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1 Introduction

Let the centered cardinal B-spline Mm of degree m be defined as the m-fold convolution
of

M0(x) :=


1 |x| < 1/2,
1/2 |x| = 1/2,
0 otherwise

with itself, i.e., for m ≥ 1 we have

Mm(x) :=
∫ 1/2

−1/2
Mm−1(x+ t) dt (x ∈ IR).

Further let Sm(ZZ) be the set of all linear combinations of shifts of Mm, i.e.,

Sm(ZZ) := span {Mm(· − j); j ∈ ZZ}.

For fixed N ∈ IN we introduce the subset SNm(ZZ) of all N -periodic spline functions

SNm(ZZ) := {s ∈ Sm(ZZ); s(·+N) = s}.
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We shall denote the Banach space of all p-integrable N -periodic functions by LNp (1 ≤
p <∞). For any f ∈ LNp we have

‖f‖p :=
( ∫ N

0
|f(t)|p dt

)1/p
(1 ≤ p <∞).

Now the following N -periodic spline interpolation problem is considered:
For a given N -periodic real data sequence {yj}∞j=−∞ with yj = yj+N (j ∈ ZZ) and a fixed
shift parameter τ ∈ (−1/2, 1/2] we try to find a spline function s ∈ SNm(ZZ) such that

s(k + τ) = yk (k ∈ ZZ). (1)

The data sequence can be completely described by the column vector

y := (yj)
N−1
j=0 ∈ IRN .

Using fast Fourier transform we shall give a simple algorithm for the computation of the
spline interpolant. Furthermore, the condition of the interpolatory matrix is investigated.
We are mainly interested in the dependence of the matrix condition on the shift parameter
τ . Finally, the norm of the spline interpolation operator LNm,τ : IRN → LN1 , given by

LNm,τy := s,

where s ∈ SNm(ZZ) ⊂ LN1 satisfies the interpolation conditions (1), is considered. It is
shown that for τ = 0 the condition of the interpolatory matrix as well as the norm of the
corresponding spline interpolation operator are minimal.

In the following we use standard notations. First we recall some facts concerning
circulant matrices, which form the backround in Section 3 (cf. [2]). For a := (aj)

N−1
j=0 ∈ IRN

the corresponding circulant matrix of the order N is defined by

circ a := (aj−k)
N−1
j,k=0 =


a0 aN−1 · · · a1
a1 a0 · · · a2
...

...
. . .

...
aN−1 aN−2 · · · a0

 .

Note that the subscripts have to be calculated modulo N here and in the following. Let
ek := (δjk)

N−1
j=0 (k = 0, ..., N − 1), where δjk denotes the Kronecker symbol. The matrix

V := circ e1

is called the fundamental circulant matrix. Then we have

V k = circ ek (k = 0, ..., N − 1), V N = I, V T = V −1 = V N−1.

Introducing the representing polynomial a(z) :=
∑N−1
j=0 ajz

j (z ∈ IC) of the circulant matrix
circ a it follows that

circ a =
N−1∑
j=0

ajV
j = a(V ).
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Note that all circulant matrices of order N commute. We have

circ a = a(V ) = F−1N DaFN =
1

N
FNDaFN (2)

with
Da = diag

(
a(wjN)

)N−1
j=0

(wN := exp(−2πi/N)),

where FN := (wjkN )N−1j,k=0 denotes the Fourier matrix of order N . Therefore the eigenvalues
λj (j = 0, ..., N − 1) of the circulant matrix circ a are given by

λj = a(wjN) (j = 0, ..., N − 1).

We introduce the j-th Bernoulli polynomial Bj(·) on [0, 1] recursively by

d

dt
Bj+1(t) = (j + 1)Bj(t) (j ∈ IN0), B0(t) ≡ 1 (t ∈ [0, 1]),∫ 1

0
Bj(t) dt = 0 (j ∈ IN)

and the j-th Euler polynomial Ej(·) on [0, 1] by

d

dt
Ej+1(t) = (j + 1) Ej(t) (j ∈ IN0), E0(t) ≡ 1 (t ∈ [0, 1]),

Ej(0) + Ej(1) = 0 (j ∈ IN).

The behaviour of these polynomials is well-known. The Euler numbers Ej and Bernoulli
numbers Bj are given by

Ej := 2jEj(1/2) Bj := Bj(0) (j ∈ IN0). (3)

The following identity holds (cf. [1]):

Ej(0) = −Ej(1) = −2(2j+1 − 1)

(j + 1)
Bj+1 (j ∈ IN). (4)

2 Solution of the interpolation problem by discrete

Fourier transform

The symbol of the considered spline interpolation problem (1) has been investigated in
[3]. We shall summarize some important properties of this function.

