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Abstract

In this paper we present some new results on the reconstruction of structured
functions by a small number of equidistantly distributed Fourier samples. In particu-
lar, we show that real spline functions of order m with non-uniform knots containing
N terms can be uniquely reconstructed by only m + N Fourier samples. Further,
linear combinations of N non-equispaced shifts of a known low-pass functions Φ can
be reconstructed by N + 1 Fourier samples. In the two-dimensional case, we consider
the problem of function recovering by a small amount of Fourier samples on different
lines through the origin. Our methods are based on the Prony method. The proofs
given in this paper are constructive. Some numerical examples show the applicability
of the proposed approach.
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1 Introduction

The reconstruction of structured functions from the knowledge of samples of its
Fourier transform is a common problem in several scientific areas as radioastronomy,
computed tomography and magnet resonance imaging, [1]. In this paper, we aim to
uniquely recover specially structured functions from the smallest possible number of
equidistantly distributed Fourier samples.

Within the last years, there has been an increasing interest in exploiting special
properties of functions that have to be reconstructed. Usually, the central issue is the
recovery of signals possessing a sparse representation in a given basis or frame from a
rather small set of determining points. Particularly, compressive sensing has triggered
significant research activity. For example, a trigonometric polynomial of degree N
with only s � N active terms has been shown to be recovered by O(s log4(N))
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sampling points that are randomly chosen from a discrete set {j/N}N−1j=0 , [3], or from
the uniform measure on [0, 1], [14]. The recovery algorithms in compressed sensing are
usually based on suitable l1-minimization methods, and exact recovery can be ensured
only with a certain probability. In contrast, there exist also deterministic methods for
the recovery of sparse trigonometric functions, based on the classical Prony method
or the annihilating filter method, [18].

In [12] and [11], the so-called approximate Prony method has been studied, and a
stable algorithm was derived that works also for noisy input data while the original
Prony method suffers from its numerical instabilities. Other modifications of the
Prony method aiming at a more stable behavior are e.g. the Least-Squares Prony
method [8], the Total-Least-Squares Prony method [8], pencil based methods [7, 9, 15]
and the method in [2] using an iterative quadratic maximum likelihood approach. In
[6], a pencil based approach for Prony’s method is combined with a maximum a
posteriori probability estimator for stable recovery of polygon shapes from moments.

Vetterli et al. [18] introduced signals with finite rate of innovation, i.e., signals with
special structure having a finite number of degrees of freedom per unit of time. Using
the annihilating filter method (that is equivalent to Prony’s method) he showed that
finite length signals with finite rate of innovation can be completely reconstructed
using a generalized Shannon sampling theorem although these signals are not band-
limited.

In the present paper, we apply the Prony method for the reconstruction of real
structured functions from a small number of equidistantly distributed Fourier samples.
In the one-dimensional case, we particulary consider B-spline functions with non-
uniform knots and linear combinations of non-equispaced shifts of a known “low-pass”
function Φ satisfying Φ̂(ω) 6= 0 for ω ∈ (−T, T ), where T > 0.

In the two-dimensional case, we want to recover the functions from only a small
amount of Fourier samples on different lines through the origin. In case of separable
functions as tensor products of non-uniform B-spline functions the recovery problem
can be treated similarly as in the one-dimensional case. For the non-separable case
the problem is more involved. In [10], the so-called algebraic coupling of matrix
pencils (ACMP) algorithm is used for recovery of bivariate exponentials, where O(N2)
samples are needed to recover a series of the form

∑N
k=1 ak exp(iω1Tk) exp(iω2Sk), see

also [17].
We will study linear combinations of non-uniform shifts of bivariate functions Φ

of the form f(x1, x2) =
∑N

j=1 cjΦ(x1 − vj,1, x2 − vj,2) with unknowns cj , vj,1, vj,2,

j = 1, . . . , N , and with Φ̂(ω1, ω2) 6= 0 for ω2
1 + ω2

2 < T 2 and T > 0. We show that
function recovery is possible using 3N+1 Fourier samples on only three lines through
the origin, where the third line is chosen dependently on the candidates for shifts
found from the first two lines.

Moreover, we conjecture that one can always reconstruct the function f from
4N + 1 Fourier samples given on four predetermined lines whose choice does not
depend on the data. The idea of our method is related to a recent preprint, [13],
where the authors propose to take sufficiently many lines for complete recovery of
multivariate exponentials.

The paper is organized as follows. In Section 2, we shortly summarize the Prony
method that will be frequently used in the remaining paper. Section 3 is devoted to
one-dimensional function recovery. We start with real step functions with compact
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support of the form f(x) =
∑N

j=1 c
1
j1[Tj ,Tj+1)(x) with arbitrary knots T1, . . . , TN+1,

and show that f can be recovered by N + 1 Fourier samples. The method trans-
fers to non-uniform B-spline functions in Subsection 3.2. Moreover, we consider
the reconstruction of linear combinations of non-uniform shifts of a given low-pass
function Φ and its derivatives in Subsection 3.3. In Section 4, we study the two-
dimensional case. We start with tensor-products of non-uniform spline functions.
The non-separable case of non-uniform translates of a suitable bivariate function Φ
is considered in Subsection 4.2. All recovery results are constructive. In Section 5 we
present some numerical examples for the one- and the two-dimensional case showing
that the algorithms are stable for exact input data.

