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Abstract. Seismic data interpolation and denoising plays a key role in seismic data

processing. These problems can be understood as sparse inverse problems, where the

desired data are assumed to be sparsely representable within a suitable dictionary.

In this paper, we present a new method based on a data-driven tight frame

of Kronecker type (KronTF) that avoids the vectorization step and considers the

multidimensional structure of data in a tensor-product way. It takes advantage of

the structure contained in all different modes (dimensions) simultaneously. In order to

overcome the limitations of a usual tensor-product approach we also incorporate data-

driven directionality (KronTFD). The complete method is formulated as a sparsity-

promoting minimization problem. It includes two main steps. In the first step, a

hard thresholding algorithm is used to update the frame coefficients of the data in

the dictionary. In the second step, an iterative alternating method is used to update

the tight frame (dictionary) in each different mode. The dictionary that is learned

in this way contains the principal components in each mode. Furthermore, we apply

the proposed tight frames of Kronecker type to seismic interpolation and denoising.

Examples with synthetic and real seismic data show that the proposed method achieves

better results than the traditional projection onto convex sets (POCS) method based

on the Fourier transform and the previous vectorized data-driven tight frame (DDTF)

methods. In particular, the simple structure of the new frame construction makes it

essentially more efficient.

1. Introduction

Seismic data processing is the essential bridge connecting the seismic data acquisition

and interpretation. Many processes benefit from fully sampled seismic volumes.

Examples of the latter are multiple suppression, migration, amplitude versus offset

analysis, and shear wave splitting analysis. However, sampling is often limited by the

high cost of the acquisition, obstacles in the field, and sampled data contain missing

traces.
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Various interpolation methods have been proposed to handle the arising aliasing

effects. We especially refer to the f -x domain prediction method by Spitz [30] that is

based on predictability of linear events without a priori knowledge of the directions of

lateral coherence of the events. This approach can be also extended to 3D regular data.

Interpolating 3D data on a regular grid, but with an irregular pattern of missing

traces, is more delicate. In that case undesired attenuate artifacts can arise from

improper wave field sampling.

However, because of its practical importance, interpolation and denoising of

irregular missing seismic data have become an important topic for the seismic data-

processing community.

Seismic data interpolation and data denoising can also be regarded as an inverse

problem where we employ sparsity constraints. Using the special structure of seismic

data, we want to exploit that it can be represented sparsely in a suitable basis or frame,

i.e., the original signal can be well approximated using only a small number of significant

frame coefficients. In this paper, we restrict ourselves to finite-dimensional tight frames.

Generalizing the idea of orthogonal transforms, a frame transform is determined by a

transform matrix D ∈ CM1×N1 with M1 ≥ N1, such that for given data y ∈ CN1 the

vector u = Dy ∈ CM1 contains the frame coefficients. For tight frames, D possesses

a left inverse of the form 1
c
D∗ = 1

c
D
T ∈ CN1×M1 , i.e., D∗D = cI, where I is the

identity operator. The constant c is the frame bound that can be set to 1 by suitable

normalization. In this case the tight frame is called Parseval frame, and we assume in

the following that c = 1.

The problem of finding a sparse representation of the data y can be formulated as

the following `0-subnorm [10] minimization

min
u
||u||0, s.t. y = D∗u, (1.1)

where ||u||0 represents the number of nonzero elements of u.

Since the `0-norm minimization is an NP-hard problem for computation, it is often

replaced by the `1-norm minimization for its relaxation

min
u
||u||1, s.t. y = D∗u, (1.2)

where ||u||1 stands for the sum of the absolute values of nonzero elements of u.

The idea to employ sparsity of the data in a certain basis or frame has been already

used in seismic data processing. A fundamental question is here the choice of the

dictionary transform D.

Dictionary transforms can be mainly divided into two categories: fixed-basis/frame

transforms and adaptive learning dictionaries. Transforms in the first category

are data independent and include e.g. Radon transform [32, 21], Fourier transform

[28, 25, 38, 2, 33], curvelet transform [17, 29, 16, 27], shearlet transform [20], and others.

In recent years, adaptive learning dictionary methods came up for data processing.

The corresponding transforms are data dependent and therefore usually more expensive.

On the other hand they often achieve essentially better results.
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Transforms of this type include Principal Component Analysis (PCA) [18] and

generalized PCA [37], the method of optimal directions (MOD) [13, 3], the K-SVD

method (K-mean singular value decomposition) [1], and others. Particularly, K-SVD is

a very popular tool for training the dictionary. However, the K-SVD method treats the

given training data as a signal vector and in each step uses the SVD decomposition

of the arising transform matrix to update each column of the dictionary. By the

vectorization of the data, the transform matrix is huge such that this approach requires

a large computational effort. In order to reduce the computational complexity, a new

method, named data-driven tight frame (DDTF) has been proposed in [8], which learns

a dictionary with a prescribed block Toeplitz structure. The DDTF method updates

the complete transform matrix by one SVD decomposition in one iteration step in

contrast to the K-SVD that employs an SVD decomposition to update each column of

the transform matrix consecutively. The DDTF method has also been applied to seismic

data interpolation and denoising of two-dimensional and high-dimensional seismic data

[24, 40].

Fixed dictionary methods enjoy the high efficiency advantage, while adaptive

learning dictionary methods can take use of the information of data itself. By combining

the seislets [14] and DDTF, a double sparsity method was proposed for seismic data

processing [39], which can benefit from both fixed and learned dictionary methods.

However, a vast majority of existing dictionary learning methods deals with vectors and

therefore does not fully exploit the data structure, i.e., spatial correlation of the data

pixels.

To overcome this problem, a Kronecker-based dictionary has been applied to

dynamic computed tomography [31] treating the input data as tensors instead of

vectors and applying a learned dictionary based on tensor decomposition. The tensor

decomposition has been also used for seismic interpolation [22].

Generalizing these ideas, in this paper we present a data-driven tight frame

construction of Kronecker type (KronTF), that inherits the simple tensor-product

structure to ensure fast computation also for 3D tensors. This approach is further

generalized by incorporating adaptive directionality (KronTFD).

The separability of dictionary atoms makes the resulting dictionaries highly

scalable. The orthonormality among dictionary atoms leads to very efficient sparse

coding computation, as each sub-problem encountered during the iterations for solving

the resulting optimization problem has a simple closed-form solution. These two

characteristics, i.e., the computational efficiency and scalability, make the proposed

method very suitable for processing tensor data. The main contribution of our work

includes the following aspects: 1) To avoid the vectorization step in previous DDTF

method, we unfold the seismic data in each mode and use one SVD of small size

per iteration to learn the dictionary. Therefore, the dictionary contains structures

of data sets in different modes. 2) Further, we introduce a simple method to

incorporate significant directions of the data structure into the dictionary. 3) Finally

the proposed new data-driven dictionaries KronTF and KronTFD are applied to seismic
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data interpolation and denoising.

This paper is organized as follows. We first introduce the notation borrowed from

tensor algebra and definitions pertaining tensors that are used throughout our paper.

