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Abstract

This paper presents a general approach to a multiresolution analysis and wavelet spaces
on the interval [—1, 1]. Our method is based on the Chebyshev transform, correspond-
ing shifts and the discrete cosine transform (DCT). For the wavelet analysis of given
functions, efficient decomposition and reconstruction algorithms are proposed using fast
DCT-algorithms. As examples for scaling functions and wavelets, polynomials and trans-
formed splines are considered.

1 Introduction

Recently, several constructions of wavelets on a bounded interval have been presented.
Most of these approaches are based on the theory of cardinal wavelets. The simplest con-
struction consists in the trivial extension of functions f: [0, 1] — R by setting f(x) :=0
for @ € R\ [0, 1]. These functions can be analyzed by means of cardinal wavelets. But
in general, this extension produces discontinuities at * = 0 as well as = 1, which are
reflected by large wavelet coefficients for high levels near the endpoints 0 and 1, even if f
is smooth on [0, 1]. Thus the regularity of f is not characterized by the decay of wavelet
coefficients.

Another simple solution, often adapted in image analysis, consists in the even 2—periodic
extension f of f : [0,1] — R. If f € C]0, 1], then fe C(R). But in general, if
f € C'0, 1], then the derivative of f has discontinuities at the integers. The smoothness



of f is again not characterized by the decay of wavelet coefficients.

In [8], Meyer has derived orthonormal wavelets on [0, 1] by restricting Daubechies’ scal-
ing functions and wavelets to [0, 1] and orthonormalizing their restrictions by the Gram—
Schmidt procedure. This idea led to numerical instabilities such that further investigations
of wavelets on a bounded interval were necessary (see [4]).

We are interested in wavelet methods on a bounded interval which can exactly analyze
the boundary behaviour of given functions. Up to now, three methods are known to solve
this problem. The often used first method is based on special boundary and interior
scaling functions as well as wavelets (see [3, 4, 13]) such that numerical problems at the
boundaries can be reduced. Then the bases of sample and wavelet spaces do not consist
in shifts of single functions. The second method (see [9]) works with two generalized di-
lation operations, since the classical dilation is not applicable for functions on a bounded
interval.

A third wavelet construction on the interval [ := [—1,1], first proposed in [6], is based
on Chebyshev polynomials. Both scaling functions and wavelets are polynomials which
satisfy certain interpolation properties. As shown in [16], this polynomial wavelet ap-
proach can be considered as generalized version of the well-known wavelet concept, which
is based on shift-invariant subspaces of the weighted Hilbert space LZ (1) with respect to
the Chebyshev shifts (see [2]), where w denotes the Chebyshev weight.

The objective of this paper is a new general approach to multiresolution of L2 (/) and to
wavelets on the interval I, based on the ideas in [16]. As known, the Fourier transform
and shift-invariant subspaces of L*(IR) are essential tools for the construction of cardinal
multiresolution and wavelets (see [5]). Analogously, the finite Fourier transform and shift—
invariant subspaces of L3 lead to a unified approach to periodic wavelets (see [7, 11]).
This concept can be transferred to the Hilbert space L3, of even periodic functions using
the shift operator

SaF::%(F(-—I—a)—I—F(-—a)) (a4 €R)

for F' € L%w,o- The isomorphism between L%w,o and L2 (I) can be exploited in order
to construct new sample and wavelet spaces in L2([). Using fast algorithms of dis-
crete cosine transforms (DCT), efficient frequency based algorithms for decomposition
and reconstruction are proposed. As special scaling functions and wavelets, we consider
algebraic polynomials and transformed splines. It is remarkable that our decomposition
algorithm for polynomial wavelets needs less multiplications up to a certain level than the
fast decomposition algorithm for cubic spline wavelets on [0, 1] proposed in [13].

The outline of our paper is as follows. In Section 2 we briefly introduce the Chebyshev
transform, related shifts and the DCT. In Section 3 we analyze shift—invariant subspaces
of L2(I). The scalar product of functions from shift-invariant subspaces can be simplified
to a finite sum by means of the so—called bracket product. In Section 4 we consider a
nonstationary multiresolution of L2 (1) consisting of shift-invariant subspaces V; (5 € Np)
generated by shifts of scaling functions ¢;. The required conditions for the multiresolution
of L2(I) and their consequences for the scaling functions ¢; are analyzed in detail. In
Section 5 we introduce the wavelet space W; (5 € Ny) as the orthogonal complement of
Vi in V41, Then W; is a shift-invariant subspace generated by shifts of the wavelet ;.
Using the two-scale symbol of ¢; and the bracket product of ¢; and ¢4, the wavelet 1,
is characterized in Theorem 5.3. Section 6 provides fast, numerically stable decomposition



and reconstruction algorithms based on fast DCT-algorithms. In Section 7 we present
polynomial wavelets on [ (see [6, 16]). Finally in Section 8, we adapt the theory of
periodic splines to the interval I with respect to the Chebyshev nodes. Note that the
transformed spline wavelets are supported on small subintervals of 1. The examples show
that periodic multiresolutions of L3_with even scaling functions ¢; can be transformed
into a multiresolution of L2 ().

2 Chebyshev Transform and Shifts

In this section, we introduce the Chebyshev transform and corresponding shifts and we
examine their relations to the even shifts of periodic even functions. For more details
on Chebyshev shifts we refer to [2, 16]. Throughout this paper, we consider the interval
[ := [~1, 1] and the Chebyshev weight w(z) := (1 — 2?)~"/2 for x € (=1, 1). Let L2([)
be the weighted Hilbert space of all measurable functions f: I — R with the property

/wwﬂWdy<m.

1

For f, g € L2 (I), the corresponding inner product and norm are defined by

2
(o) = 2 [wl) Swato) v IS = (0
1
Let {? denote the Hilbert space of all real, square summable sequences @ = (a,)°2,,

b = (b,)s2, with the weighted inner product and norm given by
1 o0
(a, b)i: = 5 aoho + Y abe,  lale = (a, )’
n=1

Let C'(I) be the set of all continuous functions f: I — R. By II,, (n € Ny) we denote the
set of all real polynomials of degree at most n restricted on I. As known, the Chebyshev
polynomials T, := cos (n arccos) € II, (n € Ny) form a complete orthogonal system in
L2 (I). Note that arccos : I — [0, 7] is the inverse function of cos restricted on [0, 7]. For
m, n € Ny we have

2 m=n=0,

(T, T,,) = I m=n>0,
0 m#n.

Further, we use the Chebyshev transform of L? (I) into I* mapping f € L2 (1) into a[f] :=
(an]f]);—, € [* with the Chebyshev coefficients

alf] = {f, Tn)  (n€No).
Then for f,g € L?(I), we have the Parseval identities

{f; 9) = (alf], alge . (/I = llalf]]e (2.1)

Note that the Chebyshev transform is a linear bijective mapping of L (I) onto [*. For
more details on the Chebyshev transform see [2, 10].



The Chebyshev transform is strongly related with the Fourier cosine transform. Let L3_
be the Hilbert space of all 2r—periodic, square integrable functions F, G : R — R with
the inner product

(F, G)y = % /F(S)G(S) ds.

