . , 2N−1
are given with M ≤ L ≤ N . Then we can follow the lines of Section 3 to derive an ESPRIT
algorithm for the generalized Prony method by replacing H2N−L,L+1 by G2N−L,L+1 :=

(F (A`+mh))2N−L−1,L`=0,m=0 and regarding its singular value decomposition. The matrix FM as
in (16) has to be computed similarly as before. The last step in Algorithm 3.1 needs to be
replaced by solving the overdetermined linear system

F (Akh) =
∑
j∈J

cjλ
k
jF (vj) , k = 0, . . . , 2N − 1 .

Remark 5.2 The classical Prony method in Section 2 follows from the generalized Prony
method for example by taking V = C(R), the vector space of continuous functions, and with
the shift operatorA = S : C(R)→ C(R), given by Sh := h(·+1). Then the circular ring D
defined in Section 2 is a set of distinct eigenvalues of S. Indeed, for f ∈ [−α, 0] + i [−π, π)
with α > 0 we have ef ∈ D and

Sefx = ef(x+1) = ef efx, x ∈ R .

Thus we can choose W = {efx : ef ∈ D} as the set of corresponding eigenfunctions. Hence
the exponential sum (1) with unknowns efj ∈ D and cj ∈ C can be completely recovered
using F (Skh) = F (h(·+k)), k = 0, . . . , 2M−1. Taking the point functional F (h) := h(0),
we obtain the classical Prony method, where the unknowns fj and cj , j = 1, . . . ,M , can be
reconstructed from given equispaced sampled data h(k), k = 0, . . . , 2M − 1.

Remark 5.3 As shown in [24], the generalized Prony method can be applied to a lot of
eigenfunction systems as e.g. to monomials being eigenfunctions of the dilatation operator
A = Da with Dah(x) := h(ax) thereby generalizing the sparse interpolation of polynomi-
als (see [19]), and to orthogonal polynomials that are eigenfunctions of the Sturm–Liouville
operator or of special difference operators (see also [25]). The approach also applies to finite
dimensional vector spaces, where one can derive a deterministic reconstruction method for
M -sparse vectors from only 2M “measurements”, see Section 8. The required measurements
are generally of the form F (Akh) and hence depend strongly on the used operator A as well
as on the used functional F . Particularly, the freedom in choosing F enables us to solve the
reconstruction with different input data.

6 Recovery of splines from Fourier data

The reconstruction of a compactly supported, structured function from the knowledge of sam-
ples of its Fourier transform is a common problem in several scientific areas such as radio
astronomy, computerized tomography, and magnetic resonance imaging. Here we determine
the breakpoints and the jump magnitudes of a spline s from few equidistant samples of the
Fourier transform ŝ. Let −∞ < t1 < t2 < . . . < tm+1 <∞ be given. A function s : R→ R
is a spline of degree d ∈ N0 with the support [t1, tm+1] and breakpoints tj , j = 1, . . . ,m+1,
if s(x) = 0 for all x ∈ (−∞, t1) ∪ (tm+1, ∞) and if on each interval (tj , tj+1) it is a poly-
nomial of degree ≤ d and at least on one of them of degree d. Thus, splines of degree 0 are
step functions, those of degree 1 are piecewise linear.
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14 G. Plonka and M. Tasche: Prony Methods

First we consider the step function (see [27])

s(x) :=

m∑
j=1

s(tj+)1[tj ,tj+1)(x) , x ∈ R , (20)

where 1[tj ,tj+1)(x) is the characteristic function of the interval [tj , tj+1) and where s(tj+)−
s(tj−) 6= 0, j = 1, . . . ,m+ 1. Here s(tj+) and s(tj−) denote the one–sided limits of s(x)
at the breakpoint tj . Forming the Fourier transform

ŝ(v) :=

∫ ∞
−∞

s(x) e−ixv dx , v ∈ R ,

we obtain that

iv ŝ(v) =

m+1∑
j=1

(
s(tj+)− s(tj−)