In Section 2, we shortly recall the basic idea of construction a data-driven frame and

present an iterative scheme that is based on alternating updates of the frame coefficients

for sparse representation of the given training data on the one hand and of the data-

dependent frame matrix on the other hand. Section 3 is devoted to the construction of

a new data-driven frame that is based on the tensor-product structure, and is therefore

essentially cheaper to learn. The employed idea can be simply transferred to the case of

3-tensors. In order to make the construction more flexible, we extend the data-driven

Kronecker frame construction by incorporating also directionality in Section 4. The

two data-driven dictionaries are applied to data interpolation/reconstruction and to

denoising in Section 5, and the corresponding numerical tests for synthetic 2D and 3D

data and real 2D and 3D data are presented in Section 6. The paper finishes with a

short conclusion on the achievements in this paper and further open problems.

1.1. Notations

In this paper, we denote vectors by lowercase letters and matrices by uppercase letters.

For x = (xi)
N
i=1 ∈ CN let ‖x‖2 :=

(∑N
i=1 |xi|2

)1/2
be the Euclidean norm, and for

X = (xi,j)
N1,N2

i=1,j=1 ∈ CN1×N2 we denote by ‖X‖F =
(∑N1

i=1

∑N2

j=1 |xi,j|2
)1/2

the Frobenius

norm. For a third order tensor X = (xi,j,k)
N1,N2,N3

i=1,j=1,k=1 ∈ CN1×N2×N3 we introduce the

three matrix unfoldings that involve the tensor dimensions N1, N2 and N3 in a cyclic

way,

X(1) :=
(

(xi,j,1)
N1,N2

i=1,j=1, (xi,j,2)
N1,N2

i=1,j=1, . . . , (xi,j,N3)
N1,N2

i=1,j=1

)
∈ CN1×N2N3 ,

X(2) :=
(

(x1,j,k)
N2,N3

j=1,k=1, (x2,j,k)
N2,N3

j=1,k=1, . . . , (xN1,j,k)
N2,N3

j=1,k=1

)
∈ CN2×N1N3 ,

X(3) :=
(

(xi,1,k)
N3,N1

k=1,i=1, (xi,2,k)
N3,N1

k=1,i=1, . . . , (xi,N2,k)
N3,N1

k=1,i=1

)
∈ CN3×N1N2 .

The multiplication of a tensor X with a matrix is defined by employing the ν-mode

product, ν = 1, 2, 3, as defined in [23]. For X ∈ CN1×N2×N3 and matrices V (1) =

(v
(1)
i′,i)

M1,N1

i′=1,i=1 ∈ CM1×N1 , V (2) = (v
(2)
j′,j)

M2,N2

j′=1,j=1 ∈ CM2×N2 , and V (3) = (v
(3)
k′,k)

M3,N3

k′=1,k=1 ∈
CM3×N3 we define

X ×1 V
(1) :=

(
N1∑
i=1

xi,j,k v
(1)
i′,i

)M1,N2,N3

i′=1,j=1,k=1

∈ CM1×N2×N3 ,

X ×2 V
(2) :=

(
N2∑
j=1

xi,j,k v
(2)
j′,j

)N1,M2,N3

i=1,j′=1,k=1

∈ CN1×M2×N3 ,

X ×3 V
(3) :=

(
N3∑
k=1

xi,j,k v
(3)
k′,k

)N1,N2,M3

i=1,j=1,k′=1

∈ CN1×N2×M3 .
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Generalizing the usual singular value decomposition for matrices it has been shown in

[23] that every (N1 ×N2 ×N3)-tensor X can be written as a product

X = S ×1 V
(1) ×2 V

(2) ×3 V
(3)

with unitary matrices V (1) ∈ CN1×N1 , V (2) ∈ CN2×N2 , and V (3) ∈ CN3×N3 and with a

sparse core tensor S ∈ CN1×N2×N3 . By unfolding, this factorization can be represented

as

X(1) = V (1)S(1)(V (3) ⊗ V (2))T ,

X(2) = V (2)S(2)(V (1) ⊗ V (3))T , (1.3)

X(3) = V (3)S(3)(V (2) ⊗ V (1))T ,

where the S(ν) denote the corresponding ν-modes of the tensor S. Further, ⊗ denotes

the Kronecker product, see [5], which is for two matrices A = (ai,j)
M,N
i=1,j=1 ∈ CM×N and

B ∈ CL×K defined as

A⊗B = (ai,jB)M,N
i=1,j=1 ∈ CML×NK .

In order to compute a generalized SVD for the tensor X one may first consider the

SVDs of the unfolded matrices X(1), X(2) and X(3). Interpreting the equations in (1.3)

as SVD decompositions, we obtain the ν-mode orthogonal matrices V (ν), ν = 1, 2, 3,

directly from the left singular matrices of these SVDs, see [23].

In this paper we consider a generalization of the idea of SVD and are interested

in a dictionary decomposition of a finite set of tensors Xk, k = 1, . . . , K, i.e., we want

to derive dictionary matrices D1 ∈ CM1×N1 , D2 ∈ CM2×N2 , and D3 ∈ CM3×N3 with

Mν ≥ Nν , ν = 1, 2, 3, such that

Xk ≈ Uk ×1 D
∗
1 ×2 D

∗
2 ×3 D

∗
3.

That means, we want to find a dictionary such that Uk ×1 D1 ×2 D2 ×3 D3 is a good

approximation of Xk such that the core tensors Uk ∈ CM1×M2×M3 are all simultaneously

sparse. For this purpose, we want to iteratively improve a fixed initial dictionary

depending on the data tensors Xk, k = 1, . . . , K in Section 3. Moreover, generalizing

this tensor product structure, we will propose to incorporate directional adaptivity by

multiplication with data-driven block permutations in Section 4.

2. Data-driven Parseval frames (DDPF)

First, we want to describe an idea for construction of data-driven Parseval frames

for two-dimensional data (images), similarly as proposed in [8, 40]. Generalizing the

approach of unitary matrices, we say that a matrix D ∈ CM1×N1 , M1 ≥ N1, represents

a Parseval frame of CN1 , if D∗D = IN1 , i.e., D∗ = D
T

is the Moore Penrose inverse

of D. Obviously, each vector a ∈ CN1 can be represented as a linear combination of

the M1 columns of D∗, i.e., there exists a vector c ∈ CM1 with a = D∗c, and for

M1 > N1, the coefficient vector is usually not longer uniquely defined. One canonical
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choice for c would be c = Da, since obviously D∗c = D∗Da = a is true. In frame

theory, D∗ is called synthesis operator while D is the analysis operator. Within the last

time, many frame transforms have been developed for signal and image processing, as

e.g. wavelet framelets, curvelet frames, shearlet frames etc. In [8] a data-driven tight

frame construction has been proposed for image denoising, where the frame matrix

D∗ is composed of block-wise Toeplitz matrices being defined by suitable initial filter

sequences.

We adopt this idea and consider the following model. Assume that we have

given a series of images Y1, . . . , YK that are vectorized to y1, . . . , yK ∈ CN1 . We now

aim at finding a sparse dictionary representation for y1, . . . , yK simultaneously. Let

Y = (y1y2 . . . yK) ∈ CN1×K and C = (c1c2 . . . cK) ∈ CM1×K with columns ck ∈ CM1 be

the matrix of arising dictionary coefficients. We consider the model

min
D∈CM1×N1 ,C∈CM1×K

‖DY −C‖2F + λ‖C‖? s.t. D∗D = IN1 , (2.1)

where ‖C‖? denotes either ‖C‖0, the number of nonzero entries of C, or ‖C‖1, the sum

of all absolute values of entries in C. The parameter λ > 0 balances the approximation

term and the sparsity term. Observe that in the above model not only C, the matrix of

sparse vectors ck representing yk in the dictionary domain, but also D has to be learned,

where the side condition D∗D = IN ensures that D is a Parseval frame.

