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Abstract

Biorthogonal wavelets are essential tools for numerous practical applications. It is very
important that wavelet transforms work numerically stable in floating point arithmetic.
This paper presents new results on the worst-case analysis of roundoff errors occurring
in floating point computation of periodic biorthogonal wavelet transforms, i.e. multilevel
wavelet decompositions and reconstructions. Both of these wavelet algorithms can be
realized by matrix-vector products with sparse structured matrices. It is shown that
under certain conditions the wavelet algorithms can be remarkably stable. Numerous
tests demonstrate the performance of the results.
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1 Introduction

Biorthogonal wavelet transforms have found important applications especially in signal
and image processing. In particular, biorthogonal wavelets with compact supports, leading
to filter banks with FIR filters, are used very frequently [4, 5, 6, 11]. Essential reasons
for the great success of the discrete wavelet transform are the low arithmetic cost and
the simple implementation. However, besides the arithmetic cost also numerical stability
should be taken into consideration. The numerical stability characterizes the influence
of roundoff errors caused by arithmetic operations and by precomputation of transform
matrices in a binary floating point arithmetic (i.e. IEEE standard), where the real input
data are machine numbers and every intermediate result of the algorithm is rounded to
the next machine number. The main goal of the worst-case error analysis is the qualitative
investigation of the occurring roundoff errors.
For valuation of numerical stability of an algorithm, we use the concept of the backward
error [21]. Here the main idea is that the roundoff error is interpreted to be obtained by
application of the exact algorithm to noisy input data. This concept permits a careful
analysis of the used numerical method in finite precision arithmetic.
The periodic biorthogonal wavelet transforms can be realized by matrix-vector products
with sparse, structured matrices.

Let now A ∈ Rn×n be an invertible matrix and let F be the set of machine numbers.
For every input vector x ∈ Fn let y := Ax be the exact output vector. Let ŷ = fl(Âx)
be the numerical realization of the matrix-vector product by a given algorithm, where
Â ∈ Fn×n consists of precomputed entries. The unit roundoff of the underlying floating
point arithmetic is denoted by u. Then the algorithm for computing of Ax is called
normwise forward stable (see [8], p. 142), if there exists a constant κ = κA > 0 with
κAu� 1 such that for all x ∈ Fn

‖ŷ − y‖2 ≤ (κAu +O(u2)) ‖x‖2 .

Here ‖ · ‖2 denotes the Euclidean norm. The numerical algorithm is said to be normwise
backward stable, if for ∆x := A−1(ŷ−y) there exists a constant k = kA > 0 with kA u� 1
such that for all x ∈ Fn

‖∆x‖2 ≤ (kA u +O(u2)) ‖x‖2 .

The constant kA is called worst case (backward) stability constant. Recent investigations
of the roundoff errors for matrix-vector multiplications (see [8, 14, 15, 16, 19]) show the
following:
1. Arithmetic cost and numerical stability are two different properties of a numerical
algorithm being not directly related. In particular, comparing two numerical algorithms
for the same problem, the algorithm with lower arithmetic cost does not automatically
have better numerical behavior in floating point arithmetic.
2. Rounding errors in precomputed entries of the transform matrix can have essential
influence on the numerical stability of the algorithm.

The numerical stability of discrete wavelet transform has been only rarely discussed in
the literature. In [1], a necessary and sufficient condition for Riesz stability of biorthog-
onal wavelet bases in L2(R) has been presented. This condition is especially satisfied for
the CDF wavelets in [3]. However, the Riesz stability property is not longer given for
biorthogonal wavelet packets (see [2]).
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A first estimate of the forward error for the discrete periodic biorthogonal wavelet trans-
form can be found in [10]. It has been shown by Keinert [10] that some biorthogonal
wavelet and wavelet packet transforms are forward stable for a small number of decompo-
sition and reconstruction steps while for others a considerable roundoff error is accumu-
lated. For periodic biorthogonal spline wavelets, the condition of the transform matrices
grows exponentially with the spline order (see [18]).
In [14], a detailed analysis of the backward error for orthogonal wavelet transforms shows
“perfect stability” in this case provided that the orthogonal filters have small filter lengths.
For longer (finite) filter lengths, the arithmetic cost as well as the numerical stability of the
wavelet transform matrix can be improved using a suitable orthogonal matrix factorization.
First estimates of the roundoff errors for biorthogonal wavelet transforms in floating point
arithmetic can be found in [16], where the worst case as well as the average case was
considered.