)
e−ivtj , v ∈ R

with s(tm+1+) := 0, s(t1−) := 0, and s(tj−) := s(tj−1+) for j = 2, . . . ,m + 1. Hence
iv ŝ(v) is an exponential sum of order m + 1. Now we choose τ > 0 so that xjτ ∈ [−π, π)
for j = 1, . . . ,m + 1. For given Fourier samples ŝ(`τ), ` = 1, . . . , N with N ≥ m + 1, we
can determine the breakpoints tj and the associated jump magnitudes cj = s(tj+)− s(tj−)
by Algorithm 3.1. Observe that here indeed m + 1 Fourier samples corresponding to the
m + 1 unknown knots are sufficient for complete recovery, since the function s is real. By
ŝ(v) = ŝ(−v), the values (i`τ) ŝ(`τ) are available for ` = −N, . . . , N , and Algorithm 3.1 can
be simply adapted to this case. Hence, the step function (20) can be completely reconstructed
(see [27]).

Now we consider the (not necessarily continuous) spline of degree 1,

s(x) :=

m∑
j=1

(
s(tj+) + s′(tj+) (x− tj)

)
1[tj ,tj+1)(x) , x ∈ R . (21)

Applying Fourier transform, we obtain that

(iv)2 ŝ(v) =

m+1∑
j=1

[
iv
(
s(tj+)−s(tj−)

)
+
(
s′(tj+)−s′(tj−)

)]
e−ivtj , v ∈ R .

Hence (iv)2 ŝ(v) is an extended exponential sum with linear polynomials as coefficients. Now
we choose τ > 0 so that xjτ ∈ [−π, π) for j = 1, . . . ,m + 1. For given Fourier samples
ŝ(`τ), ` = 1, . . . , 2N withN ≥ m+1, we can determine the breakpoints tj and the associated
jump magnitudes of s(x) and s′(x) by the method explained in Remark 2.2. Hence, the spline
of degree 1 in (21) can also be reconstructed by a Prony method.

In [27], the above approach is transferred to the reconstruction of a linear combination

s(x) =

m∑
j=1

cj B
d
j (x) , x ∈ R ,
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of B–splines Bdj (x) of degree d − 1, d ∈ N, where the coefficients cj ∈ R and the knots
tj , . . . , tj+d with −∞ < t1 < t2 < . . . < tm+d < ∞ are unknown. Note that B1

j (x) =
1[tj ,tj+1)(x). In this case, the reconstruction is based on the idea that the (d− 1)-th derivative
of Bdj is a linear combination of step functions of the form (20), and that the m + d Fourier
samples ŝ(`τ), ` = 1, . . . ,m+ d are sufficient for complete reconstruction.

Remark 6.1 A similar technique can be applied, if the support [t1, tm+1] of the spline
s(x) is contained in [−π, π] and some Fourier coefficients

ck(s) :=
1

2π

∫ π

−π
s(x) e−ikx dx , k ∈ Z

are given. For a step function (20) we obtain

2πik ck(s) =

m+1∑
j=1

(
s(tj+)− s(tj−)

)
e−iktj , k ∈ Z .

Thus one can determine the breakpoints tj and the associated jump magnitudes by the Al-
gorithm 3.1 and reconstruct the step function (20) using only the Fourier coefficients ck(s),
k = 1, . . . ,m+ 1.

Remark 6.2 The method of Remark 6.1 is closely related to the Krylov–Lanczos method
of accelerating convergence of Fourier expansions [20] and to the reconstruction of a 2π-
periodic, piecewise Cd-smooth function from given Fourier data (see [12, 2, 3]). A 2π-
periodic function f(x) is called piecewise Cd-smooth with d ∈ N, if there exist finitely many
points tj , j = 1, . . . ,m, with −π ≤ t1 < t2 < . . . < tm < π and tm+1 := t1 + 2π
so that f(x) restricted to (tj , tj+1) belongs to Cd([tj , tj+1]) for each j = 1, . . . ,m. By
Cd([tj , tj+1]) we mean the set of all functions g(x) whose derivatives up to the order d are
continuous on (tj , tj+1) and have continuous extensions on [tj , tj+1], i.e., there exist all
one-sided limits g(`)(tj+) and g(`)(tj+1−) for ` = 0, . . . , d.