2 The Prony method

Consider a function P (ω) of the special form

P (ω) =

N∑
j=1

cj e− iωTj (2.1)

with non-zero coefficients cj ∈ R and real frequencies T1 < T2 < . . . < TN .
We want to evaluate all frequencies T1, . . . , TN and all coefficients cj (j = 1, . . . , N)

from the function values P (`h), ` = 0, . . . , N , where h is assumed to be a positive
constant with |hTj | < π ∀ j ∈ {1, . . . , N}. For this purpose, the Prony method can
be applied as follows.

Let us consider the complex polynomial Λ : C→ C,

Λ(z) :=

N∏
j=1

(
z − e− ihTj

)
=

N∑
`=0

λ`z
` (2.2)

with the unknown frequencies Tj from (2.1), where λ` are the coefficients of Λ in the
monomial basis. Particularly, we have λN = 1.

Then we observe that for m = 0, . . . , N ,

N∑
`=0

λ`P (h(`−m)) =
N∑
`=0

λ`

N∑
j=1

cj e− ih(`−m)Tj =

N∑
j=1

cj eihmTj
N∑
`=0

λ` e− ih`Tj

=

N∑
j=1

cj eihmTj Λ(e− ihTj ) = 0.

Hence, the coefficient vector λ = (λ0, . . . , λN )T is the solution of the linear system

HN+1λ = 0 (2.3)

with the Toeplitz matrix HN+1 := (P (h(` − m)))Nm,`=0 ∈ R(N+1)×(N+1). Observe

that by P (−ω) =
∑N

j=1 cj eiωTj = P (ω) all entries of HN+1 are given. With the

Vandermonde matrix VN,N+1 :=
(
exp(− ihTj)

k
)N
j=1,k=0

we have

HN+1 = V∗N,N+1 diag(c1, c2, . . . , cN )VN,N+1.
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Since VN,N+1 has rank N , and cj 6= 0 for j = 1, . . . , N , we get rank(HN+1) = N .
Hence, the eigenvector λ of VN,N+1 corresponding to the eigenvalue 0 is uniquely
determined by (2.3) and λN = 1.

Knowing λ, we can compute the zeros zj := e− ihTj (j = 1, . . . , N) of the polyno-
mial Λ and hence find the frequencies T1, . . . , TN .

Finally, the coefficients cj , j = 1, . . . , N are obtained from the linear system

P (`h) =

N∑
j=1

cj e− i`hTj , ` = 0, . . . , N.

We summarize the algorithm as follows.

Algorithm 2.1

Input: P (`h), ` = 0, . . . , N , step size h.

1. Form the Toeplitz matrix HN+1 = (P (h(` − m)))Nm,`=0 ∈ R(N+1)×(N+1) using

that P (−`h) = P (`h).

2. Solve the system HN+1λ = 0, where λN = 1.

3. Compute the zeros of the polynomial Λ(z) =
∑N

`=0 λ`z
` on the unit circle and

extract the frequencies Tj from the zeros zj = e− ihTj , j = 1, . . . , N .

4. Compute the coefficients cj from the system P (`h) =
∑N

j=1 cj e− i`hTj , ` =
0, . . . , N.

Output: frequencies Tj and coefficients cj, j = 1, . . . , N , determining P (ω) in (2.1).

The procedure is not numerically stable with respect to inexact Fourier measure-
ments. For improving the stability we refer e.g. to [12].

Remarks 2.2
1. For a unique computation of the knots Tj we need to ensure that hTj ∈ (−π, π),
since e− iω is 2π-periodic. Otherwise, we will not be able to extract the values Tj from
the zeros zj = e− ihTj of Λ on the unit circle uniquely.
2. While the frequencies Tj are not known, one only needs to find a suitable upper
bound for |Tj | in order to fix a suitable step size h.
3. In applications, also the number N of terms in (2.1) is usually unknown. Having
given at least an upper bound M ≥ N and M+1 function values P (`h), ` = 0, . . . ,M ,
one can also apply the above procedure (replacing N by M) and obtains N by ex-
amining rank(HM+1). In this case, (2.3) cannot longer be solved uniquely, but each
zero-eigenvector will serve for the determination of the zeros of Λ on the unit circle
and hence of Tj , j = 1, . . . , N , see e.g. [12].
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3 One-dimensional functions

3.1 Step functions

Let us consider a step function with finite compact support of the form

f(x) =

N∑
j=1

c1j 1[Tj ,Tj+1)(x), (3.1)

where 1[a,b) denotes the characteristic function of the interval [a, b), and c1j are real

coefficients with c1j 6= c1j+1 for all j ∈ {1, . . . , N − 1}.
We want to answer the question, how many Fourier samples are needed to recover

the function f . Here, the Fourier transform f̂ of a function f ∈ L1(Rd) is defined by
f̂(ω) =

∫
Rd f(x) e− iω·x dx.

Theorem 3.1 Let −∞ < T1 < T2 < . . . < TN+1 <∞ and let c1j ∈ R for j = 1, . . . , N

with c1j 6= c1j+1 for j = 1, . . . , N−1. Assume that the constant h > 0 satisfies |hTj | < π
for j = 1, . . . , N + 1. Then the function f in (3.1) can be completely recovered by the
N + 1 Fourier samples f̂(`h), ` = 1, . . . , N + 1.