Let L3, be the subspace of all even functions of L3 . For a given function f € L7, (1),
the cos-transformed function I" := f(cos) € L3, , has the Fourier expansion

P o= %ao(F) + 3 an(F) cos(n) (2.2)

n=1

with the Fourier cosine coefficients

2 K
an(F) = — /F(S) cos(ns) ds (n € Np). (2.3)
s
0
In order to adapt the concept of shifts to the interval I, we consider the even shift S, F' of
Fe L%w,o by a € R, which is defined as the even part of the translated function F(- —a),
ie.

S F = = (F(-+a)+ F(- —a)) € L%w,o- (2.4)

1
2
Observe that for n € Ny

Sgcos(n-) = cos(na) cos(n-), an(S.F) = cos(na)a,(F).

Restricting F' = f(cos) on [0, 7], the arccos—transformed function F'(arccos) coincides
with f € L2 (I). From (2.2) — (2.3) it follows directly the Chebyshev expansion

= alfl+ Y allt,  wl] = alfos)  (n€N).

n=1

Further, the even shift S, of F' = f(cos) (a € R) goes into the Chebyshev shift s, f of f
with h :=cosa € I, i.e.

(1)) = & flah = v@p(h) + 5 feh +v(@p(r)  (eel)  (25)

with v(z) := (1 — 2?)V2 (x € I).

For the realization of the Chebyshev transform in finite dimensional subspaces of L2 (1),
we will use fast algorithms of the discrete cosine transform (DCT). In the following, we
briefly introduce the different types of DCT.

Let N; := d2’, where j € Ny stands for the level and d € N is a constant depending
on the application. Further, let 0;; be the Kronecker symbol and e;0 = e;n, = 271,
gjr =1 (k=1,...,N; —1). We introduce the matrices

N . N N
(cos §F )y izo - D;:=diag (gjk)ilo, L= (Oki)pizo>

i

C; 1= (cos BN Dy i=diag ()02 1, == (0,5)0050

Njp1 r,5=0 " r,s=0



which fulfil the relations

N.
C;,D;C;D; = 7] I;, (2.6)
~T ~ o~ ~ ~T = N, -~
C’j D;C; = C]Cj D; = 7] ;- (2.7)
This follows from
ol k N 0mod N
4 um . ;5 u=Umo 41,
Zgivk cos N; { 0  otherwise, (28)
k=0
N;-1 N u = 0mod V;
4 2k + 1 J 425
Ccos (]\—I[_& = —N; u=N;yymod N, (2.9)
k=0 A 0 otherwise

(cf. [16]). For further development, we define some variants of the DCT. The type [-DCT
of length N; +1 (DCT-1 (N; + 1)) is a mapping of R+ into itself defined by

@ = Ciz  (zeRMT (2.10)
with C; := C; D;. By N;(C})~' = 2C", this mapping is bijective. Note that (2.6)
and (2.10) imply
AT\NT AT T/ VINT 1 T Nj T
(513) D]‘w = (C]) D]‘Cjw = D]‘C]‘D]‘C]‘D]‘w = 7:13 D]‘w. (211)
The type II-DCT of length N; (DCT-II (N;)) is a mapping of R™s into itself defined by
g' = Cly (yeRY) (2.12)
with C7 .= é'j. Then by (2.7) and (2.12), we obtain

~ -~ ~ - N
(,!"‘/'H)T Dj ,gH — ,yT C]T D]‘ ij — %yT'y- (213)

The type III-DCT of length N; (DCT-III (N;)) is a mapping of R into itself defined by

~ 11

I
=C;y (y € RNJ)

with C}" = é’]T ﬁj. By (2.7), the inverse of the DCT-II (N;) is the mapping (2/N;)
DCT-III (N;). Fast and numerically stable algorithms for the DCT-I (N; + 1), DCT-II
(N;) and DCT-III (N;), which work in real arithmetic, are described in [1, 15].

~ 111

3 Shift-Invariant Subspaces

Using the Gauss—Chebyshev nodes hj,, := cos (un/N;) (u € Z) of level j (j € Ny) and the
Chebyshev shift (2.5), we obtain the shifts of level j

Oju = Shj, (u - Z),

which possess the following properties (see [2, 16]):



Lemma 3.1 For j € Ny, u,v € Z and f, g € L (I) we have

(i)

(i)

(iii)  (ojufs 9) = ([, 0ju9)
)
)

Ojut+Njy1 — Ojtu — Oj41.2u,
20—j,u0-j,v — 20—j,v0-j,u = Ojutv + Oju—v s
(iv ojuly = cos(nur/N)T,, ap|oj.f] = cos(nur/N;)a,[f] (n€Noy),
(V ojuf €1, for f €1l (n € NO) .
Note that o;of = fand o;n,f = f(—-) for f € L2 (I). Further, for f € C(I) we have

(05 f)1) = f(hju)  (v€Z). (3.1)

A linear subspace S of L2 (1) is called shift—invariant of level j (j € Ny), if for each f € S
all shifted functions o;; f (I =0,..., N;) are contained in S. The shift-invariant subspace
of level 5

Siole) = span{ojo : [ =0,..., N;}
is said to be of type 0 generated by ¢ € L2(I). The shift-invariant subspace of level j

Sii(e) = span {ojp10241p: [=0,...,N; — 1}

is said to be of type 1 generated by v € L2(I). It is obvious by Lemma 3.1, (i) — (ii) that

Sjo(p) € Sjt10(e) and Sji(p) = Sjo(0j11,19) € Sjt10(e). By definition, f € Sj410(0)
can be represented in the form

Njt1

= Z eirik k() omre  (ajr(f) €R). (3.2)
k=0

Using Lemma 3.1, (iv) and Chebyshev transform, we obtain the Chebyshev coefficients

anlf] = Gdjpia(f)anle]  (n € No) (3.3)
with
N knm
Givinlf) = Y iprnajprs(f) cos - (3.4)
k=0 s+l

Observe that (oAzHLn(f))nN;{)l is the DCT-I (N;41 + 1) of (am,k(f))ﬁf;gl and that the
following properties of periodicity and symmetry hold for n € Ng and £ =0,..., N;31 —1

OA‘j-Hm(f) = &j+1,N]+2+n(f) ) OA[j-Hﬁ(f) = &]7NJ+2—k(f) .
In particular, for f € S;o(¢) we get the representation (3.2) with
Oé]‘_|_172[_|_1(f) =0 (l == 0, ceey N] — 1) . (35)

Then it follows that the vector (oAzHLn(f))nNio with components (3.4) is the DCT-I (N, +1)
of (ozj+1721(f));\;]0. For f € S;1(¢) we obtain (3.2) with

aj+1,2l(f) =0 (l = 07 R N])? (36)



and the corresponding vector (&j+17n(f))nNigl is the DCT-IT (N;) of (ozj+1721+1(f));i]0_1,

i.e.
(2l + V)nm

N,—1
iyl f) = Y ajrraa(f) cos N,
= i+1

In the following, we derive some important properties of the subspaces 5;,(¢). We char-
acterize S;,(p) (v € {0, 1}) by the Chebyshev transform:

Lemma 3.2 Let j € Ny, v € {0, 1} and ¢, f € L2(I) be given.