To solve this optimization problem, we employ an alternating iterative scheme that

in turns updates the coefficient matrix C and the frame matrix D, where we start with

a suitable initial frame D = D0.

Step 1. For a fixed frame D ∈ CM1×N1 we have to solve the problem

min
C∈CM1×K

‖DY −C‖2F + λ‖C‖?. (2.2)

For ‖ · ‖1 we obtain the solution C = Sλ/2(DY), applied componentwisely, with the soft

threshold operator

Sλ/2(x) =

{
(signx)(|x| − λ/2) for |x| > λ/2,

0 for |x| ≤ λ/2.
(2.3)

For for ‖ · ‖0 we obtain C = Tγ(DY), applied componentwisely, with the hard threshold

operator

Tγ(x) =

{
x for |x| > γ,

0 for |x| ≤ γ,

where the threshold parameter γ depends on λ and on the data DY.

Remark 2.1 The above model (2.2) is the so-called syntheses problem that is usually

simpler to solve. The corresponding analysis problem reads

min
C∈CM1×K

‖Y −D∗C‖2F + λ‖C‖?. (2.4)

For the analysis approach, the solutions obtained by applying the threshold functions do

not longer exactly minimize (2.4) but can be seen as good approximations, see e.g. [12].

In case of unitary matrices D, the two approaches coincide.
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Step 2. For given C we now want to update the frame matrix D by solving the

optimization problem

min
D∈CM1×N1

‖DY −C‖2F s.t. D∗D = IN1 . (2.5)

Similarly as in [41] we can show

Theorem 2.2 The optimization problem (2.5) is equivalent to the problem

max
D∈CM1×N1

Re (tr (DYC∗)) s.t. D∗D = IN1 ,

where tr denotes the trace of a matrix, i.e., the sum of its diagonal entries, and Re

the real part of a complex number. If YC∗ has full rank N1, this optimization problem

is solved by Dopt = VN1U
∗, where UΛV ∗ denotes the singular value decomposition of

YC∗ ∈ CN1×M1 with the unitary matrices U ∈ CN1×N1, V ∈ CM1×M1, and VN1 ∈ CM1×N1

is the restriction of V to its first N1 columns.

Proof 2.3 We give the short proof for the complex case that is not contained in [41].

The objective function in (2.5) can be rewritten as

‖DY −C‖2F = tr(((DY)∗ −C∗)(DY −C))

= tr(Y∗D∗DY + C∗C−C∗DY −Y∗D∗C)

= tr(Y∗Y) + tr(C∗C)− 2Re(tr(DYC∗)),

where we have used that tr(DYC∗) = tr(C∗DY) = tr(Y∗D∗C). Thus (2.5) is equivalent

to

max
D∈CM1×N1

Re (tr (DYC∗)) s.t. D∗D = IN1 .

Let now the singular value decomposition of YC∗ be given by

YC∗ = UΛV ∗

with unitary matrices U ∈ CN1×N1 , V ∈ CM1×M1 , and a diagonal matrix of (real

nonnegative) singular values Λ = (diag(λ1, . . . , λN1),0) ∈ RN1×M1 . Choosing Dopt :=

VN1U
∗, where VN1 is the restriction of V to its first N1 columns, we simply observe that

tr(DoptYC∗) = tr(VN1U
∗UΛV ∗) = tr(VN1ΛV

∗) = tr(V ∗VN1Λ) = tr ΛN1 ∈ R,

where ΛN1 = diag(λ1, . . . , λN1) is the restriction of Λ to its first N1 columns. Moreover,

(Dopt)
∗Dopt = UV ∗N1

VN1U
∗ = IN1 .

We show now that the value tr ΛN1 is indeed maximal. Let D ∈ CM1×N1 be an

arbitrary matrix satisfying D∗D = IN1 . Let U be again the unitary matrix from

the SVD YC∗ = UΛV ∗, and let WN1 := DU . Then the constraint implies that

W ∗
N1
WN1 = U∗D∗DU = IN1 . Thus

tr(DYC∗) = tr(WN1ΛV
∗) = tr(V ∗WN1Λ).
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Since V is unitary and since WN1 contains N1 orthonormal columns of length M1 also

V ∗WN1 consists of N1 orthonormal columns. Particularly, each diagonal entry of V ∗WN1

has modulus smaller than or equal to 1. Thus,

Re (tr(V ∗WN1Λ)) ≤ trΛN1 ,

and equality only occurs if WN1 = VN1 , i.e., if D = Dopt. �

Remarks 2.4 1. In order to obtain the frame matrix uniquely, we need at least a set of

K ≥ N1 image data, since otherwise the matrix product YC∗ cannot have full rank N1.

If indeed rank (YC∗) < N1 then Λ does not longer contain N positive singular values.

Thus VN1 than also contains singular vectors that correspond to vanishing singular values

while the order of these singular vectors in VN1 is not longer fixed.

2. Again, the above model (2.5) is the so-called syntheses model. The corresponding

analysis model reads

min
D∈CN1×N

‖Y −D∗C‖2F s.t. D∗D = IN ,

and it is more difficult to solve. A similar approach as above leads to

‖Y −D∗C‖2F = tr((Y −D∗C)∗)(Y −D∗C))

= tr(Y∗Y + C∗DD∗C−C∗DY −Y∗D∗C∗)

= tr(Y∗Y) + tr(C∗DD∗C)− 2Re (tr(DYC∗)) .

Thus, a transfer to the maximization problem in Theorem 2.2 ignores the term

tr(C∗DD∗C) that still depends on D since we usually do not have DD∗ = IM1. Only in

case of unitary matrices D the approaches coincide.

3. The analysis model can be tackled by the K-SVD method that also iterates between

improving C and D, see [1]. Here, for finding an approximation of C, the orthogonal

matching pursuit algorithm is employed, while for improving the dictionary matrix D,

each column of D∗ is updated separately using the singular value decomposition. Since

greedy algorithms are employed in this method, there are no guarantees for convergence.

However, the approach yields very good results in practice.

4. The iterative method for the synthesis model described above converges in the

considered finite-dimensional setting. At each iteration step, the value of the functional

‖C−DY‖2F + λ‖C‖? decreases monotonously, while it is clearly bounded from below by

zero.

3. Data-driven Kronecker tight frame

Considering the above model, we observe that by transforming the discrete images of

size Cn1×n2 to vectors of length CN1 with N1 = n1 ·n2, we need to learn a huge dictionary

matrix D. Compared to that approach, a usual (tensor-product) two-dimensional

transform is of the form

C = D1 Y D
T
2 , (3.1)
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where for a given image Y ∈ Cn1×n2 we may take dictionary matrices D1 ∈ Cm1×n1 ,

D2 ∈ Cm2×n2 . For a sparsifying basis transform like a DCT, DFT, or an orthogonal

wavelet basis transform, D1 and D2 are quadratic unitary matrices of the same structure.