Proof: We observe from (3.1) that for ω 6= 0

f̂(ω) =

N∑
j=1

c1j
iω

(e− iωTj − e− iωTj+1) =
1

iω

N+1∑
j=1

c0j e− iωTj

with c0j := c1j − c1j−1, and with the convention that c10 = c1N+1 = 0. Observe that

c0j 6= 0 by assumption. Hence,

(iω)f̂(ω) =
N+1∑
j=1

c0j e− iωTj ,

and we can apply the Prony method described in Section 2 to P (ω) := (iω)f̂(ω),
where we use the known values

P (`h) = (i`h) · f̂(`h), ` = 1, . . . , N + 1,

P (−`h) = P (`h), ` = 1, . . . , N + 1,

P (0) = 0.

In this way, we uniquely determine all values T1, . . . , TN+1 and the corresponding
coefficients c0j , j = 1, . . . , N + 1. Finally, the coefficients c1j are obtained using the
recursion

c11 = c01,

c1j = c1j−1 + c0j , j = 2, . . . , N.
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3.2 Non-uniform spline functions

The above approach can easily be transferred to higher order non-uniform spline
functions of the form

f(x) =
N∑
j=1

cmj B
m
j (x), (3.2)

where Bm
j is the B-spline of order m determined by the knots Tj , . . . , Tj+m. The

B-spline functions Bm
j satisfy the recurrence relation

Bm
j (x) =

x− Tj
Tj+m−1 − Tj

Bm−1
j (x) +

Tj+m − x
Tj+m − Tj+1

Bm−1
j+1 (x)

with B1
j (x) := 1[Tj ,Tj+1)(x). For the first derivative of Bm

j we find for m ≥ 3

(Bm
j )′(x) = (m− 1) ·

(
Bm−1
j (x)

Tj+m−1 − Tj
−

Bm−1
j+1 (x)

Tj+m − Tj+1

)
, (3.3)

see [4, p. 115]. Replacing the usual differentiation by the differentiation from the
right, the above formula also applies for m = 2. For k = 1, . . . ,m− 1 we get

f (k)(x) =

N∑
j=1

cmj
(
Bm
j

)(k)
(x) =

N+k∑
j=1

cm−kj Bm−k
j (x), (3.4)

where the coefficients cm−kj can be recursively evaluated from cmj using (3.3). Finally,
using the distributional derivative we have

(B1
j )′(x) =

(
1[Tj ,Tj+1)

)′
(x) = δ(x− Tj)− δ(x− Tj+1), (3.5)

where δ denotes the Dirac distribution with δ̂(ω) =
∫∞
−∞ δ(x) e− iωx dx = 1 for all

ω ∈ R. Hence, the m-th derivative of f in (3.2) is a linear combination of weighted
Dirac distributions:

f (m)(x) =
N+m∑
j=1

c0j δ(x− Tj).

Application of the Fourier transform yields

(iω)mf̂(ω) =
N+m∑
j=1

c0j e− iωTj . (3.6)

Theorem 3.2 Suppose that there exist a knot sequence −∞ < T1 < T2 < . . . <
TN+m < ∞ and real values cmj ∈ R, j = 1, . . . , N . Assume that the constant h > 0
satisfies |hTj | < π for all j = 1, . . . , N + m. Then the function f in (3.2) can be

completely recovered by the N +m Fourier samples f̂(`h), ` = 1, . . . , N +m.

Proof: As shown above, the Fourier transform of the m-th derivative of f is of the
form (3.6), and supposing that c0j 6= 0 for j = 1, . . . , N +m, we can uniquely compute

the knots Tj and the coefficients c0j for j = 1, . . . , N + m using the Prony method

given in Section 2 to P (ω) = (iω)mf̂(ω). Further, applying the formulas (3.3) and
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(3.5) together with (3.4), we obtain the following recursion to compute the coefficients
cmj ,

ck+1
j =


c01 for k = 0, j = 1,

c0j + c1j−1 for k = 0, j = 2, . . . , N +m− 1,(
Tm+1−k−T1

m−k

)
ck1 for k = 1, . . . ,m− 1, j = 1,(

Tm+j−k−Tj
m−k

)
ckj + ck+1

j−1 for k = 1, . . . ,m− 1, j = 2, . . . , N +m− k − 1.

Remarks 3.3
1. The above proof of Theorem 3.2 is constructive. In particular, if N is not known,
but we have an upper bound M > N , then the Prony method will also find the correct
knots Tj and the corresponding coefficients c0j , and the numerical procedure will be
more stable, see e.g. [12], [11].
2. In the above proof we rely upon the fact that c0j 6= 0 for j = 1, . . . , N + m. If

we have the situation that c0j0 = 0 for an index j0 ∈ {1, . . . , N + m}, then we will
not be able to reconstruct the knot Tj0 . But this situation will only occur if the
representation of f in (3.2) is redundant, i.e., if f in (3.2) can be represented by less
than N summands, so we will still be able to recover the exact function f . Observe
that the above recovery procedure always results in the simplest representation of
f so that the reconstructed representation of f of the form (3.2) does not possess
redundant terms.

