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Abstract. Fast trigonometric transforms and periodic orthogonal
wavelet transforms are essential tools for numerous practical appli-
cations. It is very important that fast algorithms work stable in a
floating point arithmetic. This survey paper presents recent results on
the worst case analysis of roundoff errors occurring in floating point
computation of fast Fourier transforms, fast cosine transforms, and
periodic orthogonal wavelet transforms. All these algorithms realize
matrix-vector products with unitary matrices. The results are mainly
based on a factorization of a unitary matrix into a product of sparse,
almost unitary matrices. It is shown that under certain conditions
fast trigonometric and periodic orthogonal wavelet transforms can be
remarkably stable.

§1. Introduction

An algorithm for the discrete Fourier transform with low arithmetical
complexity is called a fast Fourier transform (FFT). Fast algorithms of
other discrete trigonometric transforms, such as a discrete cosine trans-
form (DCT) or discrete sine transform, can be realized by FFT. These
discrete trigonometric transforms are linear mappings generated by uni-
tary or orthogonal matrices. Periodic orthogonal wavelet transforms are
also linear mappings with orthogonal transform matrices. Nowadays, fast
trigonometric transforms and periodic orthogonal wavelet transforms are
essential tools in numerous practical computations. Therefore it is very
important that the fast algorithms work stable in a floating point arith-
metic with unit roundoff u. In this survey paper, it is shown that under
certain conditions fast trigonometric transforms and periodic orthogonal
wavelet transforms can be remarkably stable.
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Let A ∈ Cn×n be a unitary matrix. For every input vector x ∈ Cn let
y := Ax be the exact output vector. By ŷ ∈ Cn we denote the computed
vector of Ax. Fast algorithms for the computation of Ax are based on a
factorization of A = A(t) . . . A(1) into a product of sparse, almost unitary
matrices A(s) and its stepwise realization by

ŷ := fl(Â(t)fl(Â(t−1) . . .fl(Â(2)fl(Â(1)x)) . . .)),

where Â(s) consists of precomputed entries of A(s) and where fl(Â(s)z)
denotes the vector Â(s)z computed in floating point arithmetic.

Let Δy := ŷ−y. An algorithm for computing Ax is called normwise
forward stable (see [8], p. 142), if there exist a constant kn > 0 such that
for all x ∈ Cn

‖Δy‖2 ≤ (kn u + O(u2)) ‖x‖2

and knu � 1. Here ‖x‖2 denotes the Euclidean norm of x ∈ Cn. We
introduce Δx := A−1(ŷ− y). Since A is unitary and since the Euclidean
norm is unitary invariant, we also have normwise backward stability by

‖Δx‖2 ≤ (kn u + O(u2)) ‖x‖2.

With other words, we measure the numerical stability of an algorithm
for computing Ax by a worst case stability constant kn. In this worst
case analysis one can only obtain upper bounds of the roundoff errors.
However, the worst case bounds already reflect the structure of roundoff
errors and their dependence on different ingredients of an algorithm as e.g.
the precomputation of matrix entries, the kind of matrix factorization,
the choice of recursive or cascade summation etc.. This has also been
confirmed by a series of numerical experiments (see e.g. [2, 3, 14, 15, 23,
24]).

More realistic estimates of the roundoff errors can be obtained in an
average case study. Here it is assumed that all components of an input
vector x and the resulting roundoff errors are random variables. One is
interested in the distribution of the error vector Δx. Then one can measure
the average case backward stability in terms of the expected values

E(‖Δx‖2
2) = (k

2

n u2 + O(u3)) E(‖x‖2
2)

with an average case stability constant kn > 0 such that kn u � 1. For
details see [4, 22, 24, 27].

This survey paper is organized as follows: In Section 2, we introduce
Wilkinson’s model for the worst case study of roundoff errors. Further we
estimate the roundoff errors of matrix-vector products. The key point of
this paper is Section 3 which is devoted to fast matrix-vector multiplica-
tions. We assume that a unitary matrix A can be factorized into a product
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of sparse, almost unitary matrices. Using this factorization, we can com-
pute step by step the product Ax with arbitrary x ∈ Cn. In Theorems
5 and 6, we present a unified approach to worst case stability constants
kn. This roundoff error analysis is then applied to the FFT in Section 4,
to fast cosine transforms in Section 5, and to periodic orthogonal wavelet
transforms in Section 6. Here Theorems 7 and 8 on the factorization of
the wavelet matrix and the polyphase matrix are new.

In this paper it is shown that the numerical stability of orthogonal
transforms can be very different. In particular, errors in precomputed
entries of a matrix (or a matrix factor) have a strong influence on the
numerical stability of the algorithm. Further, the factorization of the
transform matrix should preserve the orthogonality. Sparsity of the factor
matrices means often that each row and column contains at most 2 nonzero
entries. (This can always be obtained for unitary transform matrices.)
Finally, we note that numerical stability and arithmetical complexity are
rather independent properties of an algorithm, i.e., an algorithm with
low arithmetical complexity can possess a bad numerical stability, and an
algorithm with large arithmetical complexity can possess a good numerical
stability.

§2. Matrix-vector products in floating point arithmetic

We consider a floating point number system F ⊂ IR which is characterized
by the following integer parameters: the base β, the precision t, and the
exponent range emin ≤ e ≤ emax. The elements of F can be expressed in
the form

y = ±βe

(
d1

β
+

d2

β2
+ . . . +

dt

βt

)
,

where each digit di satisfies 0 ≤ di ≤ β − 1. One can ensure a unique
representation of each element y ∈ F \ {0} by assuming that the most
significant digit d1 is not equal to zero. The system is then called normal-
ized. The range of nonzero floating point numbers in a normalized system
F is given by

βemin−1 ≤ |y| ≤ βemax(1 − β−t).

Then each real number x �= 0 in the range of F can be approximated by
a number fl(x) ∈ F with a relative error smaller than u := 1

2β1−t, i.e.,

∣∣∣∣x − fl(x)
x

∣∣∣∣ < u.

Here, the constant u is called unit roundoff of the floating point system
F . Note that the elements of F are not equally spaced.
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The IEEE arithmetic in double precision uses a floating point number
system with the parameters

β = 2, t = 53, emin = −1021, emax = 1024.

The corresponding unit roundoff is u = 2−53 ≈ 1.11 × 10−16. For more
information on floating point number systems and standards we refer to
[8] and references therein.