The exponential Euler spline (cf. [13]) is defined for z ∈ IC by

Φm(x, z) :=
∞∑

j=−∞
Mm(x+ j) zj (x ∈ IR).
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We are especially interested in Φm(x, ·) on the unit circle. The function

ϕm(x, ·) := Φm(x, e−i ·)

is called the symbol of cardinal spline interpolation with shift parameter x. Then the
following properties of the symbol hold:

THEOREM 2.1
For m ∈ IN, x ∈ IR and u ∈ (−π, π] we have
(i) |ϕm(x, u)| ≤ 1, ϕm(x, 0) = 1,
(ii)

ϕm(x, 2πk + u) = ϕm(x, u) (k ∈ ZZ),

ϕm(x± 1, u) = e±iuϕm(x, u),

ϕm(x,−u) = ϕm(−x, u) = ϕm(x, u),

e−iuϕm(1/2 + x, u) = ϕm(1/2− x, u),

(iii)
∂

∂x
ϕm(x, u) = (1− e−iu)ϕm−1(x+ 1/2, u) (m ≥ 2).

Now let m ∈ IN and u0 ∈ (0, π) be fixed. Then

(iv) The function argϕm(·, u0) is strictly increasing on [0, 1]. In particular,

argϕm(0, u0) = 0, argϕm(1/2, u0) = u0/2, argϕm(1, u0) = u0.

(v) The function |ϕm(·, u0)| is strictly decreasing on [0, 1/2]. In particular, we have
|ϕm(x, u0)| > 0 for x ∈ IR.

(vi) The following inequalities hold:

0 < argϕm(x, u0) < xu0 for 0 < x < 1/2,

xu0 < argϕm(x, u0) < u0 for 1/2 < x < 1.

Further we have:

(vii) Let m ∈ IN and x0 ∈ IR be fixed. Then |ϕm(x0, ·)| is strictly decreasing on [0, π].

(viii) Let x0 ∈ [0, 1/2] and u0 ∈ (0, π) be fixed. Then for m ∈ IN,

|ϕm(x0, u0)| ≤ |ϕm−1(x0, u0)|.

(ix) The function ϕm(·, π) is real–valued and strictly decreasing on [0, 1] with
ϕm(1/2, π) = 0. We have for x ∈ [0, 1/2]

ϕm(x, π) =


(−1)(m+1)/2 2m

m! Em(x) m odd,

(−1)m/2 2m

m! Em(x+ 1/2) m even.
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Proof
The identities (i) – (iii) are immediate consequences of the definition of ϕm. For a proof

of (iv) – (viii) we refer to [3]. The connection between ϕm(·, π) and the Euler polynomials
Em has already been pointed out in [3] in a less precise fashion. Therefore we shall give
a short proof of (ix) here.
For x ∈ [0, 1/2] let

hm(x, π) :=

 (−1)(m+1)/2ϕm(x, π) m odd,

(−1)m/2ϕm(x− 1/2, π) m even.

Then the assertion reads hm(x, π) = 2mEm(x)/m!. From Theorem 2.1 (ii) and (iii) it
follows

d

dx
hm(x, π) = 2hm−1(x, π) (m ∈ IN, m ≥ 2)

and hm(1, π) = −hm(0, π).
For m = 1 we have with h1(x, π) = 2x − 1 the identity h1(x, π) = 2Em(x). Now we
assume hk(x, π) = 2k Ek(x)/k! for k ≥ 1. Then we find for hk+1(x, π):

d

dx
hk+1(x, π) = 2hk(x, π) =

2k+1

k!
Ek(x) =

2k+1

(k + 1)!

d

dx
Ek+1(x),

i.e., there is a constant c ∈ IR with

c := hk+1(x, π)− 2k+1

(k + 1)!
Ek+1(x) (x ∈ [0, 1]).

Replacing x by 0 and 1 we find by

hk+1(1, π) + hk+1(0, π) = Ek+1(1) + Ek+1(0) = 0

c = −c and thus c = 0.

With the help of the symbol ϕm(τ, ·) the periodic fundamental spline can be repre-
sented as follows.

