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Abstract

Traditional wavelets are not very effective in dealing with images that contain orientated disconti-
nuities (edges). To achieve a more efficient representation one has to use basis elements with much
higher directional sensitivity. In recent years several approaches like curvelets and shearlets have
been studied providing essentially optimal approximation properties for images that are piecewise
smooth and have discontinuities along C2-curves. While curvelets and shearlets have compact
support in frequency domain, we construct directional wavelet frames generated by functions with
compact support in time domain. Our Haar wavelet constructions can be seen as special composite
dilation wavelets, being based on a generalized multiresolution analysis (MRA) associated with a
dilation matrix and a finite collection of ’shear’ matrices. The complete system of constructed
wavelet functions forms a Parseval frame. Based on this MRA structure we provide an efficient
filter bank algorithm. The freedom obtained by the redundancy of the applied Haar functions will
be used for an efficient sparse representation of piecewise constant images as well as for image
denoising.

Key words: Haar wavelet frames, non-separable wavelets, composite dilation wavelets, dual
frames, sparse representation, image denoising
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1. Introduction

Over the past few years, there has been a great interest in improved methods for sparse repre-
sentations of higher dimensional data sets. Multiscale methods based on wavelets have been shown
to provide successful schemes for data compression and denoising.

Indeed, wavelets are optimally efficient in representing functions with point singularities [23].
In addition, the multiresolution analysis (MRA) associated with wavelets results in fast algorithms
for computing the wavelet coefficients [9, 23]. However, due to the missing rotation invariance of
tensor product wavelets, the wavelet representation of 2D-functions is not longer optimal.

Therefore, in recent years several attempts for improvement of wavelet systems in higher dimen-
sions have been made, including complex wavelets [17], contourlets [11, 24], brushlets [8], curvelets
[4, 5], bandelets [21], shearlets [14, 15, 22], and directionlets [27].
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Curvelets [4, 5] and shearlets [14, 15, 22] are examples of non-adaptive highly redundant func-
tion frames with strong anisotropic directional selectivity. For piecewise Hölder continuous func-
tions of order 2 with discontinuities along C2-curves, Candès and Donoho [5] proved that a best
approximation fM of a given function f with M curvelets satisfies

‖f − fM‖2 ≤ C M−2 (log2 M)3,

while a (tensor product) wavelet expansion only leads to an approximation error O(M−1) [23]. Up
to the (log2 M)3 factor, this curvelet approximation result is asymptotically optimal. A similar
estimation has been achieved by Guo and Labate [14] for shearlet frames.

Instead of choosing a priori a basis or a frame to approximate f , one can rather adapt the
approximation scheme to the image geometry. For example, one can construct an approximation
fM which is piecewise linear over an optimized triangulation including M triangles and satisfies
‖f −fM‖2 ≤ C M−2. This requires adapting the triangulation to the edge geometry (see e.g. [10]).
In [21], bandelet orthogonal bases and frames are introduced that adapt the geometric regularity
of the image. Further, we want to mention the nonlinear edge adapted multiscale decompositions
based on ENO schemes in [2, 7, 20] and the multidirectional edge adapted compression algorithm
[1] based on an edge detection procedure.

In this paper we are especially interested in non-adaptive directional wavelet frames being
compactly supported in time domain. The curvelet and shearlet systems constructed so far are tight
frames of well-localized functions at different scales, positions and directions. The corresponding
generating functions have compact support on triangles, ’parabolic’ wedges or sheared wedges in
frequency domain. In particular, for curvelet frames, there is no underlying multiresolution analysis
supporting the efficient computation of curvelet representations. These circumstances can be seen
as a certain drawback for the application of efficient wavelet filter banks based on these frames.

Therefore, we are strongly interested in directional wavelet frames generated by functions with
compact support in time domain and providing an efficient algorithm based on the MRA structure.

The construction of directional Haar wavelet frames on triangles introduced in this paper is a
first attempt in this direction. A different approach can also be found in [18]. Further constructions
of piecewise constant wavelets in L2(Rn) with n ≥ 2 for other purposes are due to [13, 16, 25].

As in [18], our Haar wavelet constructions can be seen as special composite dilation wavelets
(see [15]), being based on a generalized MRA associated with a dilation matrix and a collection
of ’shear’ matrices. But in contrast to [18] we shall use the dilation matrix A = 2I, leading
to simple decomposition and reconstruction formulas. Since we use a finite collection of shear
matrices, the considered MRA can also be understood as generated by a refinable function vector
and the corresponding wavelet functions form a multiwavelet vector. Our results, presented in this
paper, go far beyond the ideas given in [18], where Haar wavelet frames, based on the quincunx
matrix as dilation matrix, are constructed, but without any consideration of frame properties,
redundancy, and applications. Furthermore, we achieve a higher directional sensitivity considering
eight directions instead of four, which produces an essential improvement in applications.

Due to their support, our scaling functions and wavelets are able to detect different direc-
tions. The complete system of constructed wavelet functions forms a Parseval frame. The freedom
obtained by the redundancy of the applied Haar functions will be used for an efficient sparse
representation of (piecewise constant) images as well as for image denoising.

In order to find a sparse representation of the image, we will apply a minimization of the
vector of wavelet coefficients in the l0-seminorm in each decomposition step. The considered l0-
minimization problem is related to the construction of M -term approximations of functions in a
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redundant dictionary by greedy algorithms (see e.g. [6, 26]). We shall present a new and simple but
efficient algorithm for finding frame representations with small l0-seminorm that uses the known
dependence relations in the frame and provides an optimal solution for piecewise constant images.

The piecewise constant directional Haar wavelet frame presented in this paper possesses some
limitations yet. On the one hand, a construction of directional wavelet systems with small support
in time domain and with higher smoothness is desirable. On the other hand, for image analysis one
wishes to have as many different directions as possible. Unfortunately, this desire conflicts with a
small redundancy of the wavelet system. We will discuss this issues and possible extensions of our
approach in the Conclusions.

The paper is organized as follows. In Section 2, we introduce the space of scaling functions with
compact support on triangles. Further, we present the canonical dual frames for the scaling spaces
Vj. Section 3 is devoted to the construction of the directional Haar wavelet frame and corresponding
decomposition and reconstruction formulas. In Section 4, we present the directional Haar wavelet
filter bank based on the new wavelet frames on triangles. Further, we study the question of
how to find a suitable orthogonal projection of a given digital image into the scaling space V0

as well as the back projection after application of the filter bank algorithm. In Section 5, a new
algorithm for sparse representation of images is presented, where we apply an l0-minimization to the
wavelet coefficients of the constructed frames. Finally, Section 6 is devoted to the application of the
redundant directional Haar wavelet filter bank to image denoising and sparse image approximation.
In particular, we shall compare its performance with curvelets and contourlets.

2. The space of scaling functions

We consider the domain Ω := [−1, 1]2 and divide it into 16 triangles with the same area, see
Figure 1. We want to introduce a vector of characteristic functions on these 16 triangles. Let the
first scaling function φ0 be a characteristic function on the triangle

U0 = conv{
(0

0

)

,
(

1/2
1

)

,
(0

1

)

} := {x ∈ R2 : 0 ! x2 ! 1, 0 ! x1 ! x2

2 },

i.e.,
φ0(x) = φ0(x1, x2) = χU0

(x1, x2) = χ[0,1](
2x1

x2
) · χ[0,1](x2).

The second scaling function φ1 is given by

φ1(x) = φ1(x1, x2) = χU1
(x1, x2) = χ[1,2](

2x1

x2
) · χ[0,1](x2),

where U1 = conv{
(0
0

)

,
(1
1

)

,
(1/2

1

)

}. Observe that, introducing the shear matrix S :=

(

1 1/2
0 1

)

, we

have φ1(x) = φ0(S−1x). Let us apply the group B := {Bi : i = 0, . . . , 7} of isometries of the square
[−1, 1]2 with

B0 =

(

1 0
0 1

)

, B1 =

(

0 1
1 0

)

, B2 =

(

0 −1
1 0

)

, B3 =

(

1 0
0 −1

)

,

B4 =

(

−1 0
0 −1

)

, B5 =

(

0 −1
−1 0

)

, B6 =

(

0 1
−1 0

)

, B7 =

(

−1 0
0 1

)

.
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Then, for i = 0, . . . , 7 we have

U2i = {B−1
i x : x ∈ U0} = B−1

i U0, U2i+1 = {B−1
i x : x ∈ U1} = B−1

i U1,

and we define the further scaling functions φi by

φ2i(x) := φ0(Bix) = χU0
(Bix) = χB−1

i U0
(x) = χU2i

(x),

φ2i+1(x) := φ1(Bix) = χU1
(Bix) = χB−1

i U1
(x) = χU2i+1

(x), i = 0, . . . , 7.