(i) Then f € S;.(¢) if and only if there exist &j41,(f) € R (n € Ny) with

Gin(f) = QN aa(f) (n € No), (3.7)
Qir1N () = (=1)74j410(f) (n=0,...,N;),
such that (3.3) is satisfied.
(i) Let 0j410f € Siu(). Then Si(f) = S;u(e) if and only if
supp a[ojt1,,f] = supp afoj41,.9], (3.8)

where supp a[f] :={n € Ny : a,[f] # 0} is the support of a[f].

Proof: As mentioned before, if f € S;,(¢), then (3.7) is satisfied. Since the Chebyshev
transform is a linear bijective mapping, the proof of the reversed direction is straightfor-
ward. Hence (i) is valid. Now we show (ii) for v = 0.

L If S;0(f) = Sjole), then ¢ € S;o(f). From (i) it follows that supp ale] C supp a[f].
Analogously, by f € S;o(¢) we find supp a[f] C supp alp]. Hence we obtain (3.8).

2. Assume that (3.8) is satisfied. We only need to show that ¢ € 5;0(f). Since f € 5;0(¢),
we have (3.3) with (3.7). By supp a[f] = supp a[¢], we conclude that a,[p] = Bj-l—l,n an[f]
(n € Ng) with

Biim = { Gjrrn(£)7 3 djpan(f) £ 0,

0 otherwise,

for which (3.7) is also satisfied.
For v = 1, the assertion follows immediately from S;1(¢) = S;o(0j111¢) and S;1(f) =
Siolojp1.f). =

For a further analysis of the shift-invariant subspaces of L2 (I), we introduce the bracket
product of @ := (a,)>%, and b := (b,)22, € [*. Let for k=0,...,N;

@, bl 1= Y (@, pu4kbmn, 14k + Ut )Ny kD1 N k) - (3.9)

m=0

Observe that [a,b]; s satisfies the symmetry property
[CL, b]]‘7N]+1_l = [CL, b]]‘J (ZZO,..., N]‘_H—l).
We extend the values [a@,b];, (k=0,...,N;41) to an N;i;—periodic sequence, i.e.

[a7b]]7k = [a’vb]j,k-I—NH_l (k - No) .



Then the type I-bracket product of length N; + 1 is defined by
[, ]} = ([a, B;)2, € RMH
and the type II-bracket product of length N; by
. b = ([a, blip)ly" € RY.

Lemma 3.3 Let j € Ny, v,u € {0, 1} and ¢, ¢ € L2(I) be given. Further, let f €
Sj,u(ip), g c S]‘M(@ZJ) with

alf] = diaHanlel,  anlg] = Bipialg)anly] (n € No)

be given, where &jq1,,(f), BHLn(g) € R possess the properties (3.7). Then we have

Njt1

(f.9) = D eivrnbipnnl(f) Birrnle) lalel, alv]]jsnn.

In particular, for p = v,

(f,9) = > eindipnlf) Bininle) [ale], al]]jn.

Using the Parseval identity (2.1), the proof follows by straightforward calculations. In
particular, with f := o0, g = o0, for arbitrary ¢,¢» € L2(I), we obtain for
[, m=0,...,N; the relations

N
- kim kmm
(000, Tjmth) = Y js cos —— cos —— [al¢], a[t)] |k .
k=0 N] N]
le., v
({0500, Tjm¥) )17z = CjDjdiaglaly], al¥]]; C;. (3.10)
Analogously, for f := 0412419, ¢ := 0j412m+1% we have for [, m =0,...,N; —1
pi K2L+ Dr k(2m+1)
s m s
(0j+1,204105 Tjr12mp1 V) = Z Ejk COS N cos N lal¢], al[¥] ],
k=0 J+1 J+1
and thus
N;—1 ~T ~
((Oj41.204195 Tjg1,2m41?0) )z,m:o = Cj D; diag [a[¢], a[y] ]? C;. (3.11)

Corollary 3.4 For j € Ny and p, ¢ € L2(I), we have
(1) Sinle) L Siu() (v €{0,1}) if and only if

lal¢], ald]]in = 0 (k=0,..., Nj—v); (3.12)



(ii) Sjolw) L S;1(v) if and only if
lale], ] )i = 0 (B=0,..., Nj1).

For ¢ € L2 (1), we consider the systems B;o(¢) := {00 : { =0,...,N;} and B;1(p) :=

{oj412019: [ =0,...,N;—1}. For B,o(p), we define a special orthonormality criterion.
We say that B;o(p) is orthonormal, if the modified Gramian matrix fulfils
N
(&jm (05105 OTjm®) Jigo = I (3.13)

The system B;1(¢) is called orthonormal, if the Gramian matrix satisfies

N-1 3
((11,204195 Tit1,2m119) )10 = L -

Then we obtain the following characterizations for the bases B, ,(¢) (v € {0, 1}) in terms
of the bracket products.

Lemma 3.5 Let v € {0, 1} and j € Ny be given.
(i) The system B, (@) is a basis of S;, () if and only if for allk =10,..., N; — v

lal¢], ale]]jx > 0. (3.14)

(ii) The system B;, () is an orthonormal basis of S;, () if and only if
lale), alellin = 2/N;  (B=0,...,N; —v). (3.15)

(iii) If ¢ satisfies (3.14), and if ¢* € L2 (1) is defined by

a[p] = (@) anle] (€ No)
with coefficients ¢j41,,(p*) determined by (3.7) and

binle’) = /N lalel alell* (n=0. N - ),
then B;,(¢*) is an orthonormal basis of S;, ().

Proof: Let v = 0. The system B, () forms a basis of S;o(¢) if and only if the Gramian
matrix
N]
({05,005 Tim®) )i m=o
is regular. Since C; and D; are regular, by (3.10) this is the case if and only if
diag [a[¢], al]]} is regular, i.e., if and only if (3.14) is satisfied.
By definition, B;o(¢) is an orthonormal basis of 5;0(¢) if and only if

N] N]
(€5m (5005 Tim®) )immo = ({05005 Tjm®) )i meoDi = 1.
By (3.10) and (2.6), this is true if and only if (3.15) holds. Finally, by verifying
lal¢™], alp ]k = 2/N; (k=0,....N;),

we see that by construction B;o(¢*) is an orthonormal basis of S;o(¢*). By Lemma 3.2,
the definition of ¢* implies that S;o(¢*) = 5;0(¢p).
Using (2.7) and (3.11), the assertions follow analogously for v =1. =

With the help of the bracket product, we are able to give a simple description of the
orthogonal projectors P;, (v =0, 1) of L(I) onto S;,(¢).
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Lemma 3.6 Let j € No, v € {0, 1} and let ¢ € L2 (I) with (3.14) be given. Then for
f e LA(I) we have

a[Pipf] = Cipin(Pipf)anle]l  (n € No),

where the coefficients é;p1.,(P; o f) satisfy the relations (3.7) and

Ea(Pif) = M (1=0,....N; —v). (3.16)

oik(Pinf) = Piulojxf).

