Invertible integer DCT algorithms

GERLIND PLONKA AND MANFRED TASCHE

Affiliations:

Gerlind Plonka

Institute of Mathematics
University of Duisburg—Essen
D — 47048 Duisburg

Germany

Manfred Tasche
Department of Mathematics
University of Rostock

D — 18051 Rostock

Germany

FE—mail addresses:
plonka@math.uni-duisburg.de
manfred.tasche@mathematik.uni-rostock.de



Proposed running head: Invertible integer DCT algorithms

Author for correspondence:

Gerlind Plonka

Institute of Mathematics

University of Duisburg—Essen

D — 47048 Duisburg

Germany

Email: plonka@math.uni-duisburg.de
Telephone: 49 203 379 2677

Fax: 49 203 379 2689

Abstract

Integer DCTs have important applications in lossless coding. In this paper, an integer
DCT of radix—2 length n is understood to be a nonlinear, (left-)invertible mapping which
acts on Z" and approximates the classical discrete cosine transform (DCT) of length n. In
image compression, the DCT of type II (DCT-II) is of special interest. In this paper we
present a new approach to invertible integer DCT-II and integer DCT-IV. Our method is
based on a factorization of the cosine matrices of type Il and IV into products of sparse,
orthogonal matrices. Up to some permutations, each matrix factor is a block—diagonal
matrix with blocks being orthogonal matrices of order 2. Hence one has to construct only
integer transforms of length 2. We factorize an orthogonal matrix of order 2 into three
lifting matrices and work with lifting steps and rounding—off. This allows the construction
of new integer DCT algorithms. We give uniform bounds for the worst case difference
between the results of exact DCT and the corresponding integer DCT. Finally, we present
some numerical experiments for the integer DCT-II of length 8 and for the 2—dimensional

integer DCT-II of size 8 x 8.
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1 Introduction

The discrete cosine transform of type I (DCT-II) has found a wide range of applications in
signal and image processing (see [17, 19]), especially in image compression. It has become
the heart of international standards in image compression such as JPEG and MPEG (see
[1]). In some applications, the input data consists of integer vectors or integer matrices.
But the output of DCT-II does not consist of integers. For lossless coding it would be
of great interest to be able to characterize the output completely again with integers. In
the JPEG-2000 proposal [13], the use of the integer DCT-II for lossless image coding is
recommended. However, up to now, lossless coding schemes are hardly based on integer
DCTs which have been studied in recent years (see [3, 4, 5, 6, 9, 10, 11, 14, 20, 22]).
Especially, integer DCTs of length 8 and 16 (see [14, 20]) have been proposed. Note that
in some papers the notion integer DCT just means that floating point operations are
avoided while the resulting vector consists of dyadic rationals (see [6, 11, 14, 20, 22]). In
contrast, we consider integer—to—integer transforms.

In this paper, an invertible integer DCT of length n is understood to be a nonlinear,
(left—)invertible mapping which acts on Z" and approximates the classical DCT of length
n. Integer DCT possesses some features of the classical DCT, whereas its computational
cost 1s not higher than in the classical case. Integer—to—integer transforms have also been

considered in [4, 5, 9, 10, 16].

Usually, an integer DCT is based on a factorization of the transform matrix into products
of so—called lifting matrices and simple matrices. Here a lifting matrix is a matrix whose
diagonal elements are 1, and only one nondiagonal element is nonzero. Simple matrices
are permutation matrices or sparse matrices whose nonzero entries are only integers or
half integers. Then the noninteger entries of the lifting matrices are rounded to dyadic
rationals, and the inverse matrix factors are easy to determine. This method has the
advantage that it works for arbitrary radix—2 lengths (see e.g. [4, 5, 9, 10, 11, 22]).
In order to obtain an integer—to—integer transform, a rounding procedure is added after
each lifting step (see e.g. [4]). The difference between the results of exact DCT and the
corresponding integer DCT is caused on the one hand by the approximation of matrix
entries in lifting matrices by dyadic rationals, and on the other hand by the rounding
procedure after each lifting step. Explicit error estimates for these algorithms have not
been considered.

In this paper, we present new invertible integer DCT algorithms. Note that we are not
building integer DCTs in integer arithmetic. Thus the computations are still done with
floating point numbers, but the result is guaranteed to be an integer and the invertibility
is preserved. In software applications, this should not affect speed, as in many of today’s
microprocessors floating point and integer computations are virtually equally fast.

Our algorithms are based on new factorizations of cosine matrices CIf and C!V into
sparse orthogonal matrices of simple structure. By suitable permutations, each matrix
factor can be transferred to a block—diagonal matrix, where each block is an orthogonal
matrix of order 2. Now the idea for construction of integer DCTs of radix—2 length n is
very simple. For each block R, of order 2 and for arbitrary x € Z?, find a suitable integer
approximation of Ryx such that this process is invertible.