3.3 Non-uniform translates

Let us consider functions that have a sparse representation of the form

f(x) =
N∑
j=1

cjΦ(x− Tj) (3.7)

with cj ∈ R for all j = 1, . . . , N , the knot sequence −∞ < T1 < . . . < TN < ∞, and
where Φ ∈ C(R) ∩ L1(R) is a real low-pass filter function with a Fourier transform
that is bounded away from zero, i.e. |Φ̂(ω)| > C0 for ω ∈ (−T, T ) for some constants
C0 > 0 and T > 0. For the low-pass filter function Φ we can take for example

• the centered cardinal B-spline of order m, Φ = Nm, with

N̂m(ω) =
(

sinc
(ω

2

))m
6= 0 ∀ ω ∈ (−2π, 2π);

• the Gaussian function, Φ(x) = exp
(
−x2

σ2

)
, σ > 0, with

Φ̂(ω) =
√
π · σ · exp

(
−σ

2ω2

4

)
> 0 ∀ ω ∈ R;
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• the Meyer window Φ(x) with T = 2
3 and

Φ̂(ω) =


1 for |ω| ≤ 1

3 ,

cos
(
π
2 (3|ω| − 1

)
for 1

3 < |ω| ≤
2
3 ,

0 otherwise;

• a real valued Gabor function Φ(x) = e−αx
2

cos(βx), α > 0, β > 0, with

Φ̂(ω) =
1

2

√
π

α

(
exp

(
−(β − ω)2

4α

)
+ exp

(
−(ω + β)2

4α

))
> 0 ∀ ω ∈ R,

etc. Fourier transform of (3.7) yields

f̂(ω) =

 N∑
j=1

cj e− iωTj

 Φ̂(ω). (3.8)

Theorem 3.4 Let −∞ < T1 < . . . < TN <∞ be a real sequence and cj ∈ R for j =

1, . . . , N . Further, let Φ ∈ C(R) ∩ L1(R) be a given function with |Φ̂(ω)| > C0 for all
ω ∈ (−T, T ) and some C0 > 0. Let h > 0 be a constant satisfying |hTj | < min{π, T}
for all j = 1, . . . , N . Then the function f of the form (3.7) can be uniquely recovered
by the Fourier samples f̂(`h), ` = 0, . . . , N .

Proof: Using the assumption on Φ̂ we find from (3.8)

f̂(ω)

Φ̂(ω)
=

N∑
j=1

cj e− iωTj ,

and hence can compute all Tj and cj by Prony’s method given in Section 2.

The above idea can be generalized to functions f of the form

f(x) =
N∑
j=1

R−1∑
r=0

cj,rΦ
(r)(x− Tj) (3.9)

with cj,r ∈ R and Tj ∈ R as before, where Φ(r) denotes the r-th derivative of Φ.
Fourier transform now yields

f̂(ω) =

 N∑
j=1

R−1∑
r=0

cj,r(iω)r e− iωTj

 Φ̂(ω). (3.10)

Theorem 3.5 Let −∞ < T1 < . . . < Tn < ∞ be a real sequence and cj,r ∈ R for
j = 1, . . . , N, r = 0, . . . , R− 1. Further, let let Φ ∈ C(R) ∩ L1(R) be a given function
with |Φ̂(ω)| > C0 for all ω ∈ (−T, T ) and some C0 > 0. Let h > 0 be a constant
satisfying |hTj | < min{π, T} for all j = 1, . . . , N . Then the function f in (3.9) can

be uniquely recovered by the Fourier samples f̂(`h), ` = 0, . . . , NR.
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Proof: Regarding (3.10), we now want to apply Prony’s method to a function of the
form

Q(ω) :=
N∑
j=1

R−1∑
r=0

cj,r(iω)r e− iωTj ,

and this function structure is different from (2.1) for R > 1. Therefore, we consider
the polynomial

Λ(z) :=

N∏
j=1

(
z − e− ihTj

)R
=

NR∑
`=0

λ`z
`

with unknown shifts Tj . Then we observe that for m = 0, . . . , NR

NR∑
`=0

λ`Q(h(`−m)) =
NR∑
`=0

λ`

N∑
j=1

R−1∑
r=0

cj,r(ih(`−m))r e− ih(`−m)Tj

=

N∑
j=1

R−1∑
r=0

cj,r eihmTj
NR∑
`=0

λ` (ih(`−m))r e− ih`Tj

=
N∑
j=1

R−1∑
r=0

cj,r eihmTj (ih)r
r∑

ν=0

(
r

ν

)
(−m)r−ν

NR∑
`=0

λ` `
ν e− ih`Tj .

Using the notation Sν :=
∑NR

`=0 λ` `
ν e− ih`Tj , we observe that Sν can be written as a

linear combination of the derivatives Λ(µ), µ = 0, . . . , ν, i.e., there exist coefficients
ανµ ∈ N so that

Sν =
ν∑

µ=0

ανµΛ(µ)(e− ihTj ) e− iµhTj ,

and because of Λ(µ)(e− ihTj ) = 0 for µ = 0, . . . , R− 1 we finally get

NR∑
`=0

λ`Q(h(`−m)) = 0.

Hence, the coefficient vector λ = (λ0, . . . , λNR)T with λNR = 1 is a zero-eigenvector
of the Toeplitz matrix

HNR+1 := (Q(h(`−m)))NRm,`=0 ∈ R(NR+1)×(NR+1).

Observe that all entries of HNR+1 are given, since we have Q(−ω) = Q(ω) and
Q(0) = 0. The method now applies along the same lines as given in Section 2.

