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Generalized Spline Wavelets

Gerlind Plonka

Abstract. A generalized multiresolution of multiplicity r, generated by
r linearly independent spline functions with multiple knots, is introduced.
With the help of the autocorrelation symbol and the two—scale symbol of
the scaling functions the spline wavelets with multiple knots can completely
be characterized. New decomposition and reconstruction algorithms, based
on Fourier technique, are presented.

1. Introduction

Recently the concept of wavelets in L?(IR) was generalized in the following way.
Let vo,...,%, 1 (r € IN) be functions in Ly(IR) and let B := {27/24,(27 -
=) : 4l e Z,v=0,...,r—1}. Then y,...,1¥,._1 are called orthogonal
wavelets of multiplicity » if B forms an orthonormal basis of L2(IR). We say
that v, ...,%,_1 are wavelets (prewavelets) of multiplicity r if B forms a Riesz
basis of L2(IR) and 9, (2 - —1) is orthogonal to 1, (2% - —n) (v,u € {0,...,r —
1}; In,j, k € ZZ with j # k).
The general theory of wavelets of multiplicity r is treated in [12, 13, 14]. As
usual, the method is based on a generalization of the notion of multiresolution
analysis as introduced by Mallat [20] and Meyer [21]. In [17], it is shown that any
basis of orthogonal wavelets with multiplicity r composed with rapidly decaying
wavelets is provided by such a generalized multiresolution of multiplicity r. For
applications of multiwavelets for sparse representation of smooth linear operators
we refer to [1]. In this paper the ideas will be used to construct spline wavelets
with knots of multiplicity r.

In the following let m € INy and 1 < r < m+1 be given integers. We consider
equidistant knots of multiplicity r

(1.1) =z = |l/r] (leZ),

where |z| means the integer part of z € IR.
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2 G. Plonka

Let N;"" € C™ "(IR) (1 <r < m+1; k € Z) denote the normalized B-
splines of degree m and defect r with the knots zy,.. ., Zx1m+1. Then we have
N, =N2"(-—n) (v=0,...,r—1;neZ).

We introduce the spline vector N7, := (N;”’T)z;é. For » = m + 1, the B-splines
Nmmtl (y = 0,...,m) coincide with the well-known Bernstein polynomials.
Using the ideas in [11, 12, 13] we shall consider the generalized multiresolution
{V; : j € Z} of multiplicity v of L?(IR) generated by the linearly independent
scaling functions N*" (v =0,...,r — 1), that is

(1.2) V; = V™" := closg> (span {NJ>"(27 - =1): v=0,...,r—1; 1 € Z}).

In the following, for convenience the indices m, r are omitted relying on context.
The sample space V; (j € Z) is 27/ -shift-invariant, i.e., for each s € V; the
translates s(- — 2771) (I € Z) are also in V;. Note that V; can not be generated
by less than r spline functions, it is not a principal shift-invariant space (cf. [6]).
Let {W; : j € Z} denote the sequence of wavelet spaces determined by the
orthogonal complement of V; in Vjq

W] = ij7T = i1 o ‘/j'

The 277-shift-invariant wavelet space W; (j € Z) can not be generated by
less than r spline functions, too. Hence, the obtained wavelet decompositions are
really new, and they do not depend on the known spline wavelet decompositions
of multiplicity r = 1 (cf. [2, 7, 8, 9, 16]).

Different examples of spline wavelets of multiplicity r in the univariate case on
the equidistant lattice can be found in [11, 12, 13, 22]. In [19] a more general
case is considered, where the spline knots are nonuniform.

The purpose of this paper is a unified approach to univariate spline wavelets of
multiplicity r on the equidistant lattice and to the corresponding decomposition
and reconstruction algorithms based on Fourier technique. The basic tools of our
method will be the two-scale symbols of scaling functions and wavelets.

The outline of the paper is as follows. In Section 2, we study the generalized mul-
tiresolution {Vj : j € ZZ} generated by the spline vector IN7, in (1.2). In particu-
lar, we recall the two-scale relation and the autocorrelation symbol of N7 .. The
Riesz basis property of B;j(N7,) := {2/2 N»"(27- 1) : v =0,...,r—1; 1 € Z}
in Vj is equivalent to the assertion that the autocorrelation symbol of N7, is
positive definite on the unit circle.

In Section 3, the wavelet spaces W, (j € Z) are introduced. The wanted wavelet
vectors ¢! = ( ,Z"’T)Z;(l) are obtained by finding r independent functions in Wy
whose dilates and translates form a Riesz basis of W;. Using the autocorrelation
symbol of N the two-scale symbol Q7 of the wavelet vector %], can com-
pletely be characterized.

Section 4 is devoted to new efficient decomposition and reconstruction algorithms
based on periodization and Fourier technique. It turns out that the obtained al-
gorithms are numerically stable if the Riesz stability of the bases in V; and W;
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is assumed. Further, some efficient algorithms are presented which provide the
needed input for the decomposition algorithm and handle the output of the de-
composition and reconstruction algorithm, respectively.

In Sections 5 — 6, some special spline wavelets of multiplicity r are constructed.
Spline wavelets obtained by (m + 1)-th derivatives of cardinal Hermite funda-
mental splines are considered in Section 5 (cf. [22]). Finally, spline wavelets of
multiplicity r with minimal support, firstly introduced by Goodman and Lee
[12], are described in Section 6.

2. Multiresolution of multiplicity r

First we want to recall some basic properties of N7 which will be of use later.
Therefore we need the following notions. Let T := {z € € : |z| = 1}. The
(r,r)-matrices A}(z) (k € INg, r € IN, z € T) are defined for £k > r —1 > 0 by

1 1
Tk _Z‘k+1 0 0
— 0 0
k41
(2.1) Kz)=k| SRV : ,
1 1
0 0 " Thyr—2 _zk+7‘—1
4
= 0 .. L

where 1, (v=0,...,r — 1) are given in (1.1). For k=7 —1> 0 let

1 -1...00

0 1...00
(2.2) Al )=k 0 o

0 0...1-1

-z 0...01
and for0<k<r-—1

Irfkfl 0

(2.3) Al (z) =

0 A

where A}(z) := 1 — 2. Here I,_;_; denotes the (r — k — 1)-th unit matrix and
0 a zero matrix. Note that det A}, = c,(1 — z) with

kel >k+1
(2.4) c;:{k rzk+l,

[ tk/zpe, 1 <7 <E.
In the following, let for an (r,r)-matrix M

o1(M) := max{|\| : Mz = Az} (z #0),
oo(M) := min{|\| : Mz = Az} (z #0).
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Note that o1(M) is called the spectral radius of M. Applying the Gershgorin
circle theorem we find that all eigenvalues of A} (z) are contained in the union
S :=UT_} 8, of the circles

S = {a: |k/zpyy —af < k/opp,} 1 <r <k,
Y e [k—al <k} r>k+ 1.

