
ar
X

iv
:1

80
3.

05
20

7v
1

 [m
at

h.
N

A
]

14
 M

ar
 2

01
8

Sparse Fast DCT for Vectors with

One-block Support

Sina Bittens∗ Gerlind Plonka†

March 15, 2018

Abstract

In this paper we present a new fast and deterministic algorithm for the inverse
discrete cosine transform of type II that reconstructs the input vector x ∈ RN ,

N = 2J−1, with short support of length m from its discrete cosine transform xÎI =
CII

N
x. The resulting algorithm has a runtime of O

(
m logm log 2N

m

)
and requires

O
(
m log 2N

m

)
samples of xÎI.

In order to derive this algorithm we also develop a new fast and deterministic
inverse FFT algorithm that constructs the input vector y ∈ R2N with reflected block
support of block length m from ŷ with the same runtime and sampling complexities
as our DCT algorithm.

Keywords. discrete cosine transform, deterministic sparse fast DCT, sublinear sparse
DCT, discrete Fourier transform, deterministic sparse FFT, sublinear sparse FFT
AMS Subject Classification. 65T50, 42A38, 65Y20

1 Introduction

In recent years there has been an increased effort to develop deterministic sparse FFT
algorithms that exploit a priori knowledge of the resulting vector to reduce the overall
complexity. For example, if x ∈ CN is known to possess m significant entries, or a
short support of length m, the derived deterministic sparse FFT has only a sublinear
arithmetical complexity.

There exist several approaches to obtain sublinear-time sparse FFT algorithms, mostly
with different requirements on the supposed structure of the resulting vector. If the sup-
port in Fourier domain consists of n blocks of length at most m, there is a deterministic

sparse FFT algorithm with runtime O
(
mn2 logm log4 N

log2 n

)
, see [5]. Apart from other de-

terministic methods, see, e.g., [1, 2, 6, 10, 11, 15, 16, 18, 20], there also exist randomized
algorithms, some of which have an even smaller runtime, but whose outputs are only cor-
rect with a certain probability, usually below 90%, see, e.g., [9,12]. For further methods
we refer to the survey [8].

∗University of Göttingen, Institute for Numerical and Applied Mathematics, Lotzestr. 16-18, 37083
Göttingen, Germany. Email: sina.bittens@mathematik.uni-goettingen.de

†University of Göttingen, Institute for Numerical and Applied Mathematics, Lotzestr. 16-18, 37083
Göttingen, Germany. Email: plonka@math.uni-goettingen.de

1

http://arxiv.org/abs/1803.05207v1

To the best of our knowledge there exist no sparse fast algorithms for trigonometric
transforms. However, besides the DFT, the discrete cosine transform (DCT) is one
of the most widely used algorithms in mathematics, engineering and data processing.
One reason for the interest in DCT algorithms is their capability to decorrelate signals
governed by Markov processes approaching the statistically optimal Karhunen-Loeve
transform (KLT), see [19]. The DCT is one of the major components in data compression.
As for the DFT there exist many different fast algorithms for the DCT, based either
on FFT in complex arithmetic or directly on real arithmetic, see [14]. One possible
application of the sparse DCT is the fast evaluation of polynomials in monomial form
from sparse expansions of Chebyshev polynomials, see, e.g., [13], Chapter 6.

In this paper we present a first sparse fast algorithm for the inverse DCT-II (or equiva-
lently for the DCT-III), assuming that the resulting vector x ∈ RN possesses a one-block
(or short) support of length m < N , where m does not have to be known a priori. This
algorithm has a runtime of O

(
m logm log 2N

m

)
and requires only O

(
m log 2N

m

)
samples.

1.1 Notation and Problem Statement

Let N = 2J−1 with J ≥ 2. We say that a vector x = (xj)
N−1
j=0 ∈ RN possesses a one-block

support Sx of length m if

xj = 0 ∀ j /∈ Sx := Iµx,νx := {µx, (µx + 1) mod N, . . . , νx} ,

for some µx ∈ {0, . . . , N − 1} and νx := (µx +m− 1) mod N , where we allow the
support to be periodically wrapped around 0. The interval Sx := Iµx,νx is called the
support interval, µx the first support index and νx the last support index. The support
length m is uniquely determined. If m ≤ N/2, the first support index µx is unique as well,
which does not have to be the case for m > N/2. For example, x = (1, 0, 0, 0, 1, 0, 0, 0)T

has support length m = 5, but the first support index µx can be chosen to be 0 or 4.
Further, we consider y := (xT , (JNx)T)T ∈ R2N and say that y possesses a reflected

block support of block length m if x ∈ RN has a one-block support of length m. Here,
JN ∈ RN×N denotes the counter identity,

JN := (δk,N−1−l)
N−1
k, l=0 =

⎛

⎜⎜⎜⎝

0 . . . 0 1
0 1 0

0 . .
. ...

1 0 0

⎞

⎟⎟⎟⎠
,

so the second half of y is the reflection of x.
For N ∈ N the cosine matrix of type II is defined as

CII
N :=

√
2

N

(
εN (k) cos

(
k(2l + 1)π

2N

))N−1

k, l=0

,

where εN (k) := 1√
2

for k ≡ 0 mod N and εN (k) := 1 for k ̸≡ 0 mod N . This matrix is

orthogonal, i.e., CII
N

(
CII

N

)T
= IN , where IN denotes the identity matrix of size N ×N .

The discrete cosine transform of type II (DCT-II) of x ∈ RN is given by

xÎI := CII
Nx.

2

The inverse DCT-II is equal to the discrete cosine transform of type III (DCT-III) with

transformation matrix CIII :=
(
CII

N

)T
. The Fourier matrix of size N × N is defined as

FN :=
(
ωkl
N

)N−1

k, l=0
, where ωN := e

−2πi
N is an Nth primitive root of unity. Then the discrete

Fourier transform (DFT) of x ∈ CN is given by

x̂ := FNx.

The purpose of this paper is to derive a sparse fast DCT algorithm for computing x with

(unknown) one-block support of length m < N from its DCT-transformed vector xÎI in
sublinear time O

(
m logm log 2N

m

)
. In particular, if m approaches the vector length N ,

the proposed algorithm still has a runtime complexity of O(N logN) that is also achieved
by fast DCT algorithms for vectors with full support. Our algorithm is truly deterministic
and returns the correct vector x if we assume that the vector y = (xT , (JNx)T)T ∈ R2N

satisfies the condition that for each nonzero entry yk ̸= 0 of y we also have that

y(j)
k mod 2j

:=
2J−j−1∑

l=0

yk+2j l ̸= 0 ∀ j ∈ {0, . . . , J}. (1)

This assumption is for example satisfied if all nonzero entries of x are positive or all
nonzero entries are negative, i.e., x ∈ RN

≥0 or x ∈ RN
≤0. In practice, for noisy data, one

has to ensure that, for a threshold ε > 0 depending on the noise level,
∣∣∣y(j)k mod 2j

∣∣∣ > ε ∀ j ∈ {0, . . . , J}.

1.2 Outline of the Paper

The algorithm presented in this paper is based on the fact that the DCT-II and the DFT
are closely related. In Section 2 we recall that the DCT-II can be computed by applying
the DFT to the vector y := (xT , (JNx)T)T ∈ R2N of double length. We then derive a
sparse fast DFT algorithm for vectors y with reflected block support, generalizing ideas
in [15] and [16]. This sparse FFT does not require a priori knowledge of the length m of
the two support blocks of y.

The vector y is computed using an iterative procedure. As in [15, 16] we use the

2j-length periodizations y(j) of y ∈ R2J for j ∈ {0, . . . , J − 1} and efficiently compute
y(j+1) exploiting that y(j) is known. This approach requires a detailed investigation of
the support properties of y(j+1), depending on the support of y(j). The corresponding
observations are summarized in Section 3. We have to distinguish two different cases
for the reconstruction of y(j+1) from y(j), namely that y(j) possesses either a one-block
support of length m(j) ≤ 2m or a two-block support, where each block already has length
m and the second block is the reflection of the first. We present two numerical procedures
to treat these cases in Section 4. Using these methods we develop the complete sparse
FFT algorithm for computing y and prove its arithmetical complexity in Section 5.1.
Section 5.2 is devoted to the stable, efficient detection of the support of the periodized
vectors y(j+1). The sparse DCT algorithm, presented in Section 5.3, can now simply be
derived from this special sparse FFT. Finally, we extensively test the new sparse FFT
and the sparse DCT algorithm with respect to runtime and stability for noisy input data
in Section 6.

3

2 DCT-II via DFT

A fast DCT algorithm can be obtained by employing fast DFT algorithms. Recall that
for x = (xk)

N−1
k=0 ∈ RN we defined y = (yk)

2N−1
k=0 ∈ R2N as y := (xT , (JNx)T)T in Section

1.1, so y can be written as

yk :=

{
xk, k ∈ {0, . . . , N − 1},
xN−1−k, k ∈ {N, . . . , 2N − 1}.

(2)

The following lemma shows the close relation between xÎI and ŷ, namely that xÎI can be
computed from ŷ and vice versa, see [19].

Lemma 2.1 Let x ∈ RN and y = (xT , (JNx)T)T . Then xÎI =
(
xÎIk

)N−1

k=0
= CII

Nx is

given by

xÎIk =
εN (k)√
2N

ωk
4N · ŷk, k ∈ {0, . . . , N − 1}, (3)

where ŷ = (ŷk)
2N−1
k=0 = F2Ny. Conversely, ŷ is completely determined by xÎI via

ŷk =

⎧
⎪⎪⎨

⎪⎪⎩

√
2N

εN (k)ω
−k
4N · xÎIk , k ∈ {0, . . . , N − 1},

0, k = N,

−
√
2N

εN (2N−k)ω
−k
4N · xÎI2N−k, k ∈ {N + 1, . . . , 2N − 1}.

