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Abstract

Abstract. In this paper, we show that the commonly used frame shrinkage
operator, that maps a given vector x ∈ RN onto the vector T†SγTx, is already a
proximity operator, which can therefore be directly used in corresponding splitting
algorithms. In our setting, T ∈ RL×N with L ≥ N has full rank N , T† denotes
the Moore-Penrose inverse of T, and Sγ is the usual soft shrinkage operator with
threshold parameter γ > 0. Our result generalizes the known assertion that T∗SγT
is the proximity operator of ‖T · ‖1 if T is an orthogonal (square) matrix. It is well-
known that for rectangular frame matrices T with L > N , the proximity operator
of ‖T · ‖1 is no longer of the above form and can solely be computed iteratively.
Showing that the frame soft shrinkage operator is a proximity operator as well, we
motivate its application as a replacement of the exact proximity operator of ‖T · ‖1.
We further give an explanation, why the usage of the frame soft shrinkage operator
still provides good results in various applications. We also provide some properties of
the subdifferential of the convex functional Φ which leads to the proximity operator
T†SγT.

Key words: proximity operator; frame soft shrinkage; maximally cyclically mono-
tone subdifferential; Brouwer’s fixed point theorem; splitting algorithms for inverse
problems.

1 Introduction

Many reconstruction problems in signal and image processing are ill-posed and com-
monly solved by means of variational methods. We restrict our considerations to the
finite-dimensional case where the ill-posed operator equation Kx = f is solved using
a regularization approach,

x̂ = arg min
x∈RN

F (x) = arg min
x∈RN

(
1

2
‖Kx− f‖22 + Φ(x)

)
. (1.1)

Here, K : RN → RM is a known linear or non-linear operator and f ∈ RM represents
the measured (noisy) data. For regularization, a convex, proper and lower semi-
continuous functional Φ: RN → R ∪ {∞} is employed that forces desired properties
of x as regularity or sparsity.
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In many applications, signals tend to be sparse with regard to a suitable encod-
ing, and functionals of the form Φ(x) = γ ‖x‖1 or Φ(x) = γ ‖T x‖1 (with ‖x‖1 :=
(
∑N

j=1 |xj |) and γ > 0) with a linear transform T ∈ RL×N are frequently used.
While orthogonal transforms T have proven to be ideal with regard to numeric

stability, they often fail to capture the underlying characteristics of many signal types.
Therefore, in numerous applications one uses redundant representations that suit the
purpose at hand, as e.g. redundant wavelet transforms, curvelets or shearlets for
capturing non-isotropic features in 2D images, cf. [3, 6, 11]. In this case we have
rectangular transform matrices T with L > N .

Within the last years, many computational algorithms have been proposed to solve
the minimization problem (1.1), which are for example based on operator splitting
methods, as forward-backward splitting (FBS), Douglas-Rachford splitting (DRS), or
the split Bregman algorithm. These approaches make use of the so-called proximal
mapping or the proximity operator of Φ, which itself is defined as the solver of a
minimization problem,

proxΦ(x) := arg min
y∈RN

{
1
2‖y − x‖2 + Φ(y)

}
.

Here ‖ · ‖ := 〈·, ·〉1/2 denotes the norm corresponding to a fixed scalar product in RN .
If we take the standard scalar product and Φ(x) = γ ‖x‖1, then the corresponding
proximity operator turns out to be the so-called soft shrinkage operator,

proxγ‖·‖1(x) = Sγ(x) with [Sγ(x)]j =


xj − γ, xj ≥ γ,
xj + γ, xj ≤ −γ,
0, |xj | < γ.

(1.2)

For Φ(x) = γ ‖Tx‖1 with T being an orthonormal matrix, it can be shown that the
corresponding proximity operator is

proxγ‖T·‖1(x) = T∗ Sγ(T x) = T−1 Sγ(T x),

see Proposition 23.29 in [1]. This, however is no longer true if T is not orthogonal
or if T not even a basis, i.e., if T ∈ RL×N for L > N , see e.g. [5]. In this case,
the proximity operator can no longer be represented in a closed form, and one has to
make use of an iteration procedure to compute it.

Yet the question remains what would happen if we replaced the exact proximity
operator by the frame soft shrinkage operator. For that investigation denote by T†

the Moore Penrose inverse of T and replace proxγ‖T·‖1 by

T† Sγ(T·)

in the iteration procedure. Will the corresponding operator splitting algorithms as
FBS and DGS still converge? And, if yes, which regularization functional Φ(x) will
we get as a result as compared to ‖Tx‖1 in this case?

A related question has been posed also by Elad in [5] from a different viewpoint.
His main argument to explain the good performance of methods that just employ
the frame soft shrinkage operator is based on the connection to the solution of basis
pursuit denoising (BPDN) problems [2]. He showed that the application of the frame
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soft shrinkage operator can be interpreted as the first iteration step of an iterative
algorithm to solve the BPDN problem.

We need to keep in mind that we want to enforce sparsity of Tx using the func-
tional Φ. However, the used `1-norm only acts as a proxy here – a compromise to
the convexity for Φ – which is needed in order to ensure convergence of the iteration
algorithms. Instead, we would rather like to have actual sparsity of Tx, i.e., a small
number of non-zero components in Tx. Thus, one might wonder whether T† Sγ(T·)
is doing the job as well as the exact proximity operator of ‖T x‖1.