THEOREM 2.2
Let m,N ∈ IN and τ ∈ (−1/2, 1/2] be given such that

ϕm(τ, 2πj/N) 6= 0 (j = 0, ..., N − 1). (5)

Then LNm ∈ SNm(ZZ),

LNm(x) :=
1

N

N−1∑
j=0

ϕm(x, 2πj/N)

ϕm(τ, 2πj/N)
(x ∈ IR), (6)

is a periodic fundamental spline with the shift parameter τ , i.e.,

LNm(k + τ) = δN0k (k ∈ ZZ)

with

δN0k :=

{
1 k ≡ 0 ( mod N)
0 k 6≡ 0 ( mod N).
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Proof
Since ϕm(τ, 2πj/N) 6= 0(j = 0, ..., N−1), the function LNm is well-defined. By Theorem

2.1 (ii) we have for k ∈ ZZ and wN := exp(−2πi/N)

LNm(k + τ) =
1

N

N−1∑
j=0

ϕm(τ, 2πj/N) w−jkN

ϕm(τ, 2πj/N)
=

1

N

N−1∑
j=0

w−jkN = δN0k.

Now let m,N ∈ IN and τ ∈ (−1/2, 1/2] with ϕm(τ, 2πj/N) 6= 0 (j = 0, ..., N − 1) be
given. Then a continuous solution s ∈ SNm(ZZ) of the periodic spline interpolation problem
(1) reads

s(x) =
N−1∑
j=0

yjL
N
m(x− j) (x ∈ IR).

Let y = (yj)
N−1
j=0 be the given real data vector. With

s(t) :=
(
s(t+ k)

)N−1
k=0

, lm(t) :=
(
LNm(t+ k)

)N−1
k=0

(t ∈ (0, 1])

the convolution equation
s(t) = y ∗ lm(t)

is obtained. Using discrete Fourier transform we find

FNs(t) = ŷ ◦
(
FN lm(t)

)
= ŷ ◦

(
ϕm(t, 2πj/N)

ϕm(τ, 2πj/N)

)N−1
j=0

, (7)

where ŷ := FNy = (ŷj)
N−1
j=0 . Here ◦ denotes componentwise multiplication. Let Pm be

the N -periodization of the B-spline Mm, i.e.

Pm :=
∞∑

l=−∞
Mm(·+ lN).

Then it follows that

ϕm(x, 2πj/N) =
N−1∑
k=0

Pm(x+ k)wjkN (x ∈ IR).

With pm(x) :=
(
Pm(x+ k)

)N−1
k=0

we find

(
ϕm(x, 2πj/N)

)N−1
j=0

= FNpm(x) (x ∈ IR).

Thus we obtain the following algorithm:

ALGORITHM 2.3 (Computation of s(t+ k) for t ∈ (0, 1] and k = 0, ..., N − 1 ):
Input: m,N ∈ IN, (N power of 2 ),

τ ∈ (−1/2, 1/2] with (5),
y ∈ IRN ,
t ∈ (0, 1].
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1. Compute pm(t) and pm(τ) by B-spline recursion formula.

2. Compute(
ϕm(t, 2πj/N)

)N−1
j=0

:= FNpm(t),
(
ϕm(τ, 2πj/N)

)N−1
j=0

:= FNpm(τ).

3. Compute by fast Fourier transform

ŷ := FNy (ŷ = (ŷj)
N−1
j=0 ).

4. Form for j = 0, ..., N − 1,

ŝj :=
ŷj ϕm(t, 2πj/N)

ϕm(τ, 2πj/N)
.

5. Compute by fast Fourier transform

s := F−1N ŝ (ŝ := (ŝj)
N−1
j=0 ).

Output: s =
(
s(t+ k)

)N−1
k=0

.

The vector
(
ϕm(τ, 2πj/N)

)N−1
j=0

can be precomputed. The vector(
ϕm(t, 2πj/N)

)N−1
j=0

can be directly obtained in O(mN) arithmetic operations. In step 3

and step 5 we have to perform a discrete Fourier transform of length N .

Figure 1

Figure 1: Periodic fundamental spline L16
5 for the shift parameter τ = 0.

Figure 2

Figure 2: Periodic fundamental spline L16
5 for the shift parmeter τ = 0.3.



Optimal parameters for spline interpolation 8

3 Condition of the interpolatory matrix

Now we are interested in the optimal choice of the shift parameter τ such that the related
interpolatory matrix has minimal condition. First let us recall the known result on the
existence and uniqueness of solutions of the spline interpolation problem (1) (cf. [9]).

THEOREM 3.1
Let m,N ∈ IN and τ ∈ (−1/2, 1/2] be fixed. Then the N-periodic spline interpolation
problem (1) is uniquely solvable for any given N-periodic real data {yj}∞j=−∞ if and only
if

ϕm(τ, 2πj/N) 6= 0 (j = 0, ..., N − 1). (8)

The property (8) is satisfied if and only if one of the following conditions hold:
(i) N is odd;
(ii) N is even and τ 6= 1/2.