(4)

Proof. 1. Let k ∈ {0, . . . , N − 1}. We find that

xÎIk =

√
2

N
εN (k)

N−1∑

l=0

cos

(
2 · k(2l + 1)π

2 · 2N

)
xl =

εN (k)√
2N

N−1∑

l=0

(
ωk(2l+1)
4N + ω−k(2l+2−1)

4N

)
xl

=
εN (k)√
2N

ωk
4N

N−1∑

l=0

(
ωkl
2N + ωk(2N−1−l)

2N

)
xl

=
εN (k)√
2N

ωk
4N

(
N−1∑

l=0

ωkl
2Nxl +

2N−1∑

l′=N

ωkl′

2Nx2N−1−l′

)

=
εN (k)√
2N

ωk
4N · ŷk.

2. For k ∈ {0, . . . , N−1} the claim in (4) follows directly from (3). For k ∈ {N, . . . , 2N−
1} note that by construction y is symmetric,

J2Ny = J2N

(
x

JNx

)
=

(
x

JNx

)
= y, (5)

which implies that

ŷk =
(
Ĵ2Ny

)

k
=

2N−1∑

l′=0

ωkl′

2Ny2N−1−l′ =
2N−1∑

l=0

ωk(2N−1−l)
2N yl = ω−k

2N

2N−1∑

l=0

ω−kl
2N yl. (6)

4

If k = N , we obtain from (6) that

ŷN = ω−N
2N

2N−1∑

l=0

ω−Nl
2N yl = −

2N−1∑

l=0

ωNl
2Nyl = −ŷN ,

so ŷN = 0. If k ∈ {N + 1, . . . , 2N − 1}, then 2N − k ∈ {1, . . . , N − 1}, and (6) yields

ŷk = ω−k
2N

2N−1∑

l=0

ω−kl
2N yl = ω−k

2N

2N−1∑

l=0

ω(2N−k)l
2N yl

= ω−k
2N · ŷ2N−k = −

√
2N

εN (2N − k)
ω−k
4N · xÎI2N−k.

3 Support Properties of the Periodized Vectors

We want to develop a deterministic sublinear-time DCT algorithm for reconstructing

x ∈ RN with one-block support from xÎI. Using the close relation between the DFT
and the DCT-II shown in Lemma 2.1, this problem can be transformed into deriving
a sparse FFT algorithm for reconstructing y = (xT , (JNx)T)T , which has a reflected
block support, from ŷ. For this purpose we extend recent approaches in [15,16] for FFT
reconstruction of vectors with one-block support to our setting.

We assume that y satisfies (1) in order to avoid cancellation of nonzero entries in the
iterative algorithm. Similarly as in [15,16] we employ a divide-and-conquer technique to
efficiently compute y from ŷ.

Let N := 2J−1 for some J ≥ 2. For j ∈ {0, . . . , J} let the periodization y(j) ∈ R2j of

y = (yk)
2J−1
k=0 be given as in (1), i.e.,

y(j) =
(
y(j)k

)2j−1

k=0
:=

⎛

⎝
2J−j−1∑

l=0

yk+2j l

⎞

⎠
2j−1

k=0

. (7)

In particular, we observe that y(J) = y, y(0) =
2N−1∑
k=0

yk and

y(j)k = y(j+1)
k + y(j+1)

k+2j , k ∈
{
0, . . . , 2j − 1

}
, (8)

for j ∈ {0, . . . , J − 1}. The following lemma shows that the Fourier transform ŷ(j) of
y(j) is obtained by equidistantly sampling 2j entries of ŷ, and that the periodization y(j)

possesses a symmetry property analogous to the one of y in (5).

Lemma 3.1 Let N = 2J−1, y ∈ R2N and j ∈ {0, . . . , J}. Then ŷ(j) satisfies

ŷ(j) := F2jy
(j) = (ŷ2J−jk)

2j−1
k=0 . (9)

Further, y(j) is symmetric, i.e.,
y(j) = J2jy

(j). (10)

5

Proof. In [15], Lemma 2.1, (9) was already shown. By (5) we have that yk = y2J−1−k for
k ∈

{
0, . . . , 2J − 1

}
. It follows for the entries of y(J−1) that

y(J−1)
k = yk + yk+2J−1 = y2J−1−k + y2J−1−(k+2J−1) = y(J−1)

2J−1−1−k

for all k ∈
{
0, . . . , 2J−1 − 1

}
; thus y(J−1) = J2J−1y(J−1). For j < J − 1 (10) can be

proven inductively with the same argument.

Lemma 2.2 in [15] shows how the Fourier transform of a vector u ∈ R2j+1
, j ≥ 0,

changes if its entries are cyclically shifted by 2j .

Lemma 3.2 Let u ∈ R2j+1
, j ≥ 0, and let the shifted vector u1 :=

(
u1k
)2j+1−1
k=0

∈ R2j+1

be given by
u1k := u(k+2j) mod 2j+1 , k ∈

{
0, . . . , 2j+1 − 1

}
.

Then û1 satisfies

û1k = (−1)kûk ∀ k ∈
{
0, . . . , 2j+1 − 1

}
.

Our goal is to reconstruct y from ŷ by successively computing its periodizations y(0),
y(1), . . . ,y(J) = y. In the jth iteration step of the procedure we have to determine y(j+1)

from ŷ(j+1) efficiently, which can be done by employing the vector y(j) known from the
previous step. In order for this approach to work we need to investigate how the support
blocks of y(j+1) can look like if the support of y(j) is given.

We start by inspecting the support properties of y(J) =
(
xT , (JNx)T

)T ∈ R2N .

Lemma 3.3 Let x ∈ RN with N = 2J−1 have the one-block support Sx = Iµx,νx of
length m < N . Set y = y(J) = (xT , (JNx)T)T ∈ R2N and assume that y satisfies (1).

i) If µx ≤ νx, y has the (reflected) two-block support S(J) = Iµx,νx∪I2N−1−νx,2N−1−µx

with two blocks of the same length m = νx − µx + 1. In the special cases µx = 0
or νx = N − 1, these two support blocks are adjacent and form a (reflected) one-
block support, namely S(J) = I2N−1−νx,νx for µx = 0 and S(J) = Iµx,2N−1−µx for
νx = N − 1.

ii) If µx > νx, then y has the (reflected) two-block support S(J) = Iµx,2N−1−µx ∪
I2N−1−νx,νx , where the two separated support blocks have the possibly different
lengths 2(N − µx) and 2(νx + 1), which sum up to 2m = 2 (N − µx + νx + 1).

The proof of Lemma 3.3 follows directly from the definition of y. Note that since
m < N , µx = νx + 1 is not possible in ii). Therefore, the two support blocks in ii) are
always separated. For algorithmic purposes we then denote the first index of the block
centered around the middle of the vector by µ(J) and the first index of the block centered
around the boundary of the vector by η(J). See Figure 2 (left) for a visualization.

Let us now consider the support properties of the periodization y(j) ∈ R2j for j < J .

Lemma 3.4 Let N = 2J−1 and x ∈ RN have a one-block support of length m < N . Set
y = (xT , (JNx)T)T and assume that y satisfies (1). For j ∈ {0, . . . , J −1} let y(j) be the
2j-length periodization of y according to (7). Then y(j) possesses either

A) the (reflected) one-block support S(j) = Iµ(j),ν(j) of length m(j) ≤ 2m for some

µ(j) ∈ {0, . . . , 2j − 1} with ν(j) = 2j − 1−µ(j), which is centered around the middle

6

y
(j)

0 2j − 12j−1 − 1

m(j)

µ(j)

y
(j)

0 2j − 12j−1 − 1
µ(j)

y
(j+1)

0 2j+1 − 12j − 1

m m

µ(j+1) = µ(j)

y
(j+1)

0 2j+1 − 12j − 1
µ(j+1) = µ(j)

or y
(j+1)

0 2j+1 − 12j − 1
2j + µ(j)

or y
(j+1)

0 2j+1 − 12j − 1
µ(j+1) = 2j + µ(j)

Figure 1: Illustration of the two possibilities for the support of y(j+1) for given y(j)

according to Theorem 3.5 in case A1 (left) and case A3 (right).

y
(J−1)

0 2J−1 − 12J−2 − 1

µ(J−1)

y
(j)

0 2j − 12j−1 − 1
µ(j)

y
(J)

0 2J − 12J−1 − 1
η(J)

µ(J) = µ(J−1)

y
(j+1)

0 2j+1 − 12j − 1
µ(j)

or y
(J)

0 2J − 12J−1 − 1

η(J) = 2J−1 + µ(J−1)

or y
(j+1)

0 2j+1 − 12j − 1
2j + µ(j)2j − m(j) − µ(j)

Figure 2: Illustration of the two possibilities for the support of y(j+1) for given y(j)

according to Theorem 3.5 in case A4 (left) and case B (right).

of the vector, i.e., 2j−1 − 1 and 2j−1, or around the boundary, i.e., 2j − 1 and 0.
Here, m(j) = ν(j)−µ(j)+1 if ν(j) ≥ µ(j) and m(j) = 2j−µ(j)+ν(j)+1 if ν(j) < µ(j),
or

B) the (reflected) two-block support S(j) = Iµ(j),ν(j) ∪I2j−1−ν(j),2j−1−µ(j) for µ(j), ν(j) ∈
{0, . . . , 2j − 1}, where the two blocks have length n(j) = m and are separated.