We would like to present another heuristic argument towards the use of the frame
soft shrinkage operator. In practice, e.g. for solving phase retrieval problems, the
inverse problem is often formulated as a feasibility problem. In our case we can define
the measurement set

M := {x : Kx = f}
and a constraints set, as for example

C := {x : ‖x‖2 ≤ ‖K†f‖2, Tx is M -sparse}.

We are looking for some
x ∈M ∩ C. (1.3)

It is quite likely that M ∩ C = ∅, particularly for noisy data f . Then the problem is
called infeasible. In this case we aim at finding x ∈ C with shortest distance to M ,
or, more generally, x such that the sum of distances to C and M is the shortest. The
most simple iteration algorithms to tackle the feasibility problem (1.3) are alternat-
ing projection algorithms. We start with an arbitrary x0, apply the projection to M ,
then the projection to C, and then iterate. Another, more sophisticated algorithm is
the Relaxed Averaged Alternating Reflections (RAAR) algorithm in [10]. This algo-
rithm can be seen as a combination of alternating projections and Douglas-Rachford
iterations and also provides reasonable results in the infeasible case M ∩ C = ∅.

For linear K the projection onto M is well-defined, since M is an affine subspace
of RN . The set C is bounded but usually no longer convex, and the projection cannot
be obtained easily. For given x ∈ C we could apply the frame shrinkage operator with
a suitable γ such that SγT x is M -sparse.

However, the frame soft shrinkage operator is not the orthogonal projector onto C,
it is not even idempotent. But it obviously provides a vector which is somewhat close
to C. In [9, 8], this approach has been used in connection with the RAAR algorithm
for phase retrieval problems with very good numerical results.

This paper is structured as follows. In Section 2, we shortly recall the idea of
operator splitting methods to solve variational models of the form (1.1). In particu-
lar, we recall that these methods involve the proximity operator of the regularization
functional Φ. In Section 3, we introduce a set-valued mapping H which is based on
the frame shrinkage operator T† Sγ(T·). We show that H is well-defined. Further,
we derive some structural properties of this mapping. In particular, we prove that H
is usually not equal to the subdifferential of ‖T · ‖1 but possesses similar properties.
In Section 4, we show that the set-valued mapping H is maximally cyclically mono-
tone and therefore the subdifferential of a proper, lower semi-continuous and convex
functional Φ. The key idea is to apply a new scalar product in RN which is aligned
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with the linear operator T. We will be able to conclude that the frame soft shrink-
age operator is indeed the proximity operator of the functional Φ with H = ∂Φ and
particularly is non-expansive (with respect to the aligned scalar product. Therefore,
it can replace the proximity operator of ‖T · ‖1 in the operator splitting algorithms
in Section 2.

Throughout the paper, we will use the notation 〈·, ·〉2 and ‖ · ‖2 for the standard
scalar product in RN and the corresponding norm, i.e. 〈x,y〉2 := xTy. The general
notion 〈·, ·〉 denotes a fixed scalar product in RN that can be different from the
standard scalar product, and ‖ · ‖ := 〈·, ·〉1/2 is the corresponding norm.

2 Operator splitting methods and the proximity opera-
tor

Let us start with summarizing the idea of operator splitting algorithms to solve min-
imization problems of the form (1.1). In particular, we will focus on the forward-
backward splitting and the Douglas-Rachford algorithm.

For simplicity, we assume that K : RM → RN is a linear operator. Further we
denote the set of proper, lower semi-continuous and convex functionals Φ: RN → R
by Γ0.

To solve (1.1), we observe that the first term ‖Kx − f‖22 of the functional F is
differentiable. This may no longer hold for the convex functional Φ. Therefore we
apply the subdifferential ∂Φ, which is here defined as the set-valued operator

∂Φ(x) := {y ∈ RN : 〈y, x̃− x〉 ≤ Φ(x̃)− Φ(x), ∀ x̃ ∈ RN}, (2.1)

where 〈x, y〉 denotes a fixed scalar product in RN . Note that the subdifferential
directly generalizes the usual notion of the derivative, and the solution x̂ of (1.1)
necessarily satisfies

0 ∈ ∂
(

1

2
‖Kx− f‖22 + Φ(x)

)
= K∗(Kx− f) + ∂Φ(x).

Multiplication with a constant λ > 0 and addition of x̂ yields the equivalent
statements

x̂− λK∗(Kx̂− f) ∈ x̂ + λ∂Φ(x̂)

(IN − λK∗K)x̂ + λK∗f ∈ (IN + λ∂Φ)−1(x̂),

with the N ×N identity matrix IN . Thus formally

x̂ = (IN + λ∂Φ)−1 [(IN − λK∗K)x̂ + λK∗f ] . (2.2)

The operator (IN + λ∂Φ)−1 is also called the resolvent of λ∂Φ, and we have the
following, see e.g. [4].