Hence, the eigenvalues of Aj(z) are bounded, and we have for z € T

. 2krf(k+1—71)1 <r <k,
4 < {57/ JLsrsk

Now let m € INg, 1 <r <m+ 1. We put

(2.5) D’ = A" A", .. A,
(2.6) Dl = A AL AT

Then it follows that det D7, (z) = (1 —z)™"! [, ¢} and det D}, (z) =

(1 —z)mtt sz:;il cy,- The eigenvalues of D}, and D7, ; are bounded, and by

2.4) there are positive constants c]. ,, dI. , and ¢}, 1, d. ; such that for z € 1
m,05 ®m,0 m,1) ¥'m,l
and u =0,1,

(27) o < 0u(Din(2) Din(2)" + Dpo(=2) Dip(=2)") < i,
(28)  un < 0u(D}a(2) Dyua(2) + Dy (—2) Dipa (—2)") < iy

The vector of Fourier transformed B-splines of degree m and defect r

Npe= [ NPT@e de =0, )

— 0o

is denoted by N:n := (N1 In [23], it is shown that for m € IN,

(2.9) (i)™ Ny, (w) = Dy (e7™) N (u) (u€ IR)
with

(2.10) N (u) = (UT")T; ,...,(“I) ,1)

and

(2.11) (i)™ Nypy1 (u) = Dy i (e7™) Ny (u)  (u € IR).

The B-spline vector N7 satisfies a two—scale relation (or refinement equation)

(2.12) Ni, = 3 P N2 1),

l=—00
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where (P7, );° . are sequences of (r,7)-matrices with entries in It (cf. [23)]).

The Fourier transformed two-scale relation of N7 reads

o T

(2.13) N, =P’ (e7"/*)N. (-/2)

with the two-scale symbol (or refinement mask) of N7,

(214)  Ph(2) = g D) Py D)™ (e T\ (1))
and
(2.15) PT = diag (27 1,...,2%).

For z = 1, the formula (2.14) is understood as limiting process

T 1 : T —2iu T T —iu\—
(216)  P7,(1) := 5oy lim D7 (e Ziwypr, DT (e"™)" ! (u € IR).

In particular, the two-scale symbol P7” (z) is a matrix polynomial of degree
[((m+1)/r] +1in z with

(2.17) det PT (z) = 27"+ r=3/2(1 4 )™+ (zeT)

(cf. [23]). ‘ _
The basis of our scaling functions B;(N7,) = {2/2N/7(27 . —1) : v =
0,...,7 — 1; |l € ZZ} satisfies the following Riesz basis property:

Lemma 2.1. The basis Bj(N7},) is a Riesz basis of Vj, i.e., there exist con-
stants 0 < A < B < oo independent of j with

oo o0 oo
(218) A Y lalP<|| > & 2ENLE@ - -)IF<B Y lel?
I=—00 I=—00 l=—00
for any sequence {ci/}iczz with ¢; == (ci1,)'_y € € and with the Euclidian
norm ||| := Z,Tl;é lci,u|?. The best possible constants (Riesz constants) A, B
in (2.18) satisfy the following inequalities:

(Im/r| +1) <A<B<Lm/TJ+1
2(m+ 1)zom = =TS T

For a proof of Lemma 2.1 with j = 0, we refer to [3]. For j # 0, the assertion
follows by scaling of IN7,.

Remark. The proofin [3] is made for more general knot sequences and for L?.
The lower bound for A given in Lemma 2.1 is not optimal. For more information
on the condition of B—splines see also [4] and the references there. &
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Consider the Hilbert space L?(IR) of all square integrable functions. For the
function vectors f := (f,)"_} 0 9= = (g,)"Z% o (fv, 9o € L*(IR), v =0,...,7 — 1),
we introduce the (7, 7)-matrix

(2.19) (£,9) := (s 9u))0 0= 0‘(/ £o(£) 9u(2) dt) -

v,u=0

Let the autocorrelation symbol of N7, be defined by
(2.20) & .(2):= Y (Np(-+1),Np)2 (z€T).

Applying the Poisson summation formula we have for z = e~

(2.21) BT (e7™) = f: N, (u+27l)N. (u+2xl)* (u < IR)

l=—00
o ——7T
with (N ,,)* := N,, . Using (2.13), the relation
(222)  @7,(2%) = P, (2) @},(2) Pr(2)" + P (—2) B, (—2) Pp(~2)"

is found. As in the case 7 = 1, the Riesz basis property of B;(IN7,) is closely
connected with the autocorrelation symbol of N7,. The Riesz basis property
(2.18) for B;(IN7},) is equivalent to the assertion that the eigenvalues of @] (z)
are bounded away from zero, i.e.,

(2.23) A<o,(®.(2)<B (b=0,1;2z€T).

In particular, the autocorrelation matrix #7 (z) is positive definite for z € T (cf.
13, 23)).

Remark. The bracket product in IR

[f, 9] := Z f(-+2al)g(-+2xl) (f,9 € L*(IR)),

l=—00

used for instance in [6, 15], can be generalized for our case in the following way.
For f := (£,)"28, 9 := (9,)"28 (fu, 9» € L*(IR), v = 0,...,r — 1) let

] = Z F(+2xnl) g(- + 2xl)*.
I=—00
Then we immediately obtain

AT AT

P,(e7") =[Ny, Nl W

m)
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For an analysis of the structure of @ the following Euler—Frobenius matric
Hgm—}-l

(224)  Hj,0(2) = ( > DY N (@) ) ( €T)

[=—00

v,u=0
is introduced, where D denotes the differentiation operator D := Td By Poisson
summation formula we find
T —iu - - r—1 2.7
(2.25) Hy,q(e ™) = Y ((i(u+20D)*),_) Nopya(u+270)"  (u € IR).
[=—0o0

In the case r = 1, we obtain the well-known Euler-Frobenius polynomial
Hjppio(2) = Z Nomi1(D) 28 (2 €T),
l=—o

where Ny, 11 := N3, 11 is the cardinal B-spline with simple knots. The Fuler—
Frobenius matrix plays a crucial role in solving cardinal and periodic Hermite
spline interpolation problems (cf. [24]).

From (2.9), (2.11) and (2.21), it follows the relation

(2:26) &, () = D}y(2) Dy Hppopy (2) (D1 (2)) 7 (2 €T\ {1}),
#],(1) = lim D, (e ) D, g,y (e ) (Dha(e ™))" (u€ IR),

where D7, D}, | are defined in (2.5), (2.6) and

o o0 .. o T
(-1
o o .G o
(227) D,:= (1" : : : : (r>1),
0 (=D'... 0 0
(-1)° 0 0 0
Dq := (—1)™*! (cf. [23]). In particular, the autocorrelation matrix @7 (z) is

invertible on the unit circle z € T if and only if the Euler-Frobenius matrix
H?3, . 1(2) is invertible on z € T'. Now we can summarize:

Theorem 2.2. Letm € INg, T € IN with 1 <r < m+1 be given. The sequence
of spline spaces {V; : j € ZZ} given by (1.2) forms a multiresolution analysis of
multiplicity r, i.e., we have:

i) VicVin (eZ)

(i)  closgz (Ujo_o Vi) = L*.

(i) M2 o V5 = {0}

(iv) feV;< f(2) € Vjt1.

(v) The basis Bj(IN7,) is a Riesz basis of V; with (2.18).
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Proof. The relation (i) follows from the two-scale relation (2.12) of N7 , and
(iv) is an immediate consequence of the definition (1.2) of Vj. In order to verify

(i), we observe that V; = V™" contains ij’l (j € Z) which is generated by
the cardinal B-spline N,,, := N! with simple knots. Thus, (ii) is satisfied, since

[ee]

closy: U ij’l =L?

j=—o0

(cf. [8, 9]). The Riesz basis property (v) is shown in Lemma 2.1. Finally, (v)
leads to (iii) in the same manner as in [10], pp. 141 — 142. O

Example 2.1.
1. For r = 1, we obtain the known cardinal multiresolution analysis generated
by N,,. We have with z} = k and 2 := e~ ™,

Aj()=1-2z (k€INo), Dp(z)=D;,,(2)=(1-2)"",

(iw) ™ N (u) = (1 — e” ™)™+,

The two-scale symbol reads

1 — z2)m+1 1+ 2\™H
PL(2) = 2m(+1 ! )Z)m+1 _ ( ! ) (z€T).