Proof. By definition of the periodization y(j) in (7) the number of support indices k with

y(j)k ̸= 0 can never exceed the number of nonzero elements of y(j+1), also called sparsity.
If y(j+1) has a two-block support, then y(j) possesses at most two support blocks, as the
two blocks of y(j+1) are either mapped to two blocks of the same length in y(j) or to one
block consisting of the two partially overlapping blocks of y(j+1) by (8). Thus, if y(j) has
a one-block support, its length m(j) is at most 2m. Moreover, by the symmetry property
(10), the block has to be centered around the middle of the vector or around its boundary.
It also follows from (10) that the blocks are reflections of each other in the two-block
case. If we have obtained y(l) with a one-block support, all shorter periodizations y(j),
j ∈ {0, . . . , l− 1}, possess a one-block support of length m(j) ≤ 2m as well. Figure 1 and
Figure 2 (right) depict cases A and B, respectively.

We always denote by µ(j) and ν(j) the first and last support index of y(j) if y(j) has
a one-block support, or the first index of the first support block and the last index of
the first support block if y(j) has a two-block support. In the one-block case the support
length of y(j) is m(j), and in the two-block case we denote the length of the two support
blocks by n(j) for algorithmic purposes, even though n(j) = m for exact data.

7

If y(j) has a one-block support of length 2j−1 < m(j) ≤ 2j , the first support index
may not be uniquely determined. For example, for y(3) = (0, 1, 1, 0, 0, 1, 1, 0)T , which by
definition can be considered to have a one-block support of length 6, the support interval
can be either S(3) = I1,6 or S(3) = I5,2. Note that by Lemma 3.4 the support of y(j) is
symmetric, i.e., S(j) = Iµ(j),2j−1−µ(j) , which can be used to exclude some possible first

support indices. If the first support index is still not unique, we choose 0 ≤ µ(j) < 2j−1−1
such that S(j) is centered around the middle of the vector, i.e., around 2j−1−1 and 2j−1.
In the example above we choose µ(3) := 1. If m = 2j , we just fix µ(j) := 0.

Example 1. Let x = (0, x1, x2, 0, 0, 0, 0, 0)T ∈ R8 with nonzero entries x1, x2, i.e., with
one-block support Sx = I1,2 of length m = 2. Then y and its periodizations are

y = y(4) = (0, x1, x2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x2 , x1, 0)
T ,

y(3) = (0, x1, x2, 0, 0, x2, x1, 0)
T ,

y(2) = (0, x1 + x2, x1 + x2, 0)
T ,

y(1) = (x1 + x2, x1 + x2)
T ,

y(0) = (2(x1 + x2))
T .

Here, y has the reflected block support S(4) = I1,2 ∪ I13,14 of length n(4) = m = 2, as
in case i) of Lemma 3.3, and y(3) has the two-block support S(3) = I1,2 ∪ I5,6 of length
n(3) = m = 2. The periodization y(2) has the one-block support S(2) = I1,2 of length
m(2) = 2 < 2m, centered around the middle of the vector, i.e., 1 and 2, with µ(2) = 1.
The vectors y(1) and y(0) both have full support, which can be interpreted as a one-block
support centered around the middle with µ(1) = µ(0) = 0, m(1) = 2 and m(0) = 1.

2. Let x = (x0, x1, 0, 0, 0, 0, 0, x7)T with nonzero entries x0, x1 and x7, i.e., with
one-block support Sx = I7,1 of length m = 3. Then we obtain

y = y(4) = (x0, x1, 0, 0, 0, 0, 0, x7 , x7, 0, 0, 0, 0, 0, x1 , x0)
T ,

y(3) = (x0 + x7, x1, 0, 0, 0, 0, x1 , x0 + x7)
T ,

y(2) = (x0 + x7, x1, x1, x0 + x7)
T ,

y(1) = (x0 + x1 + x7, x0 + x1 + x7)
T ,

y(0) = (2(x0 + x1 + x7))
T .

Here, y has the reflected block support S(4) = I7,8 ∪ I14,1 with block lengths 2 and 4, as
in case i) of Lemma 3.3. The vector y(3) has the one-block support S(3) = I14,1 of length
m(3) = 4 with µ(3) = 6, centered around 15 and 0. All shorter periodizations have a one-
block support as well, but centered around the middle with µ(2) = µ(1) = µ(0) = 0. ♦

In our algorithm we want to reconstruct y(j+1) iteratively for j ∈ {0, . . . , J − 1}, using
in each step that y(j) is already known. In the following theorem we summarize the
observations about the support properties of y(j+1) given the support of y(j).

Theorem 3.5 Let N = 2J−1 and x ∈ RN have a one-block support of length m < N .
Set y = (xT , (JNx)T)T and assume that y satisfies (1). For j ∈ {0, . . . , J − 1} let y(j)

be the 2j-length periodization of y according to (7).

A1) If y(j) possesses the one-block support S(j) = Iµ(j),2j−1−µ(j) of length m(j) ≤ 2m

8

with m(j) < 2j centered around the middle of the vector, i.e., around 2j−1 − 1 and
2j−1, then y(j+1) possesses the two-block support

S(j+1) = Iµ(j+1),ν(j+1) ∪ I2j+1−1−ν(j+1),2j+1−1−µ(j+1) ,

with two blocks of length n(j+1) = m, where either µ(j+1) = µ(j) or 2j+1 − 1 −
ν(j+1) = µ(j) + 2j , see Figure 1 (left).

A2) If y(j) possesses the one-block support S(j) = I0,2j−1 of length m(j) = 2j and

j < J − 1, then y(j+1) has a one-block support of length m(j+1) ≥ m(j). In the
special case j = J − 1, y = y(J) has a two-block support with two blocks of possibly
different lengths or a one-block support of length m(J) ≥ m(J−1).

A3) If j < J−1 and y(j) possesses the one-block support I(j)
µ(j),2j−1−µ(j) of length m(j) <

2j centered around the boundary of the vector, i.e., around 2j−1 and 0, then y(j+1)

possesses the one-block support

S(j+1) = Iµ(j+1),2j+1−1−µ(j+1)

of length m(j+1) = m(j), centered around the middle or the boundary of the vector,
i.e., around 2j − 1 and 2j or around 2j+1 − 1 and 0. Here, µ(j+1) = µ(j) or
µ(j+1) = µ(j) + 2j , see Figure 1 (right).

A4) If j = J−1 and y(J−1) has the one-block support S(J−1) = Iµ(J−1),2J−1−1−µ(J−1) with

m(J−1) < 2J−1 centered around the boundary of the vector, i.e., around 2J−1 − 1
and 0, then y = y(J) possesses the two-block support

S(J) = Iµ(J),2J−1−µ(J) ∪ Iη(J),2J−1−η(J) with µ(J) < 2J−1 ≤ η(J), (11)

where the two blocks may have different lengths. In the boundary cases µx = 0 or
νx = 2J−1−1 one of these blocks is empty. We always have that either µ(J) = µ(J−1)

or η(J) = 2J−1 + µ(J−1), but µ(J) and η(J) are not both known, see Figure 2 (left).

B) If y(j) possesses the two-block support S(j) = Iµ(j),ν(j) ∪ I2j−1−ν(j),2j−1−µ(j) with

block length n(j) = m, then y(j+1) has the two-block support

S(j+1) = Iµ(j+1),ν(j+1) ∪ I2j+1−1−ν(j+1),2j+1−1−µ(j+1) (12)

with block length n(j+1) = m, where µ(j+1) = µ(j) or µ(j+1) = 2j −m − µ(j), see
Figure 2 (right). If µ(j+1) = µ(j), the first blocks of y(j) and y(j+1) are identical,
with the same support, and the second block of y(j+1) is the second block of y(j),
shifted by 2j . Otherwise the first block of y(j+1) is the second block of y(j), with the
same support, and the second block of y(j+1) is the first block of y(j), shifted by 2j .

Proof. Cases A1 to A4, henceforth subsumed to CaseA, summarize the support properties
of y(j+1) if y(j) possesses a one-block support. Assertion B covers the case that y(j) has
a two-block support.

All observations about the possible support blocks of y(j+1) follow immediately from
the known support S(j) of y(j) and (7), using the results from Lemma 3.3 and Lemma
3.4. Figures 1 and 2 illustrate the described cases.

9

4 Iterative Sparse DFT Procedures

There is an important difference between cases A1 to A4 of Theorem 3.5 on the one hand
and case B on the other hand. In cases A1 to A4 y(j) has a one-block support that
usually contains overlapping entries of the original vector y, i.e., some entries of y(j) are
obtained as sums of nonzero entries of y. In case B, however, both support blocks of
y(j) are of length n(j) = m and they are separated. Thus, the nonzero entries of y(j)

and y(j+1) are the same and we only have to find the first support indices of the blocks
in y(j+1) to obtain it from y(j). In the following two sections we therefore derive two
different strategies for computing y(j+1); the first one has to be employed in case A, and
the second one in case B.

4.1 A DFT Procedure for Case A: One-block Support

We assume that y(j) possesses the one-block support

S(j) = Iµ(j),2j−1−µ(j) = Iµ(j),(µ(j)+m(j)−1) mod 2j (13)

of length m(j) ≤ 2m. Then it follows from (8) and Theorem 3.5, case A that the support
S(j+1) of y(j+1) satisfies

S(j+1) ⊂ Iµ(j),µ(j)+m(j)−1 ∪ I2j+µ(j),(2j+µ(j)+m(j)−1) mod 2j+1 .