The goal of this paper is an exact worst-case analysis of roundoff errors occurring in
floating point computation of biorthogonal wavelet transforms. The paper is organized
as follows. In Section 2 we introduce the periodic biorthogonal wavelet transform and
show how it can be realized by matrix-vector products. We will provide numerous ex-
amples of special biorthogonal filters which are used for numerical tests. In Section 3 we
give a short introduction to matrix-vector products in floating point arithmetic. Sections
4, 5, and 6 contain the new results on the numerical stability of wavelet decomposition,
wavelet reconstruction, and of the total error, if the decomposition and the reconstruc-
tion are successively applied. We provide worst-case stability constants kp which depend
on the number of decomposition/reconstruction levels p, the lengths of the biorthogonal
FIR filters and the spectral norms of some structured matrices which are given by the
filter coefficients. In particular, these constants kp are independent of the length of the
period of the wavelet transform. Thus these constants are also correct for decomposition
and reconstruction algorithms with non-periodic biorthogonal wavelets. Numerous tests
demonstrate the performance of the results.

2 Periodic biorthogonal wavelet transforms

Let the real sequences h = (hk)∞k=−∞ and h̃ = (h̃k)∞k=−∞ be real biorthogonal low-pass
filters with finite filter lengths lh and lh̃, i.e., the two filters have a finite impulse response.
Note that the filter length of h is explained by

lh := max{|k − l|+ 1 : k, l ∈ Z with hkhl 
= 0}.

The support of h is given by supph := {k ∈ Z : hk 
= 0}. In this paper, we assume that
lh ≥ 2, lh̃ ≥ 2 and put

diam (supph) := lh − 1, diam (supp h̃) := lh̃ − 1.

Further, let g = (gk)∞k=−∞ and g̃ = (g̃k)∞k=−∞ with gk := (−1)k h̃1−k and g̃k := (−1)k h1−k

(k ∈ Z) be the corresponding high-pass filters. Note that lg = lh̃ and lg̃ = lh. It is known
(see [20], pp. 156–158; [5], pp. 74–82; [11], pp. 21–25) that these filters possess the
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following properties:

∞∑
n=−∞

hn h̃n−2k =
∞∑

n=−∞
gn g̃n−2k = δ(k) (duality),

∞∑
n=−∞

hn g̃n−2k =
∞∑

n=−∞
gn h̃n−2k = 0 (independence),

∞∑
k=−∞

(hm−2k h̃n−2k + gm−2k g̃n−2k) = δ(n−m) (perfect reconstruction),

∞∑
n=−∞

hn =
∞∑

n=−∞
h̃n =

√
2,

∞∑
n=−∞

gn =
∞∑

n=−∞
g̃n = 0 (normalization).

Here k, m, n are arbitrary integers and δ denotes the Kronecker symbol. Note that h, g,
h̃, and g̃ form a filter bank of perfect reconstruction.
For j ∈ N, let

nj := 2j .

The nj-periodic filter coefficients are given by

hj,k :=
∞∑

m=−∞
hk+njm, h̃j,k :=

∞∑
m=−∞

h̃k+njm,

gj,k :=
∞∑

m=−∞
gk+njm, g̃j,k :=

∞∑
m=−∞

g̃k+njm.