Proof: We show the assertion only for v = 0. For f € L2?(I), the orthogonal projec-
tion Piof € S;0(p) is determined by f — Pjof L Sjo(¢). Then there are coefficients
¢iv1n(Piof) (n € Ny) satisfying the properties (3.7) of symmetry and periodicity with

an[Piof] = Cip1n(Piof) anle]l  (n € No).
Using Lemma 3.3, we obtain for all [ =0..., N}
0 = <f — Piof, sz@

= ngk cos [f Pj,Of]v a[@]]j,k

NJ Lo

= 2 cir cos g (el alillis = & Fiol) fole). alilliv) -

Hence the coefficients é;41 1 (Pjof) satisfy (3.16). The shift-invariance of P} follows from

an[o;1(Piof)] = Crin(Piof) anle] cos —
= Gl Pioloif))anle]l = an[Pio(oif)] (n €Ng). =

4  Multiresolution of L2 (I)

We form shift-invariant subspaces V; := S, o(¢;) with ¢; € L2(I) for each level j € Np.
The sequence of subspaces V; (j € Np) is called a nonstationary multiresolution of L2 (1),
if the following three conditions are satisfied:

(M1) V; C Vi1 (J € No).

(M2) clos (f_j v]) — 12(1),
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(M3) The systems B,o((N;/2)/%¢;) (j € Ng) are L2 (I)-stable, i.e., there exist positive

constants «, # independent of j such that for all 7 € Ny and for any (ozm)nNio €
RNJ+1,

N; N; 5 N;
OzZ@j,n Oéin S H Z@jm Q;n (N]/Q)l/z O;nP; S ﬁZaS]‘m a?,n‘ (41)
n=0 n=0 n=0

By (M3), B;o((N;/2)"?¢;) is a basis of V;. Note that dim V; = N; + 1. The shift—
invariant subspace V; is called sample space of level 7. The function ¢; of V; is said to be
the scaling function of Vi. If all systems B;o((N;/2)"/? ¢;) are orthonormal bases of V;
(7 € Np) in the sense of (3.13), then we say that (N;/2)"/2p; (j € Ny) are orthonormal
scaling functions. In this case the constants in condition (M3) are a« = 8 = 1. Concerning
(M2), we observe the following

Theorem 4.1 Let {V;}52, be a nested sequence of shift-invariant subspaces V; := S;o(¢;)
with p; € L2 (1), i.e., (M1) is valid. Then the condition (M2) is satisfied if and only if

o0

U supp alg;] = No. (4.2)
7=0
Proof: 1. Suppose that (4.2) is not satisfied. Then there is a number
no € No\ | Jsupp afg)]
7=0

such that for the Chebyshev polynomial T}, it holds that

T, L clos (U V]> .
7=0

Thus, (M2) is not satisfied.
2. Assume that (4.2) holds. By (M1) and Lemma 3.2, we have

supp ale;] C supp alpj+] (7 € No). (4.3)
Suppose that there exists f € L2 (I) (f # 0) with

f L clos (U V]> . (4.4)
7=0
By ko € Ny, we denote an index for which

lag, [f]] = max{|ax[f]]: k € No} > 0.

By (4.2) — (4.3) we conclude that there is an index jo € Ny such that ko € supp alpj,]
and N;, > ko. Since ¢;, € V; for all j > jo, we find that f L S;o(¢;) (J = jo). Hence,
for j > jo, we have by (3.12)

[a[f],alpilixe = 0,
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le.,

A, [f] A, [S‘Qjo] + AN;y1—ko [f] AN y1—ko [S‘Qjo]

. (4.5)
+ E (ak0+nN]+1 [f] Ako+nNjiq [S‘Qjo] + A(n+1)Nj11—ko [f] A(n+1)Nj11—ko [S‘Q]o]) = 0.

n=1

Put
€ ‘= |Clk0[f] ako[@jo” > 07
and choose j; > jg such that

Y laalflanlesll < cof2. (4.6)

n>Ny

This choice of j; is possible, since by Cauchy—Schwarz inequality

Zmn alenll < lalfllls laleall < o.

But (4.6) contradicts equation (4.5) for j = j;. This implies that f = 0, i.e., (M2) is
satisfied. =

Theorem 4.2 The system {B,o((N;/2)"/? ;) 1 j € No} is L2(I)-stable with positive
constants o, 3 independent of 3 if and only if for all k =0,...,N; and for all 7 € Ny

N2

a < - = [alp], aleillie < 8. (4.7)

Proof: 1. From Lemma 3.3, it follows that for j € Ny and (ozmk)ivéo € RN+

R Z aleillin

N]
H > ik ain(Ni/2)'? 00,
k=0

with
) knm
O 1= N (n € No) .
By (2.10) — (2.11) we have
N; 5 N;
Zemoz]k = a7 €]n&§n
k=0 7 n=0

With the considerations above, (4.1) reads as follows

N2 O

N
oY ity € 3 S il el ol € 83 it
n=0
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with arbitrary (ézm)nNio € R+ and j € Ny, which is equivalent to (4.7). m
In the following, we assume that (M1) — (M3) are satisfied. From (M1) it follows ¢; € Vj 1,
i.e., there exist unique coefficients a1 1(¢;) € R (k=0,..., Nj41) such that

Njt1

0; = § Sk Qa1 k(9)) Tip1 k@it -
k=0

This is the so—called two-scale relation or refinement equation of ¢;. The Chebyshev
transformed two-scale relation of ¢; reads

anlejl = Ajpi(n)anfpi]  (n € No) (4.8)

with the two-scale symbol or refinement mask of ¢,

plas knm
Ajpa(n) = ) cipirajr(e;) cos i (n € No).
— i1

By definition we obtain the relations of periodicity and symmetry for all n € Ny and

ZZO,..., N]‘_|_2—1,
Ajri(n) = Ajpi(Njg2 1), ANz — 1) = Ajna(l). (4.9)

If a scaling function ¢; (7 € Np) satisfying (4.7) is given, then an orthonormal basis
Bio((N;/2)\/? ©%) (7 € Ny) can be easily obtained by Lemma 3.5, (iii). Let ¢% (7 € No)
be defined by its Chebyshev coefficients

Sl = (aledl, alolli) M ale] (0 € No)

Then B;o((N;/2)"/? %) is an orthonormal basis of V; = S;o(¢;). The two-scale symbol
A%, satisfying
an[@;] = A;_H(n) an[@;ﬂ] (n € No)

is connected with A;44 by

oy o (el ale e N,
Al = 2 (R ) A (e

The following connection between the bracket product [a[p;], ap;]]; and the two-scale
symbol A;4; can be observed:

Lemma 4.3 Forj € Ny and k=0,...,N;, we have

lales], algillin = Ajpa(k) [aleja], alpjilliv
+ Ajpr(Njpr — k)2 la[¢;41], a[@j+1]]j+1,NJ+1—k-

In particular, if (N;/2)'/? ©% is an orthonormal scaling function and if A%, is the two-
scale symbol of ¢%, then

A

R AL (N — k) = 4 (k=0,... N,). (4.10)

J+1
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Proof: By the definition of the bracket product and by (4.8) — (4.9), we obtain for

k=0,... N,
lale;], ale;]]ix
= D (N, otk 93] F At 1)Ny ok [95]) F @ otV 4625+ G prtn, -k l25]°)
n=0

= Aj(k)? alejn], alejr]ljzie + At (N — k)? [alejn], alojp]]iving, k-

For orthonormal scaling functions, the assertion follows by Lemma 3.5, (ii). =

5 Wavelet Spaces

Let the wavelet space W, of level j (5 € Ny) be defined as the orthogonal complement of
Viin Vg, Le.