Lemma 2.1 The proximity operator proxλΦ of a functional λΦ ∈ Γ0,

proxλΦ(x) := arg min
y∈RN

{
1
2‖y − x‖2 + λΦ(y)

}
exists, is uniquely defined, single-valued, and we have

proxλΦ(x) = (IN + λ∂Φ)−1(x).
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Indeed, we observe that 1
2‖y − x‖2 + λΦ(y) is strictly convex and

y = proxλΦ(x) ⇐⇒ 0 ∈ (y − x) + λ∂Φ(y) = −x + (IN + λ∂Φ)(y)

⇐⇒ y = (IN + λ∂Φ)−1(x).

In particular,
x− y ∈ λ∂Φ(y) ⇐⇒ y = proxλΦ(x),

or equivalently,
t ∈ λ∂Φ(y) ⇐⇒ y = proxλΦ(y + t), (2.3)

see Proposition 16.34 in [1]. Now, (2.2) provides already an iterative algorithm, the
so-called forward-backward splitting iteration, see e.g. [7, 1, 14]:

Algorithm 2.2 (Forward-backward splitting)
For an arbitrary starting vector x(0) ∈ RN , iterate

1. y(j) := (IN − λK∗K) x(j) + λK∗f ,

2. x(j+1) := proxλΦ(y(j)).

This iteration converges for λ ∈ (0, 2/‖K∗‖2), see e.g. [14], since 1
‖K∗‖2 (K∗Kx +

K∗f) is firmly nonexpansive, i.e., we have

〈x− y,K∗K(x− y)〉 = ‖K(x− y)‖2 ≥ 1

‖K∗‖2 ‖K
∗K(x− y)‖2.

Let us consider a second operator splitting method. Observe that the fixed point
relation (2.2) can be rewritten as

x̂ + λK∗Kx̂ ∈ proxλΦ [(IN − λK∗K)x̂ + λK∗f ] + λK∗Kx̂.

With t̂ := (IN + λK∗K)x̂ it follows that

t̂ ∈ proxλΦ(2x̂− t̂ + λK∗f) + t̂− x̂.

This leads to the Douglas-Rachford iteration, which converges in a large parameter
range, see [1, 14].

Algorithm 2.3 (Douglas-Rachford splitting)
For any starting vectors x(0), t(0) ∈ RN , iterate

1. t(j+1) := proxλΦ(2x(j) − t(j) + λK∗f) + t(j) − x(j),

2. x(j+1) := (IN + λK∗K)−1t(j+1).

For the two considered algorithms we need to evaluate the proximity operator of
the regularization functional λΦ.
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3 A closer look at the frame soft shrinkage operator

Our goal is to show that for any frame matrix T ∈ RL×N with L ≥ N and full rank
N the operator

T† SγT,

with Sγ the soft threshold operator in (1.2), is the proximity operator of a convex,
proper, lower semi-continuous functional, i.e., of some Φ ∈ Γ0. In a first step we
define the set-valued mapping H : RN ⇒ RN by

y ∈ H(x) :⇐⇒ x = T†SγT (x + y). (3.1)

Then, according to (2.3) we have to show that H is the subdifferential of a func-
tional Φ ∈ Γ0.

In this section, we will show that H in (3.1) is well-defined, and we will study
some properties of H. In Section 4, we will finally show that indeed H = ∂Φ for some
Φ ∈ Γ0.

In order to get a first idea of what happens here, we start off with a toy example.

Lemma 3.1 For T =

(
1
c

)
with c ≥ 1 and γ > 0 we find for H in (3.1) for x ≥ 0

H(x) =


γ[−1

c ,
1
c ] x = 0,

γ
c + x

c2
x ∈ (0, γ(c−1)c

c2+1
],

γ
(

1+c
1+c2

)
x > γ(c−1)c

c2+1
.

For x < 0 we have H(x) = −H(−x). Then H is the subdifferential of the even
function

Φ(x) =


γx
c + x2

2c2
x ∈ [0, γ(c−1)c

c2+1
],

γ
(

1+c
1+c2

)
x− γ2(c−1)2

2(c2+1)2
x > γ(c−1)c

c2+1
,

Φ(−x) x < 0.

Proof: For x = 0, it follows from (3.1) with T† = 1
1+c2

(1, c) that

y ∈ H(0) ⇐⇒ 0 =
1

1 + c2
(1, c)Sγ

(
1
c

)
y.

This is only true if Sγ (c y) = 0 i.e., y ∈ [−γ
c ,

γ
c ].

For x > 0 we find

x =
1

1 + c2
(1, c)Sγ

(
1
c

)
(y + x).

Since x > 0, we need that SγT (x+ y) > 0. Thus c(x+ y) > γ as well as x+ y > 0.
We consider two cases.

1. If x+ y ≤ γ and c(x+ y) > γ, then

x = T†SγT(x+ y) =
1

1 + c2
(1, c)

(
0

c(x+ y)− γ

)
implies

y =
x

c2
+
γ

c
.
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Further, the condition x+ y = x+ ( x
c2

+ γ
c ) ≤ γ yields x ≤ c(c−1)γ

1+c2
.

2. Let now x+ y > γ and c(x+ y) > γ, then

x = T†SγT(x+ y) =
1

1 + c2
(1, c)

(
x+ y − γ
c(x+ y)− γ

)
= x+ y − γ(c+ 1)

c2 + 1
.