U12

U10

U15 U14 U0 U1

U3

U2

U4

U5

U7U6U8U9

U13

(−1, 1)

(−1,−1) (1,−1)

(1, 1)

x2

x1

U11

(−1,−1)

x2

x1

(1,−1)

(1, 1)(−1, 1)

Figure 1: Construction of scaling functions ((a) coarsest level V0, (b) refinements).

In the following, we consider the translated versions of φi with support in [0, 1]2 and put them
into a vector Φ of length 16,

Φ := (φ0, . . . ,φ3,φ4(·−
(0

1

)

), . . . ,φ7(·−
(0

1

)

),

φ8(·−
(1

1

)

), . . . ,φ11(·−
(1

1

)

),φ12(·−
(1

0

)

), . . . ,φ15(·−
(1

0

)

))T . (2.1)

We define now the sequence of spaces {Vj}j∈Z given by

Vj := closL2(R2)span{φ2i,j,k,φ2i+1,j,k, : i = 0, . . . , 7; k ∈ Z
2} (2.2)

with

φ2i,j,k(x) := 2jφ0(Bi(2
jx − k)),

φ2i+1,j,k(x) := 2jφ1(Bi(2
jx − k)), i = 0, . . . , 7, k ∈ Z

2,

i.e., j denotes the scale, k the translation, and i the rotation/shearing. Note that these functions
can be understood as scaling functions with composite dilations (see [15, 22]).

We show that {Vj}j∈Z forms a generalized, stationary MRA of L2(R2), that can also be inter-
preted as a so-called AB-MRA with A = 2I and B ∈ B as introduced in [15, 22].

Lemma 2.1. The sequence {Vj}j∈Z of subspaces of L2(R2) satisfies the following properties:

1. Vj ⊂ Vj+1 ∀j ∈ Z.
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2. closL2(R2)
⋃

j∈Z
Vj = L2(R2).

3.
⋂

j∈Z
Vj = {0}.

4. {φ2i(·− k),φ2i+1(·− k) : i = 0, . . . , 7; k ∈ Z2} forms a frame of V0.

Proof. First observe, that the scaling functions are refinable, compare Figure 1(b). In particular,
we have

φ0 = φ0(2·) + φ0(2 ·−
(0

1

)

) + φ1(2 ·−
(0

1

)

) + φ9(2 ·−
(1

2

)

)

= 1
2

(

φ0,1,( 0

0)
+ φ0,1,( 0

1)
+ φ1,1,( 0

1)
+ φ9,1,( 1

2)

)

φ1 = φ1(2·) + φ1(2 ·−
(1

1

)

) + φ0(2 ·−
(1

1

)

) + φ8(2 ·−
(1

2

)

)

= 1
2

(

φ1,1,( 0

0)
+ φ1,1,( 1

1)
+ φ0,1,( 1

1)
+ φ8,1,( 1

2)

)

.

The two-scale relations for the other scaling functions now simply follow as

φ2i = φ0(Bi ·)

= φ0(2Bi ·) + φ0(2Bi ·−
(0

1

)

) + φ1(2Bi ·−
(0

1

)

) + φ1(B4(2Bi ·−
(1

2

)

))

= 1
2

(

φ2i,1,( 0

0)
+ φ2i,1,B−1

i ( 0

1)
+ φ2i+1,1,B−1

i ( 0

1)
+ φ(2i+9)mod 16,1,B−1

i ( 1

2)

)

as well as

φ2i+1 = 1
2

(

φ2i+1,1,( 0

0)
+ φ2i+1,1,B−1

i ( 1

1)
+ φ2i,1,B−1

i ( 1

1)
+ φ(2i+8)mod 16,1,B−1

i ( 1

2)

)

.

Hence, V0 ⊂ V1 holds. For j ∈ Z and k ∈ Z2 we get the general refinement equations

φ2i,j,k = φ0(Bi(2
j ·−k))

= 1
2

(

φ2i,j+1,2k + φ2i,j+1,2k+B−1
i ( 0

1)
+ φ2i+1,j+1,2k+B−1

i ( 0

1)
+

+φ(2i+9)mod16,j+1,2k+B−1
i ( 1

2)

)

φ2i+1,j,k = φ1(Bi(2
j ·−k))

= 1
2

(

φ2i+1,j+1,2k + φ2i+1,j+1,2k+B−1
i ( 1

1)
+ φ2i,j+1,2k+B−1

i ( 1

1)
+

+φ(2i+8)mod16,j+1,2k+B−1
i ( 1

2)

)

.

Thus we have Vj ⊂ Vj+1 for all j ∈ Z.
Secondly, since the spaces Vj defined in (2.2) contain the subspaces of Haar scaling functions,

i.e. V H
j ⊂ Vj with

V H
j := closL2(R2)span {2jχ[0,1)2(2

j ·−k) : k ∈ Z
2},

we find closL2(R2)
⋃

j∈Z
Vj = L2(R2). Further, the condition

⋂

j∈Z
Vj = {0} easily follows for a

stationary sequence {Vj}j∈Z (see e.g. [3, Corollary 4.14]).
Now, the last property remains to proved. The family of functions {φ2i(· − k),φ2i+1(· − k) : i =
0, . . . , 7; k ∈ Z2} does not generate a basis of V0. Obviously, we have the following dependencies
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(see Figure 2):

φ0 + φ1 = φ10(·−
(1

1

)

) + φ11(·−
(1

1

)

),

φ2 + φ3 = φ8(·−
(1

1

)

) + φ9(·−
(1

1

)

),

φ4 + φ5 = φ14(·−
(

1
−1

)

) + φ15(·−
(

1
−1

)

), (2.3)

φ6 + φ7 = φ12(·−
(

1
−1

)

) + φ13(·−
(

1
−1

)

),

φ0 + φ1 + φ2 + φ3 = φ4(·−
(0

1

)

) + φ5(·−
(0

1

)

) + φ6(·−
(0

1

)

) + φ7(·−
(0

1

)

).

x2

x1

(1,−1)

(1, 1)(−1, 1)

(−1,−1)

x2

x1

(1,−1)

(1, 1)(−1, 1)

(−1,−1)

x2

x1

(1,−1)

(1, 1)(−1, 1)

(−1,−1)

x2

x1

(1,−1)

(1, 1)(−1, 1)

(−1,−1)

x2

x1

(1,−1)

(1, 1)(−1, 1)

(−1,−1)

Figure 2: Redundancies of scaling functions.

Indeed, the space V0 is already generated by the set of 11 functions {φ2i : i = 0, . . . , 7} ∪
{φ1,φ3,φ5}. The Gram matrix G := 〈Φ,Φ〉 ∈ R16×16 with Φ in (2.1) is given by

G =
1

4









I4 G1 G2 GT
1

GT
1 I4 G1 G2

G2 GT
1 I4 G1

G1 G2 GT
1 I4









(2.4)

with the identity matrix I4 of size 4 × 4 and with

G1 =









1/5 2/15 1/2 1/6
7/15 1/5 1/6 1/6

0 1/3 1/5 7/15
1/3 1/3 2/15 1/5









, G2 =









0 0 2/3 1/3
0 0 1/3 2/3

2/3 1/3 0 0
1/3 2/3 0 0









.

We observe that rank(G) = 11. The nonzero eigenvalues of G provide us with the frame
constants of {φi(·− k) : i = 0, . . . , 15; k ∈ Z2}; i.e., the inequality

A‖f‖2
L2(R2) !

15
∑

i=0

∑

k∈Z2

|〈f,φi(·− k)〉|2 ! B‖f‖2
L2(R2)

is satisfied for all f ∈ V0 with A ≈ 0.0745 and B = 1.