The procedure developed hereafter utilizes that y(j+1) is symmetric and thus determined
by its first half. We define the two partial vectors

y
(j+1)
(0)

:=
(
y(j+1)
k

)2j−1

k=0
and y

(j+1)
(1)

:=
(
y(j+1)
k

)2j+1−1

k=2j

of y(j+1). Both halves of y(j+1) have a one-block support, as can be seen in Figure 1 and
Figure 2 (left). Hence, also the following inclusion holds for the support of y(j+1),

S(j+1) ⊂
{(

µ(j) + r
)

mod 2j : r ∈
{
0, . . . ,m(j) − 1

}}

∪
{
2j +

(
µ(j) + r

)
mod 2j : r ∈

{
0, . . . ,m(j) − 1

}}
, (14)

where the support of y
(j+1)
(0) is contained in the first set and the support of y

(j+1)
(1) is

contained in the second set. In particular, y(j+1) has at most 2m(j) nonzero entries. The
periodization property (8) implies that

y(j) = y
(j+1)
(0) + y

(j+1)
(1) , (15)

i.e., y(j+1) is already determined by y(j) and y
(j+1)
0 . Moreover, we can use the symmetry

property (5) to find y
(j+1)
(1) = J2jy

(j+1)
(0) via a permutation instead of solving (15).

Since the support of y(j+1)
0 is a subset of the support of y(j) by (14), we have to recover

at most m(j) nonzero entries of y(j+1)
0 . In order to efficiently compute these entries we

consider restrictions of y(j) and y
(j+1)
(0) to vectors of length 2L

(j)
, where 2L

(j)−1 < m(j) ≤

2L
(j)

, taking into account all nonzero entries. We then show that y
(j+1)
0 and thus y(j+1)

10

can be computed using essentially one DFT of length 2L
(j)

and some further operations of
complexity O

(
m(j)

)
. For this purpose we need to employ the known vector y(j) from the

previous iteration step and 2L
(j)

suitably chosen oddly indexed entries of ŷ(j+1), which
can be obtained from ŷ by Lemma 3.1.

The efficient computation of y(j+1) will be based on the following theorem.

Theorem 4.1 Let N = 2J−1 and x ∈ RN have a one-block support of length m < N .
Set y = (xT , (JNx)T)T and assume that y satisfies (1). For j ∈ {0, . . . , J − 1} let y(j)

be the 2j-length periodization of y according to (7) and suppose that y(j) has the one-
block support S(j) of length m(j) as in (13). Assume that we have access to all entries of

ŷ = (ŷk)
2J−1
k=0 . Further, let L(j) :=

⌈
log2 m

(j)
⌉
≤ j and define the restrictions of y(j) and

y
(j+1)
(0) to 2L

(j)
-length vectors,

z(j) :=

(
y(j)
(µ(j)+r) mod 2j

)2L
(j)−1

r=0

and z
(j+1)
(0)

:=

(
y(j+1)

(µ(j)+r) mod 2j

)2L
(j)−1

r=0

.

Then

z
(j+1)
(0) =

1

2

(
W

(j)
(1)

−1
· F−1

2L
(j) ·W

(j)
(0)

−1 (
ŷ
2J−L(j)

p+2J−j−1

)2L(j)−1

p=0
+ z(j)

)
, (16)

where W
(j)
(0)

:= diag
(
ωpµ(j)

2L
(j)

)2L(j)−1

p=0
and W

(j)
(1)

:= diag

(
ω
(µ(j)+r) mod 2j

2j+1

)2L
(j)−1

r=0

, and the

periodization y(j+1) is completely determined by

(
y(j+1)
(0)

)

(µ(j)+k) mod 2j
=

⎧
⎨

⎩

(
z(j+1)
(0)

)

k
, k ∈

{
0, . . . , 2L

(j) − 1
}
,

0, else,
(17)

(
y(j+1)
(1)

)

2j−1−(µ(j)+k) mod 2j
=

⎧
⎨

⎩

(
z(j+1)
(0)

)

k
, k ∈

{
0, . . . , 2L

(j) − 1
}
,

0, else.
(18)

Proof. It suffices to consider the oddly indexed entries ŷ(j+1)
2k+1 of ŷ(j+1) for k ∈{

0, . . . , 2j − 1
}
. With (15) we obtain

ŷ(j+1)
2k+1 =

((
ω(2k+1)l
2j+1

)2j+1−1

l=0

)T
(
y
(j+1)
(0)

y
(j+1)
(1)

)

=

((
ω(2k+1)l
2j+1

)2j−1

l=0

)T

y
(j+1)
(0) +

((
ω(2k+1)l
2j+1

)2j+1−1

l=2j

)T (
y(j) − y

(j+1)
(0)

)

=

((
ω(2k+1)l
2j+1

)2j−1

l=0

)T

y
(j+1)
(0) −

((
ω(2k+1)l
2j+1

)2j−1

l=0

)T (
y(j) − y

(j+1)
(0)

)

=

((
ω(2k+1)l
2j+1

)2j−1

l=0

)T (
2y(j+1)

(0) − y(j)
)
.

11

Using Lemma 3.1 we find that

(
ŷ2J−j−1(2k+1)

)2j−1

k=0
=
(
ŷ(j+1)

2k+1

)2j−1

k=0
=
(
ω(2k+1)l
2j+1

)2j−1

k, l=0

(
2y(j+1)

(0) − y(j)
)
, (19)

so y
(j+1)
(0) can be computed from y(j) and the oddly indexed entries of ŷ(j+1).

By definition of L(j) we have that 2L
(j)−1 < m(j) ≤ 2L

(j)
, and the m(j) nonzero entries

of y(j) are taken into account by the 2L
(j)

-length restriction z(j) of y(j). Similarly, by (8),

z
(j+1)
(0) takes into account the at most m(j) nonzero entries of y(j+1)

(0) . We can therefore

restrict (19) to the vectors z(j) and z
(j+1)
(0) , which yields

(
ŷ2J−j−1(2k+1)

)2j−1

k=0
=

(
ω
(2k+1)((µ(j)+r) mod 2j)
2j+1

)2j−1, 2L
(j)

−1

k, r=0

(
2z(j+1)

(0) − z(j)
)
. (20)

As z(j+1)
(0) and z(j) have length 2L

(j)
, it suffices to consider the 2L

(j)
equations correspond-

ing to k := 2j−L(j)
p for p ∈

{
0, . . . , 2L

(j) − 1
}

in (20). We obtain the factorization

(
ŷ
2J−j−1

(
2j+1−L(j)

p+1
)

)2L
(j)

−1

p=0

=

(
ω

(
2j+1−L(j)

p+1
)
((µ(j)+r) mod 2j)

2j+1

)2L
(j)

−1

p, r=0

(
2z(j+1)

(0) − z(j)
)

=diag
(
ωpµ(j)

2L
(j)

)2L(j)
−1

p=0
·
(
ωpr

2L
(j)

)2L(j)−1

p, r=0
· diag

(
ω
(µ(j)+r) mod 2j

2j+1

)2L
(j)−1

r=0

(
2z(j+1)

(0) − z(j)
)

=W
(j)
(0) · F2L

(j) ·W(j)
(1)

(
2z(j+1)

(0) − z(j)
)
. (21)

Since all matrices occurring in (21) are invertible, we derive z
(j+1)
(0) as in (16). Then

y(j+1) is given as in (17) and (18) by definition of z(j+1)
(0) and symmetry (5). Note that if

L(j) = 2j , then z(j) = y(j) and z
(j+1)
(0) = y

(j+1)
(0) .

4.2 A DFT Procedure for Case B: Two-block Support

We still have to devise a procedure for reconstructing y(j+1) from y(j) in Case B of
Theorem 3.5, i.e., if y(j) has a two-block support of the form

S(j) = Iµ(j),ν(j) ∪ I2j−1−ν(j),2j−1−µ(j) = Iµ(j),µ(j)+m−1 ∪ I2j−m−µ(j),2j−1−µ(j) (22)

with two blocks of length n(j) = m, and ν(j) = µ(j) +m− 1. We recall that by Theorem
3.5, Case B, the length n(j) of both blocks in y(j) is the same as the length n(j+1) of both
blocks in y(j+1) and also the same as the support length m of x. Furthermore, all entries
of y(j+1) are already determined; we just have to find out whether the first support block
of y(j) remains at the same position in y(j+1) or whether its support is shifted by 2j . The
other support block is obtained as the reflection of this block, according to the symmetry
property (5), see Figure 2 (right). In order to decide which of these possibilities for y(j+1)

12

is true, we employ one oddly indexed nonzero entry of ŷ(j+1). In a first step we show
that such a nonzero entry can be found efficiently.

Lemma 4.2 Let N = 2J−1 and x ∈ RN have a one-block support of length m < N . Set
y = (xT , (JNx)T)T and assume that y satisfies (1). For j ∈ {0, . . . , J − 1} let y(j) be
the 2j-length periodization of y according to (7) and suppose that y(j) has the two-block

support S(j) as in (22). Assume that we have access to all entries of ŷ = (ŷk)
2J−1
k=0 . Then(

ŷ(j+1)
2k+1

)2m−1

k=0
has at least one nonzero entry.

Proof. Theorem 3.5, case B yields that y(j+1) has a two-block support as in (12), which

we denote by S(j+1). Considering the first 2m oddly indexed entries of ŷ(j+1), we find

(
ŷ(j+1)

2k+1

)2m−1

k=0
=

⎛

⎝
∑

l∈S(j+1)

ω(2k+1)l
2j+1 y(j+1)

l

⎞

⎠
2m−1

k=0

=
(
ω(2k+1)l
2j+1

)2m−1

k=0, l∈S(j+1)

(
y(j+1)
l

)

l∈S(j+1)

=

((
ωl
2j

)k)2m−1

k=0, l∈S(j+1)

diag
((

ωl
2j+1

)

l∈S(j+1)

)(
y(j+1)
l

)

l∈S(j+1)
.