In order to carry out a rounding error analysis of an algorithm, we
assume that the following standard model of floating point arithmetic by
Wilkinson [25] is true: For arbitrary real numbers x, y and any basic
arithmetical operation ◦ ∈ {+, −, ×, /}, the exact value x ◦ y and the
computed value fl(x ◦ y) are related by

fl(x ◦ y) = (x ◦ y)(1 + ε◦) (|ε◦| ≤ u). (1)

This model is valid for most computers, in particular it holds for IEEE
arithmetic.

We are especially interested in a roundoff error analysis for matrix-
vector products, where the matrix is unitary (or orthogonal). At first, we
consider inner products. With the unit roundoff u let now

γn :=
nu

1 − nu
(n ∈ IN, nu < 1).

Further, for vectors a ∈ IRn and matrices A ∈ IRn×n let |a| := (|aj |)n−1
j=0

and |A| := (|ajk|)n−1
j,k=0 be the corresponding vectors and matrices of ab-

solute values. Then we have

Lemma 1. Let n ∈ IN be given with nu < 1. Then for a recursive
computation of the inner product for arbitrary vectors a, b ∈ IRn it follows

|aT b − fl(aT b)| ≤ γn|a|T |b| = (nu + O(u2))|a|T |b|.

For cascade summation of the inner product it follows

|aT b − fl(aT b)| ≤ γ�log2 n�+1|a|T |b| = ((
log2 n� + 1)u + O(u2))|a|T |b|,

where for a ∈ IR, 
a� := min {m ∈ ZZ : m ≥ a} is the smallest integer
greater than or equal to a.

The proof follows immediately by induction over n (see e.g. [8], p.
69).

If the vector a ∈ IRn possesses at most l ≤ n nonzero entries, then we
obtain as a trivial consequence of Lemma 1 that for arbitrary b ∈ IRn

|aT b − fl(aT b)| ≤
{

γl |a|T |b| for recursive summation,
γ�log2 l�+1 |a|T |b| for cascade summation.
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Now we want to consider matrix-vector products. For a matrix A =
(ajk)n−1

j,k=0 ∈ IRn×n let signA := (sign ajk)n−1
j,k=0 be the corresponding sign-

matrix, where for a ∈ IR,

sign a :=

⎧⎨
⎩

1 for a > 0,
−1 for a < 0,
0 for a = 0.

Further, for two vectors a = (aj)n−1
j=0 , b = (bj)n−1

j=0 ∈ IRn let a ≤ b be
defined by aj ≤ bj for all j = 0, . . . , n − 1. Analogously, we write A ≤ B
for two matrices A, B of same size if this inequality is true elementwise.
Then we obtain

Theorem 2. Let n ∈ IN, n ≥ 2 and 2 ≤ l ≤ n with lu < 1 be given. Let
A = (ajk)n−1

j,k=0 ∈ IRn×n be a matrix containing at most l nonzero entries
in each row. Further, assume that the nonzero entries ajk are precomputed
by âjk, where

|âjk − ajk| ≤ ηu (2)

with some constant η > 0, and set âjk = 0 for ajk = 0. Let Â :=
(âjk)n−1

j,k=0. Then for arbitrary x ∈ IRn the error fl(Âx) −Ax satisfies the
estimate

|fl(Âx) − Ax| ≤ γl̃ |A||x| + (η u + γl̃ η u)|signA||x|
= (l̃ u + O(u2))|A||x| + (ηu + O(u2))|signA||x|,

where l̃ := l for recursive summation and l̃ := 
log2 l� + 1 for cascade
summation.

Proof: The assumption (2) implies that

|Â − A| ≤ ηu |signA|.

Hence the error vector fl(Âx) − Ax can be estimated as follows

|fl(Âx) − Ax| ≤ |fl(Âx) − Âx| + |(Â − A)x|
≤ |fl(Âx) − Âx| + η u| signA| |x|.

For the first term we obtain by Lemma 1

|fl(Âx) − Âx| ≤ γl̃ |Â| |x|
≤ γl̃ |A| |x| + γl̃ |Â − A| |x|
≤ γl̃ |A| |x| + γl̃ η u |signA| |x|,
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where we have used that each entry contains at most l nonzero entries.

Using the spectral norm of the matrix A ∈ IRn×n, given by

||A||2 =
√

ρ(AT A),

where ρ(AT A) denotes the spectral radius of AT A, we finally obtain an
error estimate in the Euclidean norm

‖fl(Âx) − Ax‖2 ≤ γl̃ ‖(|A|)‖2‖x‖2 + (1 + γl̃) η u ‖(|signA|)‖2 ‖x‖2, (3)

and for the relative forward error

Ef
rel(x) :=

‖fl(Âx) − Ax‖2

‖Ax‖2

≤ ‖A−1‖2

(
γl̃ ‖(|A|)‖2 + ((1 + γl̃) ηu ‖(|signA|)‖2

)
.

This error estimate can be further simplified if A is an orthogonal, sparse
(n× n)-matrix. Let us assume that the orthogonal matrix A possesses at
most l entries in each row and in each column. Then we have

‖(|signA|)‖2 ≤ (‖signA‖∞ ‖signA‖1)1/2 = l,

where ‖ · ‖∞ and ‖ · ‖1 denote the row sum matrix norm and the column
sum matrix norm of A, respectively. Since the entries of an orthogonal
matrix have an absolute value smaller than or equal to 1, and in each row
(and each column) the sum of the squared entries is equal to 1 we obtain
by

(
l∑

j=1

|aj |)2 ≤ l (
l∑

j=1

a2
j )

that
‖(|A|)‖2 ≤ (‖A‖∞ ‖A‖1)1/2 =

√
l,

and by ‖A−1‖2 = 1 we finally obtain in this case

Ef
rel(x) ≤ γl̃

√
l + (1 + γl̃) η u l = (l̃

√
l + η l)(u + O(u2)).

In the special case l = 2 one can even obtain

Ef
rel(x) ≤

(
4√
3

+
√

2 η

)
u + O(u2)

(see e.g. [12]). Observe that the estimates for the relative forward error
always consist of two relevant terms, namely the first term depending on
|A| and on the kind of summation and the second term depending on
|signA| and on the precomputation of matrix entries.

This theory can be extended to complex matrix-vector products.
Since complex arithmetic is implemented using real arithmetic, the fol-
lowing bounds can be derived for basic complex floating point operations.
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Lemma 3. Let z, w ∈ C. Then we have

fl(z + w) = (z + w)(1 + ε+) (|ε+| ≤ u),

fl(z × w) = (z × w)(1 + ε×) (|ε×| ≤ μCu + O(u2)),

where μC = 4
√

3
3 ≈ 2.31 is the best possible constant under Wilkinson’s

model (1). For z ∈ IR ∪ iIR and w ∈ C we even have

fl(z × w) = (z × w)(1 + ε×) (|ε×| ≤ u).