Wi = VinoV;, (el
Then it follows dim W; = (N;31+1)—(N;+1) = N,. By definition, the wavelet spaces W;
(j € Np) are orthogonal. By (M1) — (M2), we obtain the orthogonal sum decomposition

L) = Vo & W,
7=0

Further, W; can be characterized by the orthogonal projector P; o of L2 (I) onto V;, namely
by
Wi = A{f=Piof: f € Vi)

The subspace W; is shift-invariant of level j, since by Lemma 3.6 we have for g := f— P, o f
(f € Visr),

oiig = ojif —oj(Piof) = ojf = Piolojf) € Wi
Assume that the shift-invariant subspace W, can be of type 1 generated by a function
; € Viyq such that W, = S;,(x);). Further, we suppose that the set B, ((N;/2)"/% ;) =
{(N;/2) V2 01014005 0 L =0,...,N; — 1} is L2 (I)-stable, i.e., there are constants 0 <
v <4 < oo independent of j such that for all 7 € Ny and for any (ﬁm)nNial e RN,

Nj—1 N;-1 9 N;—1
v Z ﬁyzn < H Z Bjn (Nj/2)1/2 T 41, 2n4+10; <4 Z ﬁ]zn (5.1)
n=0 n=0 n=0

Under these assumptions, 1; is called semiorthogonal wavelet. 1f B; 1 ((N;/2)"2 ;) (j €
Np) are orthonormal bases, then (N;/2)Y/2; are called orthonormal wavelets. Obviously,
for orthonormal wavelets the condition (5.1) is satisfied with y = ¢ = 1.

By W; C Vj41, there are unique coefficients oj111(¢0;) € R (k=0,..., N;41) such that a
two—scale relation or refinement equation of v; of the form

Njt1

Y = Z€j+1vkai+17k(¢j)aj+l,k99j+1
k=0
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is satisfied. By means of the Chebyshev transform this yields

an[t;] = Bjyi(n)anlpipa]  (n € No), (5.2)
an[oj1105] = cos ;—W Bj1(n) anlpjti] (n € No)
j+1

with the two-scale symbol or refinement mask of 1,

Nj+1
knm
Bipa(n) == ) cjparajpnp(thy) cos N (n € No).
J+1

k=0

It is clear that B4, satisfies the same properties of periodicity and symmetry as A;4; in
(4.9). As in the sample space V}, the bracket products are important for the characteri-
zation of the L2 (I)-stability of W, and the orthogonality W, L V;:

Theorem 5.1

(i) The condition (5.1) for j € Ny with positive constants v and § independent of j is
equivalent to

N2
v < laldl alillin < 6 (n=0,... N; = 1), (5.3)

(ii) Forj € Ny and k=0,...,N; — 1 we have
km

J+1

) laly], alvl;

[aloji1a;], alojadi]lin = <cos

— <Cos N’j:l>2 <Bj+1(k)2 [aleji1], alejilljvn

(5.4)
+ Bi1(Njrr —k)? [alpj4a], a[%+1]]j+LNJ+1—k> :
(iii) For j € No, we have S;1(¢0;) LV, if and only if for alln =0,...,N; — 1
Ajp1(n) Bigi(n) lalej], aleji]]jvim (5.5)

— Ajr1(Njp1 —n) Bipi(Njyy — n) [algjn], algjnllivin, - = 0.

Proof: The proofs for (i) and (ii) are similar to those of Theorem 4.2 and Lemma 4.3.
In order to show (iii), we observe that V; L S;1(¢;) = S;0(0;41,1%;) is equivalent to the
equations [alp;], @[oj+1.1%;]]j6 = 0 for all k =0,...,N; by Corollary 3.4, (i). Inserting
the two—scale relations (4.8) and (5.2), we obtain the assertion. Note that from (5.5) it
follows that this equation is also valid forn = N; +1,....N;4;. =

We introduce the two—scale symbol matrices of level j (j € Ng) forn =0,...,N; — 1 by
Ajpa(n) Bjyi(n)

S n) = It I+ . 5.6

iv1(n) (AjJrl(NjJrl—n) — Bjs1 (N —n) (5.6)

As usual, these matrices will play an important role in deriving the decomposition and
reconstruction algorithms. Therefore we have to investigate the invertibility of S;1(n).
Let A, (v = 0,1) be the eigenvalues of S;11(n), i.e., it holds det (S;41(n) — A, I) =0
with the unit matrix I.
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Lemma 5.2 Assume that (M1) — (M3) and (5.1) hold with positive constants o, 3, v, §.
Then the two—scale symbol matrices S;41(n) are regular for alln =0,..., N;—1 satisfying

% min{a, v} < |\ P < % max{f3,d6} (r=0,1). (5.7)

In particular, it holds that

4 4
EMO{V < |det Sjq1(n)] < Ewﬁé (n=0,....,N; —1). (5.8)
Furthermore, we have forn=20,...,N; — 1

Siti(n)™" = diag ([alg], ale,]l;,, [ale,], alt,]]5,)" Sip(n)"

(5.9)
-diag ([alpjy1], alpjiillj+in, laleitl, a[%+l]]j+1,NJ+1—n)T-

Proof: Using Lemma 4.3 and (5.4) — (5.5), we find for n =0,...,N; — 1

Sis1(n)" diag ([alej1], alpjsi]livin s [alpil, alejmllizin—n) Sis1(n)
= diag ([alp;], ale,]lin, [alv)], altl];n)" -

Thus (5.9) holds for n = 0,..., N; — 1. By (5.9), (4.7) and (5.3), the eigenvalues and the

determinant of S;;1(n) can be easily estimated in terms of the constants a, 5, v, 4. =

Now by the help of the conditions for the two-scale symbol B;4y of ¢; in Theorem 5.1,
we obtain

Theorem 5.3 Assume that (M1) — (M3) are fulfilled. Then for all j € Ny, Bjyy :
Ny — R is a two—scale symbol of a semiorthogonal wavelet o; € L2 (1) if and only if for
n=0,..., N1, the two—scale symbol Bj1(n) is of the form

[a[99j+1]7 a[%+1]]j+1,N]+1—n Aj+1(N]+1 - n)

Bjti(n) = [alp;], alp;illjn

Kj(n), (5.10)

where Bjy1 has the same properties (4.9) of periodizity and symmetry as Ajy1, and where
K; : Ny = R satisfies the conditions

0 < v < |Kj(n)] £ p < x (n=0,...,N; —1),
Kj(n) = Kj(n + Nj-l-l) (n € No), (511)
[(]‘(N]‘_|_1 — n) = Kj(n) (n = 0, ceey N]‘ — 1)

for some constants v and p.