(23)

Assume that
(
ŷ(j+1)

2k+1

)2m−1

k=0
= 02m. The Vandermonde matrix

((
ωl
2j
)k)2m−1

k=0, l∈S(j+1)

is invertible if and only if the ωl
2j are pairwise distinct for all l ∈ S(j+1), or equivalently,

if the l mod 2j are pairwise distinct for all l ∈ S(j+1). Since y(j) already has a two-block

support with separated blocks, this holds true. Hence, as
(
y(j+1)
l

)

l∈S(j+1)
̸= 02m by

definition of y and the matrices occurring in (23) are invertible, we obtain a contradiction.
For the implementation of this procedure set

k0 := argmax
k∈{0,...,2m−1}

{∣∣∣ŷ2J−j−1(2k+1)

∣∣∣
}
.

Then ŷ(j+1)
2k0+1 ̸= 0 and it is likely that this entry is not too close to zero, which is

supported empirically by the numerical experiments in Section 6.

Now we can show how the support of y(j+1) can be determined from y(j) and one

oddly indexed nonzero entry of ŷ(j+1).

Theorem 4.3 Let N = 2J−1 and x ∈ RN have a one-block support of length m < N .
Set y = (xT , (JNx)T)T and assume that y satisfies (1). For j ∈ {0, . . . , J −1} let y(j) be
the 2j-length periodization of y according to (7) and suppose that y(j) has the two-block

support S(j) as in (22). Assume that we have access to all entries of ŷ = (ŷk)
2J−1
k=0 . Then

y(j+1) can be uniquely recovered from y(j) and one nonzero entry of
(
ŷ2J−j−1(2k+1)

)2m−1

k=0
.

Proof. If y(j) is known and has a two-block support, there are two possibilities for the
periodized vector y(j+1), one of which is obtained by shifting the other by 2j by Theorem

3.5, case B, see Figure 2 (right). We denote these two vectors by u0 =
(
u0k
)2j+1−1
k=0

and

13

u1 =
(
u1k
)2j+1−1
k=0

, and obtain that

u0k :=

⎧
⎪⎨

⎪⎩

y(j)k , k ∈
{
µ(j), . . . , µ(j) +m− 1

}
,

y(j)
k−2j , k ∈

{
2j+1 −m− µ(j), . . . , 2j+1 − 1− µ(j)

}
,

0, else

and

u1k := u0(2j+k) mod 2j+1 , k ∈ {0, . . . , 2j+1 − 1}.

Lemma 3.2 implies that

û12k+1 = −û02k+1, k ∈
{
0, . . . , 2j − 1

}
, (24)

for all oddly indexed entries of û0 and û1. In order to decide whether y(j+1) = u0

or y(j+1) = u1 we compare a nonzero entry ŷ(j+1)
2k0+1 = ŷ2J−j−1(2k0+1) ̸= 0 with the

corresponding entry of û0. It follows from Lemma 4.2 that ŷ(j+1)
2k0+1 can be found by

examining 2m entries. If û02k0+1 = ŷ(j+1)
2k0+1, we conclude that y(j+1) = u0, and if

û02k0+1 = −ŷ(j+1)
2k0+1, then y(j+1) = u1 by (24). Numerically, we set y(j+1) = u0 if

∣∣∣û02k0+1 − ŷ(j+1)
2k0+1

∣∣∣ <
∣∣∣û02k0+1 + ŷ(j+1)

2k0+1

∣∣∣

and y(j+1) = u1 otherwise. The required entry of û0 can be computed from y(j) using
O(m) operations,

û02k0+1 =
2j+1−1∑

l=0

ω(2k0+1)l
2j+1 u0l =

µ(j)+m−1∑

l=µ(j)

ω(2k0+1)l
2j+1 y(j)l +

2j+1−1−µ(j)∑

l=2j+1−m−µ(j)

ω(2k0+1)l
2j+1 y(j)

l−2j .

5 The Sparse FFT and the Sparse Fast DCT

In Section 4 we have presented all procedures necessary to derive the new sparse FFT
for vectors y ∈ R2N that have a reflected block support and satisfy (1). Using Lemma
2.1 we also obtain a new sparse fast DCT algorithm for vectors with one-block support.
Note that neither of the procedures for reconstructing y(j+1) from y(j) and ŷ introduced
above requires a priori knowledge of the length of the blocks in y.

5.1 A Sparse FFT for Vectors with Reflected Block Support

Let us assume that N = 2J−1 and y ∈ R2N has a reflected block support of unknown
block length m < N and satisfies (1), i.e., there is no cancellation of nonzero entries in
any of the periodization steps. We suppose that we have access to all entries of ŷ ∈ C2N .

The algorithm starts with the initial vector y(0) =
∑2N−1

l=0 yl = ŷ0, which has a one-
block support. For j ∈ {0, . . . J − 1} we perform the following steps.

1a) If y(j) possesses a one-block support, apply the DFT procedure given in Theorem
4.1 to recover y(j+1).

14

1b) If y(j) possesses a two-block support, apply the DFT procedure given in Theorem
4.3 to recover y(j+1).

2) Detect the support structure of y(j+1).

A stable method to detect the support structure of y(j+1) using O
(
m(j)

)
operations is

given in Section 5.2. Having reconstructed a vector y(l) with two-block support, it follows
from Theorem 3.5 that all longer periodizations y(j), j ∈ {l+ 1, . . . , J − 1}, also possess
a two-block support with the same block length, so for j > l we always have to apply
step 1b.

If a lower bound 2b−1 ≤ m on the block length of y is known, we can begin the
algorithm with the computation of y(b) by applying a 2b-length IFFT algorithm to

ŷ(b) = (ŷ2J−bk)
2b−1
k=0 ,

and detect its support. Then we execute the above iteration steps for j ∈ {b, . . . , J − 1}.
The complete procedure is summarized in Algorithm 1.

We show that the runtime and sampling complexity of Algorithm 1 are sublinear in
the vector length 2N .

Theorem 5.1 Let N = 2J−1 and x ∈ RN have a one-block support of length m < N .
Set y = (xT , (JNx)T)T and assume that y satisfies (1). Further, assume that there is
no a priori knowledge of the support length m of x. Then Algorithm 1 has a runtime of
O
(
m logm log 2N

m

)
and uses O

(
m log 2N

m

)
samples of ŷ.

Proof. 1. Note that the support S(J) of y = y(J) has at most cardinality 2m. Let
2L−1 < 2m ≤ 2L ≤ 2J . For j ∈ {0, . . . , L− 1} the vector y(j) has necessarily a one-block
support of length 2j−1 ≤ m(j) ≤ 2j , and we have to apply the procedure of Theorem 4.1,

where the computation of y(j+1)
(0) = z

(j+1)
(0) requires an IFFT of length 2j with O

(
2j log 2j

)

operations according to line 5 of Algorithm 1. To determine the nonzero entries of y(j+1)

in lines 6 and 7, and to detect its support structure in line 22, only O
(
2j
)

operations are
needed, as we will show in Section 5.2. Thus, the iteration steps for j ∈ {0, . . . , L − 1}
have a runtime complexity of

O

⎛

⎝
L−1∑

j=0

2j log 2j

⎞

⎠ = O
(
2L(L− 2)

)
.

For j ∈ {L, . . . , J − 1} we have to apply either the recovery step for periodizations with
one-block support or the recovery step for periodizations with two-block support. If y(j)

has a one-block support of length m(j), then m ≤ m(j) ≤ 2m and 2L−1 < m(j) ≤ 2L.

The computation of z
(j+1)
(0) in lines 11 and 12 requires an IFFT of length at most 2L

and further operations of complexity O
(
2L
)
. In order to detect the support structure

in line 22 at most O
(
2L
)

operations are necessary. Altogether, we require O
(
2L log 2L

)

operations for such an iteration step.
If y(j) has a two-block support with block length n(j) = m, executing lines 17 to 20

requires O(m) operations, and the support structure of y(j+1) is already completely deter-
mined. However, in the worst case, we have to apply the recovery step for periodizations
with one-block support for every j ∈ {L, . . . , J − 1}, and thus need O

(
(J − L)2L log 2L

)

operations for these steps. Adding the arithmetical complexities for both cases yields an

15

Algorithm 1 Sparse FFT for Vectors with Reflected Block Support

Input: ŷ, where the sought-after vector y ∈ R2N , N = 2J−1, has a reflected block
support of (unknown) length m and satisfies (1), and noise threshold ε. If a lower
bound on m is known a priori, let b ∈ N0 such that 2b−1 ≤ m, otherwise b = 0.

1: y(b) ← IFFT
[
(ŷ2J−bk)

2b−1
k=0

]
and, if b > 0, detect its support structure.

2: for j from b to J − 1 do

Recovery Step for Periodizations with One-block Support

3: if y(j) has a one-block support then

4: if m(j) > 2j−1 then

5: a← diag

((
ω−l
2j+1

)2j−1

l=0

)
IFFT

[(
ŷ2J−j−1(2k+1)

)2j−1

k=0

]

6:

(
y
(j+1)
(0)

)

k
←

{
1
2 Re

(
y(j) + a

)
k
, 1

2 Re
(
y(j) + a

)
k
> ε,

0, else,
k = 0, . . . , 2j−1

7: y
(j+1)
(1) ← J2jy

(j+1)
(0)

8: else if m(j) ≤ 2j−1 then

9: Set L(j) =
⌈
log2 m

(j)
⌉
.

10: Set z(j) =

(
y(j)
(µ(j)+r) mod 2j

)2L
(j)−1

r=0

and v =
(
ŷ
2J−L(j)

p+2J−j−1

)2L(j)−1

p=0
.