Thus, we find y = γ(c+1)
c2+1

, and x+y > γ is true for x > γc(c−1)
c2+1

. Similar considerations
for x < 0 yield H(−x) = −H(x).

Integration gives Φ(x) as asserted.

Example 3.2 If we employ Lemma 3.1 for c = 2 and γ = 5
3 , we find

H(x) =


[−5

6 ,
5
6 ] x = 0,

5
6 + x

4 x ∈ (0, 2
3 ],

1 x > 2
3 ,

−H(−x) x < 0,

and Φ(x) =


5x
6 + x2

8 x ∈ [0, 2
3 ]

x− 1
18 x > 2

3

Φ(−x) x < 0.

Thus Φ(x) approximates |x|, see Figure 1.
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Figure 1: Visualization of H(x) and Φ(x) in Example 3.2.

Now we inspect the function H in (3.1) and show first that for any fixed γ > 0
and each x ∈ RN the set H(x) is not empty.

By (3.1), we have y ∈ H(x) if x = T†SγT(x+y). With the substitution t = x+y,
we get the equivalent fixed point representation

t− x ∈ H(x) ⇐⇒ t = x + (IN −T†SγT) t.

Thus, if the function fx,T : RN −→ RN with

fx,T(t) := x + (IN −T†SγT) t (3.2)

possesses a fixed point t, then y = t− x is an element of H(x).
In order to show the existence of fixed points for fx,T for each x ∈ RN , we recall that
the matrix T ∈ RL×N possesses a singular value decomposition

T = P D Q∗, (3.3)

where P ∈ RL×N has N orthogonal columns, i.e., P∗P = IN , D = diag(d1, . . . , dN ) ∈
RN×N contains the positive singular values of T, and Q ∈ RN×N is orthogonal. In
particular, we have

T† = Q D−1 P∗.
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Using the singular value decomposition of T we discover that the function fDQ∗x,P,
being defined analogously to fx,T – with DQ∗x instead of x and with the matrix P
instead of T – satisfies

fDQ∗x,P(t) = DQ∗x + (IN −P∗SγP)t

= DQ∗x + DQ∗(QD−1)(IN −P∗SγP)DQ∗(QD−1t)

= DQ∗x + DQ∗(IN −T†SγT)(QD−1t)

= DQ∗(x + (IN −T†SγT)(QD−1t))

= DQ∗ fx,T(QD−1t).

Reversely,
fx,T(t) = QD−1fDQ∗x,P(DQ∗t). (3.4)

Theorem 3.3 Let T ∈ RL×N with L ≥ N have full rank N and let γ > 0. Then, for
each x ∈ RN , we have H(x) 6= ∅. Further, the image of H is bounded, i.e., for each
x ∈ RN we have H(x) ⊂ {y ∈ RN : ‖y‖∞ ≤ γ ‖T†‖∞}.

Proof: To prove that H(x) 6= ∅, we show that for each x ∈ RN the function fx,T
possesses at least one fixed point.

1. First, we consider fx,P(t) = x + (IN −P∗SγP)t, where the matrix P ∈ RL×N
satisfies P∗P = IN , i.e., P† = P∗. We define the closed ball

B(x, γ‖P∗‖∞) := {t ∈ RN : ‖x− t‖∞ ≤ γ‖P∗‖∞},

where ‖x‖∞ := max
k=1,...,N

|xk| for x = (xk)
N
k=1 ∈ RN . Then fx,P(t) ∈ B(x, ‖P∗‖∞) for

each t ∈ RN , since we have

‖x− fx,P(t)‖∞ = ‖(IN −P∗SγP)t‖∞ = ‖P∗(IL − Sγ)Pt‖∞
≤ ‖P∗‖∞ ‖(IL − Sγ)Pt‖∞ ≤ ‖P∗‖∞ sup

s∈RL
‖(IL − Sγ)s‖∞ ≤ γ‖P∗‖∞ .

Since Sγ is continuous, also fx,P is continuous, and it follows by Brouwer’s fixed point
theorem [13] within B(x, γ‖P∗‖∞).

Recall that T ∈ RL×N with rank N can be written as T = PDQ∗ as given in
(3.3). Since P satisfies P∗P = IN , we already know that fDQ∗x,P possesses a fixed
point x̄, i.e., fDQ∗x,P(x̄) = x̄. Now, (3.4) implies

fx,T(QD−1x̄) = QD−1fDQ∗x,P(DQ∗(QD−1x̄)) = QD−1x̄,

i.e., fx,T possesses at least the fixed point QD−1x̄.

2. Moreover, using T†T = IN , we obtain for each fixed point t = fx,T(t),

‖x− t‖∞ = ‖x− fx,T(t)‖∞ = ‖(IN −T†SγT)t‖∞
= ‖T†(IL − Sγ)Tt‖∞ ≤ ‖T†‖∞ ‖(IL − Sγ)Tt‖∞ ≤ ‖T†‖∞ γ.

Since t− x ∈ H(x), the boundedness of the image of H follows.

Thus, we conclude that the mapping H : RN ⇒ RN in (3.1) is well defined. Next
we show that H(0) is indeed not single-valued.
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Theorem 3.4 Let T ∈ RL×N with L ≥ N with full rank N . Further let γ > 0
and H as in (3.1). Then y ∈ H(0) if and only if ‖T y‖∞ ≤ γ, where ‖T y‖∞ :=

max
j∈{1,...,L}

|[Ty]j |.