Observe that for nj ≥ l := max{lh, lg}, these four series contain only one nonzero term.
Now we consider the matrices

Hj := (hj,r−2k)
nj ,nj−1

r,k=0 , H̃j := (h̃j,r−2k)
nj ,nj−1

r,k=0 ,

Gj := (gj,r−2k)
nj ,nj−1

r,k=0 , G̃j := (g̃j,r−2k)
nj ,nj−1

r,k=0 .

The above properties of the filter coefficients yield the conditions of duality, independence,
perfect reconstruction and normalization for these non-quadratic matrices:

HT
j H̃j = GT

j G̃j = Ij−1,

GT
j H̃j = HT

j G̃j = Oj−1,

Hj H̃T
j + Gj G̃T

j = Ij ,

HT
j 1j = H̃T

j 1j =
√

21j−1,

GT
j 1j = G̃T

j 1j = oj−1.

Here we use the notations 1j := (1, 1, . . . , 1)T ∈ Rnj , oj := (0, 0, . . . , 0)T ∈ Rnj , Ij for
the identity matrix of order nj and Oj for the quadratic zero matrix of order nj .
The 1-level wavelet decomposition or discrete periodic biorthogonal wavelet transform of a
vector cj = (cj,k)

nj−1
k=0 ∈ Rnj can be written in the form

cj−1 = H̃T
j cj , dj−1 = G̃T

j cj ,
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where cj−1 = (cj−1,r)
nj−1−1
r=0 is the corresponding low-pass part and dj−1 = (dj−1,r)

nj−1−1
r=0

is the high-pass part of the input signal cj . Equivalently, we have for the components

cj−1,r =
nj−1∑
k=0

h̃j,k−2r cj,k, dj−1,r =
nj−1∑
k=0

g̃j,k−2r cj,k .

The 1-level wavelet reconstruction or inverse discrete periodic biorthogonal wavelet trans-
form is given by

cj = Hjcj−1 + Gjdj−1,

i.e., for a given low-pass signal cj−1 ∈ Rnj−1 and a given high-pass signal dj−1 ∈ Rnj−1

the original signal cj ∈ Rnj can be reconstructed. For the components it follows

cj,r =
nj−1−1∑

k=0

(hj,r−2k cj−1,k + gj,r−2k dj−1,k)

(see e.g. [6, 10, 11, 12]). The decomposition and reconstruction will be iteratively applied.
Let j, p ∈ N with p < j and l ≤ nj−p+1 be given. Generally, the p-level wavelet decompo-
sition of cj ∈ Rnj is defined as the block vector

(cT
j−p, dT

j−p, . . . , dT
j−1)

T ∈ Rnj ,

where cν , dν ∈ Rnν are recursively computed by

cj−ν−1 = H̃T
j−νcj−ν , dj−ν−1 = G̃T

j−νcj−ν , (ν = 0, . . . , p− 1),

such that

cj−p = H̃T
j−p+1 . . . H̃T

j cj ,

dj−p = G̃T
j−p+1H̃

T
j−p+2 . . . H̃T

j cj , (2.1)
...

dj−1 = G̃T
j cj .

Conversely, the p-level wavelet reconstruction of the block vector (cT
j−p, dT

j−p, . . . , dT
j−1)

T

with cν , dν ∈ Rnν is given by the recursive computation of the vector cj ∈ Rnj with

cν = Hν cν−1 + Gν dν−1 (ν = j − p + 1, . . . , j).

Finally, cj ∈ Rnj is determined in the following form

cj = Hj . . .Hj−p+1 cj−p + Hj . . .Hj−p+2Gj−p+1 dj−p + . . . (2.2)
+HjGj−1 dj−2 + Gj dj−1 .