11: a← diag

⎛

⎝
(
ω
−(µ(j)+r) mod 2j

2j+1

)2L
(j)−1

r=0

⎞

⎠ IFFT

[

diag
(
ω−pµ(j)

2L
(j)

)2L(j)−1

p=0
v

]

12:

(
z
(j+1)
(0)

)

k
←
{

1
2 Re

(
z(j) + a

)
k
, 1

2 Re
(
z(j) + a

)
k
> ε,

0, else,
k = 0, . . . , 2L

(j)−1

13:

(
y(j+1)
(0)

)

(µ(j)+k) mod 2j
←
{(

z(j+1)
)
k
, k ∈

{
0, . . . , 2L

(j) − 1
}

0, else

14:

(
y(j+1)
(1)

)

2j−1−(µ(j)+k) mod 2j
←

{(
z(j+1)

)
k
, k ∈

{
0, . . . , 2L

(j) − 1
}

0, else
15: end if

Recovery Step for Periodizations with Two-block Support

16: else if y(j) has a two-block support with block length n(j) then

17: Find ŷ2J−j−1(2k0+1) ̸= 0.

18: û02k0+1 ←
µ(j)+n(j)−1∑

l=µ(j)

ω(2k0+1)l
2j+1 y(j)l +

2j+1−1−µ(j)∑

l=2j+1−n(j)−µ(j)

ω(2k0+1)l
2j+1 y(j)

l−2j

19: λ(j+1) ←
{
µ(j),

∣∣∣û02k0+1 − ŷ2J−j−1(2k0+1)

∣∣∣ <
∣∣∣û02k0+1 + ŷ2J−j−1(2k0+1)

∣∣∣
2j + µ(j), else

20: y(j+1)
k ←

⎧
⎪⎨

⎪⎩

y(j)
k mod 2j

, k ∈
{
λ(j+1), . . . ,λ(j+1) + n(j) − 1

}
,

y(j)
k mod 2j , k ∈

{
2j+1 − n(j) − λ(j+1), . . . , 2j+1 − 1− λ(j+1)

}
,

0, else
21: end if

22: Detect the support structure of y(j+1), i.e., find µ(j+1) and m(j+1) or n(j).
23: end for

Output: y

16

overall runtime of

O
(
(2L(L− 2) + (J − L)2LL

)
= O

(
m logm log

2N

m

)
,

where we have used that 2m ≤ 2L < 4m. In particular, if m approaches N , the algorithm
has a runtime of O(N logN), which is the same as the runtime of a full length FFT.

2. For j ∈ {0, . . . , L − 1} it follows from 2L−1 < 2m ≤ 2L that the computation

of y(j+1) requires all 2j−1 samples of
(
ŷ(j+1)

2k+1

)2j−1−1

k=0
. This implies that we need

the entire vector ŷ(L) to recover y(L) iteratively. The remaining iteration steps with
j ∈ {L, . . . , J − 1} need 2L

(j)
= O

(
m(j)

)
samples if y(j) has a one-block support. In the

case of a two-block support it suffices to examine 2m samples of ŷ to find a nonzero one
by Lemma 4.2. Hence, the algorithm has a sampling complexity of

O

⎛

⎝
L−1∑

j=0

2j + (J − L)2L

⎞

⎠ = O
(
2L + (J − L)2L

)
= O

(
m log

2N

m

)
.

5.2 Detecting the Support Sets

Algorithm 1 relies heavily on an efficient detection of the support structure of the pe-
riodized vector y(j). Let us assume that y(j) and its support are known, and that we
computed y(j+1) with the appropriate method in Algorithm 1. In order to detect the
support of y(j+1) in line 22 of Algorithm 1 we have to distinguish the five cases already
considered in Theorem 3.5. Note that for noisy data the found block lengths n(j+1) for
y(j+1) with two-block support might not be the same as the exact block length m of x.

Case A1) y(j) has the one-block support S(j) = Iµ(j),2j−1−µ(j) of length m(j) < 2j cen-

tered around the middle of the vector, i.e., around 2j−1 − 1 and 2j−1.

Then y(j+1) has a two-block support of length n(j+1) ≤ m(j) and the support of the
first block is a subset of S(j) by Theorem 3.5, case A1. We define

T (j+1)
(0)

:=
{
k ∈

{
µ(j), µ(j) + 1, . . . , 2j − 1− µ(j)

}
: y(j+1)

k > ε
}
=: {t1, . . . , tK} ,

where t1 < · · · < tK , and ε > 0 depends on the noise level. We have to check m(j) entries
of y(j+1) in order to determine S(j+1). Then we choose

µ(j+1) := t1 and n(j+1) := tK − t1 + 1.

Case A2) If j < J − 1, µ(j) = 0 and m(j) = 2j , Theorem 3.5, case A2 yields that y(j+1)

has a one-block support whose location and length are unknown. As y(j+1) is symmetric,
the indices of its significantly large entries are

T (j+1) :=
{
t1, . . . , tK , 2j+1 − 1− tK , . . . , 2j+1 − 1− t1

}
=: {t1, . . . , t2K} ,

where tK ≤ 2j − 1 and tK+1 ≥ 2j . If t2K − t1 + 1 > 2j , we set µ(j+1) := 0 and
m(j+1) := 2j+1. Otherwise we need to detect whether the support block is centered

17

around the middle or the boundary of y(j+1). We define

d0 := tK+1 − tK and d1 := (t1 − t2K) mod 2j+1.

If d0 < d1, then y(j+1) has a one-block support centered around 2j−1 and 2j . If d0 > d1,
the support block is centered around 0 and 2j+1 − 1. If d0 = d1, y(j+1) must have full
support of length m(j+1) = 2j+1, so we can conclude

µ(j+1) :=

⎧
⎪⎨

⎪⎩

t1, d0 < d1,

tK+1, d0 > d1,

0, d0 = d1,

and m(j+1) :=

⎧
⎪⎨

⎪⎩

t2K − t1 + 1, d0 < d1,

2j+1 − tK+1 + tK + 1, d0 > d1,

2j+1, d0 = d1.

In the case that j = J − 1 and m(J−1) = 2J−1, let

T (J)
(0)

:=
{
k ∈

{
0, . . . , 2J−2 − 1

}
: yk > ε

}
=: {t1, . . . , tK} and

T (J)
(1)

:=
{
k ∈

{
2J−2, . . . , 2J−1 − 1

}
: yk > ε

}
=: {u1, . . . , uL} .

If T (J)
(0) = ∅, then y has a one-block support centered around the middle with

µ(J) := u1 and m(J) := 2
(
2J−1 − u1

)
= 2m.

If T (J)
(1) = ∅, then y has a one-block support centered around the boundary with

µ(J) := 2J − 1− tK and m(J) := 2 (tK + 1) = 2m.

Otherwise there are three possibilities for the support of y, where we do not know the
correct one a priori:

(i) S(J) := It1,2J−1−t1 ,

(ii) S(J) := I2J−1−uL,uL
,

(iii) y has a two-block support with two blocks of possibly different lengths and unknown
positions.

Case A3) j < J − 1 and y(j) has the one-block support S(j) = Iµ(j),2j−1−µ(j) of length

m(j) < 2j centered around the boundary of the vector, i.e., around 2j − 1 and 0.

It follows from Theorem 3.5, case A3 that y(j+1) has a one-block support of length
m(j+1) := m(j) with µ(j+1) = µ(j) or µ(j+1) = 2j + µ(j). We compare the entries at the
possible locations of the support block and set

e0 :=
µ(j)+m(j)−1∑

k=µ(j)

∣∣∣y(j+1)
k

∣∣∣ and e1 :=

(2j+µ(j)+m(j)−1) mod 2j+1

∑

k=2j+µ(j)

∣∣∣y(j+1)
k

∣∣∣ .

Since for exact data one of the sums has only vanishing summands, we choose

µ(j+1) :=

{
µ(j), e0 > e1

2j + µ(j), e0 < e1.

18

Case A4) j = J−1 and y(J−1) has the one-block support S(J−1) = Iµ(J−1),2J−1−1−µ(J−1)

of length m(J−1) < 2J−1 centered around the boundary, i.e., around 2J−1 − 1 and 0.

Theorem 3.5, case A4 implies that y(J) = y has either a two-block support with two
separated blocks of possibly different lengths or, as a boundary case, a one-block support,
where one of the two blocks in (11) vanishes. In case of two blocks, one is centered around
the middle of the vector, i.e., around 2J−1 − 1 and 2J−1, and its support is a subset of
Iµ(J−1),2J−1−µ(J−1) , and the other is centered around the boundary of the vector, i.e.,

around 2J − 1 and 0, and its support is a subset of I2J−1+µ(J−1),2J−1−1−µ(J−1) . If y has a
one-block support, its support is a subset of one of the two index sets above. Since the
support blocks have even length, set

T (J)
(0)

:=
{
k ∈

{
µ(J−1), . . . , 2J−1 − 1

}
: yk > ε

}
=: {t1, . . . , tK} and

T (J)
(1)

:=
{
k ∈

{
2J−1 + µ(J−1), . . . , 2J − 1

}
: yk > ε

}
=: {u1, . . . , uL} .

If T (J)
(0) = ∅, then y has a one-block support centered around the boundary, and we set

µ(J) := u1 and m(J) := 2 ·
(
2J − u1

)
= 2m

to obtain the support set S(J) := Iµ(J),2J−1−µ(J) of y. If T (J)
(1) = ∅, then y has a one-block

support centered around the middle of the vector, and we let

µ(J) := t1 and m(J) := 2 ·
(
2J−1 − t1

)
= 2m,

implying that the support set of y is S(J) := Iµ(J),µ(J)+m(J)−1. If neither set is empty,
y has a two-block support with two separated blocks of possibly different lengths, see
Figure 2 (left). We denote the first index of the block centered around the middle by
µ(J) and the first index of the block centered around the boundary by η(J) and set

µ(J) := t1 and η(J) := u1,

We obtain the support set S(J) := Iµ(J),2J−1−µ(J) ∪ Iη(J),2J−1−η(J) , where the block cen-

tered around the middle of the vector has length n(J)
(0)

:= 2
(
2J−1 − t1

)
and the block

centered around the boundary has length n(J)
(1)

:= 2
(
2J − u1

)
.