Here, we relax this approach and consider two rectangular dictionary matrices D1, D2

with m1 ≥ n1, and m2 ≥ n2, satisfying D∗1D1 = In1 and D∗2D2 = In2 . Employing the

properties of the Kronecker tensor product [5], we obtain by vectorization of (3.1)

c := vec(C) = vec(D1Y D
T
2 ) = (D2 ⊗D1) vec(Y ) = (D2 ⊗D1) y,

where the operator vec reshapes the matrix into a vector, and y := vec(Y ).

Now, similarly as in Section 2, we consider the following model. For a sequence of two-

dimensional training data Y1, . . . , YK ∈ Cn1×n2 and corresponding coefficient matrices

C1, . . . , CK ∈ Cm1×m2 we aim at finding dictionary matrices D1, D2 such that

min
D1,D2,C1,...,CK

K∑
k=1

(
‖D1YkD

T
2 − Ck‖2F + λ‖Ck‖?

)
s.t. D∗νDν = Inν , ν = 1, 2. (3.2)

Equivalently, using the notations yk := vec(Yk) ∈ Cn1·n2 , ck := vec(Ck) ∈ Cm1·m2 as well

as Y := (y1 . . . yK) ∈ Cn1n2×K and C := (c1 . . . cK) ∈ Cm1m2×K , we can write the model

in the form

min
D1,D2,C

‖(D2 ⊗D1)Y −C‖2F + λ‖C‖? s.t. D∗νDν = Inν , ν = 1, 2. (3.3)

Here, as before ‖ · ‖? denotes either ‖ · ‖0 or ‖ · ‖1. Observe that, compared to (2.1), the

dictionary matrix (D2 ⊗D1) ∈ Cm1m2×n1n2 has now a Kronecker structure that we did

not impose before. Thus, learning the dictionary (D2 ⊗D1) requires to determine only

n1m1 + n2m2 instead of n1n2m1m2 components. Surely, we need to exploit the freedom

of choosing rectangular dictionary matrices D1, D2 in order to capture the important

structures of the images in a sparse manner.

In order to solve the minimization problem (3.2) resp. (3.3), we adopt the

alternating minimization scheme proposed in the last section. Now, each iteration step

consists of three independent steps:

Step 1. First, for fixed dictionary matrices D1, D2, we minimize only with respect to

C by applying either a hard or a soft threshold analogously as in Step 1 for the model

(2.1).

Step 2. We fix C and D2, and minimize (3.2) resp. (3.3) with respect to D1. For this

purpose, we rewrite (3.2) as

min
D1∈Cm1×n1

K∑
k=1

‖D1YkD
T
2 − Ck‖2F s.t. D∗1D1 = In1 . (3.4)

As in (2.5), this problem is equivalent to

max
D1∈Cm1×n1

Re

(
tr

(
K∑
k=1

D1(YkD
T
2 )C∗k

))
s.t. D∗1D1 = In1 .
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We take the singular value decomposition

K∑
k=1

YkD
T
2 C
∗
k = U1Λ1V

∗
1

and obtain unitary matrices U1 ∈ Cn1×n1 , V1 ∈ Cm1×m1 and a diagonal matrix of singular

values Λ1 =
(

diag(λ
(1)
1 , . . . , λ

(1)
n1 ), 0

)
∈ RRn1×m1 . Now, similarly as shown in Theorem

2.2, the optimal dictionary matrix is obtained by D1,opt = V1,n1U
∗
1 , where V1,n1 denotes

the restriction of V1 to its first n1 columns.

Since
∑K

k=1 YkD
T
2 C
∗
k is a matrix of size n1×m1, we only need to apply the singular

value decomposition of this size here to obtain an update for D1.

Step 3. Analogously, in the third step we fix C and D1 and minimize (3.2) resp. (3.3)

with respect to D2. Here, we observe that

min
D2∈Cm2×n2

K∑
k=1

‖D1YkD
T
2 − Ck‖2F s.t. D∗2D2 = In2

is equivalent to

min
D2∈Cm2×n2

K∑
k=1

‖D2Y
T
k D

T
1 − CT

k ‖2F s.t. D∗2D2 = In2 .

The SVD
K∑
k=1

Y T
k D

T
1 Ck = U2Λ2V

∗
2

with unitary matrices U2 ∈ Cn2×n2 , V2 ∈ Cm2×m2 , and Λ2 =
(

diag(λ
(2)
1 , . . . , λ

(2)
n2 ), 0

)
∈

Rn2×m2 yields the update

D2 = V2,n2U
∗
2 ,

where V2,n2 again denotes the restriction of V2 to its first n2 columns.

We outline the pseudo code for learning the tight frame with Kronecker structure

(KronTF) in the following Algorithm 1.

Algorithm 1 : KronTF Algorithm

Input: Training set of data Y1, Y2 · · ·YK ∈ Cn1×n2 , number of iterations T

Output: D1, D2

1: Initialize the dictionary matrices D1 ∈ Cm1×n1 and D2 ∈ Cm2×n2 with

D∗1D1 = In1 , D
∗
2D2 = In2 .

2: for k = 1, 2, . . . , T

3: Use the hard/soft thresholding to update the coefficient matrix

C = (c1 . . . cK) as given in Step 1.

4: for n = 1 to 2 do

5: Use the SVD method to update the dictionary matrices Dn as given

in Steps 2 and 3.

6: end for

7: end for
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This approach to construct a data-driven tight frame can now easily be extended

to third order tensors. Using tensor notion (for 2-tensors) the product in (3.1) reads

C = Y ×1 D1 ×2 D2.

Generalizing the concept above to 3-tensors, we want to find dictionary matrices

Dν ∈ Cmν×nν , ν = 1, 2, 3, with mν ≥ nν and D∗νDν = Inν , ν = 1, 2, 3, such that

for a given sequence of tensors Yk ∈ Cn1×n2×n3 , k = 1, . . . , K, the core tensors

Sk = Yk ×1 D1 ×2 D2 ×3 D3 ∈ Cm1×m2×m3

are simultaneously sparse. This is done by solving the minimization problem

min
D1,D2,D3,S1,...,SK

K∑
k=1

(
‖Yk ×1 D1 ×2 D2 ×3 D3 − Sk‖2F + λ ‖Sk‖?

)
s.t. D∗νDν = Inν , ν = 1, 2, 3. (3.5)

Here, the Frobenius norm of X ∈ Cn1×n2×n3 is defined by ‖X‖F :=(∑n1

i=1

∑n2

j=1

∑n3

k=3 |xi,j,k|2
)1/2

, and ‖Sk‖? denotes in the case ? = 0 the number of

nonzero entries of Sk, and for ? = 1 the sum of the moduli of all entries of Sk.
The minimization problem (3.5) can be solved by four steps at each iteration

level. In step 1, for fixed D1, D2, D3, one minimizes Sk, k = 1, . . . , K, by applying

a componentwise threshold procedure as before. In step 2, for fixed D2, D3 and Sk,
k = 1, . . . , K, we use the unfolding

(Sk)(1) = D1(Yk)(1)(D3 ⊗D2)
T

and have to solve

min
D1∈Cm1×n1

K∑
k=1

‖(Sk)(1) −D1(Yk)(1)(D3 ⊗D2)
T‖2F s.t. D∗1D1 = In1 .