For the autocorrelation symbol @1 (z) we find

&.(2) = > Nomyr(l+m+1)2,

I=—o0
such that
1 F1 /) (1 - 2)m+1 m+1 1 —m—1 1
dsm(z) :ém(z) = m(—l) H2m+1(z) =z H2m+1(2’).

For » = 1, the Riesz constants A and B can be given explicitly (cf. [25]).
2. Let us consider the case 7 = 2. We obtain with z? = |k/2] for k > 1

) 1 -1 ) 211/k —2+1/(k+1
A%(z):Z(—z 1 ) Az (2) = (—z(2—|—/1/k) 2_1/(1(6+1))>'

In particular, for m = 3 and z € T, we have

2,y 2+4z —5+4z+ 22
D3(Z)_3<—4z—222 1+ 4z — 522

and thus

N2( - 3 (2iu — 5) + 4(iu + 1)e™ % + e 2iv
SV ) ® \ 1+ 4(—iu + 1)e i 4+ (—2iu — 5)e2iv
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The two—scale symbol reads

1 (2+6z+22 5+ 2z )

2 —_
P3(2) = 16\ 9,4 522 14624222

The autocorrelation symbol is given by

1 —1 —1
Qg(z) (92 + 128 + 9z 53z +80+z>-

T 560 \ 214+ 80 4532 9271 4128 + 92

The eigenvalues of 32(e )

, 1

o(P2(e” ™)) = %(128 + 18 cos u — (9210 + 8640 cos u + 106 cos(2u))'/?)
, 1

A (P2(e”™)) = %(128 + 18 cosu 4 (9210 + 8640 cos u + 106 cos(2u))'/?)

can be estimated for z € T by

13—0 = )\O(fg(l)) < )\o(ﬁg(z)) < )\O(Qg(_l)) _ %’
% = M(83(-1)) < M(5(2)) < M(PF(1) = %

Thus, we find the Riesz constants

3 1
A=—  B=>

140’ 2

With

H2(x) = L (375176224328 3241762 43720
TV T 432 \ 1752 — 22422 — 2123 212 4 2242% — 1752°
and
D2 ,(z) = 35 (642624322 —17—18z
3109) = 9 182 — 1722 34262+ 622 )

the relation (2.26) can simply be verified. &

3. Wavelet spaces

Now we define the wavelet space W; of level j (j € Z) as the orthogonal
complement of V; in Vj 4, i. e.

(3.1) Wi=W" =V 0V

By Wy C Vi, all elements of Wy are cardinal spline functions of degree m and
defect r on the lattice ZZ/2.

Let 7" € Wy (v =0,...,7 —1) and let 47, := (Y7")"Z4, b, = (PI7)7 25 be
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the corresponding function vector and its Fourier transform. Then there exists
a two—scale relation (or refinement equation) of the form

(3.2) Y=Y Qn N(2--])

l=—00

with a sequence (Q7, ;)7°_, of (r,r)-matrices with entries in I'. The Fourier

transformed two—scale relation reads
(3-3) V= Qe "?) N, (-/2)

with the two—scale symbol (or refinement mask) of 9",

(34) Q)= 3 Quid (eT).

l=—o00

Further, we introduce the autocorrelation symbol ¥ of 9] by

(3.5) @ (2)= Y (W +0),40) 2,

l=—o00

where the (7, 7)-matrix of scalar products (¥, (- +1), ¥".) is defined as in (2.19).
The following properties hold:

Lemma 3.1. Letm € INy, 1 <r <m+ 1 be given. Then we have:
(i) For u € IR,

o
AT ~T

(3.6) Tl (e™) = [ty Ypl(w) = > Wy, (u+2nl) b, (u+ 2l)*.

l=—00

In particular, $" (2) (z € T) is Hermitian and positive semidefinite.
(ii) For z €T,

(3.7) (") = QL. (2) 81, (2) QL (2)" + Q1. (—2) &1, (=2) QL (=2)".

Proof. The assertion (i) follows from the Poisson summation formula. By ap-
plication of the two—scale relation (3.3) to (3.6) we find (3.7) in the usual manner
(cf. [12]). g

Now the following problem is of interest: How do we have to choose the two—
scale symbol Q7 such that B;(¢7,) := {2//2¢m"(27 - 1) : v =0,...,r = ;1 €
7} forms a Riesz basis of W;?

We introduce the 2~ 7-shift-invariant subspace of L? generated by %,

(3.8)  S;j(v;,) = closy2 span B;(v7,)
:= closzz span {™" (2 - ~1): v=0,...,r— 1,1 € Z}.

By definition of 7, we have Sy(v7,) C Wy. The function vector 97, is called a
wavelet vector (prewavelet vector) if the following assumptions are satisfied:
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(W1) Vo L So(¢7,)-
(W2) There are constants 0 < C' < D < oo such that

C Yy ldilP< | Y di (=Dl <D Y ldil?
l=— I=—0 I=—o0
for any d; := (d;,,)"—5 € C".
(W3)  So(¥7,) = Wo.
The assumptions (W1) — (W3) have the following consequences for the two-scale

symbol Q7. of 7 :

Theorem 3.2. Letm € IN, 1 < r < m + 1 be given. Then the two-scale
symbol Q7. defines a wavelet vector ¥, via (3.3) if and only if the following two
conditions hold:

(i) For z € T,
(3.9) P(2) 8,(2) Q. (2)" + Pr,(—2) 2,,(-2) Q;,(—2)" = 0.
(ii) The eigenvalues of (Q7,(2) Qr.(2)* + Qr.(—2) QF,(—2)*) are bounded away

from zero, i.e., there are constants 0 < v < § < oo such that

(3810) 7 < 0 (@) Qu(2)" + Qpu(—2) @pu(—2)") <8 (1 =0,12€T)

and we have

(3.11) %SAygchgBég%

with the Riesz constants A, B, C, D in (2.18) and (W2). Furthermore, (i) and
(ii) imply that the two—scale symbol matriz

(3.12) ST.(2) = (528 g:gt;) (z€T)

1s reqular with

max{B, D}

< ou(Sn(2) Spe)7) < BEEEEL (u=0,15z€ ),

(3.13) 7min{;’ ¢}

m

Proof. 1. The orthogonality relation (W1) is equivalent to

(N7, (=1, %y,) =0 (Il € Z).
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By Poisson summation formula and using the relations (2.13), (3.3) and (2.21)
this leads to

0= Y N, (u+2rl)e,,(u+ 2al)*

l=—00

Yo Pr(e TN (uf2 4 wl) N (u/2 + wl)* Q) (e /2470
I=—o0
— P:n(e—iu/2)sp:n(e—iu/2) Q:n(e—iu/Q)*
Py (—e ) B, (—e ) @y (—e )Y,
i.e., (W1) is equivalent to (3.9).
2. As in the sample space, the Riesz basis property (W2) with Riesz bounds C

and D is equivalent to the assertion that the eigenvalues of the autocorrelation
symbol ¥ (z) are bounded away from zero, i.e., for z € T' we have

(3.15) C<oF,(:)<D  (u=0,1).