In particular, we are firstly able to give upper bounds for the worst case difference between
the results of exact DCT and the related integer DCT in the Euclidian and maximum
norm, respectively. Using the factorizations of the corresponding cosine matrices in [15],



the applied methods can easily be transferred to other discrete trigonometric transforms.

The paper is organized as follows. In Section 2 we introduce cosine matrices of type II
and IV and we sketch some recent results of [15] on the recursive factorization of these
matrices into products of sparse, orthogonal matrices. In Section 3, we apply the lifting
technique and rounding—off (see [4, 7, 11]), in order to construct an integer approximation
of Ryx for a given invertible matrix R, € R*** and arbitrary x € Z*. In particular, we
estimate the error (see Theorem 3.1). The results of Section 2 and Section 3 are applied
to integer DCT-II and integer DCT-IV of radix—2 length in Section 4. We propose two
algorithms for the integer DCT-II and the integer DCT-IV. Further, we estimate the
worst case error between the resulting vectors of the exact DCT and the corresponding
integer DCT. Finally, in Section 5 we investigate the numerical behavior of the integer

DCT-II of length 8 and of the 2-dimensional integer DCT-II of size 8 x 8.

2 Factorization of cosine matrices

Let n > 2 be a given integer. In the following, we consider cosine matrices of type Il and

IV of order n which are defined by
. n—1
Cil = \/% <€n(]) cos ]7(22:1”) 4 ,
7,k=0

, —1
2j4+1)(2k+ 1) \ "
o= \/Z <COS (24+1) (2k+ )vr> 7
n 4n L
J,k=0

where ¢,(0) := v/2/2 and ¢,(j) := 1 for j € {1,...,n — 1}. In our notation a subscript
of a matrix denotes the corresponding order, while a superscript gives the “type” of the
matrix. Observe that these matrices are orthogonal (see e.g. [17], pp. 13 — 14, [18, 19]).
The discrete cosine transforms of type II (DCT-II) and of type IV (DCT-IV) are linear
mappings of R* onto R”, which are generated by C1f and C'IV | respectively. In [15], simple
split-radix algorithms are proposed for these transforms of radix—2 length n, which are
based on factorizations of C'!1 and CIV into products of sparse, orthogonal matrices. In
this paper, we want to use these factorizations in order to derive invertible integer DCTs,
which are very close to the original DCT and map integer vectors to integer vectors.
Naturally, these integer DCTs are not longer linear mappings.

Let us recall the factorizations for C'!1 and CIV from [15]. First, we introduce some
notations. Let [, denote the identity matrix and J, = (6(j + k — n + 1));;;) the
counteridentity matrix, where § means the Kronecker symbol. Blanks in a matrix indicate
zeros or blocks of zeros. The direct sum of two matrices A, B is defined to be a block—
diagonal matrix A @& B := diag (A4, B). Let ¥, := diag ((—1)")7Z, be the diagonal sign
matrix.

For even n > 4, P, denotes the even—odd permutation matriz (or 2—stride permutation
matriz) defined by

n—1

Pox i= (20, %0, ..., Tpogy T1, T3 ey Tyy) x = (7).

Note that P! = PT is the n;-stride permutation matrix with n; := n/2. Further, let
Qn = (I, & Jn,) Py be a modified even—odd permutation matric with

QnX = (L0, T2y ey T2y Ty 1y T3y v oy xl)T.



Theorem 2.1 Let n > 4 be an even integer.
(i) The matriz C can be factorized in the form

CH=pH(CTeClV)T,.(0) (2.1)
with the orthogonal matrix
I J
1 n1 n1

(ii) The matriz CIV can be factorized in the form

CrV =Pl A () (CH & CINTL(1), (2.2)
where
V2
1, _ 1, _
A1) = L m-l ml I, @ X, Jy
( ) V2 [nl—l _[nl—l ( 1 b 1 1)

—V2

is a modified addition matriz and where T, (1) := (1,, ® Xy, ) T(1) with the cross—shaped
twiddle matriz

cos(ﬁ) sin(ﬁ)
cos(i—Z) Sin(%)
(1) cos((n;;)w) sin (n;;)w)
" — sin((n;;)w) cos((nz)w)
— sin(i—;r) COS(%)
—sin( ;) cos ()

The two matrices A, (1) and T,(1) are orthogonal.

For a proof of these factorizations we refer to [15]. Note that

T.(0) = (Lo, @ (=) @n (G_B Rz(%)) Q-

L) = (Lo @ %) Qn (@ Rz(”’ﬂ””)) Q-
k=0

with the rotation matrix

Rg(w) _ ( Ccos w simw)7

—siNWw COoSWw
and with @n := (I, ® Vy, ) P,, where V,, is the shift matrix determined by

Vix o= (21, @9, .y Tny, T0) X = (:I;j)?:_(}.
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Hence, up to convenient permutations and changes of sign, the matrices 7,,(0), T,(1),
and A, (1) can be represented as block—diagonal matrices, where each block is a rotation
matrix Rz(w) of order 2. The following constructions of integer DCT—-II are based on this
essential fact.