Proof
The assertion directly follows from Theorem 2.1 (ii), (v) and (ix).

We assume that τ ∈ (−1/2, 1/2). By (7) the solution vector can be represented as
follows:

s(t) = F−1N

(ϕm(t, 2πj/N)

ϕm(τ, 2πj/N)

)N−1
j=0

◦ FNy


= F−1N Dm(t, τ)FNy

with

Dm(t, τ) := diag
(ϕm(t, 2πj/N)

ϕm(τ, 2πj/N)

)N−1
j=0

.

By (2) we find
F−1N Dm(t, τ)FN = Φm(τ,V )−1Φm(t,V ),

where

Φm(t,V ) :=
N−1∑
j=0

Pm(j + t)V j =
∞∑

j=−∞
Mm(j + t)V j

is the exponential Euler spline with the argument V . Thus the following system of linear
equations has to be solved:

s(t) = Φm(τ,V )−1Φm(t,V )y,

where Φm(τ,V )−1 and Φm(t,V ) are circulant matrices. The stability of the algorithm is
mainly determined by the condition of Φm(τ,V ).

In the following let ‖A‖∞ be the matrix ∞-norm, ‖A‖1 the matrix 1-norm and ‖A‖2
the matrix 2-norm of the (N,N)-matrix A := (aij)

N−1
i,j=0, i.e.,

‖A‖∞ := max{
N−1∑
j=0

|aij|; i = 0, ..., N − 1},
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‖A‖1 := max{
N−1∑
i=0

|aij|; j = 0, ..., N − 1},

‖A‖2 :=
√
ρ(ATA) with ρ(A) := max{|α|; Ay = αy; y 6= o}.

The condition of A is defined by

condpA := ‖A−1‖p‖A‖p (p = 1, 2,∞).

We shall investigate for which τ ∈ (−1/2, 1/2) the condition of Φm(τ,V ) is minimal.
First we show how to estimate the norm ‖Φm(τ,V )−1‖p (p = 1, 2,∞) with the help of
the symbol ϕm(τ, ·).

LEMMA 3.2
Let m,N ∈ IN and τ ∈ (−1/2, 1/2). Then for even N we have

‖Φm(τ,V )−1‖∞ = ‖Φm(τ,V )−1‖1 = ‖Φm(τ,V )−1‖2 = |ϕm(τ, π)|−1

and for odd N ,

‖Φm(τ,V )−1‖∞ = ‖Φm(τ,V )−1‖1 < |ϕm(τ, π)|−1,
‖Φm(τ,V )−1‖2 = |ϕm(τ, π(N − 1)/N)|−1 < |ϕm(τ, π)|−1.

Proof
1. By Theorem 3.1 the matrix Φm(τ,V ) is regular for τ ∈ (−1/2, 1/2). The inverse

matrix Φm(τ,V )−1 is circulant. Thus ‖Φm(τ,V )−1‖∞ = ‖Φm(τ,V )−1‖1.
Observe that ‖Φm(τ,V )−1‖p = ‖Φm(−τ,V )−1‖p for p = 1, 2,∞, since

Φm(−τ,V ) =
∞∑

j=−∞
Mm(j − τ)V j =

∞∑
k=−∞

Mm(τ + k)V −k = Φm(τ,V )T . (9)

Hence we can restrict ourselves to τ ∈ [0, 1/2). In [9] it is shown that for τ ∈ [0, 1) the
generalized Euler–Frobenius polynomial

Hm(τ, z) :=
∞∑

j=−∞
Mm(τ + j − (m+ 1)/2)zj =

{
z(m+1)/2Φm(τ, z) m odd,
zm/2Φm(τ − 1/2, z) m even

(10)

possesses exactly m simple zeros in (−∞, 0], i.e.