Now, we look for a dual frame {φ̃i(·− k) : i = 0, . . . , 15; k ∈ Z2} of V0 such that

f =
15

∑

i=0

∑

k∈Z2

〈f, φ̃i(·− k)〉φi(·− k) =
15
∑

i=0

∑

k∈Z2

〈f,φi(·− k)〉 φ̃i(·− k) ∀f ∈ V0. (2.5)
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The dual frame Φ̃ of Φ can be computed by

Φ̃ = G†Φ, (2.6)

where G† is the well-defined Moore-Penrose generalized inverse of the Gram matrix G. Indeed,
the first part of (2.5) can be seen as follows. Since G is symmetric and positive semidefinite, there
exists an orthogonal matrix P ∈ R16×16 and a diagonal matrix D = diag (λ1, . . . ,λ11, 0, . . . , 0) ∈
R16×16 such that G = P T D P . Hence, the pseudo-inverse G† is given by G† = P T D† P where
D† = diag (1/λ1, . . . , 1/λ11, 0, . . . , 0). In particular, V0 is also generated by PΦ, where

〈PΦ, PΦ〉 = P 〈Φ,Φ〉P T = P GP T = D,

i.e., the last five functions in the vector PΦ are zero functions. Now, for an arbitrary function
g = cT PΦ ∈ V0 (restricted to [0, 1]2), it follows that

15
∑

i=0

〈g, φ̃i〉φi = 〈cT PΦ, G†Φ〉Φ = cT P 〈Φ, Φ〉G†Φ = cT PGG†Φ = cT DD†PΦ = cT PΦ = g.

The second part of (2.5) follows similarly.
The pseudo inverse G† has again block structure,

G† =











Ĝ0 Ĝ1 Ĝ2 ĜT
1

ĜT
1 Ĝ0 Ĝ1 Ĝ2

Ĝ2 ĜT
1 Ĝ0 Ĝ1

Ĝ1 Ĝ2 ĜT
1 Ĝ0











where

Ĝ0 =









3.75 −2.58 −0.08 −0.82
−2.58 3.28 −0.82 0.37
−0.08 −0.82 3.75 −2.58
−0.82 0.37 −2.58 3.28









, Ĝ1 =









0.36 0.68 −1.74 0.94
−1.16 0.36 0.94 0.10
1.48 −0.44 0.36 −1.16
−0.44 −0.35 0.68 0.36









,

and

Ĝ2 =









−1.21 0.29 −0.66 1.83
0.29 −0.74 1.83 −1.12
−0.66 1.83 −1.21 0.29
1.83 −1.12 0.29 −0.74









.

(Here, we computed G† with the common Maple procedure and its rational entries are rounded to
two digits.)

3. Construction of a tight directional wavelet frame and reconstruction formulas

Let us now consider the wavelet spaces Wj satisfying the condition Vj + Wj = Vj+1 for all
j ∈ Z. The locality and refinability of generating functions φi, i = 0, 1, imply to consider the
wavelet functions for φ0

ψ1
0 := 1

2

(

φ0,1,( 0

0)
+ φ0,1,( 0

1)
− φ1,1,( 0

1)
− φ9,1,( 1

2)

)

,

ψ2
0 := 1

2

(

φ0,1,( 0

0)
− φ0,1,( 0

1)
− φ1,1,( 0

1)
+ φ9,1,( 1

2)

)

,

ψ3
0 := 1

2

(

φ0,1,( 0

0)
− φ0,1,( 0

1)
+ φ1,1,( 0

1)
− φ9,1,( 1

2)

)

,
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see Figure 3, and for φ1

ψ1
1 := 1

2

(

φ1,1,( 0

0)
− φ1,1,( 1

1)
+ φ0,1,( 1

1)
− φ8,1,( 1

2)

)

,

ψ2
1 := 1

2

(

φ1,1,( 0

0)
− φ1,1,( 1

1)
− φ0,1,( 1

1)
+ φ8,1,( 1

2)

)

,

ψ3
1 := 1

2

(

φ1,1,( 0

0)
+ φ1,1,( 1

1)
− φ0,1,( 1

1)
− φ8,1,( 1

2)

)

.

The wavelet functions ψ1
i , ψ

2
i ,ψ

3
i have the same support as φi, i = 0, 1. All further wavelet

functions can be obtained by rotation/reflection of these six functions, namely

ψr
2i := ψr

0(Bi·) and ψr
2i+1 := ψr

1(Bi·), for i = 0, . . . , 7, r = 1, 2, 3.

Now, we are able to define the wavelet spaces

Wj := closL2(R2) span {ψr
i,j,k : i = 0, . . . , 15; r = 1, 2, 3; k ∈ Z

2},

where ψr
2i,j,k := 2jψr

0(Bi(2j · −k)),ψr
2i+1,j,k := 2jψr

1(Bi(2j · −k)). The above refinement equations
for ψr

0 and ψr
1 (r = 1, 2, 3) directly imply the relations

ψ1
2i,j,k = 1

2

(

φ2i,j+1,2k + φ2i,j+1,2k+B−1
i ( 0

1)
− φ2i+1,j+1,2k+B−1

i ( 0

1)

−φ(2i+9)mod 16,j+1,2k+B−1
i ( 1

2)

)

, (3.1)

ψ1
2i+1,j,k = 1

2

(

φ2i+1,j+1,2k − φ2i+1,j+1,2k+B−1
i ( 1

1)
+ φ2i,j+1,2k+B−1

i ( 1

1)

−φ(2i+8)mod 16,j+1,2k+B−1
i ( 1

2)

)

,

and analogous relations for ψ2
i,j,k and ψ3

i,j,k. Thus we have Wj ⊂ Vj+1 for all j ∈ Z. Obviously, the
wavelet functions ψr

i,j,k, r = 1, 2, 3, possess the same compact support as the corresponding scaling
functions φi,j,k for all i, j, k.
Reconstruction formulas can now be derived as follows (see also Figure 3),

φ0,j+1,2k = 1
2

(

φ0,j,k + ψ1
0,j,k + ψ2

0,j,k + ψ3
0,j,k

)

,

φ0,j+1,2k+(0

1)
= 1

2

(

φ0,j,k + ψ1
0,j,k − ψ2

0,j,k − ψ3
0,j,k

)

,

φ0,j+1,2k+(1

0)
= 1

2

(

φ9,j,k+(1

1)
− ψ1

9,j,k+(1

1)
+ ψ2

9,j,k+(1

1)
− ψ3

9,j,k+(1

1)

)

,

φ0,j+1,2k+(1

1)
= 1

2

(

φ1,j,k + ψ1
1,j,k − ψ2

1,j,k − ψ3
1,j,k

)

,

+
−
+ −

(1, 1)

x1

(0, 1)
x2

ψ1
0 +

−
+
−

(1, 1)

x1

(0, 1)
x2

ψ2
0 +

−
−
+

(1, 1)

x1

(0, 1)
x2

ψ3
0

Figure 3: Construction of directional wavelets ψ1
0 , ψ2

0 , and ψ3
0 .
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as well as

φ1,j+1,2k = 1
2

(

φ1,j,k + ψ1
1,j,k + ψ2

1,j,k + ψ3
1,j,k

)

,

φ1,j+1,2k+(1

0)
= 1

2

(

φ8,j,k+(1

1)
− ψ1

8,j,k+(1

1)
+ ψ2

8,j,k+(1

1)
− ψ3

8,j,k+(1

1)

)

,

φ1,j+1,2k+(0

1)
= 1

2

(

φ0,j,k − ψ1
0,j,k − ψ2

0,j,k + ψ3
0,j,k

)

,

φ1,j+1,2k+(1

1)
= 1

2

(

φ1,j,k − ψ1
1,j,k − ψ2

1,j,k + ψ3
1,j,k

)

.

The reconstruction formulas for the rotated and reflected functions follow accordingly. Hence, we
indeed have

Vj + Wj = Vj+1.

Now we can prove the essential tight frame property of the system

ΨD := {ψr
i,j,k : i = 0, . . . , 15; r = 1, 2, 3; j ∈ Z; k ∈ Z

2}

generating L2(R2).

Theorem 3.1. The directional Haar wavelet system ΨD forms a Parseval frame of L2(R2), i.e.,

‖f‖2
L2(R2) =

∑

ψ∈ΨD

|〈f,ψ〉|2 ∀ f ∈ L2(R2).