Let now n = 2" and n; := 277, j = 0,...,t — 1. If the formulas (2.1) and (2.2) are
applied recursively, then we obtain factorizations of the cosine matrices C11 and CIV,
where all matrix factors are orthogonal block matrices with blocks being permutation
matrices or matrices of the form 1,,,, A, (1), T,,(0), and T}, (1) (see [15]). In particular,
all matrix factors are sparse, i.e., they possess two nonzero entries at most in each row
and each column. Hence, by suitable permutations, the matrix factors can be transferred
to block—diagonal matrices, where each block is an orthogonal matrix of order 2.

3 Integer transforms of length 2

The main idea to obtain an integer DCT is now as follows. For a given invertible matrix
Ry € R*?* and for arbitrary x € Z*, find a suitable integer approximation of Ryx such
that this process is invertible. The simple structure of the matrix factors of C'IZ implies
that we need to find a suitable solution only for orthogonal matrices Ry(w) with angles
w e (0, 7).

Let s € R with s # 0 be given. Then matrices of the form

L) ()

are called lifting matrices of order 2 (see [7, 11]). Note that the inverse of a lifting matrix
is again a lifting matrix,

G -6 (D)=

Every rotation matrix Ry(w) of order 2 can be represented as a product of three lifting
matrices,

cosw sinw 1 tan¥ 1 0 1 tan¥
_ _ 2 2
Falw) = (—sinw cosw) o (0 1 ) (—sinw 1) (0 1 ) (3.1)

The above factorization of Ry(w) consists of nonorthogonal matrix factors. This factor-
ization (see [7]) can be used for construction of integer DCT as follows.

For a € Rlet |a| := max{x < a: a €Z} and {a} :=a— |a|] € [0,1). Then {a} is the

noninteger part of a. Further let rda := [a + 5| be the integer next to a.

A_lsx
Y=\o0 1

with x = (2o, 21)T € Z* can be approximated by y = (yo, y1)? € Z* with

Now, a lifting step of the form

yo:$0+L5$1—|—%J = 20 + rd (sxy), Y1 = T1.



This transform is invertible with
xo=yo— [sy1+ 3] = yo — rd (sy1), Ty =Y.
Indeed, we have
Yo —rtd (sy1) = xo+rd (sa1) —1rd (s21) = 20, Y = T4,
and conversely
voFrd(sz) =yo—rd(sy) Frd(syi) =yo, 71 =1
Using the factorization (3.1), we obtain

Theorem 3.1 Let Ry := Ry(w) with w € (0, 7] be a rotation matrizx.
Then for arbitraryx = (o, x1)" € Z*, a suitable integer approximationy = (yo,y1)" € Z*
of ¥ := Ryx is given by yo := 29, Y1 := 21, where

zo = wxo+1d(zy tan 5),

x1 + rd (=20 sinw),
2o+ 1d (21 tan ).

21

z2

The procedure is invertible and its inverse reads xg = vy, ¥1 = vy, where

vo = yo—rd (y1 tan %)7
v1 = 1y —rd(—vg sinw),
vy = wvo—rd(v; tan %),

Further, the error can be estimated by

v =l < (h@)?, Iy =yl < g(w) (3.2)

with

h(w) = % +sinw + % cosw + i (tan %)2, g(w) := %(1 + tan & + cosw).

Proof. The formulas for yo, y1 and xg, 21 (after inverse transform) directly follow by
applying the lifting steps to the three matrices in (3.1). Now we prove the error estimates
(3.2).

1. First we represent the components 3o — yo and g, — y; of ¥ — y in a convenient way.
Let

o = {xpsinw}
denote the noninteger part of z¢sinw, and similarly
e :={xy tan 2 + 12}, &g := {fo} = {wo cosw + 1 sinw}, & := {; cosw}.

Hence
{1} = {z1 cosw — z¢ sinw} = {5 — ¢ }.



Using (tan ¢) sinw = 1 — cosw, it follows that

x1 (1 —cosw) + %sinw = (21 tan & + %)sinw = (|1 tan & + %J + €1) sinw

such that

vy = 21 = |(—sinw) |z tan%+%J+xo)+%J+xl
= [—21 (1 —cosw) + (1 — 3)sinw — xo sinw + IJ_|_$1

= |1 cosw — g sinw + % + (1 — %)sinwj = |01+ 5 —|— (e — l) sinw].
Thus we obtain
gi—y1 =0 — i+ 5+ (a - §)sinw] = (81 — ) = [0 — o+ § + (a1 — 3)sinw]. (3.3)
Observing that

y1 = ||z1cosw] 4 — |xosinw] — € —|— + (1 — l) sinw |
= |ay cosw]| — |xg sinw] + |61 — € —|— 5+ (a0 — %) sinw |
and that by (cosw) tan % = sinw — tan %,

(
([z1 cosw| — [z sinw]) tan & = (z; cosw — x¢ sinw — d; + ¢p) tan %
= 2y (sinw —tan %) — xo (1 — cosw) + (g — dy) tan %,
we find
Yo = z2= |y tan¥ + 2| + (2 tan ¥ + | + xg
= |21 (sinw —tan ¥) — xo (1 — cosw)
—|—(60—51—|—L(Sl—co—l—%—l—(el—%)sinwj)tan%—l—%J—l— E tan%—l—%J—l—xo
|21 sinw + Cosw—l—l—cl—l—(eo—51—|—L(Sl—eo—l—%—l—(cl—%)sinwj)tan%J
= Lyfo—l—l—cl—l—(eo—csl—l—L(Sl—eo—l—%—l—(cl—%)sinwj)tan%J.