Hm(τ, z) := (z + z1) . . . (z + zm)

with 0 ≤ z1 < z2 < ... < zj < 1 < zj+1 < ... < zm. We consider the Laurent series of
Hm(τ,−z)−1 for |z| = 1 and obtain

Hm(τ,−z)−1 =
j∏

ν=1

1

(zν − z)

m∏
ν=j+1

1

(zν − z)

=
(−1)j

zjzj+1...zm

j∏
ν=1

1

1− (zν/z)

m∏
ν=j+1

1

1− (z/zν)

=
(−1)j

zjzj+1...zm

j∏
ν=1

( ∞∑
l=0

(
zν
z

)l) m∏
ν=j+1

( ∞∑
l=0

(
z

zν

)l)
=

∞∑
k=−∞

bkz
k.
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Observe that all real coefficients bk (k ∈ ZZ) have the same sign. Thus by (10) for
Φm(τ,−z) (τ ∈ [0, 1/2)), there are real coefficients ck with

Φm(τ,−z)−1 =
∞∑

k=−∞
ckz

k, (11)

where all ck (k ∈ ZZ) have the same sign. It follows that

‖Φm(τ,V )−1‖∞ = ‖
∞∑

l=−∞
cl(−1)lV l‖∞ ≤

∞∑
l=−∞

|cl|‖V l‖∞

=
∞∑

l=−∞
|cl| = |

∞∑
l=−∞

cl| = |ϕm(τ, π)|−1.

2. Let

Gm(τ, z) :=
N−1∑
j=0

gjz
j

be the representing polynomial of Φm(τ,V )−1. Then by V N = I we find

gj =
∞∑

l=−∞
clN+j(−1)lN+j.

For even N it follows

|gj| = |
∞∑

l=−∞
clN+j(−1)j| =

∞∑
l=−∞

|clN+j| (j = 0, ..., N − 1).

Hence,

‖G1
m(τ,V )‖∞ =

N−1∑
j=0

|gj| =
∞∑

l=−∞
|cl| = |ϕm(τ, π)|−1.

For odd N by

|gj| = |
∞∑

l=−∞
clN+j(−1)l+j| = |

∞∑
l=−∞

clN+j(−1)l| <
∞∑

l=−∞
|clN+j|

we obtain

‖G1
m(τ,V )‖∞ =

N−1∑
j=0

|gj| < |ϕm(τ, π)|−1 .

3. The function |Φm(τ, e−i ·)| is strictly decreasing on [0, π] (cf. Theorem 2.1 (vii)). Thus
for ‖Φm(τ,V )−1‖2 we find by

‖Φm(τ,V )−1‖2 =
(

min{|Φm(τ, wjN)|; j = 0, ..., N − 1}
)−1

that

‖Φm(τ,V )−1‖2 =

{
|ϕm(τ, π)|−1 N even,
|ϕm(τ, π(N − 1)/N)|−1 < |ϕm(τ, π)|−1 N odd.
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REMARK 3.3
1. Lemma 3.2, taken in conjunction with the Riesz convexity theorem, guarantees that
for all 1 ≤ p ≤ ∞

‖Φm(τ,V )−1‖p = |ϕm(τ, π)|−1

for even N and
‖Φm(τ,V )−1‖p < |ϕm(τ, π)|−1

for odd N .
2. By (11) we find with z = eiu

Φm(τ, z)−1 = ϕm(τ, u)−1 =
∞∑

k=−∞
ck(−1)keiuk.

The coefficients (−1)kck can be considered as Fourier coefficients of 1/ϕm(τ, ·). Thus we
have

(−1)kck =
1

2π

∫ π

−π

e−iuk

ϕm(τ, u)
du.

The function

Lm :=
∞∑

j=−∞
(−1)kckMm(· − j)

is the cardinal fundamental spline, i.e. Lm(k + τ) = δ0k (k ∈ ZZ). By (11) the de Boor-
points (−1)kck alternate in sign:

sign (−1)kck = (−1)ksign c0 (k ∈ ZZ). ♠

By definition the matrix Φm(τ,V ) possesses positive elements only. The partition of
unity property yields

‖Φm(τ,V )‖∞ = ‖Φm(τ,V )‖1 = Φm(τ, 1) = 1.

For the matrix 2-norm we find

‖Φm(τ,V )‖2 = Φm(τ, 1) = 1,

since
Φm(τ, 1) = ϕm(τ, 0) = max{|ϕm(τ, 2πj/N)|; j = 0, ..., N − 1}.

Thus we have

condp
(
Φm(τ,V )

)
= ‖Φm(τ,V )−1‖p ≤ |ϕm(τ, π)|−1 (p = 1, 2,∞), (12)

where the equality is satisfied for even N .
For fixed m ∈ IN the function |ϕm(τ, π)|−1 only depends on the shift parameter τ but not
on the period N . Now we can show
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THEOREM 3.4
Let m,N ∈ IN and τ ∈ (−1/2, 1/2) be given. Then we have

(i) cond2

(
Φm(τ,V )

)
= cond2

(
Φm(−τ,V )

)
.