Proof. Firstly, we consider the following subspaces V 0
j , V 1

j , V 2
j , and V 3

j of Vj given by

V ν
j := closL2(R2)span {φ2ν,j,k,φ2ν+1,j,k,φ2ν+8,j,k,φ2ν+9,j,k : k ∈ Z

2}, ν = 0, 1, 2, 3. (3.2)

From the observations in Section 2 it follows that the sequences {V ν
j }j∈Z themselves already form

a multiresolution of L2(R2), and moreover, the generating functions form an orthogonal basis of
V ν

j , where ‖φi,j,k‖2
L2(R2) = 1

4 for arbitrary i = 0, . . . , 15; j ∈ Z; k ∈ Z2. Now, taking the subspaces

W 0
j ,W 1

j ,W 2
j , and W 3

j of Wj in the same manner, i.e.,

W ν
j := closL2(R2)span {ψr

2ν,j,k,ψ
r
2ν+1,j,k,ψ

r
2ν+8,j,k,ψ

r
2ν+9,j,k : r = 1, 2, 3; k ∈ Z

2},

for ν = 0, 1, 2, 3, we find that W ν
j ⊥V ν

j , and for each ν = 0, 1, 2, 3, this generating system is even
an orthogonal basis of W ν

j . Hence each of the function sets

Ψν := {ψr
2ν,j,k,ψ

r
2ν+1,j,k,ψ

r
2ν+8,j,k,ψ

r
2ν+9,j,k : r = 1, 2, 3; j ∈ Z; k ∈ Z

2}, ν = 0, 1, 2, 3,

forms an orthogonal basis of L2(R2), and the Parseval identity implies

‖f‖2
L2(R2) =

∑

ψ∈Ψν

|〈f,ψ〉|2

〈ψ,ψ〉
= 4

∑

ψ∈Ψν

|〈f,ψ〉|2

for all f ∈ L2(R2), ν = 0, 1, 2, 3, such that the complete system ΨD forms a tight frame of L2(R2)
with

‖f‖2
L2(R2) =

∑

ψ∈ΨD

|〈f,ψ〉|2.
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Remark 3.2. 1. An alternative proof of the tight frame property is given by one of the authors
in [19] with arguments in the frequency domain.

2. Note the important fact that the directional wavelet frame consists of four orthogonal bases,
i.e., it can be interpreted as a redundant dictionary. In our applications we will exploit this
fact in order to get an efficient implementation.

4. Directional Haar wavelet filter bank

Let J := {0, . . . , 2N1 − 1} × {0, . . . , 2N2 − 1} be the index set of a digital image a = (ak)k∈J

with 2N1 × 2N2 pixels. The function f ∈ L2(Ω) with Ω = [0,N1] × [0,N2],

f(x1, x2) =
2N1−1
∑

k1=0

2N2−1
∑

k2=0

ak1,k2
· χ[0,1)2(2x1 − k1, 2x2 − k2) =

∑

k∈J

ak · χ[0,1)2(2x − k), (4.1)

can be seen as the corresponding ’L2-version’ of the discrete image a. Here, χ[0,1)2 denotes the

characteristic function on [0, 1)2 and we assume that N1 = n1·2j0 ,N2 = n2·2j0 with some n1, n2 ∈ N

and a fixed j0 ∈ N. We want to apply our redundant Haar wavelet frame constructed above for an
efficient analysis of f . Let us shortly describe the procedure, before going into a detailed analysis
of the single steps.
First we compute an orthogonal projection f0 (resp. fj) of f into the space V0 defined in (2.2)
or into a coarser space Vj with j < 0 (see Subsection 4.1). Then we apply the directional Haar
wavelet filter bank generated by the decomposition and reconstruction formulas for φi,ψ1

i ,ψ
2
i ,ψ

3
i ,

i = 0, . . . , 15, in order to decompose fj into fj−1 ∈ Vj−1 and gj−1 ∈ Wj−1 as usual. Using
the fact that our constructed frame can be split into four bases, the decomposition can be done
by a fourfold application of the fast wavelet transform (FWT), see Subsection 4.2. If we use the
directional wavelet frame for image denoising, we do not reduce the redundancies because redundant
information is desirable with denoising. By contrast, if we apply the filter bank algorithm to find
a sparse image representation, we have to reduce redundancies. This issue will be considered in
detail in Section 5.

4.1. Orthogonal projection of f into V0

In order to apply the directional Haar wavelet frames constructed in the preceding sections,
we need a suitable projection f0 of a given function f of the form (4.1) into the scaling space V0

defined in (2.2). For this projection we require two conditions. Firstly, the redundancy introduced
by this projection, i.e., the ratio between the number of coefficients determining f0 and the 4N1N2

coefficients determining f should be as small as possible. Secondly, there should be no loss of
information, i.e., we desire that f can be perfectly reconstructed from f0.

We are interested in the orthogonal projection of f in (4.1) into the space V0 of the form

f0 =
∑

k∈J1

(c0
k)TΦ(·− k), (4.2)

where J1 := {0, . . . ,N1 − 1}× {0, . . . ,N2 − 1}, c0
k = (c0

0,k, . . . , c0
15,k)T ∈ R16 and where the support

of all functions in Φ is contained in [0, 1]2 (see (2.1)). Since the basis functions χ[0,1)2(2x − k) in
(4.1) as well as the scaling functions in Φ(· − k) have small compact support, we can look at the
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projection problem locally. We restrict ourselves to the case k = 0 and consider the area [0, 1)2.
Hence we need a projection of

f |[0,1)2(x) = a( 0

0
)χ[0,1)2(2x) + a( 1

0)
χ[0,1)2(2x −

(1
0

)

) + a( 0

1
)χ[0,1)2(2x −

(0
1

)

) + a( 1

1)
χ[0,1)2(2x −

(1
1

)

)

to f0|[0,1)2(x) = (c0
0)

T Φ(x). Obviously, such a projection provides the redundancy factor 4. Using

the dual canonical frame Φ̃ = G†Φ defined in (2.6), the coefficient vector c0
0 ∈ R16 is now given by

c0
0 = 〈Φ̃, f〉 = G† 〈Φ, f〉

= a( 0

0)
G†〈Φ,χ[0,1)2(2·)〉 + a( 1

0)
G†〈Φ,χ[0,1)2(2 ·−

(1
0

)

)〉

+a( 0

1)
G†〈Φ,χ[0,1)2(2 ·−

(0
1

)

)〉 + a( 1

1)
G†〈Φ,χ[0,1)2(2 ·−

(1
1

)

)〉.

The vectors

〈Φ,χ[0,1)2(2 ·−l)〉 = 1
4

∫

[0,1)2
Φ

(

y+l
2

)

dy, l ∈
{(0

0

)

,
(1

0

)

,
(0

1

)

,
(1

1

)}

,

in R16 can now easily be computed, and we find

M :=
(

〈Φ,χ[0,1)2(2·)〉, 〈Φ,χ[0,1)2 (2 ·−
(1

0

)

)〉, 〈Φ,χ[0,1)2(2 ·−
(0

1

)

)〉, 〈Φ,χ[0,1)2(2 ·−
(1

1

)

)〉
)

=
1

16









1 1 1 1 0 0 3 1 0 2 0 2 3 1 0 0
0 0 3 1 0 2 0 2 3 1 0 0 1 1 1 1
3 1 0 0 1 1 1 1 0 0 3 1 0 2 0 2
0 2 0 2 3 1 0 0 1 1 1 1 0 0 3 1









T

.

Hence, the coefficient vector c0
0 is found by

c0
0 = G† M

(

a( 0

0)
, a( 1

0)
, a( 0

1)
, a( 1

1)

)T
.

Generally, the coefficient vectors c0
k in (4.2) are obtained for all k ∈ J1 by

c0
k = G† M

(

a2k, a2k+( 1

0)
, a2k+( 0

1)
, a2k+( 1

1)

)T
.