This problem has exactly the same structure as (3.4) and is solved by choosing

D1 = V1,n1U
∗
1 , where U1Λ1V

∗
1 is the singular value decomposition of the (n1 × m1)-

matrix
K∑
k=1

(Yk)(1)(D3 ⊗D2)
T (Sk)∗(1)

Analogously, we find in step 3 and step 4 the updates D2 = V2,n2U
∗
2 and D3 = V3,n3U

∗
3

from the singular decompositions

K∑
k=1

(Yk)(2)(D1 ⊗D3)
T (Sk)∗(2) = U2Λ2V

∗
2

resp.
K∑
k=1

(Yk)(3)(D2 ⊗D1)
T (Sk)∗(3) = U3Λ3V

∗
3 .
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Remarks 3.1 1. This dictionary learning approach requires at each iteration step three

SVDs but for matrices of moderate size nν ×mν, ν = 1, 2, 3.

2. One may also connect the two approaches considered in Section 2 and in Section

3 by e.g. enforcing a tensor product structure of the dictionary only in the third direction

while employing a more general dictionary for the first and second direction. In this case

we can use the unfolding

(Sk)(3) = D3 · (Yk)(3) · D̃T ,

where the dictionary (D2 ⊗ D1) is replaced by the matrix D̃ ∈ Cm1m2×n1n2 that not

necessarily has the Kronecker product structure. The dictionary learning procedure is

then applied as for two-dimensional tensors.

4. Directional data-driven tight frames with Kronecker structure

While the data-driven Kronecker tight frame considered in Section 3 is of simple

structure and therefore dictionary learning is faster to implement, the Kronecker

structure is limited for learning directional features, as usual for tensor product

approaches. Therefore, we want to propose now a frame construction that contains

both, a Kronecker structure for a (data-driven) basis or a frame, and a data-driven

directional structure.

It is well-known that tensor-product bases or frames are especially well suited for

representing vertical or horizontal structures in an image. Our idea is now to incorporate

other favorite directions by mimicking rotation of the image. While an exact image

rotation is not possible when we want to stay with the original grid, we apply the

following simple procedure.

Let V : Cn1 → Cn1 be the cyclic shift operator, i.e., for some x = (xj)
n1−1
j=0 we have

V x := (x(j+1)modn1)
n1−1
j=0 .

For a given image X = (x0 . . . xn2−1) ∈ Cn1×n2 with columns x0, . . . , xn2−1 in Cn1 , we

consider e.g. the new image

X0 = (x0, V x1, V
2x2, . . . , V

n2−1xn2−1),

where the j-th column is cyclically shifted by j steps. This procedure for example yields

X =


0 1 2 2

3 1 1 2

3 3 1 1

2 3 3 1

 X0 =


0 1 1 1

3 3 3 2

3 3 2 2

2 1 1 1

 ,

such that diagonal structures of X turn to horizontal structures of X0. Vectorizing the
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Figure 1. Illustration of different angles in the range [0, π/4].

image X into x = vec(X), it follows that

x0 = vecX0 = diag(V j)n2−1
j=0 x =


I

V

V 2

. . .

V n2−1

 x,

where diag(V j)n2−1
j=0 ∈ Cn1n2×n1n2 denotes the block diagonal matrix with blocks V j.

Other rotations of X can be mimicked for example by multiplying x = vecX with

diag
(
V bj`/n1c

)n2−1
j=0

, ` = 1, . . . , n1

for capturing the directions in [−π/4, 0] and by

diag
(
V −bj`/n1c

)n2−1
j=0

, ` = −n1 + 1,−n1 + 2, . . . , 0

for capturing directions in [0, π/4]. This range is sufficient in order to bring essential

edges into horizontal or vertical form. If a priori information about favorite directions (or

other structures) in images is available, we may suitably adopt the method to transfer

this structure into a linear vertical or horizontal structure. Possible column shifts in the

data matrices mimicking directions are illustrated in Figure 1.

Using this idea to incorporate directionality, we generalize the model (3.2) resp.

(3.3) for dictionary learning as follows. Instead of only considering the Kronecker tight

frame D2 ⊗D1 we employ the dictionary
(D2 ⊗D1)(diag

(
V bjα1c

)n2−1
j=0

)
...

(D2 ⊗D1)(diag
(
V bjαRc

)n2−1
j=0

)

 ∈ CRm1m2×n1n2

with R constants α1, . . . , αR ∈ {−1 + 1
n1
,−1 + 2

n1
, . . . n1−1)

n1
, 1} capturing R favorite

directions. Then the model reads
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min
D1,D2,CR,
α1...,αR

R∑
r=1

(
‖(D2 ⊗D1)(diagV bjαrc)n2−1

j=0 Y −Cr‖2F + λ‖Cr‖?
)

s.t. D∗νDν = Inν , ν = 1, 2, (4.1)

where Cr ∈ Cm1m2R×K contains the blocks of transform coefficients for each direction,

and where ‖.‖? denotes either the 1-norm or the 0-subnorm as before. Compared to

(3.3), the dictionary matrix is now composed of a Kronecker matrix (D2 ⊗ D1) ∈
Cm1m2×n1n2 and block diagonal matrices (diagV bjαrc)n2−1

j=0 , r = 1, . . . , R capturing

different directions of the image. Particularly, learning this dictionary only requires

to determine n1m1 + n2m2 components of D1, D2 and R components αr to fix the

directions.

The minimization problem in (4.1) can again be solved by alternating minimization,

where we determine the favorite directions already in a preprocessing step.

Preprocessing step. For fixed dictionary matrices D1 and D2 we solve the problem

min
Cαr
‖(D2 ⊗D1)(diagV bjαrc)n2−1

j=0 Y −Cαr‖2F + λ‖Cαr‖?

for each direction αr from a predetermined set of possible directions by applying

either a hard or a soft threshold operator to the transformed sequence of images

Y = (y1 . . . yK). We emphasize, that computing (diag V bjαc)n2−1
j=0 Y for some fixed

α ∈ (−1, 1] is very cheap, it just means a cyclic shifting of columns in the matrices

Yk, such that (D2 ⊗D2)(diagV bjαc)n2−1
j=0 Y corresponds to applying the two-dimensional

dictionary transform to the images that are obtained from Yk, k = 1, . . . , K, by taking

cyclic shifts.

We a priori fix the number R of considered directions (in practice often just R = 1

or R = 2) and find the R favorite directions, e.g. by comparing the energies of Cαr

for fixed thresholds or by comparing the PSNR values of the reconstructions of Y after

thresholding.

Once the directions α1, . . . , αR are fixed, we start the iteration process as before.

Step 1. At each iteration level, we first minimize Cαr , r = 1, . . . , R, while the complete

dictionary (directions and D1, D2) is fixed. This is done by applying the thresholding

procedure. This step is not necessary at the first level since we can use here Cαr obtained

in the preprocessing step.