(ii) The function cond2

(
Φm(τ,V )

)
is strictly increasing for τ ∈ [0, 1/2).

Moreover,

min
{

cond2

(
Φm(τ,V )

)
; τ ∈ (−1/2, 1/2)

}
= cond2

(
Φm(0,V )

)

≤


(m+ 1)!

2m+1(2m+1 − 1)|Bm+1|
m odd,

m!
|Em|

m even,
(13)

where Bm+1 denotes the (m + 1)-th Bernoulli number and Em the m-th Euler number.
For even N equality holds in (13).

(iii) Let N ∈ IN and τ ∈ (−1/2, 1/2) be fixed. Then cond2

(
Φm(τ,V )

)
is increasing with

respect to m.

Proof
1. The assertion (i) follows from (9). It is sufficient to consider τ ∈ [0, 1/2).

2. Let N be even. By Theorem 2.1 (ix) the function ϕm(·, π) is strictly decreasing on

[0, 1/2] and ϕm(1/2, π) = 0. Thus by (12) cond2

(
Φm(τ,V )

)
is minimal for τ = 0. With

|ϕm(0, π)| =


2m

m! |Em(0)| m odd,

2m

m! |Em(1/2)| m even,

the assertion (ii) is obtained by (3) and (4).
Let N be odd. Then (ii) immediately follows from Lemma 3.2 and Theorem 2.1 (v) and
(vii).
3. For odd N the statement (iii) is satisfied by Lemma 3.2 and Theorem 2.1 (viii). For
even N and m ∈ IN0 we only have to prove

|ϕm+1(τ, π)| ≤ |ϕm(τ, π)| (τ ∈ [0, 1/2)).

Thus we inductively show the relation

|Em+1(τ)| < m+ 1

2
|Em(1/2− τ)| (τ ∈ (0, 1/2)). (14)

For m = 0, (14) is satisfied by 1/2 − τ < 1/2 (τ ∈ (0, 1/2)). Note that |Em(τ)| =
(−1)nEm(τ) (τ ∈ (0, 1/2)) with n := b(m + 1)/2c. Assume that (14) holds for even
m ∈ IN0. Then we find by integration for τ ∈ (0, 1/2)∫ τ

0
(−1)(m+2)/2Em+1(t) dt <

m+ 1

2

∫ τ

0
(−1)m/2Em(1/2− t) dt

=
m+ 1

2

∫ 1/2

1/2−τ
(−1)m/2Em(s) ds,



Optimal parameters for spline interpolation 13

i.e.

(−1)(m+2)/2

(m+ 2)

(
Em+2(τ)− Em+2(0)

)
<

(m+ 1)(−1)m/2

2 (m+ 1)

(
Em+1(1/2)− Em+1(1/2− τ)

)
.

Thus (14) follows for m+ 1 by Em+2(0) = Em+1(1/2) = 0.
If m is odd, then (14) can be derived in the same manner by integrating over [1/2−τ, 1/2].

REMARK 3.5
Another approach to this problem is given in [10]. ♠

Figure 3

Figure 3: Condition of the interpolatory matrix for even N and τ ∈ [−0.4, 0.4].

EXAMPLE 3.6
By Theorem 3.4 we have for even N :

cond2

(
Φ1(0,V )

)
= 1, cond2

(
Φ4(0,V )

)
= 4.8,

cond2

(
Φ2(0,V )

)
= 2, cond2

(
Φ5(0,V )

)
= 7.5,

cond2

(
Φ3(0,V )

)
= 3, cond2

(
Φ6(0,V )

)
=

720

61
≈ 11.80328. ♠

We summarize:
The choice of the shift parameter τ = 0 is most favourable, since for τ = 0 the condition
cond2

(
Φm(τ,V )

)
is minimal.

Spline functions with a high degree m are unfavourable from the numerical point of view,
since the condition of Φm(τ,V ) is strictly increasing with respect to m.

4 Norm of the interpolation operator

Let m,N ∈ IN and τ ∈ (−1/2, 1/2) be given. We want to investigate the norm ‖LNm,τ‖1
of the spline interpolation operator LNm,τ : IRN → LN1 . Here the norm in IRN is defined by

‖y‖1 :=
N−1∑
j=0

|yj| (y := (yj)
N−1
j=0 ∈ IRN).
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We are especially interested in the dependence of ‖LNm,τ‖1 on the shift parameter τ .

For the LN1 -norm of the image of LNm,τ we find

‖LNm,τy‖1 =
∫ N

0
|
N−1∑
j=0

yjL
N
m(x− j)| dx ≤

N−1∑
j=0

|yj|
∫ N

0
|LNm(x− j)| dx

=
( ∫ N

0
|LNm(x)| dx

)
‖y‖1.