If the 2π-periodic, piecewiseCd-smooth function f(x) possesses only one breakpoint t1 =
0 within [−π, π), i.e. m = 1, then by the Krylov–Lanczos method f(x) is split into the sum

f(x) = s(x) + r(x) , x ∈ R , (22)

where

s(x) :=

d∑
`=0

(
f (`)(0−)− f (`)(0+)

) (2π)`

(`+ 1)!
b`+1

( x
2π

)
, x ∈ R ,

is a 2π-periodic spline of degree d + 1 and r(x) is a 2π-periodic, d-times continuously
differentiable function with a rapidly convergent Fourier expansion (see [20]). Note that
f (`)(0−) = f (`)(2π−), ` = 0, . . . , d, by periodicity. By b`+1(x) with ` ∈ N, we denote the
1-periodic continuation of the Bernoulli polynomial B`+1(x) restricted to the interval [0, 1],
where B`+1(x) is recursively defined by B′`+1(x) = (` + 1)B`(x),

∫ 1

0
B`+1(x) dx = 0,

` ∈ N0, with B0(x) := 1. Note that b1(x) is the 1-periodic continuation of B1(x) = x − 1
2

restricted on (0, 1) with b1(0) = b1(1) := 0.
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16 G. Plonka and M. Tasche: Prony Methods

If the 2π-periodic, piecewise Cd-smooth function f(x) possesses some breakpoints tj ,
j = 1, . . . ,m, within [−π, π), then f(x) can be represented analogously in the form (22)
with the 2π-periodic spline of degree d+ 1

s(x) :=

m∑
j=1

d∑
`=0

(
f (`)(tj−)− f (`)(tj+)

) (2π)`

(`+ 1)!
b`+1

(x− tj
2π

)
, x ∈ R ,

and a 2π-periodic, d-times continuously differentiable function r(x) with a rapidly convergent
Fourier expansion (see [12, 2, 3]). If r(x) is sufficiently smooth, then the contribution of ck(r)
to ck(f) is negligible for large |k|. The reconstruction of f(x) from given Fourier coefficients
ck(f) is based on the fact that ck(f) ≈ ck(s) for large |k| and that the Fourier coefficients
ck(s) can be computed using

ck
(
b`+1

( · − tj
2π

))
=

{
− (`+1)!

(2πik)`+1 e
−iktj k ∈ Z \ {0} ,

0 k = 0

so that

2π (ik)d+1 ck(s) =

m∑
j=1

e−iktj
d∑
`=0

(ik)d−`
(
f (`)(tj+)− f (`)(tj−)

)
, k ∈ Z .

Hence the points tj and the associated jump magnitudes can be determined by Prony methods.
For details see [12, 2, 3].

7 Recovery of sparse vectors

Now we consider the recovery problem of M -sparse vectors. Let x ∈ CD be M -sparse, i.e.,
only M components of x = (xj)

D−1
j=0 are different from zero. We want to reconstruct x from

only 2N measurements, where L with L ≤ N is a known upper bound of the sparsity M . For
this purpose we apply the generalized Prony method introduced in Section 5. Let A : CD →
CD be a linear operator that can be represented by a diagonal matrix A = diag (dj)

D−1
j=0 with

distinct entries dj , j = 0, . . . , D−1. Then the unit vectors ej = (δj,`)
D−1
`=0 , j = 0, . . . , D−1,

form a system of eigenvectors of A with Aej = dj ej . Further, let F : CD → C be a linear
functional given by

Fx = bT x :=

D−1∑
j=0

bj xj ,

where b = (bj)
D−1
j=0 satisfies bj 6= 0 for j = 0, . . . , D − 1. Hence, the condition Fej 6= 0

holds for all j = 0, . . . , D − 1.
In order to reconstruct a sparse vector x of the form

x =
M∑
j=1

cnj
enj
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with unknown support indices 0 ≤ n1 < n2 < . . . < nM ≤ D − 1 and unknown coefficients
cnj
∈ C, we require by Algorithm 5.1 at least the values

yk = F (Akx) = bTAkx = aTk x , k = 0, . . . , 2M − 1 , (23)

where ak := (bj d
k
j )
D−1
j=0 .