Proof: 1. Let Bji; be given in the form (5.10) with K satisfying (5.11). Then by
Theorem 5.1, (iii) the orthogonality V; L S;1(¢;) is satisfied, since for n =0,..., N; — 1,

AJ‘+1(”) Bj+1(n) [a[99j+1]7 a[@j+1“j+1,n
- A]+1(N]+1 - n) Bj+1(Nj+1 - n) [a[99j+1]7 a[%+1]]j+1,NJ+1—n = 0.
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It follows that S;1(¢;) € W,. It remains to show that ZS’]‘J((]V]‘/Q)I/2 Y;) (j € Ny) are
L2 (I)-stable. By (5.4) and Lemma 4.3, we find for n =0,..., N; — 1

gt lalvinl alpinllivig alepl aloimllin N
lal¢)], aly;]];n = [a[,], a[o;]]m Kj(n)”.

By (4.7) and (5.11), we can estimate

2,/2<£J2
16 5 - 4

3?
16

lal;], alil]in < pho< oo, (5.12)

2. For each 7 € Ny, let Bj1; : Ng = R be the two-scale symbol of a semiorthogonal
wavelet ; and let B;1((N;/2)"24;) (j € No) be L2 (I)-stable. Thus B, satisfies (5.4)
and (5.5). Now, put for n =0,..., N4

Kj(n):= Ajy1(n) Biyi(Njp1r —n) + Ajp1(Njg1r —n) Bipi(n).

Note that Kj;(n) = K;(Nj31 —n) for n = 0,...,N; — 1. Then we continue K; on
No by K;(n + rN;41) = Kj(n) for all n = 0,...,N;3; — 1 and r € Ny. Thus K|
satisfies the conditions (5.11). Multiplying (5.5) with A,;1(n), by Lemma 4.3 we obtain
forn=0,...,N;—land alsofor n =N, +1,..., N,y

0 = AJ‘+1(”)2 Bj+1(n) [a[99j+1]7 a[%+1“j+1,n
- AJ‘+1(”) Aj+1(Nj+1 - n) Bj+1(Nj+1 - n) [a[%‘ﬂ]aa[%+1]]j+1,NJ+1—n
= Bjpi(n)[alp;], alp;]lin — K;(n) Aj1(Njpr — n) [alej], aleip]lizin i —n

Hence, B;t1(n) is of the form (5.10) for n = 0,...,N; — I, N; + 1,..., N;41. Defining
B;+1(N;) by (5.10) for n = N;, the proof is complete. m

Corollary 5.4 Assume that B;o((N;/2)/? ©%) (J € No) are orthonormal bases of V.

Let A%,, be the two-scale symbols of ¢% € L:(I). Then for every j € N, By o

No = R is a two—scale symbol of a wavelet 7 € L2 (1) generating an orthonormal basis
Bii((N;/2)\/? V%) of W; if and only if BY,, possesses the form
Biy(n) = A4, (Np—n) (0 =0, Nyp)

and fulfils the same properties (4.9) of periodizity and symmetry as Aji1.

Proof: By Lemma 3.5, (ii) we have

N} lalfl alfllin = 4 (n=0,....Nj),
sz [aw);]v a[%/);“j,n = 4 (n = 07 ceey Nj - 1)
for all j € Ng. Hence, a = 8 =~ =46 = 1. From (5.12) it follows that v = p = 4,

and thus K;(n) = +£4 (n € Ny). Then the assertion can be obtained by application of
Theorem 5.3. =
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6 Decomposition and Reconstruction Algorithms

Now we derive efficient decomposition and reconstruction algorithms. In order to decom-
pose a given function fi11 € Vi1 (J € Ny) of the form
Njt1
frn = Y eimaifin) oipiein (6.1)

(=0

the uniquely determined functions f; € V; and ¢g; € W; have to be found such that

fivi = Ji + 9 (6.2)

Assume that the coefficients aj11; € R ({ =0,..., Nj41) of fi11 or their DCT-I (N;41+1)
data
Njt1
Gipig = > girr10irni(fis1) cos
=0

klm
Njp

(k=0,...,N;41) (6.3)

are known. The wanted functions f; € V; and ¢; € W; can be uniquely represented by

N. N;—1

J
i =Y Gmaim ) oimeis g = Y Birlgi) oipr2ee1th; (6.4)
m=0 r=0

with unknown coefficients ;. (f;), 5;-(g;) € R. Let &;, Bj,s € R denote the following
DCT-I (N; 4+ 1) and DCT-II (N;) data

N

. - kmm

QL = E Ejm Oé]‘7m(f]‘) COS N (k = 0,...,N]‘), (65)
m=0 J
N;j—1 (2 n 1)

~ T ST

Bis = g Bir(g;) cos ———— (s=0,...,N;,—1). (6.6)
r=0 Nj+1

In order to reconstruct fir1 € Viy1 (J € No), we have to compute the sum (6.2) with
given functions f; € V; and ¢g; € W,. Assume that ;.. (f;), 5;,(g;) € Rin (6.4) or the
corresponding DCT data (6.5) — (6.6) are known. Then f;1; € Vji; can be uniquely
represented in the form (6.1).

The decomposition and reconstruction algorithms are based on the following connection

between (6.3) and (6.5) — (6.6):
Theorem 6.1 Assume that for 7 € Ny

ak[cpj] 7£ 0 (k: 0,...,N]‘). (67)

For 3 € Ny, let fiv1 € Viyr, fj € Vi and g; € W, with (6.1) — (6.6) be given. Then we

have

Qi1 Qjr
s ~- S ! —0,...,N,— 1),
( QG4+1,Njp1—r ) ]+1(T) ( ﬁj,f’ ) (T ! )

Gipn, = Ajp(N;) &,
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Proof: From (6.4), it follows by Lemma 3.1, (iv) that for all n € Ny

anlfi] = G anlp;]
with

Inm

NJ
Gjn = Z@‘,l%‘,l(fj) COSTJ'
(=0

Analogously, by (6.1) and (6.3) — (6.6) we have for all n € Ny
wlfi] = Gppaanleinl,  alg] = Binadlv], (6.8)

where &41, is defined similar to ¢&;, and

Rl (2r + 1)
~ r n
WRERES .(g;) cos ————.
ﬁj, ; 517 (9]) Nj+1

The relation (6.2) holds if and only if for all & € Ny

ar[fim1] = a[fi] + ax[g;].

Using the Chebyshev transformed two—scale relations (4.8) and (5.2), we obtain

Gk arloie] = Gy Ajpa(k) arleio] + Bin Bi (k) axleja] -
Analogously, we have for £ =0,..., N;;
Q41 Ny —k Ok P11
= QN -k Ajrr(Njpr — B) arejsn] + Bing—k Bigi(Njgr — k) arfpjqa] .