Next, we will show that this projection f0 in (4.2) contains the full information of f . In other
words, f can be perfectly reconstructed from f0. This can be seen as follows. Consider the subspace
V 0

0 of V0 containing only the Z2-translates of φ0, φ1, φ8, and φ9, we obtain an orthogonal projection
of f in (4.1) into the subspace V 0

0 by

f0
0 =

∑

k∈J1

c0
0,k φ0,0,k + c0

1,k φ1,0,k + c0
8,k φ8,0,k+(1

1)
+ c0

9,k φ9,0,k+(1

1)
,

where, with the same arguments as above,











c0
0,k

c0
1,k

c0
8,k

c0
9,k











=
1

4









1 0 3 0
1 0 1 2
0 3 0 1
2 1 0 1



















a2k

a2k+( 1

0)
a2k+( 0

1)
a2k+( 1

1)











. (4.3)
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a2k+(1

1)

a2k a2k+(1

0)

a2k+(0

1)

Figure 4: Computation of the coefficients c0
0,k, c0

1,k, c0
8,k, c0

9,k from four image pixels.

Here, the coefficient matrix contains the 0., 1., 8. and 9. row of M , because these rows of M provide
the coefficients of φ0,φ1,φ8,0,(1

1)
, and φ9,0,(1

1)
, see Figure 4. Further, since φ0,φ1,φ8,0,(1

1)
,φ9,0,(1

1)
are

orthogonal, the corresponding Gramian matrix has the form 1
4I4.

Since the coefficient matrix in (4.3) is invertible, we can reconstruct f from f0
0 . But V 0

0 is a
subspace of V0, and in particular it follows that f0

0 is also found as the orthogonal projection of f0

into V 0
0 . Hence, taking

c0
r,k = 〈f0,φr,0,k〉 = 〈(c0

k)TΦ(·− k),φr,0,k〉 = (c0
k)T gr, r = 0, 1,

c0
r+8,k = 〈f0,φr+8,0,k+(1

1)
〉 = 〈(c0

k)TΦ(·− k),φr+8,0,k+(1

1)
〉 = (c0

k)
T gr+8, r = 0, 1,

where gr is the r-th column vector of the Gramian matrix G, we obtain for all k ∈ J1











c0
0,k

c0
1,k

c0
8,k

c0
9,k











= (g0, g1, g8, g9)
T c0

k = G′T c0
k,

where G′ ∈ R16×4 contains the 0., 1., 8. and 9. column of G, and with (4.3) we have the reconstruc-
tion formula











a2k

a2k+( 1

0)
a2k+( 0

1)
a2k+( 1

1)











=
1

4









1 −3 −3 9
1 −3 5 1
5 1 1 −3
−3 9 1 −3









G′T c0
k.

4.2. Directional wavelet filter bank algorithm

Let now f0 ∈ V0 be given as in (4.2). We want to derive an efficient algorithm for the de-
composition of f0 into f−1 ∈ V−1 and g−1 ∈ W−1 and for the reconstruction f−1 + g−1. With
J2 := {0, . . . , N1

2 − 1} × {0, . . . , N2

2 − 1} we can write

f0 =
∑

k∈J2

(c0
2k)TΦ(·− 2k) + (c0

2k+( 1

0)
)TΦ(·− (2k +

(1
0

)

))

+(c0
2k+( 0

1)
)TΦ(·− (2k +

(0
1

)

)) + (c0
2k+( 1

1)
)TΦ(·− (2k +

(1
1

)

)).

Again, we derive the decomposition of f0 locally. On [0, 2)2, there are 64 basis functions of V0,
namely the 16 components of Φ (as given in (2.1)) with a support inside [0, 1]2 and the components
of Φ(· −

(1
0

)

), Φ(· −
(0

1

)

), and Φ(· −
(1

1

)

). For the filter bank algorithm, we want to apply the
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knowledge that Vj is composed by the subspaces V 0
j , V 1

j , V 2
j , and V 3

j as given in the proof of
Theorem 3.1 (see (3.2)), i.e.,

Vj = V 0
j + V 1

j + V 2
j + V 3

j .

Therefore, we reorder the frame functions in (ΦT ,Φ(·− (1
0))T ,Φ(·− (0

1))T ,Φ(·− (1
1 ))T ) according

to the subspaces V ν
0 , ν = 0, 1, 2, 3. In [0, 2)2 we hence consider the function vectors

Φ0
0 :=

(

φ0,0,( 0

0)
,φ9,0,( 1

2)
,φ0,0,( 0

1)
,φ1,0,( 0

1)
,φ1,0,( 0

0)
,φ8,0,( 1

2)
,φ0,0,( 1

1)
,φ1,0,( 1

1)
,

φ8,0,( 2

2)
,φ1,0,( 1

0)
,φ8,0,( 2

1)
,φ9,0,( 2

1)
,φ9,0,( 2

2)
,φ0,0,( 1

0)
,φ8,0,( 1

1)
,φ9,0,( 1

1)

)T

as well as
Φν

0 := Φ0
0(Bν ·), ν = 1, 2, 3.

The order of functions in Φν
0 is taken for simplifying the refinement relations and the application

of the corresponding wavelet filter bank. See Figure 5 for the new order of frame functions in the
four directions related to the four subspaces V ν

0 .

3

4

7

9

62

13

10111415

81251

0

0

1

2

34

6

7

8

9

10

11 12

13

15

514

0

1

2

3

5

6

7

8

9

10

11 12

13

14

15
4

0

2 3

4

1

6 7

85

9

1011

12

13

1415

Figure 5: Order of components in the function vectors Φν
0 for ν = 0 (left), ν = 1 (middle left), ν = 2 (middle right),

and ν = 3 (right). The figures indicate the supports of the i-th component of Φν
0 for i = 0, . . . , 15.

By corresponding reordering of the coefficients of f0 in the coefficient vectors c0
2k+l, l ∈

{(0
0

)

,
(1

0

)

,
(0

1

)

,
(1

1

)}

, we obtain

f0|[0,2)2 = (d0
0)

T Φ0
0 + (d1

0)
T Φ1

0 + (d2
0)

T Φ2
0 + (d3

0)
T Φ3

0.

Since Φν
0 contains the 16 frame functions in [0, 2)2 that correspond only to the direction ν, we

can separately apply the decomposition formulas (3.1). For every ν = 0, 1, 2, 3, we find with

Ψ0
−1 :=

(

φ0,−1,( 0

0)
,ψ1

0,−1,( 0

0)
,ψ2

0,−1,( 0

0)
,ψ3

0,−1,( 0

0)
,φ1,−1,( 0

0)
,ψ1

1,−1,( 0

0)
,ψ2

1,−1,( 0

0)
,ψ3

1,−1,( 0

0)
,

φ8,−1,( 1

1)
,ψ1

8,−1,( 1

1)
,ψ2

8,−1,( 1

1)
,ψ3

8,−1,( 1

1)
,φ9,−1,( 1

1)
,ψ1

9,−1,( 1

1)
,ψ2

9,−1,( 1

1)
,ψ3

9,−1,( 1

1)

)T

and
Ψν

−1 := Ψ0
−1(Bν ·), ν = 0, 1, 2, 3,

the relation
Ψν

−1 = AΦν
0 , ν = 0, 1, 2, 3,

13



where the orthogonal matrix A ∈ R16×16 is a tensor product matrix of the form

A = (I4 ⊗ B) =









B
B

B
B









with B :=
1

2









1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1









.

Observe that Ψν
−1 generates the directional subspace V ν

−1 ⊕ W ν
−1, ν = 0, 1, 2, 3. Now we denote

with
Φ0 := (Φ0T

0 ,Φ1T

0 ,Φ2T

0 ,Φ3T

0 )T (4.4)

the (reordered) vector of functions generating the frame in V0 (restricted to [0, 2)2) and with

Ψ−1 := (Ψ0T

−1,Ψ
1T

−1,Ψ
2T

−1,Ψ
3T

−1)
T the generating frame in V−1 ⊕W−1 (restricted to [0, 2)2). Both, Φ0

and Ψ−1 are now function vectors of length 64.
Using A = AT = A−1, the representation of f with generating functions from V0 resp. V−1 ⊕ W−1

can be given in the form

f0|[0,2)2 = ((d0
0)

T , (d1
0)

T , (d2
0)

T , (d3
0)

T )Φ0 = DT
0,0 Φ0 = DT

0,0 (I4 ⊗ A)Ψ−1,

where DT
0,0 := ((d0

0)
T , (d1

0)
T , (d2

0)
T , (d3

0)
T ) ∈ R64. For the complete image f0 it follows the decom-

position

f0 =
∑

k∈J2

DT
0,k Φ0(·− 2k) =

∑

k∈J2

DT
0,k (I4 ⊗ A)Ψ−1(·− 2k), (4.5)

with DT
0,k := ((d0

0,k)
T , (d1

0,k)T , (d2
0,k)T , (d3

0,k)T ) ∈ R64. Summing up, the decomposition algorithm
for the constructed directional wavelets on triangles has the following form.