Proof: We recall that T†T = (T∗T)−1T∗T = IN as T has full rank N .
First, let ‖T y‖∞ ≤ γ. Then the definition of Sγ in (1.2) implies SγT y = 0 and
hence also T†SγT (y + 0) = 0, that is, y ∈ H(0).

Second, let y ∈ H(0), i.e.,
T†SγT y = 0. (3.5)

We show that then ‖T y‖∞ ≤ γ. We consider the components [T y]j , j = 1, . . . , L,
and define three index sets I1, I2, I3 that form a partition of {1, . . . , L},

I1 := {1 ≤ j ≤ L : (T y)j > γ},
I2 := {1 ≤ j ≤ L : (T y)j < −γ},
I3 := {1 ≤ j ≤ L : (T y)j ∈ [−γ, γ]}.

Suppose that ‖Ty‖∞ > γ, which means that I1 ∪ I2 6= ∅. Then

SγT y =
∑
j∈I1

([T y]j − γ) ej +
∑
j∈I2

([T y]j + γ) ej , (3.6)

where ej denotes the j-th unit vector in RL. Now we combine (3.6) with (3.5) to get

0 = T†SγT y =
∑
j∈I1

([T y]j − γ) T†ej +
∑
j∈I2

([T y]j + γ) T†ej

=
∑
j∈I1

([T y]j − γ) ṽj +
∑
j∈I2

([T y]j + γ) ṽj , (3.7)

where ṽj := T† ej . In other words, the set {ṽj : j ∈ I1 ∪ I2} is linearly dependent. At
the same time, none of these vectors ṽj vanishes because ṽj = 0 for j ∈ I1 ∪ I2 leads
to the following contradiction,

0 = |〈ṽj , (T∗T) y〉| =
∣∣∣〈T†ej , (T∗T) y〉

∣∣∣ =
∣∣∣〈(T∗T) T†ej , y〉

∣∣∣ = |〈T∗ej ,y〉|
= |[Ty]j | > γ,

where 〈·, ·〉 denotes here the standard scalar product in RN and RL, respectively.
Without loss of generality assume that I1 6= ∅ and choose j1 ∈ I1. Then [Ty]j1 > γ
and (3.7) implies

ṽj1 =
∑
j∈I1
j 6=j1

γ − [Ty]j
[Ty]j1 − γ

ṽj +
∑
j∈I2

−γ − [Ty]j
[Ty]j1 − γ

ṽj . (3.8)

A closer look at the coefficients shows that

γ − [Ty]j
[Ty]j1 − γ

< 0 for j ∈ I1 \ {j1} and
−γ − [Ty]j
[Ty]j1 − γ

> 0 for j ∈ I2.
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Hence, we find with T∗Tṽj = T∗ej ,

[Ty]j1 = 〈Ty, ej1〉 = 〈y, (T∗T)(T∗T)−1T∗ej1〉 = 〈y, (T∗T) ṽj1〉

=

〈
y, (T∗T)

(∑
j∈I1
j 6=j1

γ − [Ty]j
[Ty]j1 − γ

ṽj +
∑
j∈I2

−γ − [Ty]j
[Ty]j1 − γ

ṽj

)〉

=
∑
j∈I1
j 6=j1

γ − [Ty]j
[Ty]j1 − γ

〈y, (T∗T) ṽj〉 +
∑
j∈I2

−γ − [Ty]j
[Ty]j1 − γ

〈y, (T∗T) ṽj〉

=
∑
j∈I1
j 6=j1

γ − [Ty]j
[Ty]j1 − γ︸ ︷︷ ︸

<0

〈T y, ej〉︸ ︷︷ ︸
>γ

+
∑
j∈I2

−γ − [Ty]j
[Ty]j1 − γ︸ ︷︷ ︸

>0

〈T y, ej〉︸ ︷︷ ︸
<−γ

< 0,

which contradicts the above assumption that j1 ∈ I1. Thus, I1 ∪ I2 = ∅, i.e., all
indices are located within I3, which readily shows that ‖Ty‖∞ ≤ γ.

Further, if all components of Tx have a modulus greater than γ(‖TT†‖∞+ 1), we
show that H(x) is single-valued.

Theorem 3.5 Let T ∈ RL×N with L ≥ N with full rank N . Further let γ > 0 and
x ∈ UT,γ := {v ∈ RN : |(Tv)j | > γ(‖T T†‖∞ + 1) ∀ j = 1, . . . , L}. Then H(x)
with H in (3.1) is single-valued. Moreover, let {u` : ` = 1, . . . , 2L} be the set of
all possible vectors in RL containing only components −1 and 1. Then, on each set
S` := UT,γ∩{x ∈ RN : sign(Tx) = u`} the mapping H evaluates to the constant value
γT†u`.

Proof: By Theorem 3.3, H(x) in not empty for each x ∈ RN , and each fixed point of
fx,T in (3.2) provides us an element y = t− x ∈ H(x). We show that fx,T possesses
only one fixed point, if min

j=1,...,L
|(Tx)j | > γ(‖TT†‖∞ + 1). Assume that fx,T, with

x ∈ UT,γ , possesses two fixed points t1 and t2. Thus

t1 = x + (IN −T†SγT)t1, t2 = x + (IN −T†SγT)t2,

implies
x = T†SγTt1 = T†SγTt2.