For noisy measurements, the reconstruction is more stable, if we adapt the ESPRIT method
also here. This is particularly necessary if the exact sparsityM is unknown and we know only
an upper bound L ≥M .

Algorithm 7.1 (ESPRIT method for recovery of a sparse vector)
Input: L, N ∈ N, L ≤ N , L is an upper bound of the sparsityM of x, (noisy) sampled values
yk, k = 0, . . . , 2N − 1 as in (23).

1. Compute the SVD of the rectangular Hankel matrix H2N−L,L+1 = (y`+m)2N−L−1,L`,m=0 .
Determine the numerical rank of H2N−L,L+1 as largest integer M with σM/σ1 ≥ ε and
form the matrices WM,L(0) and WM,L(1) as in (15).
2. Compute all eigenvalues λj , j = 1, . . . ,M , of the square matrix FM in (16). The set of
eigenvalues {λ1, . . . , λM} is a subset of the set of eigenvalues {d0, . . . , dD−1} of A. Deter-
mine the corresponding eigenvectors enj

, j = 1, . . . ,M , resp. the indices nj that correspond
to the eigenvalues λ1, . . . , λM .
3. Compute the coefficients cnj

∈ C, j = 1, . . . ,M , as least squares solution of the overde-
termined linear system

M∑
j=1

cnj bnj d
k
nj

= yk , k = 0, . . . , 2N − 1 .

Output: M ∈ N, x =
∑M
j=1 cnj enj .

For example, the linear operator A can be chosen as

A = diag (ωjD)
D−1
j=0 ,

where ωD := e−2πi/D denotes the D-th root of unity. Further, taking the functional F of the
form Fx =

∑D−1
`=0 x`, the needed vector of input values y = (yk)

2N−1
k=0 for Algorithm 7.1 is

given by
y = F2N,D x ,

where F2N,D = (ωk`D )2N−1,D−1k,`=0 ∈ C2N×D contains the first 2N rows of the Fourier matrix
of order D, where N ≥ M . In other words, the knowledge of the first 2M DFT coefficients
of x is sufficient to recover the M -sparse vector x.

Remark 7.2 In contrast to l1-recovery algorithms in compressed sensing [10] based on
structured matrices, where the measurements are obtained using scalar products of x with
at least O(M logD) random rows of the Fourier matrix [30], we have just taken here the
measurements yk arising from the first 2N rows of the Fourier matrix. As proposed in [16],
it might be advantageous to use slightly different measurements instead. Obviously, we can
also choose the operator A of the form

A = diag (ωσjD )D−1j=0 ,
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18 G. Plonka and M. Tasche: Prony Methods

where σ ∈ N is invertible modulo D so that all eigenvalues of A are indeed distinct. Fur-
ther, we can define the functional F using the τ -th row of the Fourier matrix, i.e., Fx =

(ω0
D, ω

τ
D, . . . , ω

τ(D−1)
D )x =

∑D−1
`=0 ωτ`D xl, where τ ∈ {0, . . . , D − 1}. Then the input val-

ues for Algorithm 7.1 are of the form

yk = x̂σk+τ =

D−1∑
`=0

x` ω
(σk+τ)`
D , k = 0, . . . , 2N − 1 ,

and the reconstruction of x from yk, k = 0, . . . , 2N − 1 is ensured for N ≥M .

8 Numerical examples

We illustrate the behavior of the proposed Algorithms 3.1 and 7.1. Using IEEE standard
floating point arithmetic with double precision, we have implemented these algorithms in
Matlab.