Hence we get

Jo—yo = GJo— [Jo+1—e+ (0= + |6 — €+ 1+ (e —1)sinw]) tan
= 50_L50‘|'1_61‘|‘(60—51—|—L51—60+2—|-( ;)Smwj)tan

]
|. (34

SIS

2. Now we can estimate the truncation error in the following way. Putting
o = &1 —co—l—%—l—(q — %)sinw, =00+ 1 — e + (€0 — 01 + [po]) tan %,
the formulas (3.3) and (3.4) imply

= (01— €0 — [p0])* + (do — [11])? (3.5)

and
= max {|d; — €0 — [po]], |do — [ ][} (3.6)

Since €, €1, and d; are contained in [0,1), it follows that puy € (—1,2), i.e. |uo] €
{=1, 0,1}. Then from

max {|po] — 3 — (&1 — ) sinw, =1} <8 — o < (lpo) +1) — 5 — (&1 — 1) sinw
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it follows that

—%—(61—%) sinw < & — € — o] <%—(61—%)sinw (3.7)
and especially for [po| = —1 even
0<6 —e— |po] < % — (&1 — %) sin w. (3.8)

Using (3.7), we obtain the estimate for p,
Sotl—e+(—3+(a—sinw) tan® <y <f+1—e +(5+ (e — 3) sinw) tan £
and equivalently

50—|—%— %tan%—l—(% —€)cosw < g < 50-|-%—|- %tan%—l—(%—q)cosw. (3.9)

Since dg, €1 € [0,1), we only need to consider the cases |u1] € {—1,0,1,2}.
3. We estimate the truncation errors (3.5) and (3.6). For [p1]| = 0 we find with (3.5) and
(3.7) the error estimates

y—vyl3 < max{(—% — (e — %) sinw)?, (% — (&1 — %) sinw)?} + 63 < i(l +sinw)* 41

and |y — y]le < 1.
For |[u1] =1 we find similarly

Iy —vyl3 < i(l +sinw)? 4 (6 — 1)* < i(l +sinw)? + 1

and [}y — yll.. < 1.

For |u1] = 2 it follows by (3.9) that §y > 2 — % — g tan 5 — (% — ¢€1) cosw and we find

1
2

vy -yl

1 +sinw)? 4 (6o — 2)?
1 +sinw)? + (% + %tan e+ (% —€1) cosw)?
(14 sinw)? + (1 + tan £ 4 cos w)?)

3 1 L fan @)2
T+ sinw 4 5 cosw + 4(tan 2)

N

IA A A
L Ll N LN L

and

¥ =¥l < 3(1 +tan % + cosw).

Finally, for [y | = —1 it follows by (3.9) that 6y < —241tan £ — (£ —¢;) cosw and hence

(14 sinw)? + (5 + 1)?
(14 sinw)? + (% + %tan g — (% —¢) cosw)?

3 1 L fan @2
T+ sinw 4 5 cosw + 4(tan2)

Iy — vl

= =

<
<
<
as before and again

1Y — ¥lleo < 3(1 4 tan % + cosw).

For w € (0, §] we have

1+ i(l +sinw)? < % + sinw + %COSCJ + i(tan %)2

such that the assertions (3.2) are proved. q.c.d.



Remark 3.2 1. Note that the procedure of Theorem 3.1 can also be obtained for reflected
rotation matrices Ry := Yy Ro(w). In this case, the integer approzimationy = (yo, y1)? €
Z* of Ryx is of the form yo = 24, y1 := —z wilh zo, 21, 29 as in Theorem 3.1, and the
error estimates hold as before.

2. Let ¥ := Ry(w)x with arbitrary x € Z* be given and let y its integer approximation.
The special values for the errors ||y — y|l2 and ||y — yl||s via the lifting procedure for

we{lh 5 16 ?—g} follow by inserting into formulas (3.2). In particular, we obtain

1.361453  for w = %, 1.060660  for w = %7
R I < 1.266694  for w = %, R I < 1.061396  for w = %,
YTYREEN 1199198 forw =z, Y 7Yl =9 1030638 forw ==,
1.320723  forw = ?—g, 1.067408  for w = ?—g.

Further, we have

¥ — ¥l <max{g(w): w € [0,Z]} ~ 1.067442

with g(w) in Theorem 3.1.