For a proof we refer to [22], Lemma 8.1 or [23]. Other proofs can be
found in [8], p. 79 with a constant μC = 2

√
2 and in [5] with μC = 1+

√
2.

By a suitable modification of Lemma 1 and Theorem 2 one obtains
in complex arithmetic the following

Corollary 4. Let A = (ajk)n−1
j,k=0 ∈ Cn×n and x ∈ Cn. Assume that each

row of A contains at most l nonzero entries and that the precomputed
values âjk satisfy, for ajk �∈ {0, ±1, ±i},

|âjk − ajk| ≤ η u

with η > 0, and âjk = ajk otherwise. Here i denotes the imaginary unity.

Let Â := (âjk)n−1
j,k=0. Further, let Ã := (ãjk)n−1

j,k=0 with

ãjk :=
{

1 if ajk �∈ {0,±1, ±i},
0 otherwise.

Then we have

|fl(Âx) − Ax| ≤ ((l̃ + μC − 1)u + O(u2))|A| |x| + ηÃ |x|(u + O(u2)),

where l̃ := l for recursive summation and l̃ := 
log2 l� + 1 for cascade
summation.

A proof of this assertion can be found in [22], Lemma 8.4.

§3. Fast matrix-vector multiplications

Let A ∈ IRn×n be an orthogonal matrix. Assume that A possesses a
factorization into a product of sparse, almost orthogonal matrices

A = A(t) A(t−1) . . .A(2) A(1). (4)

A matrix A(s) ∈ IRn×n is called almost orthogonal, if (A(s))T A(s) = α2
s In

with the identity matrix In and some constant αs = α(A(s)) > 0. Now, the
matrix-vector product Ax can be computed by starting with y(0) := x and
by recursive evaluation of y(s) := A(s)y(s−1) for s = 1, . . . , t. Most fast
algorithms for a matrix-vector product Ax are based on a factorization of
the matrix A. Considering now the numerical stability of such algorithms,
we obtain
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Theorem 5. Let A ∈ IRn×n be an orthogonal matrix with a factorization

(4), where A(s) = (a(s)
jk )n−1

j,k=0 ∈ IRn×n, s = 1, . . . , t are almost orthogonal.

Assume that in each row and in each column of A(s) are at most ls =
l(A(s)) nonzero entries which are precomputed with

|â(s)
jk − a

(s)
jk | ≤ ηs u (ηs = η(A(s)) > 0),

and let â
(s)
jk = 0 for a

(s)
jk = 0. Further let Â(s) = (â(s)

jk )n−1
j,k=0 ∈ IRn×n for

s = 1, . . . , t. Then the forward error vector for sequential summation

Δy := fl(Â(t)fl(Â(t−1) . . .fl(Â(2)fl(Â(1)x)) . . .)) − Ax

satisfies

‖Δy‖2 ≤ (kn u + O(u2)) ‖x‖2

with

kn :=
t∑

s=1

(l3/2
s +

ηs

αs
ls).

Proof: Let ŷ(0) := x and ŷ(s) := fl(Â(s) ŷ(s−1)) for s = 1, . . . , t, the in-
termediate vectors obtained by the algorithm in floating point arithmetic.
Further, for s = 1, . . . , t, let e(s) := fl(Â(s)ŷ(s−1))−A(s)ŷ(s−1) denote the
error vector in step s. Then from (3) it follows that

‖e(s)‖2 ≤
(
γls‖(|A(s)|)‖2 + (1 + γls) ηs u‖(|signA(s)|)‖2

)
‖ŷ(s−1)‖2.

In view of ‖(|signA|)‖2 ≤ ls and

‖(|A(s)|)‖2 = αs‖(|
1
αs

A(s)|)‖2 ≤ αs

√
ls

we obtain by γls = lsu + O(u2) that

‖e(s)‖2 ≤
(
αs l3/2

s u + (1 + lsu) ηs ls u + O(u2)
)
‖ŷ(s−1)‖2

=
(
(αsl

3/2
s + ηs ls)u + O(u2)

)
‖ŷ(s−1)‖2.

From ‖y(s−1)‖2 = α1 . . . αs−1‖x‖2 (where y(s−1) are the exact intermedi-
ate vectors of the algorithm above) and

‖ŷ(s−1)‖2 ≤ ‖y(s−1)‖2 + ‖ŷ(s−1) − y(s−1)‖2
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it follows for s = 2, . . . , t that

‖ŷ(s−1)‖2 ≤ (α1 . . . αs−1)‖x‖2 + ‖fl(Â(s−1)ŷ(s−2)) − A(s−1)ŷ(s−2)‖2

+ ‖A(s−1)ŷ(s−2) − A(s−1)y(s−2)‖2

≤ (α1 . . . αs−1)‖x‖2 + ‖e(s−1)‖2 + αs−1‖ŷ(s−2) − y(s−2)‖2

≤ (α1 . . . αs−1)‖x‖2 + O(u)‖x‖2,

where the last inequality follows by an induction argument. Using tele-
scope summation, we find

Δy = ŷ(t) − y(t)

= (ŷ(t) − A(t)ŷ(t−1)) + A(t)(ŷ(t−1) − y(t−1))

= e(t) + A(t)(ŷ(t−1) − y(t−1))

= e(t) + A(t)e(t−1) + A(t)A(t−1)(ŷ(t−2) − y(t−2))

= e(t) + A(t)e(t−1) + . . . + A(t) . . .A(2)e(1),

and hence, by ‖A(s)‖2 = αs and
∏t

s=1 αs = 1, we obtain

‖Δy‖2 ≤
t−1∑
s=1

‖A(t) . . .A(s+1)‖2‖e(s)‖2 + ‖e(t)‖2

≤
t−1∑
s=1

(αt . . . αs+1)
(
(αsl

3/2
s + ηs ls)u + O(u2)

)
‖ŷ(s−1)‖2

+
(
(αtl

3/2
t + ηt lt)u + O(u2)

)
‖ŷ(t−1)‖2

≤
t∑

s=1

1
αs

(
(αsl

3/2
s + ηs ls) u + O(u2)

)
‖x‖2

=
t∑

s=1

((
l3/2
s +

ηs

αs
ls

)
u + O(u2)

)
‖x‖2.

This completes the proof.