Step 2. For fixed directions α1, . . . , αR, corresponding Cαr , r = 1, . . . , R, and fixed D2

we consider the minimization problem for D1. We recall that Cαr consists of K columns,

where the k-th column is the vector of transform coefficients of Yk. We reshape

Cαr ∈ Cm1m2×K ⇒ (Cαr,1, . . . Cαr,K) ∈ Cm1×m2K

and

diag
(
V bjαrc

)n2−1
j=0

Y ∈ Cn1n2×K ⇒ (Yαr,1, . . . , Yαr,K) ∈ Cn1×n2K ,
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where the k-th column of Cαr of length m1m2 is reshaped back to an (m1 × m2)-

matrix Cαr,k by inverting the vec operator, and analogously, the k-th column of

diag
(
V bjαrc

)n2−1
j=0

yk ∈ Cn1n2 is reshaped to a matrix Yαr,k ∈ Cn1×n2 . Now we have

to solve

min
D1∈Cm1×n1

R∑
r=1

K∑
k=1

‖D1(Yαr,kD
T
2 − Cαr,k‖2F s.t. D∗1D1 = In1

with similar structure as in (3.4). As before, we apply the singular value decomposition

R∑
r=1

K∑
k=1

Y`r,kD
T
2 C
∗
`r,k = U1Λ1V

∗
1

with unitary matrices U1 ∈ Cn1×n1 , V1 ∈ Cm1×m1 and a diagonal matrix of singular

values Λ1 =
(

diag(λ
(1)
1 , . . . , λ

(1)
n1 ), 0

)
∈ RRn1×m1 . Now, as shown in Theorem 2.2, the

optimal dictionary matrix is obtained by D1,opt = V1,n1U
∗
1 , where V1,n1 denotes the

restriction of V1 to its first n1 columns.

Step 3. For fixed directions α1, . . . , αR, corresponding Cαr , r = 1, . . . , R, and fixed D1

we consider the minimization problem for D2. With the same notations as above, we

can write

min
D2∈Cm2×n2

R∑
r=1

K∑
k=1

‖D2Y
T
αr,kD

T
1 − CT

αr,k‖
2
F s.t. D∗2D2 = In2

and obtain the optimal solution D2,opt = V2,n2U
∗
2 from the singular value decomposition

R∑
r=1

K∑
k=1

Y T
αr,kD

T
1 Cαr,k = U2Λ2V

∗
2 ,

where V2,n2 denotes the restriction of V2 to its first n2 columns. We outline the pseudo

code for learning the tight frame with Kronecker structure and one optimal direction in

Algorithm 2.

5. Application to data reconstruction and denoising

We want to apply the new data-driven dictionary constructions to 2D and 3D data

reconstruction (resp. data interpolation) and to data denoising. Let X denote the

complete correct data, and let Y be the observed data. We assume that these data are

connected by the following relation

Y = A ◦X + γξ. (5.2)

Here A ◦ X denotes the pointwise product (Hadamard product) of the two matrices

A and X, ξ denotes an array of normalized Gaussian noise with expectation 0, and

γ ≥ 0 determines the noise level. The matrix A contains only the entries 1 or 0 and

is called trace sampling operator. If γ = 0 then the above relation models a seismic
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Algorithm 2 : KronTFD Algorithm

Input: Training set of data Y1, Y2, · · · , YK ∈ Cn1×n2 , number of iterations T

Output: D1, D2, optimal angle

1: Initialize the dictionary matrices D1 ∈ Cm1×n1 and D2 ∈ Cm2×n2 with

D∗1D1 = In1 , D
∗
2D2 = In2

First: Find optimal angle direction of the training data.

2: for k = 1, 2, . . . , K

3: for angle = −45,−40, . . . , 45

4: Adjust the data Yk by cyclic shifting of columns by the angle.

5: Apply the dictionary transform to Yk, k = 1, . . . , K, and use the hard/

soft thresholding to update the coefficient matrix (C1 . . . CK).

6: Apply the inverse dictionary transform for data recovery and record

the achieved SNR value.

7: end for

8: The largest SNR value yields the optimal angle direction of training data.

9: Adjust the data Yk by cyclic shifting of columns by the optimal angle.

10: end for

Second: Learn the dictionary.

11: for k = 1, 2, . . . , T

12: Use the hard/soft thresholding to update the coefficient matrix

(C1 . . . CK).

13: for n = 1 to 2 do

14: Use the SVD method to update the dictionary matrices Dn.

15: end for

16: end for

interpolation problem, and the task is to reconstruct the missing data. If A = I1, where

I1 is the matrix containing only ones, and γ > 0, it models a denoising problem. The

two problems can be solved by a sparsity-promoting minimization method, see e.g. [8].

We assume that our desired data X can be sparsely represented by the dictionary that

has been learned beforehand, either by

u = vec(U) = (D2 ⊗D1)vec(X), i.e. x = vec(X) = (D∗2 ⊗D∗1)u

for the data-driven tight frame in Section 3 or by

u = vec(U) = (D2 ⊗D1)diag(V bjαc)n2
j=0vec(X),

i.e., x = vec(X) = (diag(V bjαc)n2
j=0)

T (D∗2 ⊗D∗1)u

for a suitable α ∈ (−1, 1], see Section 4. In the next section on numerical simulations, we

consider some examples and show, how a suitable data-driven dictionary can be obtained

from the observed incomplete or noisy data employing Algorithm 1 or Algorithm 2.
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For the given data Y we now have to solve the minimization problem

u∗ = argmin
u
||vec(Y )− Ã((diag(V bjαc)n2

j=0)
T (D∗2 ⊗D∗1)u)||22 + λ||u||1,(5.3)

where Ã denotes the vectorization of the sampling operator A. Afterwards, the desired

image X is obtained from u∗ by the inverse transform as indicated above.

There exist many iterative algorithms to solve such a minimization problem, as e.g.

the FISTA algorithm [4] or a first-order primal-dual algorithm, see [9, 11].

In Geophysics alternating projection algorithms as POCS (projection onto convex

sets) are very popular. The approach in [2] for Fourier bases (instead of frames) can

be interpreted as follows. We may try to formulate the interpolation problem as a

feasibility problem. We look for a solution X of (5.2) that on the one hand satisfies the

interpolation condition A ◦X = Y , i.e., is contained in the set of all data

M := {Z : A ◦ Z = Y }

possessing the observed data Y . This constraint can be enforced by applying the

projection operator onto M ,

PMX = (I1 − A) ◦X + Y

that leaves the unobserved data unchanged and projects the observed traces to Y .

On the other hand, we want to ensure that the solution X has a sparse

representation in the constructed data-driven frame. The sparsity constraint is enforced

by applying a (soft) thresholding to the transformed data, i.e. we compute

PDλX := D−1SλDX,

where D denotes the dictionary operator that maps X to the dictionary coefficients,

and Sλ is the soft threshold operator as in (2.3). In our case, we had e.g.

U = DX = D1XD
T
2 , D−1U = D∗1UD2 = X

in Chapter 3, and one can easily also incorporate the directional sensitivity as in Chapter

4. We observe however, that PDλ is not longer a projector and therefore this approach

already generalizes a usual alternating projection method.

The complete iteration scheme can be obtained by alternating application of PM
and PDλk ,

Xk+1 = PM(PDλkXk) = (I1 − A) ◦ (PDλkXk) + Y, (5.4)

where λk is the threshold value that can vary at each iteration step. We recall that all

elements of the matrix I1 are one. To show convergence of this scheme in the finite-

dimensional setting one can transfer ideas from [26], where an iterative projection scheme

had been applied to a phase retrieval problem incorporating sparsity in a shearlet frame.