Remarks 3.6
1. The special functions f regarded in Subsections 3.1 – 3.3 are so-called functions of
finite rate of innovation, as introduced for example in [18].
2. Similarly as in (3.9) we can also generalize the method to sums of B-splines and
their derivatives, i.e., we can consider non-uniform translates of B-splines of different
order,

f(x) =

N∑
j=1

m∑
r=1

cj,mB
r
j (x),

and f(x) can be recovered by the Fourier samples f̂(`h), ` = 1, . . . , NR.
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4 Two-dimensional functions

4.1 Tensor products of non-uniform spline functions

Let us consider now a non-uniform tensor product spline representation

f(x1, x2) =

N1∑
j=1

N2∑
k=1

cm1,m2

j,k Bm1
j (x1)B

m2
k (x2), (4.1)

where Bm1
j and Bm2

k are B-splines of order m1 and m2, respectively, determined by
the knot sequences Tj , . . . , Tj+m1 and Sk, . . . , Sk+m2 , respectively. Analogously as in
Subsection 3.2, differentiation yields

∂m1

∂xm1
1

∂m2

∂xm2
2

f(x1, x2) =

N1+m1∑
j=1

N2+m2∑
k=1

c0,0j,k · δ(x1 − Tj) · δ(x2 − Sk).

Fourier transform gives

(iω1)
m1(iω2)

m2 f̂(ω1, ω2) =

N1+m1∑
j=1

(
N2+m2∑
k=1

c0,0j,k e− iω2Sk

)
e− iω1Tj . (4.2)

Theorem 4.1 Let m1,m2 ∈ N be given integers, and let f(x, y) be a bivariate spline
function of the form (4.1) with knot sequences −∞ < T1 < . . . < TN1+m1 < ∞ and
−∞ < S1 < . . . < SN2+m2 < ∞, and with real coefficients cj,k, j = 1, . . . , N1, k =
1, . . . , N2. Let h1 and h2 be two positive constants satisfying |h1Tj | < π for all j =
1, . . . , N1 + m1 and |h2Sk| < π for all k = 1, . . . , N2 + m2. Then f can be uniquely
recovered by the (N1 +m1) · (N2 +m2) Fourier samples f̂(µh1, νh2), µ = 1, . . . , N1 +
m1, ν = 1, . . . , N2 +m2.

Proof: Set pj(ω2) :=
∑N2+m2

k=1 c0,0j,k e− iω2Sk . Then the equality (4.2) reads

(iω1)
m1(iω2)

m2 f̂(ω1, ω2) =

N1+m1∑
j=1

pj(ω2) e− iω1Tj . (4.3)

Fixing ω2 := h2, we apply Prony’s method from Section 2 to the function

P (ω1) := (iω1)
m1(ih2)

m2 f̂(ω1, h2) =

N1+m1∑
j=1

pj(h2) e− iω1Tj

and obtain the knot sequence T1, . . . , TN1+m1 as well as the coefficients pj(h2), j =

1, . . . , N1 + m1, using the Fourier samples f̂(µh1, h2), µ = 1, . . . , N1 + m1. In the
unlucky case that not all values pj(h2), j = 1, . . . , N1+m1 are non-zero, we do not find
all values Tj by this procedure and have to repeat the method for ω2 = 2h2, 3h2, . . .
etc. in order to complete the knot sequence {Tj , j = 1, . . . , N1 +m1}.

Next, knowing the Tj , we compute all further coefficients pj(νh2), j = 1, . . . , N1 +

m1, ν = 2, . . . , N2+m2, from the Fourier samples f̂(µh1, νh2), µ = 1, . . . , N1+m1, ν =
2, . . . , N2 +m2, using (4.3). Afterwards, we apply the Prony method to

p1(ω2) =

N2+m2∑
k=1

c0,01,k e− iω2Sk

10



and use p1(h2), . . . , p1((N2+m2)h2) in order to uniquely determine the knot sequence
S1, . . . , SN2+m2 and the coefficients c0,01,k, k = 1, . . . , N2 + m2. Again, in case that

c0,01,k = 0 for some k ∈ {1, . . . , N2 + m2} we do not obtain all Sk and need to apply
Prony’s method also to pj(ω2) for j > 1 in order to complete the knot sequence
{Sk, k = 1, . . . , N2 +m2}.

All further coefficients c0,0j,k are obtained from the linear systems

pj(νh2) =

N2+m2∑
k=1

c0,0j,k e− iνh2Sk , ν = 1, . . . , N2 +m2

for each j = 2, 3, . . . , N1 + m1. Finally, we have to evaluate the original coefficients
cm1,m2

j,k from c0,0j,k using the recursions

cr1+1,r2
j,k =



c0,r21,k for r1 = 0, j = 1,

c0,r2j,k + c1,r2j−1,k for r1 = 0, j = 2, . . . , N1 +m1 − 1,(
Tm1+1−r1−T1

m1−r1

)
cr1,r21,k for r1 = 1, . . . ,m1 − 1, j = 1,(

Tm1+j−r1
−Tj

m1−r1

)
cr1,r2j,k + cr1+1,r2

j−1,k
for r1 = 1, . . . ,m1 − 1,

j = 2, . . . , N1 +m1 − r1 − 1,

where r2 = 0, . . . ,m2, k = 1, . . . , N2 +m2 − r2, and

cr1,r2+1
j,k =



cr1,0j,1 for r2 = 0, k = 1,

cr1,0j,k + cr1,1j,k−1 for r2 = 0, k = 2, . . . , N2 +m2 − 1,(
Sm2+1−r2−S1

m2−r2

)
cr1,r2j,1 for r2 = 1, . . . ,m2 − 1, k = 1,(

Sm2+k−r2
−Sk

m2−r2

)
cr1,r2j,k + cr1,r2+1

j,k−1
for r2 = 1, . . . ,m2 − 1,

k = 2, . . . , N2 +m2 − r2 − 1,

where r1 = 0, . . . ,m1, j = 1, . . . , N1 +m1 − r1.