This theorem shows that worst case roundoff error heavily depends
on the precomputation of the entries in the matrix factors, i.e. on ηs. A
best possible stability can only be achieved, if the value

∑t
s=1

ηs

αs
ls has at

most the same magnitude as
∑t

s=1 l
3/2
s .

For the complex case we state the following theorem by Tasche and
Zeuner [22] without a proof.
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Theorem 6. Let A ∈ Cn×n be a unitary matrix with a factorization (4),

where A(s) = (a(s)
jk )n−1

j,k=0 ∈ Cn×n for s = 1, . . . , t, are almost unitary, i.e.,

A(s)(A
(s)

)T = α2
sIn with αs = α(A(s)) > 0, and block diagonal (up to

some permutation) with blocks of size ≤ λs = λ(A(s)). Assume that in
each row and each column at least κs = κ(A(s)) of the nonzero entries

are in {±1,±i} and that all entries a
(s)
jk �∈ {0,±1,±i} are precomputed

with |â(s)
jk − a

(s)
jk | ≤ ηsu with ηs = η(A(s)) > 0, and â

(s)
jk = a

(s)
jk for

a
(s)
jk ∈ {0, ±1, ±i}. Further let Â(s) = (â(s)

jk )n−1
j,k=0 for s = 1, . . . , t. Then

for arbitrary x ∈ Cn, the forward error vector

Δy := fl(Â(t)fl(. . . Â(2)fl(Â(1)x))) − Ax

satisfies
‖Δy‖2 ≤ (knu + O(u2)) ‖x‖2

with

kn =
t∑

s=1

(θs +
√

λs μC +
ηs

αs
(λs − κs)),

θs :=

⎧⎨
⎩

(λs − 1)
√

λs for sequential summation,

log2 λs�

√
λs for cascade summation,

1 for λs = 2.

§4. Fast Fourier transforms

We consider the unitary Fourier matrix

Fn :=
1√
n

(ωjk
n )n−1

j,k=0

with ωn := exp(−2πi/n) and n ∈ IN. The discrete Fourier transform is
the linear mapping from Cn into Cn induced by the matrix Fn.

Let x ∈ Cn. For a direct computation of the matrix-vector product
Fnx with precomputed entries ωk

n, we obtain from Corollary 4 the worst
case estimate

‖fl(Fnx) − Fnx‖2 ≤
(
(n − 1 + μC)

√
n u + η n u + O(u2)

)
‖x‖2,

since for |Fn| and F̃n = (1)n−1
j,k=0 we have

‖(|Fn|)‖2 =
√

n, ‖F̃n‖2 = n.

For the stability constant we hence obtain kn = O(n3/2), i.e., a direct
computation of Fnx possesses not only a large arithmetical complexity
but also a bad numerical stability.
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In the literature, there is a wide variety of fast algorithms for com-
puting Fnx. An FFT is based on a factorization of the Fourier matrix
into a product of sparse, almost unitary matrices. Let us describe the er-
ror analysis only for the example of Cooley-Tukey algorithm and different
precomputation of twiddle factors.

We need the following notations. The tensor product of two matrices
A := (ajk)m−1

j,k=0 ∈ Cm×m and B ∈ Cn×n is by definition the block matrix

A ⊗ B := (ajk B)m−1
j,k=0 ∈ Cmn×mn.

The direct sum of A ∈ Cm×m and B ∈ Cn×n is defined by

A ⊕ B := diag (A, B) ∈ C(m+n)×(m+n).

Let now n = pt, where p, t ∈ IN with p, t ≥ 2, and let nj := pt−j for
j = 1, . . . , t. With B(j)

n we denote the radix-p butterfly matrices

B(j)
n := Ipt−j ⊗ (

√
pFp) ⊗ Ipj−1 , (j = 1, . . . , t),

where Ir is the identity matrix of order r. Further, we consider the radix-p
twiddle matrices

T(1)
n := In,

T(j)
n := Ipt−j ⊗

(
Ipj−1 ⊕ (Wpj−1(pj))1 ⊕ . . . ⊕ (Wpj−1(pj))p−1

)
for j = 2, . . . , t with

Wpj−1(pj) = diag (ωk
pj )pj−1−1

k=0 .

Observe that Bj
n are sparse, almost unitary matrices with

B(j)(B(j))T = p In

and T(j)
n are unitary diagonal matrices. Then Fn can be factorized into

Fn = n−1/2 B(t)
n T(t)

n . . .B(2)
n T(2)

n B(1)
n Rn(p),

where Rn(p) is the radix-p digit-reversal permutation matrix, i.e. with δ
denoting the Kronecker symbol,

Rn(p) := (δ(revn(k) − l))n−1
k,l=0.

Here, for a p-adic representation k =
∑t−1

s=0 ksp
s of k ∈ {0, . . . , n − 1} the

reversion is given by

revn(k) =
t−1∑
s=0

ksp
t−s−1



12 G. Plonka and M. Tasche

(see e.g. [19, 21]).
We consider the precomputation of twiddle factors

ωk
pj = cos

2πk

pj
− i sin

2πk

pj
, j = 2, . . . , t, k = 0, . . . pj−1 − 1.

The most expensive, but also most accurate computation of ωk
pj is the

direct call. If the library routines for sine and cosine are of high quality,
one can obtain an error estimate

|ω̂k
pj − ωk

pj | ≤
√

2
2

u

for the precomputed value ω̂k
pj .

A faster method, based on only two calls of trigonometric functions,
is the repeated multiplication

ω̂n := fl(cos(
2π

n
)) − ifl(sin(

2π

n
))

ω̂k
n := fl(ω̂n × ω̂k−1

n ), (k = 2, . . . , n − 1).

For the roundoff error, we have then the upper bound

|ω̂k
pj − ωk

pj | ≤ (μC +
√

2
2

)
kn

pj
u, j = 2, . . . , t, k = 1, . . . , pj−1 − 1.

Hence for high powers of ωn the error is of size O(nu).
Finally we consider the repeated subvector scaling which combines the

above methods. Compute by direct call for j = 1, . . . , t and r = 1, . . . , p−1

ω̂r
pj = fl(cos(

2πr

pj
)) − ifl(sin(

2πr

pj
))

and then for j = 1, . . . , t − 1 and r = 1, . . . , p − 1

(ω̂k
n)(r+1)nj−1

k=rnj+1 := fl(ω̂r
pj × (ω̂k

n)nj−1
k=1 ).