Further, for e0 := (δ0k)
N−1
k=0 we have

‖LNm,τe0‖1 =
∫ N

0
|LNm(x)| dx =

( ∫ N

0
|LNm(x)| dx

)
‖e0‖1.

Thus,

‖LNm,τ‖1 =
∫ N

0
|LNm(x)| dx.

Assume that N is odd. The N -periodic fundamental spline possesses exactly (N − 1)
zeros in [0, N ] (cf. [7, 11]). By

LNm(k + τ) = δ0k (k = 0, ..., N − 1)

it follows that

sign LNm(x) = (−1)k (x ∈ (k + τ, k + 1 + τ), k = 0, ..., N − 1).

From (6) we obtain with wN := exp(−2πi/N):

‖LNm,τ‖1 =
∫ N+τ

τ
|LNm(x)| dx =

N−1∑
k=0

∫ k+1+τ

k+τ
(−1)kLNm(x) dx

=
N−1∑
k=0

(−1)k
( ∫ 1

τ
LNm(k + t) dt+

∫ τ

0
LNm(k + 1 + t) dt

)

=
N−1∑
k=0

(−1)k

N

N−1∑
j=0

∫ 1
τ ϕm(t, 2πj/N) dt

ϕm(τ, 2πj/N)
w−kjN +

N−1∑
j=0

∫ τ
0 ϕm(t, 2πj/N) dt

ϕm(τ, 2πj/N)
w
−(k+1)j
N


=

1

N

N−1∑
j=0

2

ϕm(τ, 2πj/N)(1 + w−jN )

(∫ 1

τ
ϕm(t, 2πj/N) dt+ w−jN

∫ τ

0
ϕm(t, 2πj/N) dt

)
.

Using Theorem 2.1 (ii) and (iii), i.e.

∂

∂x
ϕm+1(x, 2πj/N) = (1− wjN)ϕm(x+ 1/2, 2πj/N) (x ∈ IR, j = 0, ..., N − 1)

ϕm(−1/2, 2πj/N) = wjN ϕm(1/2, 2πj/N),
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it follows by integration that∫ τ

0
ϕm(t, 2πj/N) dt =

1

(1− wjN)

(
ϕm+1(τ − 1/2, 2πj/N)− wjNϕm+1(1/2, 2πj/N)

)
and ∫ 1

τ
ϕm(t, 2πj/N) dt =

1

(1− wjN)

(
ϕm+1(1/2, 2πj/N)− ϕm+1(τ − 1/2, 2πj/N)

)
.

Thus for j = 1, ..., N − 1 we have∫ 1

τ
ϕm(t, 2πj/N) dt+ w−jN

∫ τ

0
ϕm(t, 2πj/N) dt = w−jN ϕm+1(τ − 1/2, 2πj/N).

Since ϕm(x, 0) = 1 (x ∈ IR, m ∈ IN) we arrive at

‖LNm,τ‖1 =
2

N

N−1∑
j=0

ϕm+1(τ − 1/2, 2πj/N)

ϕm(τ, 2πj/N)(1 + wjN)
(τ ∈ (−1/2, 1/2]). (15)

REMARK 4.1
1. The formula (15) for ‖LNm,τ‖1 was already found by G. Merz (cf. [7]). Furthermore, in
[7] some special results on ‖LN2,τ‖1 are given.
2. For even N , an explicit representation of ‖LNm,τ‖1 like in (15) is unknown. In general,
for even N the fundamental spline LNm possesses apart from the N − 1 zeros, determined
by the interpolation conditions, an additional zero, which depends on the spline degree
m, the period N and the shift parameter τ . The explicit computation of this additional
zero seems to be difficult. ♠

Using the properties of the symbol ϕm we are able to describe the dependence of
‖LNm,τ‖1 on τ . The following Theorem improves the results in [7] and [11].

THEOREM 4.2
Let N,m ∈ IN (N odd ) and τ ∈ (−1/2, 1/2] be given. Then for ‖LNm,τ‖1 we have

(i) ‖LNm,τ‖1 = ‖LNm,−τ‖1 (τ ∈ (−1/2, 0]).

(ii) The norm ‖LNm,τ‖1 is strictly increasing with respect to τ ∈ [0, 1/2]. The following
holds:

min
{
‖LNm,τ‖1; τ ∈ (−1/2, 1/2]

}
= ‖LNm,0‖1.