4 Integer DCT of radix—2 length

Using the method of Theorem 3.1, we want to derive algorithms for the integer DCT-
IT and integer DCT-IV of length n = 2. We want to propose two algorithms using
the factorizations of matrices C11 and C!V in Section 2 together with lifting steps and
rounding—off procedures of Theorem 3.1.

Algorithm A. The first idea is to apply the lifting steps and rounding—off procedures
to all (reflected) rotation matrices in the orthogonal matrix factors of C'IZ (and CIV,
respectively). In this way we are able to give a direct integer approximation of C'!’x (and
CIVx, respectively). The inverse of an integer DCT computed by Algorithm A follows
simply by going backward and taking inverse lifting procedures of Theorem 3.1. Note
that integer DCTs realized by Algorithm A are invertible on Z".

Example 4.1 Let n = 8. The orthogonal factorization of the cosine matrix C{ looks by
(2.1) and (2.2) as follows (see [15]):

cit = Pl oY) Tx(0)
= Bs (I ® As(1)) (C3 © €3V @ €3 @ C}7) (T4(0) @ Tu(1)) T5(0)

with the bit reversal matrix By := PL(Py @& Py),

v M v
V2 cos 1 , , sin g
v M v
A (1) 1 1 1 T (1) _ Cos TSI g
4 V2 1 -1 ’ 4 - : 3w 3 ’
—sin 2% cos £
\/5 16 16
M v v
SIn {¢ oS 15



and with

CH:L<1 1) CW:<COS% sing>222< oS g sing>‘

2 V21 -1/’ 2 sing  —cos g —sing  cos g

Note that this factorization of CZ implies a fast algorithm of the DCT-II of length 8 with
11 multiplications and 29 additions. This algorithm is very similar to that of C. Loeffler et
al. [12]. We apply lifting steps and rounding-off procedures to the four reflected rotation
matrices of the form Yy Ry(7) in T5(0), to the four (reflected) rotation matrices of the form
Yo Ry(%), Yo Ra(F5), RQ(?—E) in (T4(0) & T4(1)), to the four reflected rotation matrices of
the form Xy Ry(%), Xy Ry(%) in CHeCIV e CHeCH and to the reflected rotation matrix
Yo Ro(%) in Iy Ay(1). Hence we need 39 multiplications, 39 additions, and 39 rounding-
off operations for this integer DCT-II algorithm, i.e., the arithmetical complexity of such
an algorithm is relatively high.

The high arithmetical complexity of Algorithm A is due to the fact that matrix factors
containing the rotation matrices Ry(%) (as e.g. T3(0)) are computed by expensive lifting
steps. An alternative integer DCT with smaller arithmetical complexity is obtained, if we
admit a scaling factor.

Algorithm B. We propose for C1f and CIV the scaling factor \/n; with n; = 5 and

ny = %. Then we use for n > 8 the factorizations

VArCl = BT (a3 (Cl & CIN)) (VETH(0)). (1)
VIO = P (VEALD) (i (Cl & CI) (1), (42)
We start with

V2ot = PR e o) (V2Ti0)),
vaelr = PLay (Vo' s ofh) 1),

where in the factorization of v/2CIV the scaling factor is used for the matrix factor
CH g O differing from the rule for n > 8. Note that /2 CIT generates a left-invertible
mapping on Z*. Therefore, integer DCTs of Algorithm B are only left-invertible on Z".

Example 4.2 Let n = 8. We consider now the following factorization of 2 C{f,
208 = By (1,0 A1) (€4 @ ) 0 VE(CH @ ) (V2T4(0) @ Ty(1) V2 T(0).

We apply lifting steps and rounding—off procedures only to the two (reflected) rotation
matrices Xy Ry({5) and RQ(?—E) in the submatrix T4(1), to the two reflected rotation ma-
trices Yy Ry(%), Y2 Ry(%) in the submatrix CH @ CH and to the reflected rotation matrix
Y Ry(%) in A4(1). Since the matrices \/§Tg(0), \/§T4(0), and \/5(02[[ @ CI1) contain
only integers, rounding—off procedures are not necessary after multiplication with these
matrices, and rounding errors do not occur. Hence, the Algorithm B for the scaled integer
DCT-II of length 8 needs only 15 multiplications, 31 additions and 15 rounding opera-
tions. Now, its arithmetical complexity is nearly optimal, keeping in mind that the best
algorithm of DCT-II with length 8 requires 11 multiplications and 29 additions without
counting the scaling by 2v/2 (see [12]). An explicit algorithm for this example can be
found in [16].

11



We want to estimate the worst case difference between the results of the exact (scaled)
DCT and the corresponding integer DCT. First we consider Algorithm A, where all mul-
tiplications with (reflected) rotation matrices in the factorizations (2.1) and (2.2) are
replaced by the lifting and rounding procedure of Theorem 3.1.