To improve the convergence of this iteration scheme in numerical experiments, we

adopt the following exponentially decreasing thresholding parameters, see [15],

λk = λmaxe
b(k−1), k = 1, 2, . . . , iter,
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where λ1 = λmax represents the maximum parameter, λiter = λmin the minimum

parameter, and b is chosen as b = ( −1
iter−1) ln(λmax

λmin
), where iter is the fixed number

of iterations in the scheme.

For data denoising, we only apply an iterative thresholding procedure given by

Xk+1 = D1(Sλ(D
T
1XkD2))D

T
2 , (5.5)

where λ is the threshold parameter related to the noise level γ. Our numerical

experiments show that the λ choose about 3γ is a good value for denoising.

6. Numerical Simulations

In this section we want to apply Algorithm 1 and Algorithm 2 for data-driven dictionary

learning to interpolation and denoising of seismic images. In a first illustration, we

compare the dictionaries learned by KronTF in Algorithm 1 with the dictionary obtained

by the DDTF method in [8] and the fixed Fourier dictionary used e.g. in the POCS

algorithm, [2]. As initially known data, we use the seismic data of size (128 × 128) in

Figure 5(b), where 50 % of the traces are missing.

We shortly explain the procedure to evaluate the dictionary in this example. In a

first step, we employ pre-interpolation to the data, where each missing trace is recovered

by the nearest adjacent given trace. If for a missing trace both, the left and the right

neighbor trace are given, we take the left trace. Having filled the incomplete data we

obtain the interpolation P = (pjk)
127
j,k=0 ∈ C128×128 in this way. Next, we collect 64× 64

patches Yk out of these data. For the special example, we use the overlapping patches

(pj+8`1,k+8`2)
63
j,k=0, `1, `2 = 0, . . . , 7,

and obtain K = 64 patches Yk ∈ C64×64. Thus, Y = (y1 . . . y64) ∈ C642×64, where

yk = vec(Yk) ∈ C4096. We employ now the Fourier basis, i.e., D1 ⊗ D2 = 1
64
F64 ⊗ F64

with F64 := (ωjk64)63j,k=0 and ω64 := exp(−2πi
64

), as initial dictionary, which in this case

is even a unitary transform. Then we apply Algorithm 1 in Section 3 using T = 2

iterations to update D1 and D2. The obtained two dictionary matrices D1 and D2 of

size 64× 64 are displayed in Figures 2(a) and 2(b).

While the obtained KronTF dictionary D1 ⊗ D2 can be applied now to 64 × 64

images, a corresponding DDTF dictionary in [8] would need a 4096 × 4096 dictionary

matrix to cope with vectorized 64× 64 images, and the evaluation of such a dictionary

matrix is not feasible in practice. Therefore, in [8], only 8×8 (or 16×16) training patches

Yk are considered. Figure 2(c) shows a dictionary obtained using training patches from

P (the number of patches is 4096),

(pj+`1,k+`2)
7
j,k=0, `1, `2 = 0, . . . , 63,

using the procedure of Algorithm 1 in [8] with 3 iterations and starting with an initial

dictionary given by tensor linear spline framelet with filter size 8×8. For comparison, we
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Figure 2. (a) Dictionary D1 ∈ C64×64 learned via KronTF. (b) Dictionary D2 ∈
C64×64 learned via KronTF. The learned dictionaries are based on training data from

Figure 5(b). (c) Learned dictionary via DDTF of size 64× 64. (d) Fourier dictionary

(F8⊗F8). (e)-(f) Absolute values of frame coefficients using KronTF (left) and DDTF

(right). Solid lines denote absolute values of frame coefficients using initial dictionaries.
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Figure 3. Comparison of time costs for dictionary learning.

also show the fixed dictionary obtained from 1
8
(F8⊗F8) ∈ C64×64 (with F8 = (ωjk8 )7j,k=0)

in Figure 2(d). Such a fixed Fourier basis is used in the POCS algorithm [2].

Figures 2(e) and (f) show, how well the data in the used training patches can be

sparsified by the learned dictionaries compared to the initial dictionaries. Here we have

computed the absolute values of coefficients of u = (D2 ⊗ D1)vec(X) with the found

matrices D1 and D2 for KronTF in comparison to u = 1
64

(F64 ⊗ F64)vec(X) in Figure

2(e). To apply the DDTF that works only for 8× 8 blocks, we split X into 64 blocks of

size 8× 8 and apply the obtained DDTF dictionary in Figure 2(b) separately to each of

these blocks. The absolute coefficients are illustrated in Figure 2(f), compared to the

coefficients obtained using the initial frame, see [8].

We observe that DDTF works here slightly better than KronTF with regard to

sparsification, but requires a much higher computational effort for dictionary learning.

The comparison of time costs is illustrated in Figure 3. Here, we also show the

comparison to K-SVD that is even more expensive since it incorporates many SVDs,

see Remark 2.3. A Matlab implementation for the K-SVD methods is available from

the authors of [1], see http://www.cs.technion.ac.il/∼elad/software/.

We want to use the new data-driven tight frames of Kronecker type (KronTF) and

the data-driven directional frames of Kronecker type (KronTFD) for interpolation and

denoising of 2D and 3D seismic data, and compare the performance with the results

using the POCS algorithm based on the Fourier transform [2], curvelet frames and

data-driven tight frames (DDTF) method [24].

For the POCS method, where a two-dimensional Fourier transform is applied to

seismic data blocks of size 64×64, we use overlapping patches to suppress the periodicity

artifacts resulting from the Fourier transform. For the DDTF method, always a tensor

linear spline framelet as proposed in [8] is applied as the initial dictionary, and the

dictionary size is 8× 8.

The quality of the reconstructed images is compared using the PSNR (peak signal-
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to-noise ratio) value, given by

PSNR = 10 log(
maxX −minX

1
MN

∑
i,j(Xi,j − X̃i,j)

), (6.6)

where X ∈ CM×N denotes the original seismic data and X̃ ∈ CM×N is the recovered

seismic data.

In a first test we consider synthesis data of size 512×512, see Figure 4. Figure 4(a)

shows the original real data and Figure 4(b) the sub-sampled data with 50% random

traces missing.

We compare the reconstructions (interpolation) using the DDFT method in Figure

4(c), the KronTF method in Figure 4(d) and the KronTFD method in Figure 4(e).

Here, the dictionaries are evaluated as described before using training patches from the

pre-interpolated data in Figure 4(b), where this time, 10201 = 1012 patches of size

64 × 64 are used as training patches for KronTF and KronTFD. The dictionaries are

realized by Algorithm 1 resp. Algorithm 2, where in the second case only one favorite

direction is fixed from the set of 15 predefined angles. In both algorithms, we have taken

only T = 2 iterations. In comparison, we show DDTF applied to 8× 8 image blocks in

Figure 4(c). For the given dictionaries, the image is reconstructed by solving (5.3) and

applying the inverse transform. Figure 4(f) illustrates the result for one fixed trace.

In a next example, we consider real seismic data. In Figure 5 and Figure 6 we

present the interpolation results using different reconstruction methods. Figures 5(c)-

(f) show the interpolation results by the POCS method and the curvelet transform as

well as the difference images.