Consequently,
T†SγTt1 −T†SγTt2 = 0. (3.9)

Now, similarly as in the previous proof, we can show that T†(SγTt1−SγTt2) = 0
implies SγTt1 − SγTt2 = 0. This time we consider the index sets

I1 = {1 ≤ j ≤ L : [SγTt1 − SγTt2]j > 0},
I2 = {1 ≤ j ≤ L : [SγTt1 − SγTt2]j = 0},
I3 = {1 ≤ j ≤ L : [SγTt1 − SγTt2]j < 0}.

We observe that j ∈ I1 yields [Tt1 − Tt2]j > 0 and similarly j ∈ I3 yields
[Tt1 −Tt2]j < 0. We want to show that I1 ∪ I3 = ∅.
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The relation (3.9) implies

0 =
∑
j∈I1

[SγTt1 − SγTt2]jT
†ej +

∑
j∈I3

[SγTt1 − SγTt2]jT
†ej .

Now, suppose contrarily that w.l.o.g. I1 6= ∅, then for j1 ∈ I1 we find ṽj1 := T†ej1
similarly as in (3.8) of the form

ṽj1 =
∑
j∈I1
j 6=j1

−[SγTt1 − SγTt2]j
[SγTt1 − SγTt2]j1

ṽj +
∑
j∈I3

−[SγTt1 − SγTt2]j
[SγTt1 − SγTt2]j1

ṽj .

A closer look at the coefficients shows that

−[SγTt1 − SγTt2]j
[SγTt1 − SγTt2]j1

< 0

for j ∈ I1 \ {j1} and
−[SγTt1 − SγTt2]j
[SγTt1 − SγTt2]j1

> 0

for j ∈ I3.
Hence, we find with T∗Tṽj = T∗ej ,

[T(t1 − t2)]j1

= 〈T(t1 − t2), ej1〉 = 〈t1 − t2,T
∗Tṽj1〉

=

〈
t1 − t2, (T

∗T)
∑
j∈I1
j 6=j1

−[SγTt1−SγTt2]j
[SγTt1−SγTt2]j1

ṽj +
∑
j∈I3

−[SγTt1−SγTt2]j
[SγTt1−SγTt2]j1

ṽj

〉

=
∑
j∈I1
j 6=j1

−[SγTt1−SγTt2]j
[SγTt1−SγTt2]j1

〈t1 − t2, (T
∗T)ṽj〉+

∑
j∈I3

−[SγTt1−SγTt2]j
[SγTt1−SγTt2]j1

〈t1 − t2, (T
∗T)ṽj〉

=
∑
j∈I1
j 6=j1

−[SγTt1−SγTt2]j
[SγTt1−SγTt2]j1︸ ︷︷ ︸

<0

〈T(t1 − t2), ej〉︸ ︷︷ ︸
>0

+
∑
j∈I3

−[SγTt1−SγTt2]j
[SγTt1−SγTt2]j1︸ ︷︷ ︸

>0

〈T(t1 − t2), ej〉︸ ︷︷ ︸
<0

< 0,

which contradicts the above assumption that j1 ∈ I1. Therefore, I1 ∪ I3 = ∅, and for
each component it follows either that [Tt1]j = [Tt2]j or |[Tt1]j | ≤ γ and |[Tt2]j | ≤ γ.
Further, observe that

‖Tt1 −Tx‖∞ = ‖Tt1 − TT†SγTt1‖∞ = ‖TT†(IL − Sγ)Tt1‖∞ ≤ ‖TT†‖∞ γ,

and similarly for the fixed point t2. Therefore, |[Tx]j | > γ(‖T†T‖∞ + 1) for all
j = 1, . . . , , L implies that

|[Tt1]j | > |[Tx]j | − |[Tt1]j − [Tx]j | > γ

for all j = 1, . . . , L. Thus, all components of Tt1 and Tt2 coincide, and we conclude
t1 = t2.

2. Since H(x) is single-valued for x ∈ S`, it follows with sign(Tx) = u` that

x = T†SγTt1 = T†(Tt1 − γu`) = t1 − γT†u`

and thus H(x) = t1 − x = γT†u`.
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Remark 3.6 Our considerations show that H(x) does in general not coincide with
the subdifferential H‖·‖1(x) := ∂‖Tx‖1 = T∗ sign (Tx), where sign y := (sign yj)

L
j=1

for y = (yj)
L
j=1 and

sign yj :=


1 yj > 0,

−1 yj < 0,

[−1, 1] yj = 0.

But similarly to H(x), we observe that

y ∈ H‖·‖1(0) ⇐⇒ ‖Tx‖∞ ≤ γ,

and H‖·‖1(x) is single-valued if minj=1,...,L |[Tx]j | > γ.

4 The frame soft threshold operator is a proximity op-
erator

Throughout this section, we again assume that T ∈ RL×N with L > N has full rank
N , γ > 0 and let Sγ the soft shrinkage operator given in (1.2). In this section, we will
show that the set-valued function H in (3.1) is the subdifferential of a proper, lower
semi-continuous and convex function Φ, i.e., Φ ∈ Γ0. Let us first recall the following
definition.