Since @7 (z) is positive definite, both terms on the right hand side of (3.7) are
positive semidefinite. Thus from (3.15), it follows by (2.23) that for all z € T

e <@ Q) + Q@) < T w=0,)

B S
Vice versa, (3.10) implies that by (2.23) for z € T and p = 0,1
Ay < 0,(F1,()) < BS.

Hence, we have (3.11).
3. Using the relations (2.22), (3.7) and (3.9) we obtain

16)  su) (P g 0 ) s = () . ).
Thus, we find by (2.23) and (3.15) for z € T

The relation (3.14) is a simple consequence of (3.16).
4. By (3.9) it is ensured that Sy(¢7,) C Wy. Take 9y € Wy with 9o L So(p7,).
Then by W, C V4, there exists a vector C := (C,)"_5, C, € L3, (v =0,...7—1)
with

Yo = Cle™/*)" N7, (-/2)-

By 9o L So(%7,) and 9o L Vi we find for z € T' in the same manner as before

P, (2)#,,(2)C(2) + Py, (—2) &;,(-2) C(-2) = 0,

m

Q. (2)21,(2)C(2) + Qp(—2) &, (—2) C(~2) = 0,
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ie.,

s (958 -

Hence, by (3.13) and (2.23) we have C(z) = 0, that is 9 = 0. Thus, Sy(¢],) =
Wo. O

Remark. We show that W, can not be spanned by a wavelet vector of less
than r different spline functions: Assume that r spline functions ¢7" € Wy (v =
0,...,r—1) generating a Riesz basis of W} can be formed by linear independent
integer translates of 7 —n (1 < n < r — 1) spline functions ¢, € Wy (p =
0,...,7—n—1). The linear independence of " (-—1) (v =0,...,r—1;l € Z)
yields, that the functions ;*" can not represented by integer translates of ¢~u
(b =0,...,7—n —1) only. Since the lattice ZZ/2 is fixed, it follows that there
is at least one function 7 := @Lu (€ {0,...,7 —n — 1}) whose half integer
translates ¥(- — 1/2) (I € ZZ) are contained in Wy. By ¥ € Vi, there is a vector
C = (Cy)lr,;é (C,eLi  ,v=0,...,r—1) with

(3.17) b=Ce /TN (-/2).
From
W(-+1/2),N™") =0 (k=0,...,r—1,1€ Z)

it follows by Poisson summation formula that

i (=)™ (u+2mn) N, (u+27n) =0 (I € Z).

n=—oo
Hence, using the two-scale relations (2.13) and (3.17),
P (2)#,(2)C(2) =0 (z€T),

such that we have C(z) = 0 (z € T\ {1}). But this is a contradiction to the
assumption that (- — 1/2) (I € Z) are linearly independent. &

With the help of the conditions (i) and (ii) of Theorem 3.2 the two-scale
symbol Q7 of the wavelet vector 1], can be described more exactly.

Theorem 3.3. Letm € INog, 1 <r <m+ 1 be fized. The (r,r)-matriz Q" :
T — €™ is a two-scale symbol of a wavelet vector ", if and only if Q" is of
the form

(3.18) Qr.(2) = zK(2*) D} (2)" @1, ()7 (2€T)

with a matrizc K : T — C"*" whose elements lie in the Wiener class and whose
etgenvalues satisfy for some positive a, B the relation

(3.19) 0<a<o K(z)<f<oo (p=0,12z€T).
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Proof. 1. Assume that Q7, is given in the form (3.18) with (3.19). Then, by
definition of D7 and @7, the elements of Q7, lie in the Wiener class. By (2.14)
and (3.18) we have

Pl (2)®),(2) Qp,(2)* =277 27 DL (2") PT K(2°)" (2 €T).

Thus, (3.9) is satisfied. The assumption (3.10) immediately follows by (3.18)-
(3.19), (2.23) and (2.7).

2. Let Q7, : T — €"*" be an (r,r)-matrix with elements in the Wiener class
and satisfying the conditions (3.9) — (3.10). The relation (3.9) yields by (2.14)
forzeT\{-1,1}

(3:20) Dl (2) " &, (2) Qu(2)* + Dip(—2)* BL,(—2) Qu(—2)* =0,
B, (~2) Q) (~2)* = — Dl (~2) D}y (2) " B (2) Qi (2)"
and
Qp(—2) = —Qu(2) B (2) (D (2)) ™ Dl (—2)* By (—2) 7
Hence, by (3.7) the autocorrelation symbol of 1", reads for z € T \ {1, 1}
7,(%) = (QU(2) Du(2) = Qu(—2) D (~2)) D)™ 81, (2) Qi ()"
(321) = Qu(2) Bya(2) (Dn(2))  [Din(e) B(2) L D} (2)
D7, (~2)" B}, (—2) L Dy (—2)] D () 0, (2) Qi ()"
In particular, we have
(322)  QU(2) DLu(2) — Qlu(—2) Dy(—2) = Q=) Bp(2) (D (2))
<[ D7, (2)* ®1,(2)71 DI,(2) + DI (~2)* B, (~2) "' DI (—2).
By (2.23) and (2.7), the eigenvalues of
D7, (2)* B},(2)* D(2) + Dl (—2)* B (—2) " D(2)

are bounded away from zero for z € T. Thus, from (3.15) and (3.21) it follows
that the eigenvalues of Q" (z) ®" (z) (D,(2)*)~! are bounded away from zero
for z € T, too. We put for z € T

(323) 27 K()" = (Qu(2) Diu(2) — Qu(-2) Din(~2)) #ia(2).

Then by (3.22) it follows that
K () = (Q:n(z) P7.(2) (D7, (2)") " [D},(2)" @,(2) 7! Dy(2)

Dy, (—2)* B () DL (-2)]) ().
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From the considerations above it follows that there are constants «, 8 with

0<a<o,(K(z))<B<oo (p=0,1).
By (3.21) we find for z € T

Qn(2)" =271 @], (2) 7! D (2) K (%),
ie.,
Qr.(2) = 2 K(2*) D7, (2)* ®,(2) 7",
where for z = 1, —1, the formula for Q,(z) follows by limiting process. O
With the help of (2.26) we find by &7 .(z) = &7 (2)*
P7.(2)7" = (D,(2)) " (D7) (H3,,14(2)7) 7 D7, 4 (2),

such that the two—scale symbol Q7, in Theorem 3.3 can also be written as

Q1.(2) = 2 K(z) (H},,1(2)") 7' D7, 1(2)
with
K(z*) = K(*)(Dy) ™.
Thus, the conditions (3.18) — (3.19) are equivalent to
(3.24) Q1.(2) = 2 K(2) (H3,,11(2)") ' D, (2)
with a matrix K : T — €"*", whose elements lie in the Wiener class and with
(3.25) 0<a<o K(z)<B<oo (p=0,1;z€T).

The computation of Hj,, ,; is simpler than getting @7, and thus, (3.24) — (3.25)
will be prefered. In fact, (3.24) with (2.11) shows that all wavelets can be ob-
tained by taking derivatives of splines of double order. In Sections 5 — 6 we shall
construct some special wavelets by appropriate choices of the matrix K.

4. Decomposition and reconstruction algorithms

In this section we derive efficient decomposition and reconstruction algorithms
based on periodization and fast Fourier transform.