Hence, for the computation of ωk
n with k =

∑t−1
l=0 kl p

l we need at most
A(k) := #{l ∈ {0, . . . , t − 1} : kl > 0} direct calls and A(k) complex
multiplications such that we arrive at

|ω̂k
n − ωk

n| ≤ (A(k) − 1)μC u +
√

2
2

A(k)u + O(u2)

≤ logp n (μC +
√

2
2

)u − μCu + O(u2).
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By cn,j we denote an upper bound of

max

{
|ω̂k

pj − ωk
pj |

u
: k = 1, . . . , pj − 1

}
.

Then we obtain

cn,j =

⎧⎪⎨
⎪⎩

√
2

2 for direct call,
(μC +

√
2

2 ) n for repeated multiplication,

(μC +
√

2
2 )j − μC for repeated subvector scaling.

We want to apply Theorem 6 to the above Cooley-Tukey factorization
of Fn, where

λ(B(s)
n ) = λ(

√
pFp) = p, κ(B(s)

n ) = κ(
√

pFp) = 1,

α(B(s)
n ) =

√
p, η(B(s)

n ) = cn,1, (s = 1, . . . , t),

since the entries of
√

pFp are the roots of unity ωk
p , k = 0, . . . , p − 1. For

the diagonal matrices T(s)
n we find

λ(T(s)
n ) = 1, κ(T(s)

n ) = 0,

α(T(s)
n ) = 1, η(T(s)

n ) = cn,s, (s = 1, . . . , t).

The permutation matrix Rn(p) does not contribute to the roundoff error.
Hence we find the stability constant for sequential summation

kn = t
√

p

(
p − 1 + μC + cn,1

(p − 1)
p

)
+ tμC +

t∑
s=1

cn,s.

Especially we have

kn =

⎧⎨
⎩

O(logp n) for direct call,
O(n logp n) for repeated multiplication,
O((logp n)2) for repeated subvector scaling.

Remarks. The worst case roundoff errors of the Cooley-Tukey FFT with
accurately precomputed twiddle factors have been already studied by
Ramos [13] and Yalamov [26]. The PhD thesis of Chu [5] contains a
comprehensive worst case study of the Cooley-Tukey and the Gentleman-
Sande FFT, where numerical errors caused by precomputation of the twid-
dle factors is also especially considered.

Calvetti [4] presented at first an average case analysis of the roundoff
errors for direct DFT and Cooley-Tukey-FFT for accurate twiddle factors
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and non-random input data. In Arioli et al. [1], worst case and average
case analysis of roundoff errors for Gentleman-Sande FFT has been stud-
ied. In an interesting report of Schatzman [14] it has been shown by a
series of numerical tests that all twiddle factors should be precomputed
by the most accurate method, the direct call. These results have been
founded theoretically in [2, 23, 24]. Especially, we want to refer to the
survey paper by Tasche and Zeuner [22] for a comprehensive error analy-
sis of different FFT’s, covering the worst case as well as the average case
and showing the strong influence of precomputation errors.

§5. Fast cosine transforms

Now we consider discrete cosine transforms (DCT) which are gener-
ated by cosine matrices of type II - IV given by

CII
n :=

√
2
n

(
ε
(n)
j cos

j(2k + 1)π
2n

)n−1

j,k=0

,

CIII
n := (CII

n )T ,

CIV
n :=

√
2
n

(
cos

(2j + 1)(2k + 1)π
2n

)n−1

j,k=0

with ε
(n)
0 = 2−1/2 and ε

(n)
j = 1 for j = 1, . . . , n− 1. Note that these cosine

matrices are orthogonal.
We first consider a direct computation of the matrix-vector product

CII
n x with x ∈ IRn and want to apply Theorem 2 and formula (3). We

obtain
‖(|sign CII

n |)‖2 = n,

‖(|CII
n |)‖2

2 ≤ ‖CII
n ‖1 ‖CII

n ‖∞

=
(

1√
n

+
1√
2n

(cot(
π

4n
) − 1)

) √
n

= 1 +
1√
2

(
cot(

π

4n
) − 1

)
.

For the equality ‖CII
n ‖1 = 1√

n
+ 1√

2n
(cot( π

4n )−1) we refer to [11]. Observe
that by Taylor expansion cot π

4n ≤ 4n
π such that

‖(|CII
n |)‖2 ≤

(
2
√

2n

π
+ 1 − 1√

2

)1/2

.

Applying (3) it follows with precomputation of matrix entries with bound
η u

‖fl(ĈII
n x)−CII

n x‖2 ≤

⎛
⎝(

2
√

2n

π
+ 1 −

√
2

2

)1/2

nu + η nu + O(u2)

⎞
⎠ ‖x‖2
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such that we have kn = O(n3/2) as for direct computation of the discrete
Fourier transform. This bad numerical stability is also found in numerical
examples, see e.g. [3]. Similar estimates follow for the direct computation
of CIV

n x. However, there are a lot of fast algorithms for computing the
DCT with O(n log n) arithmetical operations.

One idea to compute the DCT efficiently is to use FFT. Let n := 2t,
t ∈ IN with t > 1. Observing that

CIII
n =

√
2
n

R̃T
n C̃n Dn

with the modified even-odd permutation matrix R̃n given by

R̃nx := (x0, x2, . . . , xn−2, xn−1, xn−3, . . . , x3, x1)T , x = (xj)n−1
j=0 ,

and with

Dn := diag (ε(n)
j )n−1

j=0 , C̃n :=
(

cos
(4j + 1)kπ

4n

)n−1

j,k=0

,

one obtains

C̃n = Re
(
ω

(4j+1)k
4n

)n−1

j,k=0
=

√
n Re (Fn diag (ωk

4n)n−1
k=0).

Application of the Cooley-Tukey algorithm provides a stability constant
kn = O(log2 n), i.e., such an algorithm is perfectly stable (see e.g. [3]).

But, since the cosine matrices are real, one likes to have fast algo-
rithms working in real arithmetic only.

In the remaining part of this section we want to give an orthogonal,
real factorization of Cn into sparse, almost orthogonal matrices and show
that the corresponding fast split-radix algorithm is again excellently stable
with kn = O(log2 n) (see [12]).