Let n = 2', ¢t > 1, and let x € Z" be an arbitrary vector. Further let y = y(x) € Z"
be the resulting integer approximation of ¥ := CMx applying Algorithm A. With 6711,12

Ir
and €,

-, we denote the worst case error in the Euclidean norm and maximum norm,

respectively, i.e.,

6711,12 = sup {HCiIX —yl2: x€Z"}, el .= sup{HCiIX — Y|l : X €Z"}.

7,00

Analogously for the integer approximation w € Z" of C!V x via Algorithm A, we denote

the worst case errors by eIV and eV i.e.,

7’LOO7

el =sup{[|CVx — wll;: x € Z"}, elV i=sup {||CVx — Wl x € Z"}).

T,00

Theorem 4.3 Letn =2',t > 1, and let 6711[2, ffoo, 6711‘7/2, and 6711‘,/00 be the worst case errors
occurring, if exact DCT output vectors are compared with the corresponding integer DCT
results of Algorithm A. Then upper bounds of the worst case errors in the Fuclidean norm

can be recursively computed by

Sy 1/2 S\ 1/2
e, < (h(%)'"7, L (n(Z)",
e, < (M )2+ (el )Y 4 (mh(2)?, 1> 2,
1/2
M < (2 (2t >) VI, 4 (= DREDY, 2

Upper bounds of the worst case errors in the mazimum norm are

e < 9(5) el <a(d).
67117[00 S max{enlom nloo}—l_\/ g( ) tZQ,
e < Vimax {g(w): we 0, f +V2ell o +a(f), 122

Proof. We show the above estimates using the relations (2.1) and (2.2).
We consider the worst case errors in the Fuclidian norm. The estimates for egfz and e%
directly follow from Theorem 3.1 and Remark 3.2. By (2.1) we have

CII PT (CII D CIV) ( )

Let x € Z" be an arbitrary input vector. We set x(") := T,(0) x, %) := (CU P CIV)
and ¥ := PT % = CTx, Further, let x() be the integer approx1mat10n of X( ) using the
lifting steps and rounding—off procedures of Theorem 3.1 for all ny (reflected) rotation
matrices of T,,(0). Let x(?) be the integer approximation of %®, which is obtained by
applying the integer algorithm to (CU b CIV) ). Finally, the integer approximation y
of ¥ is only a permutation of x(?). For t > 2 we ﬁnd that

Iy =yl = %@ —x®,
o (CH S O ) xW+ I(Cf @ O ) xW — <@
. 1/2
< JEY = x Oy + (e 2)* + (1) 2)?)
1/2 1/2
< (m h<4>> + (e 2)* + (e 2)?) "
For 6711‘7/2, ei{oo, and en ., the proofs work analogously. g.e.d.

12



Remark 4.4 Note that h(w) is concave on [0, T] such that for all w € [0, F]

h(w) < iL(w) =

Consequently, we can estimate

h(0) + 1 (0)w = 2 + w.

n1—1 ni—1 /4
kZO (BT < Z p(BEUT) = 20 [ h(w)dw = 1047 p,
= k=0 0

since the midpoint rule is exact for linear functions.
Further, one can show that 32 2 \/n loan is an upper bound of 67117
and that 12—3 \/n is an upper bound of el! respectively.

and €'V, respectively,

n2}

and ¢!

T,00 7’LOO}

Example 4.5 Theorem 4.3 yields the following upper bounds of the worst case errors for
n=2t=1,...,6:

n | €y €2 €

2 | 1.361453 | 1.060660 | 1.266694 | 1.061396
4 | 3.784973 | 2.561396 | 5.070715 | 4.695545
8 |1 9.050477 | 6.816865 | 10.23107 | 7.702204
16 | 17.51041 | 10.702203 | 19.96457 | 14.97093
32 | 32.00139 | 19.21357 | 35.07515 | 22.23433
64 | 55.18159 | 28.23423 | 59.96287 | 36.77229

The fast growing worst case error between the exact DCT and the corresponding integer
DCT is obviously due to the large number of lifting steps and rounding—off procedures of
Theorem 3.1.

Now let us consider Algorithm B based on the factorizations (4.1) and (4.2), where all
multiplications with integer matrix factors are just evaluated without further change.
Lifting steps and rounding—off procedures of Theorem 3.1 are only applied to the remaining
(reflected) rotation matrices in the matrix factors.