Remarks 4.2
1. Observe that in the tensor product case we usually need to apply the Prony
method only twice in order to obtain the two knot sequences {Tj}j=1,...,N1+m1 and

{Sk}k=1,...,N2+m2 . All coefficients c0,0j,k can afterwards be computed by a linear system
of equations. As in the one-dimensional case, the problem of vanishing terms pj(kh2)

or vanishing coefficients c0,0j,k only occurs if the function f in (4.1) contains local re-
dundancies.
2. A tensor product of the form

f(x1, x2) :=

N1∑
j=1

N2∑
k=1

cj,kΦ1(x1 − Tj)Φ2(x2 − Sk) (4.4)

with two low-pass filter functions Φ1 and Φ2 satisfying Φ̂ν(ω) 6= 0 for ω ∈ (−T, T )
for some T > 0 (ν = 1, 2) can be similarly handled by generalizing the results of
Subsection 3.3. Fourier transform of (4.4) yields

f̂(ω1, ω2) =

 N1∑
j=1

N2∑
k=1

cj,k e− iω1Tj e− iω2Sk

 Φ̂1(ω1)Φ̂2(ω2).
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Hence, for given functions Φ1,Φ2 we can recover f completely using the Fourier
samples f̂(`1h1, `2h2), `1 = 0, . . . , N1, `2 = 0, . . . , N2 by following the same lines as
in the proof of Theorem 4.1. Here, h1, h2 have to satisfy |h1Tj | < min{π, T} and
|h2Sk| < min{π, T} for all j = 1, . . . , N1, k = 1, . . . , N2.

4.2 Non-uniform translates of radial functions

For a given bivariate radial function Φ(x1, x2) ∈ C(R2) ∩ L1(R2) we assume that

Φ̂(ω1, ω2) is bounded and satisfies |Φ̂(ω1, ω2)| > C0 > 0 for ‖ω‖2 = (ω2
1 + ω2

2)
1
2 < T

with a suitable constant T > 0. Such a function Φ can be simply constructed with
the help of a one-dimensional low-pass function as considered in Subsection 3.3 with

Φ(x1, x2) := Φ(r), r := (x21 + x22)
1
2 .

Let us consider now a function f(x1, x2) with the sparse representation

f(x1, x2) =
N∑
j=1

cjΦ(x1 − vj,1, x2 − vj,2). (4.5)

As before, we would like to answer the questions, how many Fourier samples are
needed to recover f if Φ and N are known, and how to compute the real shifts vj :=
(vj,1, vj,2) and the real coefficients cj , j = 1, . . . , N , from these samples. Observe that
this problem is completely different from the separable case considered in Subsection
4.1.

Fourier transform of (4.5) yields

f̂(ω1, ω2) =

 N∑
j=1

cj e− i·(ω1vj,1+ω2vj,2)

 Φ̂(ω1, ω2). (4.6)

For simplicity, we assume that cj > 0 for all j = 1, . . . , N .

Theorem 4.3 Let Φ ∈ C(R2) ∩ L1(R2) be a given, real, bivariate function with
|Φ̂(ω1, ω2)| > C0 > 0 for ‖ω‖2 < T for some T > 0. Further, let f be a bivari-
ate function with the sparse representation (4.5), where cj , vj,1, vj,2, j = 1, . . . , N , are
real numbers and cj > 0 for j = 1, . . . , N . Assume that the constant h > 0 satisfies

h‖vj‖2 < min{π, T} with ‖vj‖2 := (v2j,1 + v2j,2)
1
2 for j = 1, . . . , N . Then f can be

uniquely recovered from the set of 3N + 1 Fourier samples given by

{f̂(0, 0), f̂(`h, 0), f̂(0, `h), f̂(cos(απ)`h, sin(απ)`h), ` = 1, . . . , N},

where α ∈ (0, 12) needs to be chosen suitably.

Proof: We give a constructive proof. From (4.6) we obtain for ω2 = 0

f̂(ω1, 0)

Φ̂(ω1, 0)
=

N∑
j=1

cj e− iω1vj,1 .

However, we are faced with the problem that two or more shifts vj = (vj,1, vj,2) may
possess the same first coordinate. Let us assume that the wanted set {v1,1, . . . , vN,1}
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of first coordinates contains N1 ≤ N pairwise different values ṽ1,1, . . . , ṽN1,1. Then we
find

f̂(ω1, 0)

Φ̂(ω1, 0)
=

N1∑
k=1

c1k e− iω1ṽk,1 , (4.7)

where for the true first coordinates of the wanted shifts it follows that vj,1 ∈ Ṽ1 :=
{ṽ1,1, . . . , ṽN1,1} for each j = 1, . . . , N , and where c1k is the sum of all coefficients
belonging to shift vectors with the same first coordinate ṽk,1,

c1k :=
∑

j

vj,1=ṽk,1

cj , k = 1, . . . , N1. (4.8)

Applying Prony’s method in Section 2 to (4.7) using the Fourier samples f̂(`h, 0), ` =
0, . . . , N , provides us the values ṽ1,1, . . . , ṽN1,1 and the corresponding coefficients
c1k, k = 1, . . . , N1.