In addition to the notations used in Section 4 we need here the
following special matrices. Let Jn := (δ(j + k − n + 1))n−1

j,k=0 be the
counteridentity matrix, where δ is again the Kronecker symbol. Further,
Σn := diag ((−1)k)n−1

k=0 is the diagonal sign matrix. For even n, Rn denotes
the even-odd permutation matrix defined by

Rnx := (x0, x2, . . . , xn−2, x1, x3, . . . , xn−1)T , x = (xj)n−1
j=0 . (5)

First we observe that the matrices CII
n and CIV

n satisfy the factor-
izations

CII
n = RT

n (CII
n1

⊕ CIV
n1

)Tn(0),

CIV
n = RT

n An(1) (CII
n1

⊕ CII
n1

)Tn(1),
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where n1 := n/2, and with the orthogonal sparse matrices,

Tn(0) :=
1√
2

(
In1 Jn1

In1 −Jn1

)
,

An(1) :=
1√
2

(√
2 ⊕

(
In1−1 Σn1−1

In1−1 Σn1−1

)
⊕

√
2
)

(In1 ⊕ Jn1),

Tn(1) := (In1 ⊕ Σn1)×(
diag (cos (2k+1)π

4n )n1−1
k=0 diag (sin (2k+1)π

4n )n−1
k=0 Jn1

−Jn1 diag (sin (2k+1)π
4n )n−1

k=0 diag
(
Jn1(cos (2k+1)π

4n )n1−1
k=0

) )
.

We consider now the split-radix algorithm for CII
n . Let n = 2t with t > 1

and ns := n/2s for s = 0, . . . , t − 1. In a first factorization step, CII
n

is split into CII
n1

⊕ CIV
n1

. In the second step we split CII
n1

⊕ CIV
n1

into
CII

n2
⊕ CIV

n2
⊕ CII

n2
⊕ CII

n2
and so on.

For a complete factorization of CII
n we introduce binary vectors βs :=

(βs(1), . . . , βs(2s)) for s = 0, . . . , t − 1, where we put βs(k) := 0, if after
the s-th factorization step CII

ns
stands at position k, and βs(k) = 1, if CIV

ns

stands at position k. The vectors βs satisfy the recursion relation

βs+1 = (βs, β̃s), (s = 0, . . . , t − 2),

where β̃s equals to βs with the exception that the last bit position is
reversed. Now, using the matrices

Rn(s) = RT
ns

⊕ . . . ⊕ RT
ns

, (s = 0, . . . , t − 2),
An(βs) = Ans(βs(1)) ⊕ . . . ⊕ Ans(βs(2s)), (s = 0, . . . , t − 2),

Sn(βs) =
√

2 (Tns(βs(1)) ⊕ . . . ⊕ Tns(βs(2s))) , (s = 0, . . . , t − 1)

with Ans
(0) = Ins

and Ans
(1), Tns

(0), Tns
(1) as before, we obtain a

factorization of CII
n of the form

CII
n =

1√
n

(Rn(0)An(β0)) . . . (Rn(t − 2)An(βt−2)) Sn(βt−1) . . .Sn(β0)

which leads to a fast split-radix DCT-II algorithm (see [12]). Note that all
matrix factors are sparse and almost orthogonal. A similar factorization
can be derived for CIV

n .
Considering the numerical stability, we apply Theorem 5. Here we

have

l(S(βs)) = 2, α(S(βs)) =
√

2, (s = 0, . . . , t − 1)
l(A(βs)) = 2, α(A(βs)) = 1, (s = 0, . . . , t − 2).
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Hence for direct call of all precomputed entries in A(βs) and S(βs) (i.e.,
ηs = η(A(βs)) = η(S(βs)) =

√
2

2 ), we obtain the worst case stability
constant

kn =
t−1∑
s=0

(2
√

2 +
2ηs√

2
) +

t−2∑
s=0

(2
√

2 + 2ηs)

= (5
√

2 + 1)t − 3
√

2.

This estimate does not take into consideration that a lot of entries in the
matrix factors are just ±1, but we find already kn = O(log2 n). A more
detailed estimate of the roundoff error in [12] leads to

kn =

(
4√
3

+ 3 +
√

2
2

)
(log2 n − 1) − 1.

Remarks. There are some fast algorithms in the literature which are
based on polynomial arithmetic. These algorithms use the idea that all
components of Cnx can be interpreted as values of one polynomial at
n nodes. Reducing the degree of this polynomial by divide-and-conquer
technique, one obtains real and fast DCT-algorithms with low arithmetical
complexity (see e.g. [7, 17, 18]). A polynomial DCT-algorithm generates
a factorization of a cosine matrix with sparse, but non-orthogonal matrix
factors, i.e., the factorization does not preserve the orthogonality of Cn.
For that reason these fast algorithms have a relatively bad numerical sta-
bility with a constant kn = O(n), and this is also attested in numerical
examples (see e.g. [3, 15, 22]).

§6. Periodic orthogonal wavelet transforms

Let h = (hk)∞k=−∞ be a real, orthogonal low-pass filter of finite length
l and let g = (gk)∞k=−∞ with gk := (−1)kh1−k be the corresponding high-
pass filter. For j ∈ IN and a fixed n0 ∈ IN the 2jn0-periodic filter coeffi-
cients hj,k and gj,k are then given by

hj,k =
∞∑

m=−∞
hk+2jn0m, gj,k =

∞∑
m=−∞

gk+2jn0m.

Observe that for nj := 2jn0 > l these two series contain only one nonzero
term. Now, putting

Hj := (hj,r−2k)nj−1,nj−1−1
r,k=0 , Gj := (gj,r−2k)nj−1,nj−1−1

r,k=0 ,

the discrete periodic wavelet transform (wavelet decomposition) of a vector
s0 = (s0

k)nj0−1

k=0 of length nj0 = 2j0 n0 can be presented in the form

s1 = (s1
r)

nj0−1

r=0 = HT
j0s

0, d1 = (d1
r)

nj0−1

r=0 = GT
j0s

0,
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or equivalently, by

s1
r =

nj0−1∑
k=0

hj0,k−2r s0
k, d1

r =
nj0−1∑
k=0

gj0,k−2r s0
k, (r = 0, . . . , nj0−1 − 1).

The inverse discrete periodic wavelet transform (wavelet reconstruction)
is based on

s0 = Hj0s
1 + Gj0d

1,

or equivalently on

s0
r =

nj0−1−1∑
k=0

(hj0,r−2k s1
k + gj0,r−2k d1

k).

The discrete wavelet transform of s0 through L levels (1 ≤ L ≤ j0) is the
vector yL = (sL,dL,dL−1, . . . ,d1)T , where dj and sj are of length nj0−j

and where for
Mj = (Hj ,Gj) (6)

we have

yj+1 = (MT
j0−j ⊕ Inj0−nj0−j

)yj , (j = 0, . . . , L − 1).

Hence,

yL = (MT
j0−L+1 ⊕ Inj0−nj0−L+1) . . . (MT

j0−1 ⊕ Inj0−nj0−1)M
T
nj0

s0.