In order to decompose a given function fj11 € Vj41(\LY(IR) (j € Z) of the
form

l=—00
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with ¢jy1, := (cj’ﬁrl’l)f,;é and (¢}, )2 o €1' (v=0,...,7 — 1), we have to
find the uniquely determined functions f; € V; and g; € W; such that
(4.2) fiv1=1j+g;-

The wanted functions f; € V; and g; € W} can be uniquely represented by

(4.3) fi= Y € NR(2 =), gi= Y dj 9,20,

l=—00 I=—00

. L v \r—1 R v \r—1 . v oo
where the coefficient vectors ¢;,; = (¢} ), g, dj1 == (d} ), with (¢} )72,
(d5)2 o €l' (v=0,...,7 — 1) are unknown.

In order to reconstruct fjy1 € Vj41 (j € INy), we have to compute the sum
(4.2) with given f; € V; and g; € W;.
Let f;, §j, fj+1 be the Fourier transforms of f;, g;, fj+1, and let for z € T'

C(z):= Z c;i?, Dj(z):= Z d;; 7,
I=—o0 I=—o0
(4.4) Cjn(z):= Y ¢

I=—o0

Hence, for u € IR it follows

fi(w) =279 Ci(e™ ™) N, (277 ),
(4.5) §;(w) = 279 D(e7 /YT b, (277),

Fia(u) = 27771 Cypa (72 )T N (277 ),
We obtain the following
Theorem 4.1. Let fi11 € Vi1, fj €V}, g; € W; with (4.1) and (4.3) be given.
Then
T T

Cii1(2) C;(2?)
4.6 it =2( 77 s er
(1.6 (&) =2 () s e

implies that fj11 = f; + gj. Moreover, for known Cj(z), D;(z), the function
vector Cj11(z) (2 € T') is uniquely determined by (4.6). Vice versa, for known
Cji1(z), the function vectors Cj(z), D;(z) (z € T') can uniquely be computed
be (4.6).

Proof. The relation (4.6) implies that
(4.7) Cjr1(2)" =2(C;(2*)" Pl (2) + D;(2")" Q7. (2)).
Putting z := e~™/?""" and multiplying (4.7) with 279~1 N, (2714, we obtain
27971C (e N (27 )
=277 Cje ™) PP
+279 Dj(e )T @ (e )

N,(277 1)

N, (277 1),
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Hence, applying the two—scale relations (2.13), (3.3) we have by (4.5)
fiv1= [ + 95

For known C(2), D;(z), the vector C;;1(z) (2 € T') can be computed by (4.7).
Since the two—scale symbol matrix ST (z) is invertible for z € T', we find from

(4.6)
(Cj<z2>>T 1 ( Cji1(2) >T s (o)1
D;(z”) 2\ Cjs1(—2) ™ ’
such that C;(2%), D;(2%) can simply be computed for known C;;1(z2) (z € T).
O

In order to derive efficient decomposition and reconstruction algorithms we
want to periodize the functions f;11, f;, g; in the following way.
Let N € IN, N; := 2/ N. In practice, we can suppose that these functions
are approximately zero on IR\ [-N/2,N/2| for some N € IN. Hence, the N-
periodization of f;j11 € Vi1

fisn:="Y_ fina(-+nN)

n=—oo

is a good approximation of f;11 in [-N/2, N/2]. With

o0
Eisi = D Ciitarnnyy (=0, N — 1),

N = Y, NL@F - +nNn),
n=—o0

we obtain by (4.1)

Njq1-1
- o .
. — P —-j—1
fir1= Z €1, N jya (- =2 ).
1=0

The functions f; € V; and g; € W; can be periodized in the same manner, and
we obtain

N

0o i—1
(4.8) fi= > fit+nN)= 3" & N, (=270,
n=—00 1=0
[e's) N; -1 T - .
(4.9) Gi= Y, g(-+nN)= > djt, (- —27)
n=—00 1=0

[ 00
é]'J = Z c]',H_an, dj = Z d',l+nNJ- (l = 0, e ,Nj — 1)

n=-—00 n=—o00
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and

(410) Ny, ;o= Y NL(2-—nN;), = > 9,2 —nN;).

n=—oo n=—oo

Observe that the DFT(N;41)-data of (éjﬂyl)f\ijarlil read

Njt1—1
(4.11) Cj1(w)y) Z Cif1n W (k=0,...,Nj41—1)
. \Nj—1 5 \N;j—1
and analogously the DFT(N;)-data of (¢;,1),2, , (d;.1),2
N;—1
(412) Cj(w;c) = Z éj,n w;zk,
n=0
Dj(w}) = djnw® (k=0,...,N;—1)
n=0

with w; := exp(—2mi/N;). The decomposition and the reconstruction algorithm
for fj+1, fj, g; is based on the following

Theorem 4.2. For j € INg, let fj11 € Vi1, f; € Vj, gj € W; with (4.1) and
(4.3) be given, and let fji1, fj, §;j their N-periodizations. Then the relations

T T
b (&) =2 (Bh) st @=omo)
for the DFT- data (4.11) — (4.12) imply that
fiv1 = fi +§s-
Proof. Using Theorem 4.1, the relation (4.13) leads to
Frea(2ru/N) = f5(2mu/N) + g;(27u/N)  (u € TR).

Hence, observing that the Fourier coefficients of an N-periodic function

h = Z (-+nN) (he L*(IR))

read
N ~ . 1
cu(h) == —/ h(t) e 2mu/N gt = N h(2ru/N) (u € Z),
0
we have

cu(fi+1) = cu(fi) +cu(ds) (u€ 2).

Thus, fj+1 = fj + g;. O
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From Theorem 4.2, we obtain immediately:

Algorithm 4.3. (Decomposition algorithm)
Input: j € INg, N € IN ( power of 2),

N; = 2N,

Cj+1(w§-“+1) eq” (kZO,...NJ‘+171).

Step 1: Precompute S:n(w;?+1)_1 (k=0,...,N; — 1) given by (3.14) by FFT.
Step 2: Compute for £k =0,...,N; — 1

(58) =3 (&) seeer

Output: Cj(w;?), Dj(wf) eC” (k=0,...,N; —-1).

Algorithm 4.4. (Reconstruction algorithm)
Input: j € INg, N € IN ( power of 2),

Nj = QJN,

Cj(w}), Dj(wf) e (k=0,...N; —1).

Step 1: Precompute S;n(wé?ﬂ) (k=0,...,N; — 1) given by (3.12) by FFT.
Step 2: Compute (4.13) for k=0,...,N; — L.
Output: Cji1(wh,,) €@ (k=0,...,Nj;1—1).

Remark. If f;,; is supported in [-N/2, N/2], then there is no periodization
error. Observe that the Algorithms 4.3 and 4.4 work exactly in the periodic case,
using fast Fourier transform. They are not based on truncated Fourier sums. &

Now we are interested in the problem, how to get the needed input of the de-
composition algorithm, and how to handle the output of decomposition and re-
construction algorithms above efficiently. In general, a given function f € L(IR)
is not contained in V;. We want to construct an approximation of f in V; and,
at the same time, find an efficient method to compute the needed input for the
decomposition Algorithm 4.3. For convenience, we consider the N-periodization
of f € L*(IR)

NE

(4.14) f= f(- +nN).

n o0

The period N € IN is choosen as a power of 2 such that f is a good approxima-
tion of f in [~N/2, N/2]. We want to find an N-periodic spline interpolant s of

f

N,;,—1
(4.15) s= Y & N, (=277
=0
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with NTmJ defined in (4.10) and N; := 2/ N. Indeed, we are especially inter-
ested in the vectors (cj,l);i"oil (cji = (c}f’l)f,;é) or in the Fourier transformed
data C;(w}) (k=0,...,N; — 1) defined in (4.12). These values can directly be
employed in the decomposition Algorithm 4.3. Vice versa, if the Fourier trans-
formed coefficients Cj(w;?), Dj(w;?) (k=0,...,N; — 1) are known, computed
by the decomposition— and reconstruction algorithm, respectively, then an algo-
rithm is needed for the efficient computation of function values of fj, g;. Here
again f;, §; denote the N-periodization of f; € V; and g; € W;.