In Figure 6, we show the corresponding interpolation results for DDTF, KronTF,

and KronTFD (with one favorite direction) together with the error between the recovery

and original data. Here, the dictionaries shown in Figure 2 have been applied.

For a further comparison of the recovery results, we display a single trace in Figure

7. In Table 1, we list the comparisons of reconstruction results obtained from incomplete

data with different sampling ratios.

In a next experiment, we consider the denoising performance of the method. Here

the seismic data have been corrupted by white noise with noise level 20, see Figure 8(b).

In order to construct the dictionary matrices D1 and D2 of size 64 × 64 we use again

64 training patches of size 64 × 64 from the noisy image, similarly as explained before

for the case of interpolation. Then Algorithm 1 (resp. Algorithm 2 with one favorite

direction) is applied with T = 2 iterations to achieve the data-driven dictionaries D1 and

D2 from the initial Fourier dictionary. For DDTF method, we also proceed as for the

interpolation application using now the noisy image instead of the the pre-interpolated

image P to extract the training patches.

Figures 8 and 9 show denoising results for the data in Figure 8(b). We compare

the results of denoising by the POCS method [2], denoising by the curvelet transform,

DDTF method, and our method based on the new frames KronTF and KronTFD,

respectively. For POCS, DDTF, KronTF and KronTFD, which are in our construction
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Figure 4. Interpolation results using DDTF and the new KronTF methods for

synthesis data with irregular sampling ratio of 0.5. (a) Original seismic data. (b)

Seismic data with 50% traces missing. (c) Interpolation by DDTF method. (d)

Interpolation by KronTF method. (e) Interpolation by KronTFD method. (f) Single

trace comparison of the reconstructions with the original data.

all uniform (non-redundant) transforms, we employ a cycle-spinning here as its is usual

for wavelet denoising, i.e., we apply the denoising method (5.5) to shifts of the image

blocks and compute the average. With our new data-driven frames, we can achieve

better results than the other methods, because the dictionary learning methods contain
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Figure 5. Interpolation results on real data with an irregular sampling ratio of 0.5.

(a) Original seismic data. (b) Seismic data with 50% trace missing. (c) Interpolation

using the POCS method. (d) Difference between (c) and (a). (e) Interpolation using

the curvelet frame. (f) Difference between (e) and (a).

the information on the special seismic data. For better comparison, we also display the

single trace comparisons in Figure 10. In Table 2, we list the comparisons of the achieved

PSNR value with different noise levels. KronTF and KronTFD achieve competitive

results both for interpolation and denoising.

Finally, we test the interpolation of 3D data with 50% randomly missing traces. In

Figure 11, we applied the KronTF and the KronTFD tensor technique to the synthetic

3D seismic data of size 178× 178× 128). Here, 8× 8× 8 patches of the pre-interpolated

observed (incomplete) data are used for training. The results of the DDTF method for

3D data are shown in Figures 11(c). In Figure 11(d)-(e) we present the results obtained

by the KronTF and KronTFD method, respectively. The single trace comparisons are

also shown in Figure 11(f). Figure 12 and Figure 13 show an interpolation comparison of

the DDTF method and KronTF method for a real 3D marine data of size 251×401×50,

where we have applied the same methods as explained above.

7. Conclusion

This paper aims at exploiting sparse representation of seismic data for interpolation

and denoising. We have proposed a new method to construct data-driven tensor-

product tight frames. In order to enlarge the flexibility of the dictionaries, we have

also proposed a simple method to incorporate favorite local directions that are learned
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Figure 6. Interpolation results (continued) of Figure 5(b). (a) Interpolation using

the DDTF. (b) Difference between (a) and Figure 5(a). (c) Interpolation using the

KronTF. (d) Difference between (c) and Figure 5(a). (e) Interpolation using the

KronTFD. (f) Difference between (e) and Figure 5 (a).
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Figure 7. (a)-(f) Single trace comparison of the reconstructions in Figure 5 and 6

with the original Figure 5(a).
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Table 1. PSNR comparison of five methods for different sampling ratio.
Sampling ratio 0.2 0.3 0.4 0.5 0.6 0.7 0.8

KronTFD 35.1327 37.3572 38.8862 41.2564 43.0243 44.0132 44.8996

KronTF 34.6198 36.8759 38.3167 40.6312 42.4675 43.8262 44.5342

DDTF 33.2942 35.1486 36.9543 39.0385 40.1064 42.3052 42.5668

Curvelet 31.1674 34.6478 35.6347 37.6377 39.4190 40.8930 41.5727

POCS 27.5122 31.8804 35.5560 38.2300 39.9878 41.0084 41.6816
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Figure 8. Denoising results of methods on real data with noise level of 20. (a) Original

seismic data. (b) Noisy data. (c) Denoising result by POCS method. (d) Difference

between (c) and (a). (e) Denoising result by curvelet method. (f) Difference between

(e) and (a).

from the data. In the numerical experiments, we employed the new dictionaries to

improve both seismic data interpolation and denoising. The main advantage of the

proposed dictionary construction is its computational efficiency which is due to the

imposed tensor-product structure.

However tensor-based methods possess limitations regarding to their fixed

structure. The overall goal remains to connect certain predetermined dictionary

structure with data driven components in order to construct dictionaries for sparse

data representation that are feasible also in 3D or even higher dimensions. At the same

time they need to be flexible enough to provide a suitable tool for data processing. This

is of even higher importance, if we want to cope with geophysical data of up to five

dimensions.
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Figure 9. Denoising results for data in Figure 8(b).(a) Denoising by DDTF method.

(b) Difference between (a) and 8(a). (c) Denoising by KronTF method. (d) Difference

between (c) and 8(a). (e) Denoising by KronTFD method. (f) Difference between (e)

and 8(a).
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Figure 10. Single trace comparison for the recovery results in Figure 8 and Figure

9 and the original Figure 8 (a). Here we have (a) application of POCS method, (b)

curvelet denoising, (c)-(e) application of the data-driven frames DDTF, KronTF and

KronTFD.
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Table 2. PSNR comparison of five methods for different noise levels.
Noise level 5 10 15 20 25 30 35

KronTFD 42.4425 39.2846 37.0246 36.1475 35.2537 34.5327 33.8631

KronTF 41.5282 38.5876 36.4967 35.7451 34.7496 33.9365 33.2156

DDTF 41.4918 38.4231 36.2578 35.0778 33.7533 32.5935 31.5993

Corvelet 40.7478 38.0749 35.8603 34.4654 33.2531 32.0124 30.6583

POCS 40.6547 36.7751 34.1781 32.0267 30.8375 28.6220 27.9847
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Figure 11. Interpolation of synthetic seismic 3D data with data size 178× 178× 128.

(a) Original data. (b) Data with 50% randomly missing traces. (c)-(e) Interpolation

by DDTF, KronTF and KronTFD.
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Figure 12. Interpolation of real 3D marine data with data size 251 × 401 × 50. (a)

Original data; (b) Data with 50% randomly missing traces. (c)-(g) Interpolation by

POCS method, Curvelet method, DDTF, KronTF and KronTFD.
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Figure 13. Single trace comparison for the recovery results in Figure 12 and the

original Figure 12 (a). Here we have (a)POCS method, (b) curvelet denoising, (c)-(e)

application of the data-driven frames DDTF, KronTF and KronTFD.
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