Using the assumption (6.7) and observing that &;n,,, —xr = &, BNJH—k = _Bj,k (k =
0,..., Njt1), we obtain the assertion. Note that from (4.7) and Lemma 4.3 it follows that
QOéﬁ_l < AJ‘_|_1(N]‘)2 < 2071 ﬁ, le. AJ‘_H(N]‘) 7£ 0. |

We obtain the following algorithms:

Algorithm 6.2 (Decomposition Algorithm)
Input: 5 € Np,
OAé]‘_|_17k € R (k‘ - 0, ey N]‘_|_1).

Form for r = 0,..., N; — 1,

OA‘J'J’ -1 OA"-I-I r
~ = S i+1\T ( ~ I )
( Bir ) s (r) QN )

djn, = A (N by,

Output: &, (r =0,...,N;),
ﬁ]ﬁ’ (TZO,...,N]‘—l).
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Algorithm 6.3 (Reconstruction Algorithm)
Input: 5 € Np,

O:é]‘J» € R (TZO,...,N]‘),

ﬁ]ﬁ’ € R (TZO,...,N]‘ —1)

Form for r = 0,..., N; — 1,

OA{j-l—l,T’ R S OA{j,T’ >
~ = i1\ ~
( Q41N p1—r ) . ( ) ( ﬁj,r 7

Gipn, = Aj(N;) dsn;

Output: &1 (k=0,...,Nip1).

7 Polynomial Wavelets

As the first example, we consider polynomial wavelets on I (see [6, 16]). Set N; := 2/
(7 € Np). As scaling function ¢; of level j we use the following function defined by its
Chebyshev coefficients

2 n=0,....,N;, -1,
Njaylpi] == 1 n=Nj, (7.1)
0 n> N]‘
Then it holds that v
N ’
7]99]‘ = Z@Lka € HNJ-
k=0

By (7.1), the corresponding bracket product reads as follows

4 k=0,... N;—1,
Nlaled alellu = { 5 b2 (7.2

Using (2.8), we obtain the following interpolation property of ¢,

2 kim
@j(h]‘J) = 0']‘7199]‘(1) = F Esk COSV = 25071 (ZZO,...,N]‘). (73)
J =0 J

By (7.1), the shifted scaling functions o; rp; (k = 0,..., N;) are contained in Ily,. Further,
these functions ojrp; (kK = 0,...,N;) are modified Lagrange fundamental polynomials
with respect to the Gauss—Chebyshev nodes h;; (I =0,...,N;), since for k, [ =0,..., N;
from Lemma 3.1, (ii) and (3.1) it follows

oinpilhil) = (o0 0i)(1) = 5(05ukei(1) 4 0ju—r (1))
= 5]‘_7115&1-

Figure 1 shows the scaling function ¢5, and Figure 2 presents the shifted function o5 16¢5.
The function o;,p; (k=0,...,N;) is supported on the whole interval I, and has signifi-
cant values in a small neighbourhood of h;, if 7 is large enough.
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Let V; := S;o(¢;) be the sample space of level j. Consequently by Lemma 3.5, (i), the
polynomials o, ¢; (k=0,..., N;) form a basis of V}, i.e.,
‘/j:HN], dlm‘/]:N]—I-l

Note that the operator L;: C(I) — V; defined by

N]
Lif =) einflhip)oine;  (feC)
k=0

is an interpolation operator, which maps C'(I) onto V; with the property

L]f(hj,l) = f(hj,l) (l =0,..., N]) :

All sample spaces V; (j € Ny) form a multiresolution of LZ(I), where (M3) reads as
follows: The systems B;o((N;/2)"2p;) (j € No) are L2 (I)-stable with optimal constants

a=1/2and § =1, i.e., for all j € Ny and for any (ozm)i\go € RV*! we have the sharp
estimate

N. N.
1 J J
3 Y cinaly < Hng,k%,k(Nj/Q)l/zUj,k%

2 Y
< Z Esk Ozik .
k=0
Using (7.1), we find the Chebyshev transformed two—scale relation of ¢,

anlejl = Ajpi(n)anfpi]  (n € No)

with the corresponding two—scale symbol

2 n=0,...,N;,—1,
AJ-H(”) = 1 n:va
0 n:N]—|—1,...,N]‘+1.

Let W; := V41 ©V, be the wavelet space of level 5. Thus, dimW; = N,. Consider the
polynomials ¢; € Vi1 (j € Ny) given by their Chebyshev coefficients

2 n:N]‘—I-l,...,N]‘_|_1—1,
N]‘an[@/)j] = 1 n:N]‘_H, (74)

0 otherwise.

Then the corresponding bracket product reads as follows

0,....N;,
N;+1,...,Njy1 — 1, (7.5)
= N1

0 k&
NJ‘2 [al;], al;]]ize = 4 k
2 k

The shifted polynomials ;41 2,41 ¥; satisfy the interpolation properties
0j4+1,2r4+1 @Z)j(h]‘+1725+1) == 57’,5 (T, S = 0, ceey N] — 1) .

Figure 3 shows the wavelet 15, and Figure 4 presents the shifted wavelet og33t5. The
wavelet space W; is a shift-invariant subspace of L2 (I) of type 1 generated by ;. The
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systems B;1((N;/2)%);) (j € Ng) are L2 (I)-stable with optimal constants y = 1/2 and
6 =1, i.e., for all 7 € Ny and for any (ﬁm,),],vzjal € RY | we have the sharp estimate

) N;—1
< § B2,
= R
r=0

Using (7.1) and (7.4), we obtain the Chebyshev transformed two—scale relation of ;

, Nt N;—1
2 Z 62’7’ = H Z 5J‘,r(Nj/2)1/2 Ojt1,20410;
r=0 r=0

antj] = Bjyi(n)an[pjt]  (n € No)

with the corresponding two—scale symbol

{0 n=0,...,N;,

B]‘l'l(n) = 2 n:N]—|—17,N]+1

In the following, we compare the arithmetical complexity of our decomposition algorithm
6.2 for these polynomial wavelets on [ with that of the fast decomposition algorithm
for linear and cubic spline wavelets on [0, 1] proposed in [13]. Let j > 3. Assume that
2971 11 function values of f;1, € V4, are given. The decomposition algorithm for linear
spline wavelets in [0, 1] needs 6 - 2/+! real multiplications in order to compute all wavelet
coefficients of g; € W;. For the same problem, the decomposition algorithm for cubic
spline wavelets in [13] can be implemented using 14 - 2/*! real multiplications. Compared
to that, our algorithm 6.2 requires fewer real multiplications up to the level 5 = 14. —
Now we consider the complete decomposition of f;11 € Vi41. Here we have to determine
all coeflicients of the related functions in W, W,_q,..., W35 and V5. Figure 5 shows the
numbers of needed real multiplications (divided by 2/+1) for the complete decomposition
with linear spline wavelets (<), cubic spline wavelets (O) and polynomial wavelets (4).
Our procedure needs fewer real multiplications than the method in [13] for cubic spline
wavelets up to level j = 20. Since a level 7 € {7,...,11} is often used in praxis, our
algorithm is an interesting alternative to the method in [13].