Algorithm 1a (Decomposition by directional Haar wavelet filter bank)

1. Input: Initial image obtained by orthogonal projection of f into V0,

f0 =
∑

k∈J1

(c0
0,k)

T Φ(·− k), c0
0,k = 〈f, Φ̃(·− k)〉.

2. Reorder the frame functions (resp. corresponding coefficients) by directions. Let P1 be the
permutation matrix for reordering of generating functions in V0,

(ΦT , Φ
(

·−
(1

0

))T
, Φ

(

·−
(0

1

))T
, Φ

(

·−
(1

1

))T
)P1 = ΦT

0 .

Now, for each k ∈ J2, reorder the coefficient vectors,

DT
0,k = ((d0

0,k)
T , (d1

0,k)
T , (d2

0,k)T , (d3
0,k)T ) = ((c0

0,2k)T , (c0
0,2k+( 1

0
)
)T , (c0

0,2k+( 0

1
)
)T , (c0

0,2k+( 1

1
)
)T )P1,

such that
f0 =

∑

k∈J2

DT
0,k Φ0(·− 2k).

3. Decompose f0 ∈ V0 into f−1 ∈ V−1 and g−1 ∈ W−1 using the relation Φ0 = (I4 ⊗ A)Ψ−1.
Compute the corresponding coefficients by

DT
−1,k = DT

0,k (I4 ⊗ A).
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4. Using the definition of Ψ−1, reorder the coefficients in the vectors

DT
−1,k = ((d0

−1,k)T , (d1
−1,k)T , (d2

−1,k)
T , (d3

−1,k)
T ), k ∈ J2,

in order to obtain f−1 and g−1.

5. Iterative application: Apply the same procedure to the low pass part f−1, while the high
pass part g−1 is stored.

As previously described, the decomposition algorithm of f ∈ V0 into f−1 ∈ V−1 and g−1 ∈ W−1

only involves some permutations and some additions/subtractions. Since the transformation matrix
(I4⊗A) is orthogonal, the algorithm is numerically stable. The reconstruction procedure then easily
follows by reversing the steps of Algorithm 1a.

5. Sparse image representations in wavelet spaces

At present, a usual approach to find a sparse representation of f0 in a redundant dictionary
is the orthogonal matching pursuit (OMP) (see e.g. [12, 26] and references therein). OMP is an
iterative greedy algorithm that selects at each step the dictionary element best correlated with the
residual part of the signal. Then, a new approximation of the signal is produced by a projection
on the dictionary elements that have already been selected. Unfortunately, because of the large
coherence of the considered dictionary of Haar wavelet functions, the OMP algorithm does not
provide satisfying sparse representations of f0 ∈ V0 in our case.

In order to get a sparse representation of images, we need to reduce the existing (fourfold)
redundancy by exploiting our explicit knowledge about it. The idea is as follows. After decomposing
a given image fj ∈ Vj into fj−1 ∈ Vj−1 and gj−1 ∈ Wj−1 we aim to exploit the redundancy of the
frames generating Vj−1 and Wj−1 and try to find a representation of fj−1 and gj−1 that contains
as many zero coefficients as possible. The procedure will be applied after each decomposition
step. Finally, using a threshold procedure to remove remaining small frame coefficients, we obtain
a suitable sparse approximation of the image, where, due to the frame construction, different
directions of the image are well adapted.

Again, we use the decomposition V0 = V 0
0 + V 1

0 + V 2
0 + V 3

0 , and recall that V0 is spanned
by {Φ0(· − 2k) : k ∈ Z2}, where Φ0 is the function vector of length 64 defined in (4.4), and
V ν

0 = span {Φν
0(·− 2k) : k ∈ Z2} for ν = 0, 1, 2, 3, see Figure 5.

Considering (4.5), we note that the representations of f0 in V0 as well as in V−1 + W−1 are not
uniquely determined. The dependence relations (2.3) in V0 imply with unit vectors ek := (δk,l)

15
l=0

the equations

(e0 + e4)
TΦν

0 − (e14 + e15)
TΦν+1

0 = 0,

(e2 + e3)
TΦν

0 − (e10 + e11)
TΦν+1

0 = 0,

(e9 + e13)
TΦν

0 − (e1 + e5)
TΦν+1

0 = 0,

(e6 + e7)
TΦν

0 − (e8 + e12)
TΦν+1

0 = 0,

(e0 + e4)
TΦν+1

0 − (e14 + e15)
TΦν

0 = 0,

(e2 + e3)
TΦν+1

0 − (e10 + e11)
TΦν

0 = 0,

(e9 + e13)
TΦν+1

0 − (e1 + e5)
TΦν

0 = 0,

(e6 + e7)
TΦν+1

0 − (e8 + e12)
TΦν

0 = 0,
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for ν = 0, 1, and

(e0 + e4)
T (Φ0

0 + Φ1
0) − (e9 + e13)

TΦ2
0 − (e2 + e3)

TΦ3
0 = 0,

(e9 + e13)
TΦ0

0 + (e2 + e3)
TΦ1

0 − (e6 + e7)
T (Φ2

0 + Φ3
0) = 0,

(e2 + e3)
TΦ0

0 + (e9 + e13)
TΦ1

0 − (e0 + e4)
T (Φ2

0 + Φ3
0) = 0,

(e6 + e7)
T (Φ0

0 + Φ1
0) − (e2 + e3)

TΦ2
0 − (e9 + e13)

TΦ3
0 = 0.

These 20 relations directly provide a matrix U ∈ R20×64 containing these dependencies, such that

U ((Φ0
0)

T , (Φ1
0)

T , (Φ2
0)

T , (Φ3
0)

T )T = U Φ0 = 0 on [0, 2)2. (5.1)

Hence we obtain from (4.5) for arbitrary vectors gk ∈ R20, k ∈ J2, a redundant representation of
f0 ∈ V0 of the form

f0 =
∑

k∈J2

DT
0,k Φ0(·− 2k) =

∑

k∈J2

(

DT
0,k + gT

k U
)

Φ0(·− 2k)

=
∑

k∈J2

(

DT
0,k + gT

k U
)

(I4 ⊗ A)Ψ−1(·− 2k).

We aim to represent f0 in V−1 + W−1 with the smallest possible number of nonzero wavelet coeffi-
cients. Observe that because of the local supports of Φ0 resp. Ψ−1, this problem can be considered
separately for each k ∈ J2. Thus, for each k ∈ J2 we have to determine a vector gk ∈ R20 such
that the l0-seminorm

∥

∥

(

DT
0,k + gT

k U
)

(I4 ⊗ A)
∥

∥

0

is minimized, where the l0-seminorm of a vector simply counts the number of its nonzero compo-
nents. This minimization leads to a large amount of vanishing wavelet frame coefficients.

The modified decomposition algorithm has the following form.

Algorithm 1b (Decomposition with redundancy reduction)

1. Input: Initial image in V0 by orthogonal projection of f into V0,

f0 =
∑

k∈J1

(c0
0,k)

T Φ(·− k), c0
0,k = 〈f0, Φ̃(·− k)〉.

2. Reorder the basis functions (resp. corresponding coefficients) by directions (see step 2 of
Algorithm 1a),

f0 =
∑

k∈J2

DT
0,k Φ0(·− 2k).

3. Add redundancies in V0 and apply the transform to V−1 + W−1:

f0 =
∑

k∈J2

(DT
0,k + gT

k U)Φ0(·− 2k) =
∑

k∈J2

(DT
0,k + gT

k U)(I4 ⊗ A)Ψ−1(·− 2k).

4. For each k ∈ J2 compute gk ∈ R20 such that the l0-seminorm
∥

∥(DT
0,k + gT

k U)(I4 ⊗ A)
∥

∥

0
=

∥

∥DT
−1,k + gT

k U(I4 ⊗ A)
∥

∥

0

with DT
−1,k = DT

0,k(I4 ⊗ A) becomes minimal.
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5. For each k ∈ J2 let D̃T
−1,k = DT

−1,k + g̃T
k U(I4 ⊗A) be this minimized coefficient vector, where

g̃k := arg min
gk∈R20

∥

∥DT
−1,k + gT

k U(I4 ⊗ A)
∥

∥

0
.