Let again n = 2!, ¢t > 1, and let x € Z" be an arbitrary input vector. Further let y € Z"
be the resulting integer approximation of y := \/n_lcglx applying Algorithm B. With
ei{ and enoo, we again denote the worst case error in Euclidean norm and maximum
norm, respectively. For the integer approximation w € Z" of \/n_quv x via Algorithm

B, we denote the worst case errors by eV, and el

Theorem 4.6 Letn =2t > 1, and let effz, ffoo, el
occurring, if exact DCT output vectors scaled by \/ny are compared with corresponding
integer DC'T results of Algorithm B. Then upper bounds of worst case errors in the

Fuclidean norm can be recursively computed by

and eflvoo be the worst case errors
bl

s 1/2 1/2
el < (W), L < (el )P+ () iz
IV~ (p(= 1/2 <\/— 7 NE: 1/2 h(E 1/2
€22 = ( (g)) ) 64,2— ( (E)‘I' (E» +< (Z)> )
ny—1 1/2
Y < \/_<kz (20 )) T N,
=0
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Upper bounds of the worst case errors in the mazimum norm are

e < 9(5), el <max{ell eV}, t>2
eve < 9(5), eV <2max{g(F), 9(35)} +9(F)
eif/oo < nlﬂmax{g( ) w €0, 7r]}—I—Zemoo—l—i, t > 3.

Proof. Using the factorizations (4.1) and (4.2
Theorem 4.3.

the proof works similar to the proof of
b p p
g.e.d.

Example 4.7 Theorem 4.6 yields the following upper bounds of the worst case errors for

n=2t=1,...,6:
n 17 17 A IV
€n.2 €00 €n.2 €00
2 | 1.361453 | 1.060660 | 1.266694 | 1.061396
4 1 1.859588 | 1.061396 | 3.884236 | 3.195544
8 | 4.306432 | 3.195545 | 9.466687 | 8.661157
16 | 10.40017 | 8.661157 | 19.39821 | 18.96782
32 | 22.01032 | 18.96782 | 41.66265 | 41.92577
64 | 47.11932 | 41.92577 | 85.03752 | 86.74255

In particular, the upper bounds of the worst case errors for the scaled integer DCT-II of
length 8 are reasonably small.

Remark 4.8 1. For a special error estimate of the integer DCT IT of length 8 we refer to

shows that e

800 Can only

[16]. A componentwise investigation of the worst case error e 8100
occur in two components, while very small rounding errors appear in the other components.
2. The results can directly be extended to the 2—dimensional (2-d) integer DCT-II. Let
X € Z™" be given. Then the 2-d DCT-II of sizen X n of X is defined by CH X (CIHT,

Using the row—column method for computing of Y, i.e.,
Y= (el x)eht =zt = zn”

with 7 = CH X we can simply derive an algorithm of a 2-d integer DCT-II of size
n xn by applying Algorithms A or B first to the columns of X and then to the rows of the
resulting integer matriz. Moreover, worst case errors can be estimated using the results

of Theorems 4.3 and 4.6. For n = 8 and Algorithm B, this has been done in [16].

5 Numerical results

We want to apply the two algorithms proposed in Section 4 and compare them regarding
their numerical errors. The following examples show the behavior of the Algorithms A
and B in Section 4 for the integer DCT-II of length 8.

Let x € Z® be a given integer vector. Let y, denote the result of the integer DCT-II
algorithm o with o € {A, B}. Further, let ¥4 := Ciix and y5 := 2CHx be the exact
vectors after applying (scaled) DCT-II of length 8. In the following tables we give the
components of exact vectors y, (rounded to 3 decimal places) and the components of y,
for three examples of x.

1. Let x := (100,100,100, 100,0,0,0,0)7.
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Va4 | 141.421 | 128.146 | 0.000 | —44.999 | 0.000 | 30.067 | 0.000 | —25.490
YA 141 130 0 —45 0 30 0 —26
VB | 282.843 | 256.292 | 0.000 | —89.998 | 0.000 | 60.134 | 0.000 | —50.980
VB 283 256 0 -90 0 61 0 —51
For the errors in Euclidian norm, we obtain
SfA—yAHQ %1970, }A’B—YBHQQ()927
The absolute errors in the components can be seen from the table.
2. Let x:=(1,2,3,4,5,6,7,8)T.
Va | 12.728 | —6.442 | 0.000 | —0.673 | 0.000 | —0.201 | 0.000 | —0.051
YA 11 -7 0 —1 0 —1 0 0
VB | 25.456 | —12.885 | 0.000 | —1.347 | 0.000 | —0.402 | 0.000 | —0.101
VB 25 —13 0 —1 0 —1 0 0
For the errors in the Euclidian norm, we find
Va—ya|2 = 2.011, VB —yal2 ~ 0.842.
3. Let x := (=30, —94, —112,60, 26, —79,27,38)T.
Vo [—H7.983 |—89.501 |—12.305 |—9.729 [124.451 [51.364 |—72.205 |—3.414
yo |—38 -90 —13 -9 125 52 —72 —4
yp |—115.966 |—179.002 |—24.610 |—19.457 [248.902 [102.728 |—144.410 |—6.827
yp |—116 —179 —24 —20 249 103 —144 -7

For the errors in the Euclidian norm, we obtain

¥4 —yallz = 1.535,

S’B —yBH2 ~ 0.974.