In particular, we have y1 = (s1,d1) with y1 = MT
j0

s0 and s0 = Mj0y
1,

since the transform matrices Mj are orthogonal. Moreover, since the filters
h and g have at most l nonzero coefficients, the matrices Mj are sparse
and contain at most l nonzero entries per row and per column.

Using Theorem 2 and formula (3), and assuming that the nonzero
filter coefficients hk are precomputed with

|ĥk − hk| ≤ η u,

we obtain an error bound for the forward error of the matrix-vector prod-
uct MT

j0
s0 (for sequential summation) of the form

‖fl(M̂T
j0s

0) − MT
j0s

0‖2 ≤ (l(
√

l + η)u + O(u2))‖s0‖2. (7)

Analogously, for the wavelet decomposition through L levels it follows by
Theorem 5 with the transform matrix

WL := (MT
j0−L+1 ⊕ Inj0−nj0−L+1) . . . (MT

j0−1 ⊕ Inj0−nj0−1)M
T
nj0
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the estimate
‖fl(ŴLs0) − WLs0‖2 ≤ (L l (

√
l + η) u + O(u2))‖s0‖2.

Hence, for accurate precomputation of the filter coefficients (by direct call)
and for small filter lengths, the periodic orthogonal wavelet transform is
perfectly stable.

But for longer filter length l one can ask whether by orthogonal fac-
torization of Mj the arithmetical complexity as well as the numerical
stability can even be improved. Indeed such factorizations can be found.
In the remaining part of this section, we want to present a new orthogonal
matrix factorization of Mj and show its connection with a factorization
of the corresponding polyphase matrix.

First, recall that the orthogonality of the filter h implies that for all
k ∈ ZZ

∞∑
r=−∞

hr hr−2k = δ(k). (8)

In particular, it follows that the length l of the filter h is even. Let now
Vj ∈ IRnj×nj be the circulant backward shift matrix of order nj given by

Vjx := (x1, x2, . . . , xnj−1, x0)T , x = (xk)nj−1
k=0 .

Then V−1
j = VT

j is the forward shift matrix with

VT
j x = (xnj−1, x0, x1, . . . , xnj−2)T .

Recall that with G2 ∈ IR2×2 the matrix
Inj−1 ⊗ G2 = diag (G2, . . . ,G2) ∈ IRnj×nj

is a block diagonal matrix. Then we find

Theorem 7. Let Mj ∈ IRnj×nj be the matrix of the form (6) determined
by an orthogonal filter h = (hk)∞k=−∞ of length l < nj , where h0 �= 0,
hl−1 �= 0, and hk = 0 for all k ∈ ZZ \ {0, . . . , l − 1}. Then Mj can be
factorized in the form

Mj = A1
j VT

j M1
j (Inj−1 ⊕ Vj−1), (9)

where A1
j := Inj−1 ⊗ G1

2 with

G1
2 :=

1√
h2

0 + h2
1

(
−h1 h0

h0 h1

)
,

and where M1
j is an orthogonal matrix of the form (6) determined by the

orthogonal filter h1 = (h1
k)∞k=−∞ of length l − 2 given by

h1
2k =

1√
h2

0 + h2
1

(h0h2k + h1h2k+1) (k = 0, . . . , l/2 − 2),

h1
2k−1 =

1√
h2

0 + h2
1

(h0h2k+1 − h1h2k) (k = 1, . . . , l/2 − 1).

The proof of this theorem will be given later in this section.
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Example. For the Daubechies D2-filter with the nonzero coefficients

h0 =
1 +

√
3

4
√

2
, h1 =

3 +
√

3
4
√

2
, h2 =

3 −
√

3
4
√

2
, h3 =

1 −
√

3
4
√

2
,

we obtain the transform matrix Mj , which reads for instance for n0 = 1
and j = 3,

M3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h0 0 0 h2 h1 h3 0 0
h1 0 0 h3 −h0 −h2 0 0
h2 h0 0 0 0 h1 h3 0
h3 h1 0 0 0 −h0 −h2 0
0 h2 h0 0 0 0 h1 h3

0 h3 h1 0 0 0 −h0 −h2

0 0 h2 h0 h3 0 0 h1

0 0 h3 h1 −h2 0 0 −h0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

With
h0√

h2
0 + h2

1

=
1
2
,

h1√
h2

0 + h2
1

=
√

3
2

we find

Mj =
(
Inj−1 ⊗

1
2

(
−
√

3 1
1

√
3

))
VT

j M1
j (Inj−1 ⊕ Vj−1),

where M1
j is induced by h1 with

h1
0 =

1 +
√

3
2
√

2
, h1

1 =
1 −

√
3

2
√

2
, h1

k = 0 for k ∈ ZZ \ {0, 1}.

As we shall see in the following, the factorization of the transform
matrix Mj for periodic orthogonal wavelet transform given in Theorem 7
can also be interpreted as a factorization of the corresponding polyphase
matrix. Let h(z) :=

∑l−1
k=0 hkzk be the z-transform of the orthogonal filter

h of length l and consider the polynomials

he(z) :=
l/2−1∑
k=0

h2kzk, ho(z) :=
l/2−1∑
k=0

h2k+1z
k,

such that h(z) = he(z2) + zho(z2). Then the Laurent polynomial matrix

P (z) =
(

he(z) −ho(1/z)
ho(z) he(1/z)

)
(z ∈ C \ {0}) (10)

is called polyphase matrix corresponding to h. The orthogonality (8) of h
is equivalent with

P (z)P (1/z)T = I2.

Now we obtain
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Theorem 8. For a polyphase matrix P (z) determined by an orthogonal
filter h = (hk)∞k=−∞ with h0 �= 0, hl−1 �= 0 and hk = 0 for all k ∈
ZZ \ {0, . . . , l − 1}, there exists a factorization of the form

P (z) =
(

1 0
0 1

z

) ⎡
⎣l/2−1∏

k=0

(
ck
0 −ck

1

ck
1z ck

0z

)⎤
⎦(

1 0
0 z−l/2+1

)
,

where (ck
0)2 + (ck

1)2 = 1 for k = 0, . . . , l/2 − 1. In particular, for |z| = 1
the matrix factors of P (z) are unitary.