Analogously, we observe from (4.6) with ω1 = 0 that

f̂(0, ω2)

Φ̂(0, ω2)
=

N∑
j=1

cj e− iω2vj,2 =

N2∑
k=1

c2k e− iω2ṽk,2 ,

where ṽk,2 are the pairwise different values of the set {v1,2, . . . , vN,2} and c2k are the
corresponding coefficients (k = 1, . . . , N2 ≤ N). The values ṽk,2, c

2
k, k = 1, . . . , N2, are

computed by Prony’s method from the samples f̂(0, `h), ` = 0, . . . , N .

Hence, the true shift vectors vj have to be contained in the set

G := {v = (v1, v2) : v1 ∈ Ṽ1, v2 ∈ Ṽ2},

where Ṽν := {ṽk,ν : k = 1, . . . , Nν}, ν = 1, 2. In order to find the true shift vectors
vj we now determine an angle απ, such that the orthogonal projections of all v ∈ G
onto the line y = tan(απ)x are pairwise different, i.e. that (cosαπ)v1 + (sinαπ)v2 are
pairwise different for all v ∈ G. Since G contains N1N2 ≤ N2 entries, such a number
α ∈ (0, 12) can always be found.

Now, we consider

f̂(ω1 cos(απ), ω1 sin(απ))

Φ̂(ω1 cos(απ), ω1 sin(απ))
=

N3∑
k=1

c3k e− iω1ṽk,3 ,

where ṽk,3, k = 1, . . . , N3 ≤ N are the pairwise different values of the set {vj,1 cos(απ)+
vj,2 sin(απ) : j = 1, . . . , N}. However, the construction of α yields that N3 = N since
all possible shift vectors yield different projections onto the third line y = tan(απ)x.

Let Ṽ3 := {ṽk,3 : k = 1, . . . , N} be the set of pairwise different frequencies, and let
c3k be the corresponding coefficients obtained by applying the Prony method to the

samples f̂(cos(απ)`h, sin(απ)`h), ` = 0, . . . , N . Hence, the point set

G̃ := {v = (v1, v2) : v1 ∈ Ṽ1, v2 ∈ Ṽ2, v1 cos(απ) + v2 sin(απ) ∈ Ṽ3}

contains now only the N wanted shifts vj , and the corresponding coefficients cj are
given by the set {c3j , j = 1, . . . N}.
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Remarks 4.4
1. In the reconstruction scheme given in Theorem 4.3, the angle α of the third line
of Fourier samples has to be taken dependently on the set G, i.e., dependently on
the candidates for shifts in G found from the first two lines. For practical purposes
it would be of great interest to compute the wanted shifts and coefficients of f in
(4.5) from given Fourier samples taken beforehand independently from the shifts in
f . In fact, for most practical cases, the consideration of the point set G̃ (with a priori
given angle απ) already yields a sufficiently small set of candidates, such that the true
shifts can be found using the N1 +N2 +N3 conditions of the form (4.8) (or similar to
(4.8)) for the coefficients. However, counterexamples can be found for certain sets of
shifts with special symmetry properties, where a complete reconstruction of f is not
possible. We conjecture that the set of Fourier samples on four lines of the form

{f̂(0, 0), f̂(`h, 0), f̂(0, `h), f̂(cos(απ)`h, sin(απ)`h),

f̂(− sin(απ)`h, cos(απ)`h), ` = 1, . . . , N},

where α satisfies tan(απ) 6= 1
n for n ∈ N, always suffices for a unique reconstruction

of f . Here, we consider the Fourier samples on four lines where the first two lines are
orthogonal and the last two are also orthogonal. In this case, the true shift vectors
vj have to be contained in the set

G := {v = (v1, v2) : v1 ∈ Ṽ1, v2 ∈ Ṽ2, v1 cos(απ) + v2 sin(απ) ∈ Ṽ3,

− v1 sin(απ) + v2 cos(απ) ∈ Ṽ4},

where Ṽν := {ṽk,ν : k = 1, . . . , Nν}, ν = 1, 2, 3, 4. Moreover, the Prony method
provides N1 +N2 +N3 +N4 conditions for the coefficients of the form (4.8) (or similar
to (4.8)) that can be applied for determining all true shifts of f .

2. The considered idea of function reconstruction can be also generalized to higher
dimensions.

5 Numerical results

We want to apply the described reconstruction methods to examples of step func-
tions, non-uniform spline functions and non-uniform translates of radial functions.
All examples considered in this section have been computed using MATLAB 7.11
with double precision arithmetic on a MacBook Pro with a 2.4 GHz Intel Core 2 Duo
processor.