Compute the sparse representation

f0 =
∑

k∈J2

D̃T
−1,k Ψ−1(·− 2k),

and determine f−1 ∈ V−1 and g−1 ∈ W−1 from this representation.

6. Iterative application: Apply the same procedure to the low pass part f−1, while the high
pass part g−1 is stored.

Let us now focus on the local minimization problem in step 4,

arg min
gk∈R20

{‖D−1,k + (I4 ⊗ A)UT gk‖0} = arg min
gk∈R20

{‖D−1,k + R gk‖0}, (5.2)

that has to be solved for each k ∈ J2, and where D−1,k ∈ R64 as well as the matrix R :=
(I4 ⊗ A)UT ∈ R64×20 are given. Observe that R has full rank 20. A naive approach to the
problem is to consider all possibilities to take 20 linearly independent rows of R to build a matrix
Ck ∈ R20×20 and to solve the system

Ck gk = −(D−1,k)q,

where the vector (D−1,k)q ∈ R20 is a subvector of D−1,k obtained by taking the 20 components of
D−1,k that correspond to the 20 rows of R generating Ck. Then, the vector

D−1,k + R gk = D−1,k − R C−1
k (D−1,k)q

contains at least 20 zeros. All vectors D−1,k + Rgk obtained in this manner need to be compared
with respect to their l0-seminorm. Obviously, such a procedure is inefficient for our purposes.
Unfortunately, the idea of replacing the l0-seminorm by the l1-norm does not work in our case. For
example, for constant parts of the image, i.e. f0 = c on [0, 2)2, the coefficient vectors in the two
representations

f0 = c (1T
16, 0

T
16, 0

T
16, 0

T
16)Φ0 = c (wT , 0T

16, 0
T
16, 0

T
16)Ψ−1

and
f0 =

c

4
(1T

16, 1
T
16, 1

T
16, 1

T
16)Φ0 =

c

4
(wT , wT , wT , wT )Ψ−1

of f0 have the same l1-norm while their l0-seminorm strongly differs. Here, 116 := (1, . . . , 1)T ∈ R16,
016 denotes the zero vector of length 16, and

wT := (2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0) ∈ R
16. (5.3)

We are interested in a simple algorithm to find a nearly optimal local representation of the
image in the sense of (5.2), that also uses our explicit knowledge about the special properties of the
redundant function system and especially on the dependence relations of the system collected in
the matrix U . Therefore, we propose a new method, that can be proved to be optimal for piecewise
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constant images. Further, we will show that the sparse representation found by our algorithm does
not depend on the representation of the signal to start with.

The algorithm is based on the following idea. We consider the local orthogonal projections of
the image f0 into the subspaces V ν

−1 ⊕ W ν
−1, ν = 0, 1, 2, 3, that represent four different directions,

see Figure 5. For a fixed k = (k1, k2)T ∈ J2, we recall that for each ν ∈ {0, 1, 2, 3}, the generating
functions in Ψν

−1(· − 2k) form an orthogonal basis of V ν
−1 ⊕ W ν

−1 (restricted to Qk := [2k1, 2k1 +
2) × [2k2, 2k2 + 2)).

We consider the 64 coefficients obtained altogether in the four projections, and select the small-
est coefficients first. Those functions in our frame being connected with the smallest coefficients
are not so “important” for the representation of f and will be pushed to be zero by using a suitable
vector gk.

The complete algorithm is described as follows. It needs to be applied for all k ∈ J2.

Algorithm 2 (Sparse local representation in V−1 + W−1)
Input: D0,k ∈ R64 as in Algorithm 1b, such that f0|Qk

= DT
0,kΦ0(·−2k), and R := (I4⊗A)UT ∈

R64×20.

1. Compute the local orthogonal projections of f0|Qk
= DT

0,kΦ0(· − 2k) into the subspaces
V ν
−1 ⊕ W ν

−1 (ν = 0, 1, 2, 3).
Start with the ansatz f ν

−1 := (hν
k)TΨν

−1(· − 2k) in Qk for the local orthogonal projection of
f0 into V ν

−1 ⊕ W ν
−1. The orthogonality of basis functions in Ψν

−1 implies

hν
k := 4〈Ψν

−1(·− 2k), f0〉 ∈ R
16.

Introducing the vector hk := ((h0
k)

T , (h1
k)T , (h2

k)T , (h3
k)T )T ∈ R64, we obtain

hk = 4〈Ψ−1(·− 2k), f0〉 = 4〈(I4 ⊗ A)Φ0(·− 2k),DT
0,kΦ0(·− 2k)〉

= 4(I4 ⊗ A)〈Φ0,Φ0〉D0,k.

Let again P1 be the permutation matrix for reordering of generating functions in V0,

(ΦT , Φ
(

·−
(1

0

))T
, Φ

(

·−
(0

1

))T
, Φ

(

·−
(1

1

))T
)P1 = ΦT

0 ,

then with the Gram matrix G of Φ given in (2.4) we obtain 〈Φ0,Φ0〉 = P T
1 (I4 ⊗G)P1. Thus

hk = 4(I4 ⊗ A)P T
1 (I4 ⊗ G)P1D0,k.

The vector hk now contains all local coefficients of the four orthogonal projections of f0 into
V ν
−1 ⊕ W ν

−1 (ν = 0, 1, 2, 3).
2. Arrange the components of hk ∈ R64 from lowest absolute value to highest value and compute

the corresponding permutation (p1, . . . , p64) of indices (1, . . . , 64). If some values in hk have
the same absolute value then take that with the smallest index first.

3. Compute an invertible matrix Ck ∈ R20×20 by choosing 20 rows of R as follows.
(a) The first row of Ck is the p1-th row of R.
(b) The second row of Ck is the p2-th row of R, if it is linearly independent from the p1-th

row of R. Otherwise, consider the p3-th row of R etc. In general, proceed as follows for
i = 1, 2, . . .: if the pi-th row of R is linearly independent from the rows being already
chosen in Ck then take this row as a further row of Ck. Otherwise, go further to the
pi+1-th one.
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(c) Stop this procedure if 20 linear independent rows of R are found and Ck is completely
determined. Since rank(R) = 20 the procedure comes to an end.

4. Let q = (q1, . . . , q20) be the vector of indices of rows from R taken in Ck. Solve the linear
system

Ck gk = −(D−1,k)q,

where (D−1,k)q contains the components with indices q1, . . . , q20 of D−1,k = (I4 ⊗ A)D0,k in
this order. With the resulting vector gk we determine the desired sparse coefficient vector
D̃T

−1,k = DT
−1,k + gT

k RT and find the new sparse local representation D̃T
−1,kΨ−1 of f in V−1 +

W−1.

Step 4 of Algorithm 2 implies that in the new representation of f0 ∈ V0 given by D̃T
−1,k at least

20 wavelet coefficients vanish, namely those corresponding to the indices (q1, . . . , q20). Finally we
show two important properties of the proposed algorithm.

Lemma 5.1. The sparse local representation of f0 ∈ V0 in V−1 + W−1 obtained by Algorithm 2 is
uniquely determined, i.e., it does not depend on the initial redundant representation of f0 in V0.

Proof. Since the components of Ψν
−1 form a basis of V ν

−1 ⊕ W ν
−1 for each ν = 0, 1, 2, 3, we observe

that the local projections of f0 into V ν
−1 ⊕ W ν

−1 are uniquely determined and do not depend on
the initial representation of f0 in V0. Hence the matrix Ck computed in step 3 of Algorithm 2 is
uniquely determined, too. Taking the parameter vector gk = −C−1

k (D−1,k)q as given in step 4 of
Algorithm 2, the obtained new local representation of f0 in V−1 + W−1,

f0 =
[

DT
−1,k − (D−1,k)

T
q (C−1

k )T RT
]

Ψ−1,

contains by construction 20 zero coefficients corresponding to the indices (q1, . . . , q20), i.e., the
components ψq1

, . . . ,ψq20
of the function vector Ψ−1 = (ψµ)64µ=1 are not longer involved in the

representation of f0. Let f0 = D̂T
−1,kΨ−1 be a second representation of f0 in V−1 +W−1, then there

exists a vector b ∈ R20 with D̂T
−1,k = DT

−1,k + bT RT . Algorithm 2 provides now the representation

f0 =
[

D̂T
−1,k − (D̂−1,k)

T
q (C−1

k )T RT
]

Ψ−1

=
[

DT
−1,k + bT RT − [(D−1,k)

T
q + bT RT

q ](C−1
k )T RT

]

Ψ−1

=
[

DT
−1,k − (D−1,k)

T
q (C−1

k )T RT
]

Ψ−1,

since bT RT
q (C−1

k )T RT = bT CT
k (C−1

k )T RT = bT RT by construction. Here bT RT
q ∈ R20 denotes the

subvector of bT RT ∈ R64 with components indexed by (q1, . . . , q20).