Proof: We shall give a constructive proof for this factorization. Let P (z)
be of the form (10) and he(z), ho(z) defined as above. We choose

c0
0 =

h0√
h2

0 + h2
1

, c0
1 =

h1√
h2

0 + h2
1

and find

P̃ 1(z) :=
(

c0
0 −c0

1

c0
1z c0

0z

)−1 (
1 0
0 z

)
P (z)

=
(

c0
0 c0

1

−c0
1 c0

0

) (
he(z) −ho(1/z)
ho(z) he(1/z)

)

= 1√
h2
0+h2

1

⎛
⎜⎜⎜⎝

l/2−1∑
k=0

(h0h2k + h1h2k+1)zk
l/2−1∑
k=0

(−h0h2k+1 + h1h2k)z−k

l/2−1∑
k=0

(−h1h2k + h0h2k+1)zk
l/2−1∑
k=0

(h1h2k+1 + h0h2k)z−k

⎞
⎟⎟⎟⎠.

Putting

h1
2k :=

h0h2k + h1h2k+1√
h2

0 + h2
1

, h1
2k−1 :=

−h1h2k + h0h2k+1√
h2

0 + h2
1

,

we see that h1
−1 = 0 by definition and h1

l−2 = 0 by (8). Further by (8),
h1 = (h1

k)∞k=−∞ is again an orthogonal filter. With

h1
e(z) =

l/2−1∑
k=0

h1
2kzk, h1

o(z) =
l/2−1∑
k=0

h1
2k+1z

k

we obtain

P̃ 1(z) =
(

h1
e(z) − 1

z h1
o(1/z)

zh1
o(z) h1

e(1/z)

)
=

(
1 0
0 z

)
P 1(z)

(
1 0
0 1/z

)
,
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where P 1(z) is the polyphase matrix corresponding to h1. By construction
is now h1

k = 0 for k ∈ ZZ \ {0, . . . , l − 3}. Hence we have

P (z) =
(

1 0
0 1/z

) (
c0
0 −c0

1

c0
1z c0

0z

) (
1 0
0 z

)
P 1(z)

(
1 0
0 1/z

)
.

The procedure can now be applied to P 1(z) (instead of P (z)) and so on.
Finally we arrive at the wanted factorization of P (z).

Now we show the connection between the above factorization of the
polyphase matrix P (z) and the factorization of the transform matrix Mj

giving the

Proof of Theorem 7: Let Rnj be the even-odd permutation matrix in
(5). Then we obtain

Rnj
Mj =

(
(hj,2k−2r)

nj−1−1
k,r=0 (hj,2r−2k+1)

nj−1−1
k,r=0

(hj,2k−2r+1)
nj−1−1
k,r=0 (−hj,2r−2k)nj−1−1

k,r=0

)

=

⎛
⎝

∑
k

hj,2kV−k
j−1

∑
k

hj,2k+1Vk
j−1∑

k

hj,2k+1V−k
j−1 −∑

k

hj,2kVk
j−1

⎞
⎠

=
(

he(VT
j−1) ho(Vj−1)

ho(VT
j−1) −he(Vj−1)

)

= P (VT
j−1) (Inj−1 ⊕ (−Inj−1)),

where P (VT
j−1) is the polyphase matrix in (10) with the argument VT

j−1,
i.e., a block matrix with four circulant blocks. From the proof of Theorem
8 it follows that

P (VT
j−1) = (Inj−1 ⊕ Vj−1)

(
c0
0 Inj−1 −c0

1 Inj−1

c0
1 VT

j−1 c0
0 VT

j−1

)
(Inj−1 ⊕ VT

j−1)×

P 1(VT
j−1) (Inj−1 ⊕ Vj−1).

Using this relation we find

Mj = RT
nj

P (VT
j−1) (Inj−1 ⊕ (−Inj−1))

= RT
nj

(
c0
0 Inj−1 −c0

1 VT
j−1

c0
1 Inj−1 c0

0 VT
j−1

)
P 1(VT

j−1) (Inj−1 ⊕ (−Vj−1)).

With
M1

j := RT
nj

P 1(VT
j−1) (Inj−1 ⊕ (−Inj−1))
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we obtain

Mj = RT
nj

(
c0
0 Inj−1 −c0

1 VT
j−1

c0
1 Inj−1 c0

0 VT
j−1

)
Rnj

M1
j (Inj−1 ⊕ Vj−1).

Finally, by

RT
nj

(
c0
0Inj−1 −c0

1V
T
j−1

c0
1Inj−1 c0

0V
T
j−1

)
Rnj

= A1
j VT

j

the factorization (9) follows.

We are now ready to apply Theorem 5 to the periodic orthogonal
wavelet transform using the factorized polyphase matrix (or equivalently)
the factorization of Mj into l/2 orthogonal matrix factors with only two
nonzero entries per row and per column. Assuming that the entries ck

0 , ck
1

for k = 0, . . . , l/2 − 1 in the matrix factors are precomputed with

|ĉk
0 − ck

0 | ≤ ηu, |ĉk
1 − ck

1 | ≤ ηu,

we obtain with this procedure,

‖fl(M̂T
j0s

0) − MT
j0s

0‖2 ≤ (l (
√

2 + η) u + O(u2))‖s0‖2.

Comparing this estimate with (7), we observe that an improvement of the
numerical stability by factorization can only be achieved, if the coefficients
ck
0 and ck

1 in the matrix factors are computed very accurately.

Remarks. 1. There are other factorizations of the polyphase matrix of an
orthogonal filter bank known in the literature. Ladder structures for the
efficient realization of perfect reconstruction filter banks have been widely
used, see e.g. [6, 20] and references therein. Most such factorizations
are non-orthogonal and can by applied also to the biorthogonal wavelet
transform. The factorizations of paraunitary filter banks by Vaidyanathan
[20], Chapter 14, are non-orthogonal and the number of matrix factors
is not directly related to the filter length. The lifting factorization by
Daubechies and Sweldens [6] greatly reduces the arithmetical complexity of
the wavelet transform. However, this factorization also does not preserve
the orthogonality of Mj . An exact investigation of the rounding error
analysis for the lifting factorization has not been done up to now. An
orthogonal matrix factorization of Mj Rnj

using Pollen products can be
found in [9]. Note that the factorization in [9] strongly differs from ours.

2. One idea to find good factorizations of biorthogonal polyphase
matrices which lead to numerically stable algorithms may be to look for
matrix factorizations, where the product of the spectral norms of the ma-
trix factors is minimal.
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3. The forward error occurring for periodic biorthogonal wavelet
transforms has been estimated by Keinert [10] using spectral norms of
corresponding transform matrices. For a comprehensive roundoff error
analysis of the worst case and the average case for periodic biorthogonal
wavelet transforms (without matrix factorization) we refer to Schumacher
[16].
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