Case B) y(j) has the two-block support S(j) = Iµ(j),ν(j) ∪ I2j−1−ν(j),2j−1−µ(j) with block

length n(j) = m.

Let λ(j+1) be the support index computed in line 19 of Algorithm 1. We obtain

µ(j+1) :=

{
µ(j), λ(j+1) = µ(j),

2j −m− µ(j), λ(j+1) = 2j + µ(j),

according to Theorem 3.5, case B and Figure 2 (right).

5.3 A Sparse Fast DCT for Vectors with One-block Support

We now apply the sparse FFT algorithm for vectors y ∈ R2N with reflected block support
presented in Section 5.1 to derive a sparse fast DCT algorithm for vectors with one-

19

block support. Recall that by Lemma 2.1 the Fourier transform of the vector y =

(xT , (JNx)T)T is completely determined by xÎI. Hence, we can compute y from ŷ with

the help of Algorithm 1 if xÎI is known. By construction, x is then given as the first half
of y. Since Algorithm 1 is adaptive, no a priori knowledge of the support length of x is
required. The resulting sparse fast DCT procedure is summarized in Algorithm 2.

Algorithm 2 Sparse Fast DCT for Vectors with One-block Support

Input: xÎI, where the sought-after vector x ∈ RN , N = 2J−1, has a one-block support
of (unknown) length m and y = (xT , (JNx)T)T satisfies (1), and noise threshold ε.
If a lower bound on m is known a priori, let b ∈ N0 such that 2b−1 ≤ m, otherwise
b = 0.

1: Compute ŷk =

⎧
⎪⎪⎨

⎪⎪⎩

√
2N

εN (k)ω
−k
4N · xÎIk , k ∈ {0, . . . , N − 1},

0, k = N,

−
√
2N

εN (2N−k)ω
−k
4N · xÎI2N−k, k ∈ {N + 1, . . . , 2N − 1}

if the sample ŷk is needed in Algorithm 1.
2: y← Algorithm 1 [ŷ, b]
3: x← y(0) = (yk)

N−1
k=0

Output: x

Theorem 5.2 Let N = 2J−1 and x ∈ RN have a one-block support of length m < N .
Set y = (xT , (JNx)T)T and assume that y satisfies (1). Further, assume that there is
no a priori knowledge of the support length m of x. Then Algorithm 2 has a runtime of

O
(
m logm log 2N

m

)
and uses O

(
m log 2N

m

)
samples of xÎI.

Proof. As shown in Theorem 5.1, Algorithm 1 requires O
(
m log 2N

m

)
samples of ŷ in

lines 1, 5, 10 and 17, so we also need O
(
m log 2N

m

)
samples of xÎI in order to compute

the necessary samples of ŷ in line 1 of Algorithm 2 by Lemma 2.1. Line 1 requires
O
(
m log 2N

m

)
operations; hence the runtime of Algorithm 2 is governed by the runtime

of Algorithm 1.

6 Numerical results

6.1 Numerical Results for the Reflected Block Support FFT

In the following section we present some test results regarding the runtime of Algorithm
1 and its robustness to noise. We compare our method to Algorithm 2.3 in [18] and to
Matlab’s ifft routine, which is a fast and highly optimized implementation of the fast
inverse Fourier transform, based on the FFTW library, see [7, 21, 23]. The former two
algorithms have been implemented in Matlab, and the code is freely available in [4,17].
The sparse FFT algorithm in [18] is suitable for the fast reconstruction of an m-sparse
vector y from its DFT ŷ for small m. Note that neither of the algorithms requires a
priori knowledge of the length of the support blocks or the sparsity, but Algorithm 1
needs that y satisfies (1).

Figure 3 shows the average runtimes of Algorithm 1 with threshold ε = 10−4, Algorithm
2.3 in [18], in the variant using Algorithm 4.5, and ifft applied to ŷ for 100 randomly
generated vectors y of length 2N = 221 with reflected block support of lengths varying

20

between 5 and 50000. The nonzero entries of the vectors are chosen between 0 and 10.
For each vector at most ⌊(m − 2)/2⌋ entries in the first support block, excluding the
first and last one, are randomly set to 0, and the second half of y is determined by its
symmetry y = J2Ny. Algorithm 2.3 in [18] is very unstable for greater sparsities 2m,

10−3

10−2

10−1

100

101 102 103 104

R
u
nt

im
e
[s
]

Block Length m

Algorithm 1
Algorithm 2.3 in [18]

ifft

Figure 3: Average runtimes of Algorithm 1 with ε = 10−4, Algorithm 2.3 (using Al-
gorithm 4.5) in [18] and Matlab’s ifft for 100 random input vectors with
reflected block support of length m and vector length 2N = 221.

as it often has to solve a close to singular equation system. Hence, we decided to only
measure its runtime for block lengths up to m = 30. Obviously, any comparison to the
highly optimized ifft routine must be flawed; however, we can see that both Algorithm
1 and Algorithm 2.3 in [18] are much faster than ifft for sufficiently small block lengths.
The former algorithm achieves faster runtimes for block lengths up to m = 10000, while
the latter does so at least for block lengths up to m = 30. Note that by setting at most
⌊(m−2)/2⌋·2 entries inside the support blocks randomly to 0, the actual sparsity of y can
be almost as low as m. This barely affects the runtime of Algorithm 1, but it decreases
the average runtime of Algorithm 2.3 in [18]. As can be seen from Table 1 presenting
the average reconstruction errors for exact data, Algorithm 2.3 in [18] is not accurate for
block lengths of m = 20 or greater, and, as we found out during the experiments, not
even consistently accurate for block lengths up to m = 10. Still, for block lengths up to
m = 10, this procedure is faster than Algorithm 1. For block lengths up to m = 100
Algorithm 1 achieves an accuracy close to that of ifft, and even for m = 50000 its
reconstruction error is small.

Next we examine the robustness of the algorithms for noisy data. Since Algorithm 2.3
in [18] is not suitable for noisy data due to ill-conditioned equation systems having to
be solved, we will only consider Algorithm 1 and Matlab’s ifft hereafter. Disturbed
Fourier data ẑ ∈ C2N is created by adding uniform noise η ∈ C2N to the given data ŷ,

ẑ := ŷ + η.

21

m Algorithm 1 Algorithm 2.3 in [18] ifft

5 4.2 · 10−20 3.4 · 10−8 3.8 · 10−21

10 8.0 · 10−20 1.4 · 100 4.8 · 10−21

20 2.2 · 10−19 3.1 · 107 7.0 · 10−21

30 6.6 · 10−19 3.9 · 108 8.3 · 10−21

100 1.5 · 10−18 − 1.5 · 10−20

1000 7.7 · 10−14 − 4.7 · 10−20

10000 3.6 · 10−12 − 1.5 · 10−19

50000 1.3 · 10−11 − 3.5 · 10−19

Table 1: Reconstruction errors for the three DFT algorithms for exact data.

10−8

10−7

10−6

10−5

10−4

0 10 20 30 40 50

E
rr

or

SNR

Algorithm 1
ifft

(a) Reconstruction error for m = 100.

10−8

10−7

10−6

10−5

10−4

10−3

0 10 20 30 40 50

E
rr

or

SNR

Algorithm 1
ifft

(b) Reconstruction error for m = 1000.

Figure 4: Average reconstruction errors ∥y−y′∥2/(2N) of Algorithm 1 and ifft for 100
random input vectors with support length m and vector length 2N = 221.

We measure the noise with the SNR value,

SNR := 20 · log10
∥ŷ∥2
∥η∥2

.

Figures 4a and 4b depict the average reconstruction errors ∥y − y′∥2/(2N) for block
lengths m = 100 and m = 1000, where y denotes the original vector and y′ the re-
construction by the corresponding algorithm applied to ẑ. Note that for noisy data the
resulting vector y′ does no longer have an exact reflected block support, but the support
blocks have entries that are significantly greater than the noise and can thus be found by
the support detection procedures presented in Section 5.2. The threshold ε for Algorithm
1 is chosen according to Table 2. These values were found via an attempt to minimize

SNR 0 10 20 30 40 50

ε 1.7 1.2 0.4 0.19 0.05 0.02

Table 2: Threshold ε for Algorithm 1.

22

the approximation error and maximize the rate of correct recovery. Both for m = 100
and m = 1000 we see that the reconstruction by Algorithm 1 yields a smaller error than
the one by ifft for all considered noise levels.

Since for vectors with reflected block support the structure is especially important,
we also examine whether Algorithm 1 can correctly identify the support blocks of y for
noisy input data. Especially for high noise levels, Algorithm 1 tends to overestimate the
true length of the support blocks. Table 3 shows the rates of correct recovery of the
support. In the second and fourth column we present the rate of correct recovery where

Rate of Correct Recovery in % Using Algorithm 1 for

SNR
m = 100 m = 100 m = 1000 m = 1000

m′ ≤ 3m = 300 m′ ≤ 3m = 3000

0 70 49 69 47
10 70 70 74 68
20 86 83 93 85
30 98 98 94 93
40 99 98 97 93
50 100 100 99 98

Table 3: Rate of correct recovery of the support of y in percent for Algorithm 1, without
bounding m′ and with m′ ≤ 3m, for the 100 random input vectors with block
length m = 100 and m = 1000 from Figures 4a and 4b.

we consider y to be correctly recovered by y′ if the support of the two blocks of the
original vector y is contained in the support blocks found by the algorithm. In the third
and fifth column we additionally require that the block length m′ found by Algorithm 1
satisfies m′ ≤ 3m.