In the following we want to present an efficient algorithm for the computation
of Cj(w%) (k=0,...,N;—1). Let m € IN be odd and let 1 < r < |(m+1)/2] be
fixed. Consider the following N-periodic Hermite spline interpolation problem:
For given values

(4.16)  fr, =D"f(2772)sen (»=0,...,r—1;n=0,...,N; —1)

we wish to find an N-periodic spline function s satisfying the interpolation con-
ditions

(4.17)  D¥s(2 92)|pen = f

v
J,m

(v=0,...,r—1;n=0,...,N; — 1).
Inserting (4.17) into (4.15), we find forn =0,...,N; — 1

N;-1

~T - U T . r—1T
Fin= 20 & ("N, @~ Dlamn)
1=0 =
with }j’n = (;”n)f;%] Using the discrete Fourier transform of length N;, we
obtain
~T ”,
Fjw = Cwi)" H(wy)*
with
N;j-1
(4.18) firn= Z Fin w;cn
n=0

and the Euler-Frobenius matrix H, of degree m and defect r defined as in
(2.24), since

N;—1 1T

v N7 —3 T
3 (D N (2 ]‘””z:")uzo whn
n=0

fe’s) N]'—l

= 3 3 (DN (e ul)lemn) 5"k

u=—o0 n=0
o0
v r—1T
- }{ (DY N (@)|a=s)i—g wi* = HJ, (wh)T.
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For odd m, the Euler—Frobenius matrix H is invertible (cf. [18, 23]). Thus, the
Fourier transformed data are uniquely determined by

(4.19) Cj(wh)y=H (W) f,, (k=0,...,N;—1).
We summarize:

Algorithm 4.5.
Input: m,j7€IN, modd,1<r< L(m+ 1)/2J,
N power of 2, N; := 2N,
Pn€C (v=0,...,r—1,n=0,..N;—1).

Step 1: Precompute H7, (w%)~! (k=0,...,N; — 1) given by (2.24).
Step 2: Compute for }'j’k (k=0,...,N; — 1) in (4.18) by FFT.
Step 3: Compute (4.19).

Output: Cj(wf) eC” (k=0,...,N; —1).

Remark. For small m and 7, the matrix H" (2) ! (2 € T') can be computed
simply (see Example 5.1 for HZ(z)). Further, we have

_ 1 /3-1

4 5—-10z —1 -5z
Hiz)'= — :
+(2) 5z (1 — 62z + 22) <10+5z 5+ 2 ) u

For more information on Hermite spline interpolation and Fuler—Frobenius
matrices we refer to [24] and the references there. For even m, the Euler—
Frobenius matrix is not invertible. However, using interpolation conditions with
shifted interpolation nodes, i.e.,

DYs(2792)|penir = DY F(2772) | pensr (n=0,...,N; =1, v=0,...,7 — 1)

with 7 € (0, 1), interpolating functions can be found analogously. For a good
choice of 7 see [24]. For [(m+1)/2| < r < m+1 the Hermite spline interpolation
problem can be solved locally.

Now we want to deal with the second problem, namely, how to compute

approximate function values of f;, §; efficiently, if the data C(w%), D;(w¥)

(k=0,...,N; — 1) are known. Let us consider f; of the form (4.8) with f € V;.
Its Fourier coefficients read

N
W)= [ Bl da

1 N i 1 o
_ ch(w;)T/O Ng(a) 275N da = Oy N, (20 ;)
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In order to compute f; we consider the Fourier series

o

f= 3 aliyenn,

n=—oo

We replace this series by the truncated sum

Z Cl(,fj) eZm‘l-/N
leGun
with G,y = {l € Z; —uN/2 < 1 < puN/2}, where p is a power of 2. Then,
instead of the exact values f;(n/p) (n =0,...,uN —1) we calculate the approx-
imate values

fj,n/u = Z cl(-fj)w;lgl (TLZO,...,/,LN—l)
leGun

with w,n := exp(—27i/uN). We summarize:

Algorithm 4.6.
Input: m,7€IN,1<r<m+1,
N, v powers of 2, N; := 27N,
Cj(w?) (n=0,...,N; — 1),
N, .(2nl/N;) (I € G,n) given by (2.9).

Step 1: Compute for [ € G, n

C;(wh)T N, (2nl/N;)

Cc = j

1
N
with I’ := lmod Nj.

Step 2: Put

- . Je k=0,...,uN/2,
k= ek v k=pN/2,...,uN — 1.

Step 3: Compute by FFT

uN—-1
Fimn =D @w k" (n=0,...,uN —1),
k=0

Output: fj’n/u eC (n=0,...,uN—-1).

The computation of the approximation values §; in (4.9) with g; € W; can
be made in the same manner. For the Fourier coeflicients of g; we find by the
two—scale relation (3.3)

cn(35) = Nij Dj(w;?)T {b;(gﬂn/]vj)
- 5 D) Q) No(mn /) (n € 7).
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Hence, we obtain the approximate values of g;(n/u)

Gu = > al@)w i (n=0,...,uN —1).

Remark. The algorithms presented in this section are closely related to the
corresponding algorithms in [25]. &

5. Wavelets derived from Hermite fundamental splines

Let m € INg and 1 < r < m+1 be fixed. In the following, we use the conditions
(3.24) — (3.25) and put

(5.1) K(z?):=2711I,
such that
T 2 T T\—-1 pr
(5-2) Qrn(2) = 5 (Himy1(2)7)7 D (2)-
The corresponding wavelet vector ! , determined by (3.3), can be interpreted
as follows (cf. [22]): Let i;mH i= (L2m+tr)r—1 be the Fourier transformed
vector of spline functions L2107 € V2™ (y = 0,...,7 — 1) defined by
(5.3) L1 (u) = (H§m+1(eim)T)71 Ny (v)

and L3, ., = (LZ™+L7)7~1 Then we have for n € ZZ
(D* L3m+1’7)(x)|z:n =80m6u, (Hv=0,...,r—1)

with the Kronecker symbol § (cf. [22]). The functions LZ™17 are called cardinal
Hermite fundamental splines. Now let

(5.4) Pt = (DM 2Ly (2. 1) (v =0,...,7 — 1)

and Y7 = (1/),C’i’:)f,;%). Using the relation (5.3), we obtain for the Fourier trans-
formed vector 1,

~T

Yo (u) = (D™ L5, 0)(2 ~ 1) (w)
=27 (iw/2)" e 2 Ly (u)2)
=2 e M (Hyp i (e ™)) Dy (e ™) Ny (uf2).

Thus, the vector of wavelets 97 , determined by the two—scale symbol in (5.2) is
the (m+-1)-th derivative of the Hermite fundamental spline vector L3, ,(2-—1).