We consider the distribution of the errors ||y, — ¥o|l2 and ||¥s — ¥o||c generated by
the two algorithms o € {A, B} in more detail. As input vectors we use 1000 random
vectors in Z° with entries in the range [—1023, 1024], i.e., each component is computed
by a random number generator in MAPLE which is supposed to return independent and
uniformly distributed data in the given range. We compute the r—th quantiles for r = %,
g = 1,...,10 for each algorithm. After sorting the errors of 1000 resulting vectors, the
r—th quantile is the smallest value that separates the errors into two parts; 10007 of the
sorted errors are less than or equal to the quantile value, the other 1000 (1 — r) errors
are greater than the quantile. For r = 1.0 we obtain the maximal error occurring. In the
following tables the r—th quantiles are rounded to three decimal places.

Alg. | r=0.1 | r=0.2 | r=0.3 | r=04 | r=0.5 | r=0.6 | r=0.7 | r=0.8 | r=0.9 | r=1.0
A | 1.220 | 1.413 | 1.534 | 1.652 | 1.771 | 1.876 | 2.003 | 2.125 | 2.296 | 3.097
B | 0.888 | 1.012 | 1.110 | 1.191 | 1.276 | 1.353 | 1.426 | 1.521 | 1.656 | 2.438

Table 1. r—th quantiles for the error ||y, — yo||2 with o € {A, B}
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Alg. | r=0.1 | r=0.2 | r=0.3 | r=04 | r=0.5 | r=0.6 | r=0.7 | r=0.8 | »=0.9 | r=1.0
A 10744 | 0.883 | 0.958 | 1.039 | 1.108 | 1.194 | 1.278 | 1.397 | 1.576 | 2.345
B | 0.535 | 0.631 | 0.697 | 0.759 | 0.822 | 0.894 | 0.966 | 1.070 | 1.245 | 2.270

Table 2. r—th quantiles for the error ||yo — Yol|loo with o € {A, B}

The numerical results show that Algorithm B is most favorable. It possesses very small
worst case errors and provides suitable integer approximations for the DCT-II of length
8, as seen in the numerical tests. The average error in Fuclidian norm of this algorithm is
less than 1.3 and the average error in maximum norm is even smaller than 1, i.e., in most
cases Algorithm B provides one of the two nearest integers to the exact DCT component
value in each component. Taking the arithmetical complexity into account, Algorithm
B is most recommended. Otherwise, an integer DCT-II based on Algorithm B is only
left—invertible.

Finally, let us look at the 2-d integer DCT-II. Now by A we denote the row—column
algorithm based on Algorithm A. By B we denote the row—column algorithm applying
Algorithm B. Let X be an input matrix of order 8, Y4 resp. Yp are the 2—d integer DCT-II
of X computed by method A resp. B, and Yy := CH X (CihT, Vg = 4CH X (CIHT are
the corresponding exact (scaled) 2-d DCT-II of X, where each entry is rounded to the
nearest integer. For the input matrix

11 16 21 25 27 27 27 27
16 23 25 28 31 28 28 28
22 27 32 35 30 28 28 28
31 33 34 32 32 31 31 31
31 32 33 34 34 2v 27 27
33 33 33 33 32 29 29 29
34 34 33 35 34 29 29 29
34 34 33 33 35 30 30 30

we obtain that

236 -1 —-12 -5 2 -2 -3 1

-23 -17 -6 -3 -3 0 0 -1

-11 -9 =2 2 0 -1 -1 0

v, = -7 =2 0 1 1 0 0 0
-1 -1 1 2 0 -1 1 11’

2 0 2 0 -1 1 1 -1

-1 0 0 -1 0 2 1 -1

-3 2 -4 =2 2 1 -1 0

237 0 -11 -6 2 =2 =2 2

-23 -18 -7 —4 =2 2 0 -1

-12 -9 =2 2 0 -1 -1 0

Y, = -5 =2 1 3 1 0 0 0
-1 0 3 1 1 2 2 11’

0 0 2 -1 0 2 2 -1

-1 -1 0 -3 -1 1 2 0

-3 0 -3 -1 2 1 0 -1
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and

943 —4 —48 =21 9 -7 —-11 5
-90 -70 -25 -13 -11 0 2 -5
—44 -37 -6 6 1 -4 =2 0
-28 -8 1 6 4 0 0 1

YB=1 5 _3 6 6 0 -3 2 5|
7 -1 6 —1 -3 6 4 —4
5 -1 -1 -6 -2 7 4 -3
~10 6 —15 -7 7 5 -2 -2
942  —5 —49 —19 9 -8 —12 6
92 —70 -26 —13 —10 2 2 _5
43 -37 -8 5 1 -3 -2 0
Y, i —32 —4 —1 5 5 0 0 2

-2 -6 5 6 0 -2 3 6
4 =3 6 0 -2 4 3 -3
-3 -1 -2 -5 =2 7 5 =3
—12 6 —14 =7 8 4 -1 =2

We get the errors in the Frobenius norm

Ve — Yallrp ~ 7153, ||V — Va|r ~ 10.240.

The above example is taken from [21].

Acknowledgement. The authors would like to thank S. Dekel for very instructive
remarks improving the paper.
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