Example 8.1 We consider the parameter reconstruction of the exponential sum (1) with
M = 6, cj = j, zj = efj for j = 1, . . . , 6, where

(
zj
)6
j=1

=


0.9856− 0.1628 i
0.9856 + 0.1628 i
0.8976− 0.4305 i
0.8976 + 0.4305 i
0.8127− 0.5690 i
0.8127 + 0.5690 i

 .

We choose noisy sampled data hk = h(k) + ek for k = 0, . . . , 2N − 1, where the error terms
ek ∈ [−1, 1] · 10−δ are uniformly distributed. In the case δ =∞, we consider exact sampled
data. By f̃j resp. c̃j we denote the exponents resp. coefficients computed by Algorithm 3.1.
The errors of Algorithm 3.1 are measured by

e(f) :=

max
j=1,...,6

|fj − f̃j |

max
j=1,...,6

|fj |
, e(c) :=

max
j=1,...,6

|cj − c̃j |

max
j=1,...,6

|cj |

with f := (fj)
6
j=1 and c := (cj)

6
j=1. For noisy data with δ < ∞ we show in Table 1

the average errors over 10 runs of Algorithm 3.1 (with different data realizations for fixed
δ). Using Algorithm 3.1, we obtain excellent parameter reconstructions for relatively few
sampled data (without preprocessing of the data). For further applications of Algorithm 3.1
see [28].

Example 8.2 We consider the recovery of a sparse vector from (noisy) samples of its
Fourier transformed data. We use Algorithm 7.1 with the operator matrix A = diag (ωσjD )D−1j=0

proposed in Remark 7.2. Let x ∈ C1024 with sparsity M = 9, and x has the nonzero entries

x1 = 7, x5 = 5, x9 = −7, x19 = 3, x42 = 10, x45 = 5, x71 = −5, x115 = 7, x132 = −5.

Let yk = x̂σk+ ek, k = 0, . . . , 2N −1 be the observed data, where N = L is an upper bound
for the sparsity, σ ∈ N is prime to D, and where the error terms ek ∈ [−δ̃, δ̃] are uniformly
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N L δ e(f) e(c)

7 7 ∞ 8.491e-11 6.614e-11
10 10 ∞ 6.604e-12 6.494e-12
10 10 8 2.510e-06 2.386e-06
20 10 8 4.701e-09 1.431e-08
40 20 8 2.036e-10 8.052e-10
10 10 4 2.192e-02 2.910e-02
20 10 4 4.386e-05 1.027e-04
40 20 4 2.064e-06 7.851e-06
10 10 2 9.456e-01 3.312e-01
20 10 2 5.331e-03 1.264e-02
40 20 2 2.011e-04 8.245e-04

Table 1 Average errors over 10 runs of Algorithm 3.1 for Example 8.1.

distributed. Analogously as in Algorithm 3.1, we use ε = 0.0005 in order to estimate the
sparsity M . Let us first consider the case σ = 1. The resulting positions of nonzero entries
given in Table 2 are rounded to the next integer. Interestingly, we see the following behavior of
the algorithm. If the number of given Fourier values is too small, then the number of nonzero
entries of x is underestimated. Particularly, while “single peaks” (with large distance to the
next nonzero position) are found accurately, it happens that peaks with smaller separation
distance are “accumulated” where also the size of the true component values plays a role.
All nonzero positions of x are found accurately if N = L is chosen large enough, and the
considered uniform noise does not effect this behavior.
The situation changes, if σ is chosen differently. Taking σ = 7 and using the 40 Fourier
samples x̂7k + ek, k = 0, . . . , 39, we obtain all 9 nonzero positions of x accurately for
N = L = 20. Taking σ = 11 and using the 20 Fourier values x̂11k + ek, k = 0, . . . , 19, we
can completely recover the nonzero positions of x already for N = L = 10, even for noisy
data with δ̃ ≤ 2. Having found the correct positions nj , j = 1, . . . ,M , of nonzero entries of x,
the corresponding coefficients can be very accurately computed by a least squares approach.
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