Definition 4.1 (12.24 in [12]) Let 〈·, ·〉 denote a scalar product in RN . A mapping
H : RN ⇒ RN is called cyclically monotone if for any m ∈ N, m ≥ 2 and any choice
of points x1, . . . ,xm and elements yi ∈ H(xi) we have

〈x2 − x1,y1〉+ 〈x3 − x2,y2〉+ · · · 〈x1 − xm,ym〉 ≤ 0. (4.1)

We call H maximally cyclically monotone if it is cyclically monotone and its graph
cannot be enlarged without destroying this property.

We will employ the following theorem.

Theorem 4.2 ([1]) A set-valued mapping H : RN ⇒ RN is the subdifferential of a
function Φ ∈ Γ0,i.e., H = ∂Φ, if and only if H is maximally cyclically monotone.

In order to show, that H in (3.1) is indeed maximally cyclically monotone, we
need some preliminary lemmas.

Lemma 4.3 For x ∈ RN and y ∈ H(x) we have

Ty + (Sγ − IL)T(x + y) ∈ ker (T†) = ker (T∗),

and
y = T†(IL − Sγ)T(x + y),

where IL denotes the L× L identity matrix.
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Proof: Recall that T† = (T∗T)−1T∗ ∈ RN×L and T†T = IN . Thus we have

y ∈ H(x)⇐⇒ x = T†SγT(x + y)

⇐⇒ T†Tx = T†SγT(x + y)

⇐⇒ ∃u ∈ ker(T†) : u + Tx = SγT(x + y)

⇐⇒ ∃u ∈ ker(T†) : u + T(x + y)−Ty = SγT(x + y)

⇐⇒ ∃u ∈ ker(T†) : u + T(x + y)− SγT(x + y) = Ty

⇐⇒ ∃u ∈ ker(T†) : u + (IL − Sγ)T(x + y) = Ty. (4.2)

In other words, Ty + (Sγ − IL)T(x + y) ∈ ker(T†). Further, multiplying (4.2) with
T†, it follows that

T†Ty = y = T†(IL − Sγ)T(x + y),

which finishes this proof.

Lemma 4.4 Let x1, x2 ∈ RN and y1 ∈ H(x1), y2 ∈ H(x2). Further, let

z1 := (IL − Sγ)T(x1 + y1), z2 := (IL − Sγ)T(x2 + y2).

Then
〈SγT(x1 + y1), z2 − z1〉2 ≤ 0,

where 〈·, ·〉2 denotes the standard scalar product in RL.

Proof: From the definition of Sγ it follows for x ∈ R

(1− Sγ)x =


x− (x− γ) = γ x > γ,

x− (x+ γ) = −γ x < −γ,
x |x| ≤ γ,

and therefore for all x ∈ RN ,

|[(IL − Sγ)Tx]j | ≤ γ, j = 1, . . . , L. (4.3)

Let us consider the case [T(x1 + y1)]j ≤ −γ. Then [(IL − Sγ)T(x1 + y1)]j = −γ and
(4.3) implies |[(IL − Sγ)T(x2 + y2)]j ≥ −γ, such that

[z2 − z1]j = [(IL − Sγ)T(x2 + y2)− (IL − Sγ)T(x1 + y1)]j (4.4)

≥ −γ − [(IL − Sγ)T(x1 + y1)]j = −γ + γ = 0.

In the case [T(x1 + y1)]j ≥ γ we similarly conclude from [(IL − Sγ)T(x1 + y1)]j = γ
and (4.3) that

[z2 − z1]j = [(IL − Sγ)T(x2 + y2)− (IL − Sγ)T(x1 + y1)]j (4.5)

≤ γ − [(IL − Sγ)T(x1 + y1)]j = γ − γ = 0.

Thus, in both cases we have −sign[z2 − z1]j = sign[SγT(x1 + y1)]j . Finally, for
|[T(x1 + y1)]j | < γ it follows that [SγT(x1 + y1)]j = 0. We therefore conclude

〈SγT(x1 + y1), z2 − z1〉2 =

N∑
j=1

[SγT(x1 + y1)]j [z2 − z1]j ≤ 0.
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and the assertion follows.
Now we can show

Theorem 4.5 The map H(x) in (3.1) is cyclically monotone.

Proof: Let m ∈ N and m ≥ 2. Further, for i ∈ {1, . . . ,m} let yi ∈ H(xi). Again, we
use the singular value decomposition of T, T = PDQT with Q ∈ RN×N orthogonal,
D ∈ RN×N being the diagonal matrix with the N positive singular values of T, and
P ∈ RL×N with P∗P = IN . Further, let

x̃i := DQTxi, ỹi := DQTyi,

zi := (IL − Sγ)T(xi + yi) = (IL − Sγ)P(x̃i + ỹi),

ui := Tyi − zi = Pỹi − zi. (4.6)

For simplicity we use the convention xm+1 := x1 as well as ym+1 := y1, and extend
that similarly for x̃m+1, ỹm+1, zm+1, and um+1. Then, by Lemma 4.3, ui ∈ ker T†

and thus also ui ∈ ker P∗, since T† = QD−1P∗, where QD−1 ∈ RN×N is invertible.
Further, with (4.6) we can write

ỹi = P∗Pỹi = P∗(ui + zi) = P∗zi.