Remark. For r =1, the two—scale symbol reads

Qn(2) =21 2(1—2)" (Hp1(2)) 1 =212 ™ (1—2)" " (B,,(2)

m

Hence, Q}, is the two—scale symbol of the interpolatory spline wavelet described
in [7], pp. 177 - 182. &
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Example 5.1. Let us consider the case of cubic spline wavelets of defect 2.
From Example 2.1, 2. it follows for z € T' by

12 < 21 + 224z — 17522 —3 — 1762z — 37z2>

2 -1 _
Hz(2)" = — A2(z) \ —175 + 224z + 2122 37 4 1762 + 322

with
A%(z) =1— T2z + 26222 — 722° + 2*
for the two—scale symbol

7(1+ 402z + 3022 7(—7 — 642 + 3022
60 —642° — 72%) +402° + 2%)

Q3(2) = 5o
7(2) | —(1 4100z + 47822 9+ 2522 + 4782
+2522% + 9z%) +10023 + 24

Fig. 1. Cubic spline wavelet ¢g’2 defined by (5.4)

In the matrix Q%(z), a certain symmetry can be observed. For r = 2, we can
prove the following symmetry relations for ™" (v =0,...,7 — 1).

Theorem 5.1. Letr,m € IN (1 <r <m+1) be fized. Then the wavelets 7"
(v =0,...,7 — 1) determined by the two—scale symbol QT in (5.2), satisfy the
symmetry relations

(5.5) YT (124 0) = (1) (12 - ).
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Fig. 2. Cubic spline wavelet 1/111;’2 defined by (5.4)

Proof. Using the symmetry of the cardinal Hermite fundamental splines de-
fined in (5.3)

LPmHLr(g) = (=1)Y L2t (—2) (v =0,...,r — 1),
we obtain for v =0,...,7r —1
YT (y/2 + 1/2) = 2 DL LML ()
_ (_1)v2m+1 Dm+1[Ll2/m+1,r(_y)]
= ()™ T(1/2 - y/2).

6. Spline wavelets with minimal support

Let Q}, (m € INog, 1 <7 < m + 1) be of the form (3.24). We want to compute
the matrix K (2?2) such that the corresponding wavelet vector 7 , determined
by

Q.(2) = 2 K(2%) (H3,,11(2)") ' D}, 4(2)

possesses minimal support beginning at zero.
m

Observe that D7, ;(z) is a matrix polynomial of the form El;gl Dy ., 2!, where
D; ;€ € and D10 # 0. Since the elements of (Hb,,,(2)")"! are
Laurent series in the Wiener class, we have to look for a matrix polynomial

C'.(z) with minimal degree such that CT,(z) H5,,,,(2)" is of the form

(6.1) Cr(2) Hypya(2)" = 2K (2°)
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and with
(6.2) 0<co<ou(Cr(2)Cr(2)) <1 <00 (u=0,1),
ie.,

(6.3) Q. (x) = Cl,(2) D}, (2).

The relation (6.1) is equivalent to the condition
(6.4) Cro(2) Hp1 (2)" + Cro(=2) Hy 1 (—2)T = 0.

We show that the computation of C7 (z) with (6.2) and (6.4) can be done by solv-
ing the following Hermite spline interpolation problem (cf. [12]): We wish to find
spline functions s, € V2™ (v =0,...,r—1) with support on [,, Z,42m+2_r]

and integer knots at

(65) LTyyee sy Ty42m+2—1r
such that s := (sg,...,s,-1)T satisfies the following interpolation conditions

(6.6) D*8(2)|g=n =0 (u=0,...,7 —1;n € Z).

In [12], it is shown that the splines s, € V""" (v = 0,...,7 — 1) are uniquely
determined by (6.5) — (6.6) up to normalization. Furthermore, there exist no
nontrivial solutions s, (v = 0,...,r—1) of (6.6) in V> with smaller support
(cf. [12]). We put

N—
(6.7) s=>» C" Nj,..(2-—1) (C[" e@™).
1=

[uy

By (6.5) and supp N2™*1" = [z,, 2, 9m+2], we put N := [(2m+1)/r] in (6.7).
Then, C(*" and C'y”, are upper- and lower-triangular matrices, respectively.
Let

LN

(6.8) Cr.(z):= 3 cmr 2
=

be the symbol matrix of s. The Fourier transform of (6.7) reads
(6.9) 8=CJ (e "*) Nypya (-/2).
We obtain:

Theorem 6.1. The matriz polynomial CT, in (6.8), defined by the solution
s = (sy)z;é of the interpolation problem (6.5) — (6.6), is unique up to normal-
ization and satisfies the conditions (6.2) and (6.4). Moreover, there is no matriz

polynomial satisfying (6.2) and (6.4) with a smaller degree than N — 1.
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Proof. 1.LetC;"":=0forl<0and!>N —1,

Co(2%) = C}, o(2%) :=271(Ch,(2) + Clp(—2)) = > Cop" 2%,
I=—0
C1(2%) = C;,1 () = (22) {(CT(2) - Cru(=2)) = Y Cypfy 2%,
I=—o0
such that
(6.10) Cr.(2) = Co(2%) + 2 C1(2%).
Analogously,

Hy(2%) = H§m+1,0(z2) =2 (HY,, 1 (2) + HS,p 1 (—2)),
H_y (%) = H§m+1,71(22) i=2"" 2(HY,, 1 (2) — HS, 1 (—2)),
ie.,
(6.11) bmi1(2) = Ho(2%) + 27 H_1(2%).
From the interpolation conditions (6.6) it follows by (6.7) that

Z Clm’rDﬂNgm+1(2-’B— l)|z:n =0 (n € Za n= 07"‘7T_ ]')

l=—00

Thus, we have for y =0,...,r —1

Z C;n# Z D”N§m+1(2x _ l)|z:n Z2n
l=—00 n=-—oo
= Z C;’;ﬂ“ 22 Z D”N§m+1(2(m _ l))|z:n L2(n-1)
I=—00 n=—oc
e 0
+ Z glbj:l Zzl Z D#N§m+1(2(:p - l) - 1)|z:n Z2(nil) =0.
l=—o0 n=—oo

By definition (2.25) of H3,,,,(2) we obtain
00(2’2) Ho(Zz)T + 01(2’2) H_l(ZQ)T =0.

Using the relations (6.10) and (6.11) we find (6.4).
2. Since the functions s, (- — 1) (v =0,...,7r — 1; | € Z) form a Riesz basis of

U:={f eV . Dtf(x)pey=0,l€ Z, p=0,...,7r — 1}
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(cf. [12]), we obtain that for v € IR

(3, 8](u) = > 8(u+2mn)3(u + 2mn)*

n=—oo

Y Crle™ ) Ny (/2 + 7n)

XN;m+1(u/2 + n)* C:n(efi(u/2+7rn))*
= Ol e ) B (e O (e )"
+C7 (—e7/?) £m+1(_e—iu/Q)C:n(_e—iuﬂ)*

is positive definite with eigenvalues bounded away from zero. Thus, there are
constants ¢y, ¢; with

0<é < O'#(C’:n(z) C’.(2)*+CT,(—2) c:n(—z)*) <& <oo (u=0,1;z€T)

But by(6.4), o9(CT,(2) CT,(2)*) = 0 would yield o¢(CT,(—2)CL,(—2)*) = 0
(z € T). Hence, (6.2) is satisfied for some positive constants ¢y, ¢1.