In the first two examples we consider the reconstruction of one-dimensional func-
tions. Figure 1 presents a step function that is determined by the knot sequence
{Tj}j=1,...,7 and the coefficient sequence {cj}j=1,...,6 given in Table 1. Observe that
the knots T1 = −11.5 and T2 = −11.43 are very close, and that the difference of
the two successive coefficients c3 = 1.2 and c4 = 1.1 is rather small. To show the
exactness of the reconstruction we have displayed the absolute reconstruction errors
|T ∗j − Tj |, j = 1, . . . , 7, and |c∗j − cj |, j = 1, . . . , 6, where T ∗j and c∗j denote the recon-
structed knot values and coefficient values, respectively.
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Figure 1:
original function of the form (3.1) with N = 6
determined by {Tj} and {cj} given in Table 1.

j Tj |T ∗j − Tj | ≈ cj |c∗j − cj | ≈
1 -11.5 9.81 · 10−13 -2 6.24 · 10−11

2 -11.43 4.867 · 10−13 3 1.91 · 10−14

3 -9 5.329 · 10−15 1.2 2.864 · 10−14

4 -5.37 1.51 · 10−14 1.1 3.153 · 10−14

5 -1.3 1.554 · 10−15 -4 4.441 · 10−14

6 1 1.998 · 10−15 2 6.306 · 10−14

7 4 3.997 · 10−15

Table 1:
parameters for the original function in Figure 1 and

reconstruction errors, where h = 0.27.

The second example shows the results for the reconstruction of a non-uniform
spline function of the form (3.2). We have taken N = 5 and non-uniform B-splines
of order m = 5. The original parameters Tj and cj are listed in Table 2, and we also
compare them with the reconstructed values T ∗j and c∗j , respectively.
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Figure 2:
original function of the form (3.2) determined by
{Tj} and {cj} (see Table 2) with N = 5, m = 5.

j Tj |T ∗j − Tj | ≈ cj |c∗j − cj | ≈
1 -6 2.665 · 10−15 -3.2 1.377 · 10−14

2 -5.8 4.441 · 10−15 3.1 4.441 · 10−15

3 -4 4.441 · 10−16 -0.8 2.156 · 10−13

4 -2.25 4.441 · 10−16 1.5 8.136 · 10−13

5 -0.6 9.992 · 10−16 -3 1.792 · 10−12

6 0 2.053 · 10−15

7 1.3 1.11 · 10−15

8 2.73 8.882 · 10−16

9 3.5 1.332 · 10−15

10 4.2 8.882 · 10−16

Table 2:
parameters for the original function in Figure 2 and

reconstruction errors, where h = 0.5.

In the last two examples, we want to show how our proposed algorithm works
for the case of non-uniform translates of bivariate radial functions. Therefore, we
have taken the radial function Φ(x1, x2) := exp

(
−α · (x21 + x22)

)
with α = 0.05 and

a discrete grid setting with 128 × 128 points where the values for the first and the
second coordinate are ranging from −64 to 63 and from −63 to 64, respectively.

First, we have taken an original function which consists only of four summands,
but where three shift vectors are lying closely to each other on the same vertical line
(see Figure 3). The determining parameters are listed in Table 3. In addition, also the
absolute reconstruction errors between the original parameters and the reconstructed
parameters v∗j,1, v

∗
j,2 and c∗j , respectively, are listed in Table 3. We have used these

parameters to evaluate the reconstructed function on the discrete grid and to compare
it with the original function on this grid. In this way we get a maximal absolute error
between the original and the reconstructed function of approximately 2.465 · 10−8.
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The second two-dimensional function we have applied our algorithm to is displayed
in Figure 4. Considering only the shift vectors and not the coefficients, this function
has an 8-fold rotation symmetry. For the original parameters and the reconstruction
errors see Table 4. Again, we have used the reconstructed parameters to evaluate the
reconstructed function on the discrete grid. Comparison with the original function
yields a maximal absolute error of approximately 1.353 · 10−8.
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Figure 3:
original function of the form (4.5) determined by

{vj} and {cj} given in Table 3.
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Figure 4:
original function of the form (4.5) determined by

{vj} and {cj} given in Table 4.

j vj,1 |v∗j,1 − vj,1| ≈ vj,2 |v∗j,2 − vj,2| ≈ cj |c∗j − cj | ≈
1 34 1.421 · 10−14 5 2.958 · 10−13 3 2.531 · 10−8

2 -34 0 5 2.958 · 10−13 4 4.406 · 10−9

3 34 1.421 · 10−14 10 2.603 · 10−11 2 5.795 · 10−7

4 34 1.421 · 10−14 10.25 6.908 · 10−12 4 5.586 · 10−7

Table 3:
parameters for the original function in Figure 3 and reconstruction errors.

j vj,1 |v∗j,1 − vj,1| ≈ vj,2 |v∗j,2 − vj,2| ≈ cj |c∗j − cj | ≈
1 -10 1.954 · 10−14 20 1.066 · 10−14 1 6.646 · 10−9

2 10 1.066 · 10−14 20 1.066 · 10−14 2 8.371 · 10−9

3 20 7.105 · 10−15 10 1.421 · 10−14 3 9.27 · 10−9

4 20 7.105 · 10−15 -10 3.02 · 10−14 1 1.139 · 10−8

5 10 1.066 · 10−14 -20 1.066 · 10−14 1 6.217 · 10−9

6 -10 1.954 · 10−14 -20 1.066 · 10−14 2 6.036 · 10−9

7 -20 2.842 · 10−14 -10 3.02 · 10−14 3 1.353 · 10−8

8 -20 2.842 · 10−14 10 1.421 · 10−14 1 1.198 · 10−8

Table 4:
parameters for the original function in Figure 4 and reconstruction errors.
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