Proof
Let m and N = 2n+ 1 be fixed and h(τ) := ‖LNm,τ‖1 (τ ∈ (−1/2, 1/2]).



Optimal parameters for spline interpolation 16

1. By Theorem 2.1 (i) and (ii) we find

h(τ) =
2

N

N−1∑
k=0

ϕm+1(τ − 1/2, 2πk/N)

ϕm(τ, 2πk/N)(1 + wkN)

=
2

2N
+

2

N

n∑
k=1

(
ϕm+1(τ − 1/2, 2πk/N)

(1 + wkN)ϕm(τ, 2πk/N)
+

ϕm+1(τ − 1/2, 2πk/N)

(1 + w−kN )ϕm(τ, 2πk/N)

)

=
1

N
+

4

N

n∑
k=1

Re

(
ϕm+1(τ − 1/2, 2πk/N)

(1 + wkN)ϕm(τ, 2πk/N)

)

=
1

N
+

4

N

n∑
k=1

Re

(
ϕm+1(−1/2− τ, 2πk/N)wkN

(1 + wkN)ϕm(−τ, 2πk/N)

)

=
1

N
+

4

N

n∑
k=1

Re

(
ϕm+1(−τ − 1/2, 2πk/N)

(1 + w−kN )ϕm(−τ, 2πk/N)

)
= h(−τ).

2. We consider the first derivative of h(τ) and obtain by Theorem 2.1 (iii)

h′(τ) =
4

N

n∑
k=1

Re

(
1− wkN
1 + wkN

(
1− ϕm+1(τ − 1/2, 2πk/N) ϕm−1(τ + 1/2, 2πk/N)

ϕm(τ, 2πk/N)2

))
.

Since
1− wkN
1 + wkN

= i
2 sin(2πk/N)

|1 + wkN |2
,

it follows that

h′(τ) =
8

N

n∑
k=1

sin(2πk/N)

|1 + wkN |2
Im

(
ϕm+1(τ − 1/2, 2πk/N)ϕm−1(τ + 1/2, 2πk/N)

ϕm(τ, 2πk/N)2

)
. (16)

We consider

arg
(ϕm+1(τ − 1/2, 2πk/N) ϕm−1(τ + 1/2, 2πk/N)

ϕm(τ, 2πk/N)2

)
for 0 < τ < 1/2 and fixed k (1 ≤ k ≤ n). By Theorem 2.1 (ii) and (vi) we find for the
numerator

2τ
2πk

N
< arg

(
ϕm+1(τ − 1/2, 2πk/N) ϕm−1(τ + 1/2, 2πk/N)

)
<

2πk

N

and for the denominator

0 < arg
(
ϕm(τ, 2πk/N)2

)
< 2τ

2πk

N
.

Therefore we have

0 < arg
(ϕm+1(τ − 1/2, 2πk/N)ϕm−1(τ + 1/2, 2πk/N)

ϕm(τ, 2πk/N)2

)
<

2πk

N
,

i.e.,

Im
(ϕm+1(τ − 1/2, 2πk/N)ϕm−1(τ + 1/2, 2πk/N)

ϕm(τ, 2πk/N)2

)
> 0
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for τ ∈ (0, 1/2) and 1 ≤ k ≤ n. From (16) it follows the inequality

h′(τ) > 0 (τ ∈ (0, 1/2)),

i.e., the continuous function h is strictly increasing on [0, 1/2]. By (i) the function h is
strictly decreasing on (−1/2, 0], such that

h(0) = min{h(τ); τ ∈ (−1/2, 1/2]}.

We summarize:
Considering the norm ‖LNm,τ‖1 we obtain the same result as above for the condition,
namely that the shift parameter τ = 0 is optimal.

Figure 4

Figure 4: Norm of the interpolation operator ‖L15
m,τ‖1 for m = 3, 4, 5, 6 and τ ∈ [−0.5, 0.5].

REMARK 4.3
1. We conjecture that the norm ‖LNm,τ‖∞ of the spline interpolation operator LNm,τ : IRN →
CN is also strictly increasing for τ ∈ [0, 1/2). Here CN denotes the Banach space of all
continuous N -periodic functions with the Chebyshev norm.
2. For the norm ‖LNm,τ‖2 of LNm,τ : RN → LN2 and for odd period N the following holds
(cf. [11, 8]):

‖LNm,0‖2 = 1.

3. Note that for N →∞ we obtain the cardinal spline interpolation operator Lm,τ which
has been investigated for τ = 0, 1/2 in several papers, for instance in [12, 4, 5, 6].
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