We will show that

A :=
m∑
i=1

〈x̃i+1 − x̃i, ỹi〉2 ≤ 0,

where 〈·, ·〉2 denotes here the standard scalar product in RN . First, we observe that
for all i = 1, . . . ,m,

Px̃i + ui = Px̃i + Pỹi − zi

= P(x̃i + ỹi)− (IL − Sγ)P(x̃i + ỹi)

= SγP(x̃i + ỹi). (4.7)

Using (4.7), it follows

A =
m∑
i=1

〈x̃i+1 − x̃i,P
∗zi〉2 =

m∑
i=1

〈P(x̃i+1 − x̃i), zi〉2

=
m∑
i=1

〈(Px̃i+1 + ui+1)− (Px̃i + ui)− ui+1 + ui, zi〉2

=
m∑
i=1

〈SγP(x̃i+1 + ỹi+1), zi〉2 −
m∑
i=1

〈SγP(x̃i + ỹi), zi〉2 +
m∑
i=1

〈−ui+1 + ui, zi〉2

=

m∑
i=1

〈SγP(x̃i+1 + ỹi+1), zi − zi+1〉2 +

m∑
i=1

〈−ui+1 + ui, zi〉8.

Bei Lemma 4.4, the first sum is not positive. Thus,

A ≤
m∑
i=1

〈−ui+1 + ui, zi〉2 =

m∑
i=1

〈−ui+1 + ui,Pỹi − ui〉2

=

m∑
i=1

〈P∗(−ui+1 + ui), ỹi〉2 −
m∑
i=1

〈ui,ui〉2 +

m∑
i=1

〈ui+1,ui〉2.
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The first sum vanishes, since ui and ui+1 are in ker P∗. Thus

A ≤ −
m∑
i=1

‖ui‖22 +
m∑
i=1

〈ui+1,ui〉2 ≤ −
m∑
i=1

‖ui‖22 +
1

2

(
m∑
i=1

‖ui‖22 + ‖ui+1‖22

)
= 0.

Now, we define the new scalar product in RN ,

〈x,y〉DQT := x∗QDTDQTy, (4.8)

where D is the diagonal matrix of positive singular values of T and Q is the orthogonal
matrix in the SVD of T, such that QDTDQT is symmetric and positive definite. Then
we simply observe that

A =

m∑
i=1

〈x̃i+1 − x̃i, ỹi〉2 =

m∑
i=1

〈xi+1 − xi,yi〉DQT ≤ 0.

Thus the assertion of the theorem holds.

Now we can conclude the main theorem of this paper.

Theorem 4.6 Let T ∈ RL×N with L ≥ N and full rank N . Then the operator
T†SγT is a proximity operator of a proper, lower semi-continuous, convex function
Φ.

Proof: First, recall from (2.3) that for any vectors x and p, we have x = proxΦ(p) if
and only if x− p ∈ ∂Φ. So, by Theorem 4.2, we need to prove that H(x) in (3.1) is
maximally cyclically monotone. As shown in the previous theorem, we already have
that H(x) is cyclically monotone. Further, by Theorem 3.3, H(x) is bounded, i.e., for
all x ∈ RN we have that y ∈ H(x) implies ‖y‖∞ ≤ γ‖T∗‖∞. Therefore, we observe
that the range of the operator IN +H is RN . By Minty’s Theorem, see [1], Theorem
21.1, it follows that H(x) is also maximally monotone. The assertion now follows
from Theorem 4.2.

Corollary 4.7 Let Let T ∈ RL×N with L ≥ N and full rank N , and let T = PDQT

be its singular value decomposition. Let ‖ · ‖DQT be the norm corresponding to the

scalar product in (4.8). Then the operators T†SγT and I − T†SγT are firmly non-
expansive, i.e., for all x,y ∈ RN we have

‖ T†SγTx−T†SγTy‖2DQT + ‖ (I−T†SγT)x− (I−T†SγT)y‖2DQT ≤ ‖x− y‖2DQT .

Proof: Observe that with T† = QD+PT ,

‖ T†SγTx−T†SγTy‖2DQT = ‖ (DQT )QD+PT (SγTx−SγTy‖22 = ‖ SγTx−SγTy‖22
as well as

‖ (I−T†SγT)x− (I−T†SγT)y‖2DQT = ‖DQT (x− y)−PT (SγTx− SγTy)‖22
= ‖x− y‖2DQT + ‖SγTx− SγTy‖22 − 2〈T(x− y), SγTx− SγTy〉2

To prove the assertion of the corollary we hence have to show that

‖SγTx− SγTy‖22 − 〈T(x− y), SγTx− SγTy〉2 ≤ 0.

But this assertion is obviously true since for each component k = 1, . . . , L, we have
either (SγTx−SγTy)k = 0 or sign(SγTx−SγTy)k) = sign(T(x−y))k and |(SγTx−
SγTy)k| ≤ |(T(x− y))k|.
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Remark 4.8 Corollary 4.7 particularly implies that T†SγT and I−T†SγT are non-
expansive, see [1].
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