As numerical application of the decomposition algorithm 6.2, we would like to mention
that an exact detection of singularities of a given function near the boundary +1 is
possible. For example, we consider a linear spline function in order to determine its spline
knots. Let By denote the cardinal linear B—spline. Interpolating the function

f(z) := Bay(4x + 3.96) (xel)

at level j = 7 and decomposing f, we can observe the singularities at —0.99, —0.74 and
—0.49 in the corresponding wavelet part of level j = 6 (see Figure 6). On the other hand,
the decomposition of the function

f(z) := Ba(4z + 4) (xel)

shows that f has singularities at —0.75 and —0.5, but not at —1 (see Figure 7).

We can generalize this example of polynomial wavelets in a similar manner as done for
periodic functions in [14]. Set N; = d2/ (j € Np) with fixed d € N. Further let for fixed

A e Ny
L <A,
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where 3 < 23d is fulfilled. Then, N; + M; < N;y; — M; ;. Let the scaling function »; of
level 7 be given by its Chebyshev coefficients

2 OSTLSN]‘—M]‘,
Njanlpi] i=  SERZE N, = Mj <n < N+ M,
0 TLZN]—I-M]

The smaller A, the better localized the scaling functions are on I. We obtain the same
interpolation property of ; as in (7.3). The sample space V; = 5, 0(p;) can be described
by

M;+k M;—k
V, = ly,_m, & SPELH{MJ]J;1 Ik + T Ivpn k=07---7M]‘—1}7

e, Uy,—n;, CV; € IIn,4m,-1. The corresponding wavelet space W (j € Np) is of type
1 generated by the polynomial ©; := 2¢;41 — ¢; € V41 such that

e N; — M; <n < N; + M;,
NCL[@/)]_ 2 N]‘—|—M]‘§TLSN]‘+1—M]‘+17
JrEnlEal Njj1+M11—n
% Nipt = M1 <n < Njp1 + My,
0 otherwise.

The shifted polynomials ;41 2,41 ¢; also satisfy the interpolation properties
0j4+1,2r4+1 @Z)j(h]‘+1725+1) = 57’,5 (T, S = 0, ceey N] - 1) .

For the Chebyshev transformed two-scale relations of ¢; and 1;, we obtain the two-scale
symbols

2 OSTLSN]‘—M]‘,
Ajpa(n) = § SHE= Ny — My <n < N+ M;,
0 N]‘—I-M]‘STLSNH_l
and
0 0<n<N;,—M,
Bia(n) = § 55 Nj— M;<n < Nj+ M;,
2 N]‘—I-M]‘STLSNH_l.

8 Transformed Spline Wavelets

In principle, the following is obtained by transferring the construction of [12] onto the
interval. Let m € N be a fixed even number and let M,, be the centered B-spline of order
m with the knots —m/2 4+ k (k = 0,...,m). Set N; := 2/ (j € Ny). Further, let M,,
(7 € No) be the 2r—periodization of M,,(N; - /m), i.e.

Mm,j = Z Mm(N] . /7‘[‘ — N]‘_Hl).

[=—0

From MTHJ = Mm]‘(— -) it follows that MmJ € L3, . The Fourier cosine coefficients of
MTHJ read as follows

N 1 1 nt \"
an(M,,;) = — M, (nw/N;) = — | sinc n € Ng).
(i) = - aton /) = - (sine 5] (we
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Now restricting M,, ; on [0, 7], we choose as scaling function ¢, := M,, ;(arccos), that is,
¢; has the Chebyshev coefficients

nm

Njp

N;aylpj] = My (nm/N;) = (Sinc )m (n € Ny).

For the two-scale symbol of ¢; we find

nm

Ajpiln) = 2 (cos N4_|_2> (n € Np).
j

Let the sample spaces V; be generated by ¢;, i.e. V; :=5,0(¢;) (7 € Ng). Then by

o0

lJ suwpp alp;] = No

i=0

it follows that the condition (M2) is satisfied.
For the bracket product we obtain by Poisson summation formula

Nilalgs], ale)lljm = i (Mm (W)Z + M <(Nj+1(l —;@1) - ”>7T>2)

(=0

= Z Mzm(Qﬂ'l + nm/Nj;)

[=—0

and hence |
sz [a[cij a[%‘oj“j,n = (I)Qm(e

with the well-known Euler-Frobenius polynomial
Go(z) 1= > My(k)z" (2 €C, |z =1).

The systems B, o((N;/2)/% ;) (5 € No) are L2 (I)-stable, since we have

N? ,
o< —lalel alpillin < 6 (7 € No)
with gm (o2m _ |
4a = By, (—1) = %wm, A6 = By, (1) = 1,

where B,,, denotes the 2m—th Bernoulli number. Observe that we have found the same
constants «,  as in the case of the multiresolution generated by cardinal splines of order
m (see [12]). Note that different scaling factors of scaling functions are used in [12].

Let the wavelet ¢; be defined by its Chebyshev coeflicients

: nm " —inm 1
wli] = 2 (sn3) BT o] (0 € o)

Njpo
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i.e., ¥; possesses the two-scale symbol

Bisi(n) = 2 (sin ) By (—e™ Ny (0 € Np).

J+2

By definition it is clear that ¢»; € Vj11. In order to show that W, = S;(¢;), we have
to check the orthogonality V; L S;(v;) and the L2 (I)-stability of B, i((N;/2)"/% ;)
(j € Ng). Since m is even, we easily observe that (5.5) is satisfied for the two—scale
symbols A;1(n), Bjy1(n) above. Furthermore, inserting B;11(n) into (5.4) we obtain for
n=0,...,N; —1 by Lemma 4.3

NE{aly], altllin = Pam (€M) @gp (777Nt By (e N
In particular, we obtain L2 (I)-stability of B;;((N;/2)"/21;) with the constants

4y = min{®y,(2) Pypn(—2) Dyn(2?) : 2 € C, |z| =1}
46 = max{®y,(2) Pop(—2) Pon(2®): 2 €C, 2] =1} < 1.

Observe that these constants are the same as the constants found for the well-known
cardinal Chui-Wang wavelet (cf. [12]). Note that different scaling factors of wavelets
are used in [12]. In contrast with polynomial wavelets, the shifted scaling functions and
wavelets are supported on small subintervals of 1.

Finally, we will consider the connection of the wavelet ¢, above with the cardinal Chui-
Wang wavelet w,, given by its Fourier transform

) = (e (L) e (L205) wery o

Let ;/N)j be the 2m—periodization of w,,(N; -) with

Wy = (1) (i (/7 m) w74 m)),

i.e.
o0

U o= Y (N —Nyparl).

l=—00

Then L/NJj € L3}, . The Fourier cosine coefficients read

" 2 nm .oonT o, inm . nT .,
an(v;) = ﬁ] COS Nt (sin Nj+2) Gy (—e /N”l) (sinc j-|—2)
Vis nim .
= 2 cos sin P, — e~ /Ny anleir].
Nt ( Nj+2) 2 ( ) [‘P]-I-l]

Comparing with the Chebyshev coeflicients of ¢; we find for the restriction of ;/N)j on [0, 7]:

oyt = ;/N)j(arccos).
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