For SNR values of 20 or more the algorithm has a very high rate of correct recovery
in the sense that the original support is contained in the reconstructed one. For these
noise levels the block length of y′ is almost always at most 3m.

6.2 Numerical Results for the Fast One-block Support DCT

In this section we present the results of numerical experiments regarding runtime and
the robustness to noise of Algorithm 2. As, to the best of our knowledge, there exist no
other sparse DCT algorithms, we only compare our method to Matlab’s idct routine,
which is contained in the Signal Processing Toolbox, see [22]. idct is a fast and highly
optimized implementation of the fast inverse cosine transform of type II. Our algorithm
has been implemented in Matlab, and the code is freely available in [3]. Note that
Algorithm 2 also does not require any a priori knowledge of the support length but needs
that y = (xT , (JNx)T)T satisfies (1).

In Figure 5 one can see the average runtimes of Algorithm 2 with threshold ε = 10−4

and idct applied to xÎI for 100 randomly generated 220-length vectors x with one-block
support of lengths varying between 10 and 50000. As in Section 6.1, the entries of the
input vectors are between 0 and 10, and at most ⌊(m− 2)/2⌋ entries are randomly set to
0. Again, comparing Algorithm 2 to the highly optimized idct routine is flawed, but, at
least for block lengths up to m = 10000, our method is faster than idct and, as shown

23

10−2

10−1

100

101 102 103 104

R
u
nt

im
e
[s
]

Block Length m

Algorithm 2
idct

Figure 5: Average runtimes of Algorithm 2 with ε = 10−4 and Matlab’s idct for 100
random input vectors with support of length m and vector length N = 220.

in Table 4, achieves reconstruction errors comparable to those of idct for block lengths
up m = 100 and still a very high accuracy for greater block lengths.

m Algorithm 2 idct

10 9.6 · 10−20 7.1 · 10−21

100 4.7 · 10−18 2.2 · 10−20

1000 1.4 · 10−16 6.9 · 10−20

10000 2.5 · 10−12 2.2 · 10−19

50000 1.7 · 10−11 4.9 · 10−19

Table 4: Reconstruction errors for Algorithm 2 and idct for exact data.

We also investigate the robustness of Algorithm 2 for noisy data. As before we create

disturbed cosine data zÎI ∈ RN by adding uniform noise η ∈ RN to the given data xÎI,

zÎI := xÎI + η.

Then the SNR is given by

SNR := 20 · log10

∥∥∥xÎI
∥∥∥
2

∥η∥2
.

In Figures 6a and 6b one can see the average reconstruction errors ∥x− x′∥2 /N , where
x denotes the original vector and x′ the reconstruction by the corresponding algorithm

applied to zÎI for block lengths m = 100 and m = 1000. The threshold parameter ε for
Algorithm 2 is chosen according to Table 5. Note that we have to increase the threshold

24

10−8

10−7

10−6

10−5

10−4

0 10 20 30 40 50

E
rr

or

SNR

Algorithm 2
idct

(a) Reconstruction error for m = 100.

10−7

10−6

10−5

10−4

10−3

0 10 20 30 40 50

E
rr

or

SNR

Algorithm 2
idct

(b) Reconstruction error for m = 1000.

Figure 6: Average reconstruction errors ∥x − x′∥2/N of Algorithm 2 and idct for 100
random input vectors with support length m and vector length N = 220.

SNR 0 10 20 30 40 50

ε 2.5 1.8 1 0.3 0.15 0.05

Table 5: Threshold ε for Algorithm 2.

parameters slightly compared to those from Table 2 for Algorithm 1 in order to achieve
similar rates of correct recovery, due to the instability caused by the computation of

ŷ from the given noisy data zÎI. For both support lengths Algorithm 2 reconstructs
the original vector better than idct for all considered noise levels. Further, we also
investigate the rate of correct recovery of the support block; these results can be found
in Table 6. In the second and fourth column we consider x to be correctly reconstructed

Rate of Correct Recovery in % Using Algorithm 2 for

SNR
m = 100 m = 100 m = 1000 m = 1000

m′ ≤ 3m = 300 m′ ≤ 3m = 3000

0 48 45 48 41
10 57 57 67 66
20 79 79 81 81
30 93 93 94 94
40 96 96 97 97
50 99 99 99 99

Table 6: Rate of correct recovery of the support of x in percent for Algorithm 2, without
bounding m′ and with m′ ≤ 3m, for the 100 random input vectors with support
length m = 100 and m = 1000 from Figures 6a and 6b.

by x′ if the support of the original vector x is contained in the m′-length support of x′

found by Algorithm 2, and in the third and fifth column we additionally require that
m′ ≤ 3m. Algorithm 2 has a very high rate of correct recovery for SNR values of 20 and

25

greater, and, at least in our experiments for those noise levels, the support length of x′

is always at most 3m.

Acknowledgement

The authors gratefully acknowledge partial support for this work by the DFG in the
framework of the GRK 2088.

References

[1] A. Akavia. Deterministic sparse Fourier approximation via approximating arithmetic pro-
gressions. IEEE Trans. Inform. Theory, 60(3):1733–1741, 2014.

[2] S. Bittens. Sparse FFT for Functions with Short Frequency Support. Dolomites Res. Notes
Approx., 10:43–55, 2017.

[3] S. Bittens and G. Plonka. Sparse Fast DCT for Vectors with One-block Support.
http://na.math.uni-goettingen.de/index.php?section=gruppe&subsection=software,
2018.

[4] S. Bittens and G. Plonka. Sparse FFT for Vectors with Reflected Block Support.
http://na.math.uni-goettingen.de/index.php?section=gruppe&subsection=software,
2018.

[5] S. Bittens, R. Zhang, and M. A. Iwen. A Deterministic Sparse FFT for Functions with
Structured Fourier Sparsity. http://arxiv.org/abs/1705.05256, 2017.

[6] A. Christlieb, D. Lawlor, and Y. Wang. A multiscale sub-linear time Fourier algorithm for
noisy data. Appl. Comput. Harmon. Anal., 40(3):553–574, 2016.

[7] M. Frigo and S. G. Johnson. FFTW 3.3.6. http://www.fftw.org/, 2017.

[8] A. Gilbert, P. Indyk, M. Iwen, and L. Schmidt. Recent Developments in the Sparse Fourier
Transform: A compressed Fourier transform for big data. IEEE Signal Process. Mag.,
31(5):91–100, 2014.

[9] H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Simple and Practical Algorithm for Sparse
Fourier Transform. In Proceedings of the Twenty-third Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’12, pages 1183–1194. SIAM, 2012.

[10] M. A. Iwen. Combinatorial Sublinear-Time Fourier Algorithms. Found. Comput. Math.,
10(3):303–338, June 2010.

[11] M. A. Iwen. Improved Approximation Guarantees for Sublinear-Time Fourier Algorithms.
Appl. Comput. Harmon. Anal., 34(1):57–82, 1 2013.

[12] S. Pawar and K. Ramchandran. Computing a k-sparse n-length discrete Fourier transform
using at most 4k samples and O(k log k) complexity. IEEE International Symposium on
Information Theory, pages 464–468, 2013.

[13] G. Plonka, D. Potts, G. Steidl, and M. Tasche. Numerical Fourier Analysis: Theory and
Applications. Book manuscript, 2018.

[14] G. Plonka and M. Tasche. Fast and numerically stable algorithms for discrete cosine trans-
forms. Linear Algebra Appl., 394:309 – 345, 2005.

[15] G. Plonka and K. Wannenwetsch. A deterministic sparse FFT algorithm for vectors with
small support. Numer. Algorithms, 71(4):889–905, 2016.

[16] G. Plonka and K. Wannenwetsch. A sparse fast Fourier algorithm for real non-negative
vectors. J. Comput. Appl. Math., 321:532 – 539, 2017.

26

http://na.math.uni-goettingen.de/index.php?section=gruppe&subsection=software
http://na.math.uni-goettingen.de/index.php?section=gruppe&subsection=software
http://arxiv.org/abs/1705.05256
http://www.fftw.org/

[17] G. Plonka and K. Wannenwetsch. Deterministic Sparse FFT.
http://na.math.uni-goettingen.de/index.php?section=gruppe&subsection=software,
2017.

[18] G. Plonka, K. Wannenwetsch, A. Cuyt, and W.-s. Lee. Deterministic sparse FFT for M-
sparse vectors. Numer. Algorithms, https://doi.org/10.1007/s11075-017-0370-5, 2017.

[19] K. Rao and P. Yip. Discrete Cosine Transform: Algorithms, Advantages, Applications.
Academic Press, 1990.

[20] B. Segal and M. Iwen. Improved sparse Fourier approximation results: faster implementa-
tions and stronger guarantees. Numer. Algorithms, 63(2):239–263, 2013.

[21] The MathWorks. Matlab’s documentation of fft.
https://www.mathworks.com/help/matlab/ref/fft.html, 2017.

[22] The MathWorks. Matlab’s documentation of idct.
https://www.mathworks.com/help/signal/ref/idct.html, 2017.

[23] The MathWorks. Matlab’s documentation of ifft.
https://www.mathworks.com/help/matlab/ref/ifft.html, 2017.

27

http://na.math.uni-goettingen.de/index.php?section=gruppe&subsection=software
https://doi.org/10.1007/s11075-017-0370-5
https://www.mathworks.com/help/matlab/ref/fft.html
https://www.mathworks.com/help/signal/ref/idct.html
https://www.mathworks.com/help/matlab/ref/ifft.html