Finally, there is no matrix polynomial satisfying (6.2) and (6.4) with a smaller
degree than N — 1, since there are no nontrivial solutions s, (v =0,...,r — 1)
of (6.6) with smaller support than [z,,2,+2m+2-r] (cf. [12]). O

Now let C7,(z) be defined by (6.8) as symbol matrix of s . Observing that
D™ ] (u) = CT(e7™/2) D™ N, 1] (u/2)
= Cr(e ™) D}, (%) N, (u/2)
= QL (e™"?) N (u/2),

we find that the wavelet vector 9" , determined by the two—scale symbol Q7 (z)
in (6.3), can be described by the (m + 1)-th derivative of s

(6.12) T =D™tls,

Remark. The orthogonality relation (3.9) for Q, is equivalent to the inter-
polation condition (6.4), since by (2.14), (2.26) and (6.3) we have

P}(2)®),(2) Qp,(2)* =271 D} (2*) PLy D, Hy,, 4 (2) Cro(2)". W

Example 6.1. For r = 1, the condition (6.4) is satisfied with the polynomial
C..(2) = c}, z ' H},, 1 (—z) of degree 2m. Thus, by D}, ;(z) = (1 —z)™"! and
choosing the normalization constant ¢, = 2™~ we find

1—2z

= (157)" s

_ <1§_Z)m“ S Nampa(+ 1) (=),

n=0
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i.e., the well-known Chui-Wang wavelet is obtained (cf. [9, 8]).
For 7 = 2, the following symbols C2, and Q2, are found:

m=1:
2 _ ]. 0 2 _ 1 2 + 2z 73
Cl(z) - <0 1 ) Ql(z) - 2\/5 —32 1_|_22: ’
m=2
204+ 32z -7
2 _
Ca(2) = ( ~7z 3—|—20z) ’
Q(z) = 1 20 + 66z + 142% 29 + 20z + 22
27 810 \ —14 — 66z — 2027 1 + 20z + 2922 )’
m=3
C2(z) = 1653 + 58962z + 6622  —2879 — 7922
3\e) = —792z — 287922 66 + 5896z + 165322 )’
551 + 72322 + 1232522 —2041 — 115122
, 1 +18262% + 112* —80622% — 3302°
Q;(2) = —F——
81181830 | —330z — 806222 11 + 18262z + 1232522

—1151223 — 20412%  +723223% + 55124

Here the normalization constants are chosen, such that det Q% (—1) =1. &

Fig. 3. Cubic spline wavelet ¢g’2 of minimal support.



30 G. Plonka

Fig. 4. Cubic spline wavelet ¢f’2 of minimal support.

The support of the obtained wavelets is given by
(6.13) supp ¢;"" = [0, [(v +2m + 2 —7)/r]] = [0, [(v + 2m + 2) /7| — 1]

forv=0,...,7—1. For r = 1, it follows that supp 1/)6”’1 =[0,2m+1]. For r = 2,
we have supp %72 = [0,m] (v = 0,1). In the following, we suppose that for all
sy (v =0,...,7— 1) the same normalization constant is used. Then a symmetry
relation can be observed for r = 2.

Lemma6.2. Let m € IN,r = 2 be fired. The wavelets y™?* (v = 0,1) with
minimal support, determined by the two—scale symbol Q2, in (6.3) with C?,(z)
in (6.8), satisfy the relation

(6.14) oo = (1) Y (m ).

Proof. It can simply be shown that the spline functions sg, s1, determined by
(6.5) and (6.6), satisfy the symmetry relation

so = s1(m — ).
By repeated differentiation, the assertion follows by (6.12). O

Acknowledgment. This research was supported by the Deutsche Forschungs-
gemeinschaft.

The author wishes to thank the referees for their comments and suggestions to
improve the representation of the paper.



Generalized Spline Wavelets 31

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

References

Alpert, B., K.: A class of bases in L? for the sparse representation of integral operators.
SIAM J. Math. Anal. 24 (1993) 246-262

. Battle, G.: A block spin construction of ondelettes, Part 1: Lemarié functions. Comm.

Math. Phys. 110 (1987) 601-615

de Boor, C.: On local linear functionals which vanish at all B-splines but one. In: Theory of
Approximation with Applications (A. Law, A. Sahney, eds.). New York: Academic Press
1976 pp. 122-145

. de Boor, C.: The exact condition of the B-spline basis may be hard to determine. J.

Approx. Theory 60 (1990) 344-359

de Boor, C., DeVore, R. A., Ron, A.: The structure of finitely generated shift—invariant
spaces in Ls(IR?). J. Period Functional Anal. (to appear)

de Boor, C., DeVore, R. A., Ron, A.: On the construction of multivariate (pre)wavelets.
Constr. Approx. 9 (1993) 123-166

Chui, C. K.: An Introduction to Wavelets. Boston: Academic Press, 1992

Chui, C. K., Wang, J. Z.: A general framework for compactly supported splines and
wavelets. J. Approx. Theory 71 (1992) 263-304

Chui, C. K., Wang, J. Z.: On compactly supported spline wavelets and a duality principle.
Trans. Amer. Math. Soc. 330 (1992) 903-915

Daubechies, I.: Ten Lectures on Wavelets. Philadelphia: STAM, 1992

Goodman, T. N. T.: Interpolatory Hermite spline wavelets. J. Approx. Theory 78 (1994)
174-189

Goodman, T. N. T., Lee, S. L.: Wavelets of multiplicity . Report AA/921, University of
Dundee, 1992

Goodman, T. N. T., Lee, S. L., Tang, W. S.: Wavelets in wandering subspaces. Trans.
Amer. Math. Soc. 338 (1993) 639-654

Hervé, L.: Multi-Resolution analysis of multiplicity d. Application to dyadic interpolation.
Appl. Comput. Harmonic Anal. 1 (1994) 299-315

Jia, R. Q., Micchelli, C. A.: Using the refinement equation for the construction of pre-
wavelets II: Powers of two. In: Curves and Surfaces (P. J. Laurent, A. Le Méhauté, L. L.
Schumaker, eds.). New York: Academic Press 1991 pp. 209-246

Lemarié, P. G.: Ondelettes & localisation exponentielle. J. Math. Pures Appl. 67 (1988)
227-236

Lemarié-Rieusset, P. G.: Ondelettes généralisées et fonctions d’échelle a support compact.
Revista Matematica Iberoamericana 9 (1993) 333-371

Lipow, P. R., Schoenberg, I. J.: Cardinal interpolation and spline functions III. Cardinal
Hermite interpolation. Linear Algebra Appl. 6 (1973) 273-304

Lyche, T., Mgrken, K.: Spline wavelets of minimal support. Numerical Methods of Ap-
proximation Theory, ISNM 105 (D. Braess, L. Schumaker, eds.), Birkhauser, Basel, 1992,
pp. 177-194

Mallat, S. G.: Multiresolution approximations and wavelet orthonormal bases of La(IR).
Trans. Amer. Math. Soc. 315 (1989) 69-87

Meyer, Y.: Ondelettes et Opérateurs I: Ondelettes. Paris: Hermann 1980

Plonka, G.: Spline wavelets with higher defect. In: Wavelets, Images, and Surface Fitting
(P. J. Laurent, A. Le Méhauté, L. L. Schumaker, eds.). Boston: A K Peters (1994) pp.
387-398

Plonka, G.: Two-scale symbol and autocorrelation symbol for B-splines with multiple
knots. Advances in Comp. Math. (to appear)

Plonka, G., Tasche, M.: Cardinal Hermite spline interpolation with shifted knots. Math.
Comp. (to appear)

Plonka, G., Tasche, M.: On the computation of periodic spline wavelets. Appl. Comput.
Harmonic Anal. (to appear)



32 G. Plonka

Gerlind Plonka

Fachbereich Mathematik
Universitdt Rostock
D-18051 Rostock, Germany

This article was processed using the LATEX macro package with CAP style