We can show that the procedure in Algorithm 2 provides optimal results if the function f is
locally constant.

Lemma 5.2. Let f be constant on the square Qk = [2k1, 2k1 + 2) × [2k2, 2k2 + 2) for some
k = (k1, k2)T ∈ J2. Then Algorithm 2 provides an optimal representation of f in V−1 + W−1.

Proof. If f ≡ c on Qk with some constant c ∈ R, it can be represented in V0 by

f = c · (1T
16, 0

T
16, 0

T
16, 0

T
16)Φ0.
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According to Lemma 5.1 we can reduce our considerations to this representation of f . We apply
Algorithm 2 and show that the resulting coefficient vector is a sparsest possible one. Computing
the orthogonal projections of f into V ν

−1⊕W ν
−1, ν = 0, 1, 2, 3, as in step 1 of Algorithm 2, the vector

hk = c (wT , wT , wT , wT ) with wT ∈ R16 from (5.3) is obtained. Applying step 2 of Algorithm 2,
the vector hk yields the permutation

p = (2, 3, 4, 6, 7, 8, 10, 11, 12, . . . , 62, 63, 64, 1, 5, 9, . . . , 57, 61).

Without loss of generality let the rows of U be determined by the dependence relations given in
Subsection 5.1 in the order as mentioned there. By a simple computation according to step 3
of Algorithm 2 it can be observed that the 48 rows with indices (2, 3, 4, . . . , 62, 63, 64) of R =
(I4 ⊗ A)UT contain exactly 15 linearly independent rows that will be used to determine the first
15 rows of Ck. The last 5 rows of Ck are determined by the indices (1, 9, 17, 33, 41) of R.

Now, we a apply the next step of Algorithm 2, step 4, and we obtain with

D−1,k = c (I4 ⊗ A)(1T
16, 0

T
16, 0

T
16, 0

T
16) = c (wT , 0T

16, 0
T
16, 0

T
16)

the vector (D−1,k)q = 2c(e16 + e17), since only the indices q16 = 1 and q17 = 9 determining the
16th and the 17th row of Ck correspond to nonzero values in D−1,k. Here eµ := (δµ,ν)20ν=1 denote
the unit vectors of length 20. Using

wT
1 := (2, 0, 0, 0, 2, 0, 0, 0, 0T

8 ) ∈ R
16, wT

2 := wT − wT
1 ,

the 16th and 17th row of the matrix (R C−1
k )T have the form 1

2(wT
1 ,−wT

2 , 0T
16, 0

T
16) and

1
2(wT

2 , wT
2 , 0T

16,−wT ) and we obtain

f =
[

DT
−1,k − (D−1,k)

T
q (C−1

k )T RT
]

Ψ−1

= c ·
[

(wT , 0T
16, 0

T
16, 0

T
16) − (wT

1 ,−wT
2 , 0T

16, 0
T
16) − (wT

2 , wT
2 , 0T

16,−wT )
]

Ψ−1

= c · (0T
16, 0

T
16, 0

T
16, w

T )Ψ−1.

This is an optimal sparse representation of f .

6. Numerical results

In this section, we use the described algorithms for image denoising and image approximation.
Both applications are based on the efficient multiscale decomposition using the proposed directional
Haar wavelet filter bank and a suitable wavelet shrinkage.

6.1. Image denoising
We consider a Gaussian noise with standard deviation σ = 20 that is added to the 256 × 256-

synthetic image (Figure 6(a)) and to the pepper image of the same size (Figure 7(a)). We apply
the directional Haar wavelet filter bank algorithm (Algorithm 1a) with a global hard-thresholding
after a complete decomposition of the image. Choosing the shrinkage parameter λ = σ

√

log(N)/2,
where N denotes the number of pixels we obtain good denoising results (see Figure 6(b)) because
the directional edges of the geometrical figures are well detected. Figures 6(c),(d) show that our
method outperforms curvelets [5] as well as contourlets [11] for piecewise constant images. Even for
natural images the denoising result is acceptable albeit not excellent, see Figure 7. However, it is of
the same PSNR scale as with curvelets and it outperforms contourlets again. For the computation
of the curvelet and the contourlet transform we have used the toolboxes from www.curvelet.org

and www.ifp.uiuc.edu/~minhdo/software/.
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Figure 6: Piecewise constant image denoising. (a) noisy image, PSNR 22.08, (b) denoised image by our method,
PSNR 33.12, (c) denoised image by curvelets, PSNR 32.18, (d) denoised image by contourlets, PSNR 29.91.

6.2. Image approximation

While for image denoising redundancy information is helpful, for image approximation it is
not. Therefore, in order to get a sparse image representation we reduce the redundancies by
applying Algorithm 1b. By doing this, the redundancy decreases from 4 to 2.74, i.e., for the
pepper image of size 256× 256 we get 179, 780 nonzero coefficients after decomposition. The same
scale of redundancy occurs with the discrete curvelet transform. There we get 185,344 curvelet
coefficients, what corresponds with a redundancy of 2.83. In comparison, the contourlet transform
achieves a remarkable low redundancy of 1.3, i.e., the decomposition leads to 86, 016 coefficients.
Now, in Figures 8 and 9 we keep the 1311 (resp. 6554) largest coefficients and reconstruct the
images.
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Figure 7: ’Pepper’ image denoising. (a) noisy image, PSNR 22.08, (b) denoised image by our method, PSNR 28.00,
(c) denoised image by curvelets, PSNR 28.14, (d) denoised image by contourlets, PSNR 26.16.

7. Conclusions

Certain drawbacks of the existing non-adaptive directional wavelet constructions, like curvelets,
are the global support of curvelet elements in time domain and the missing MRA structure leading
to rather complex algorithms for the digital curvelet transform. Therefore we desire to construct
wavelet frame functions with small support in time domain, simple structure, based on a multires-
olution analysis and leading to efficient filter bank algorithms, high directionality, low redundancy,
and suitable smoothness.

The proposed directional Haar wavelet frames on triangles can be seen as a first step in this
direction. However, our approach has some limitations. First, one would like to have continuous (or
smooth) frame functions instead of piecewise constants. Unfortunately, the usage of box splines on
a multi-directional mesh seems not to be advantageous due to their fast increasing support. This
results in large corresponding filters and filter bank algorithms with high complexity. Therefore,
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Figure 8: Piecewise constant image approximation with 2 % coefficients. (a) original image, (b) approximation by
our method, PSNR 31.82, (c) approximation by curvelets, PSNR 26.77, (d) approximation by contourlets, PSNR
34.13.

we are currently investigating a multiwavelet approach using piecewise linear wavelet functions
with small support on directional triangles.

One may also ask for an extension of the proposed Haar wavelet filter bank to more directions
using thinner support triangles. But a further splitting of the considered triangles leads to the
problem that vertices of these triangles may not lie in the set 2−jZ2. One way out of this limitation
of directionality may be the choice of different dilation matrices.

An important question is, how to relate high directionality with small redundancy of the wavelet
dictionary. This problem may be only solvable by a locally adaptive choice of directional frame
functions. In particular, for the proposed Haar wavelet dictionary one may think about a local
optimization procedure in order to activate only frame functions that correspond to certain locally
important directions. This topic is also subject of further research.
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Figure 9: ’Pepper’ image approximation with 10 % coefficients. (a) original image, (b) approximation by our method,
PSNR 27.80, (c) approximation by curvelets, PSNR 25.51, (d) approximation by contourlets, PSNR 32.12.
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