It can be simply observed that the p-level wavelet decomposition is an invertible endo-
morphism on Rnj mapping cj to (cT

j−p, dT
j−p, . . . , dT

j−1)
T , and the p-level wavelet recon-

struction is the inverse mapping.
We present numerous examples of special biorthogonal low-pass filters in Table 1 with
the convention that hk = 0 and h̃k = 0, respectively, for every k ∈ Z not occurring
in Table 1. Our tests in Sections 4, 5, and 6 are based on these filters. Note that the
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biorthogonal wavelets are classified by the number of vanishing moments. The CDF(m̃, m)
filters (see [3]) possess m̃ vanishing moments for decomposition and m vanishing moments
for reconstruction. The binomial-m filters (see [9, 10]) possess m vanishing moments for
both decomposition and reconstruction. The Barlaud filter with m = 2 can be found in
[6], p. 281.
In the literature (see [6], pp. 259–285; [20], pp. 455–462; [12], pp. 271–272; [17]), one can
find many other biorthogonal low-pass filters which generate biorthogonal wavelets with
compact supports.

wavelet k −4 −3 −2 −1 0 1 2 3 4 5 6

CDF(3, 1) 2
√

2 hk 1 1
8
√

2 h̃k −1 1 8 8 1 −1

CDF(5, 1)
√

2 hk 1 1
128
√

2 h̃k 3 −3 −22 22 128 128 22 −22 −3 3

CDF(2, 2) 2
√

2 hk 1 2 1
4
√

2 h̃k −1 2 6 2 −1

CDF(4, 2) 2
√

2 hk 1 2 1
64
√

2 h̃k 3 −6 −16 38 90 38 −16 −6 3

CDF(1, 3) 4
√

2 hk 1 3 3 1
2
√

2 h̃k −1 3 3 −1

CDF(3, 3) 4
√

2 hk 1 3 3 1
32
√

2 h̃k 3 −9 −7 45 45 −7 −9 3

binomial-2 2
√

2 hk 3 2 −1
2
√

2 h̃k 1 2 1

binomial-3 2
√

2 hk −1 3 3 −1
4
√

2 h̃k 1 3 3 1

binomial-4 8
√

2 hk −5 20 10 −12 3
8
√

2 h̃k 1 4 6 4 1

binomial-5 8
√

2 hk 3 −15 20 20 −15 3
16
√

2 h̃k 1 5 10 10 5 1

binomial-6 16
√

2 hk 7 −42 77 28 −63 30 −5
32
√

2 h̃k 1 6 15 20 15 6 1

Barlaud 10
√

2 hk −1 5 12 5 −1
140
√

2 h̃k −3 −15 73 170 73 −15 −3

Table 1: Low-pass filter coefficients for biorthogonal filters

3 Matrix-vector products in floating point arithmetic

We consider a binary floating point number system F which is characterized by the preci-
sion t and the exponent range emin ≤ e ≤ emax. A nonzero element of F can be expressed
in the form

b = ±2e (2−1 + b2 2−2 + . . . + bt 2−t)
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with bi ∈ {0, 1} (i = 2, . . . , t). Then b lies in the range of F, i.e.

2emin−1 ≤ |b| ≤ 2emax (1− 2−t) .

Each x ∈ R \ {0} in the range of F can be approximated by a floating point number
fl(x) ∈ F with |fl(x)− x| ≤ u |x|, where u := 2−t is the unit roundoff.
In order to carry out a rounding error analysis of a wavelet algorithm, we assume that
the following standard model of floating point arithmetic by Wilkinson (see [21] or [8],
pp. 40–45) is true:
For arbitrary floating point numbers x, y ∈ F and any basic arithmetical operation ◦ ∈
{+, −, ×, /}, the exact value x ◦ y ∈ R and the computed value fl(x ◦ y) ∈ F are related
by

fl(x ◦ y) = (x ◦ y) (1 + ε) (|ε| ≤ u). (3.1)

It is usual to assume that (3.1) holds also for the square root operation, i.e., for all positive
x in the range of F we suppose that

fl(
√

x) =
√

x (1 + ε) (|ε| ≤ u).

In this model, we disregard underflow and overflow.

The above model is valid for most computers, in particular it holds for IEEE standard
arithmetic. For the IEEE arithmetic of single precision, we have t = 24, emin = −125,
emax = 128, and u = 2−24 ≈ 5.96× 10−8. For the IEEE arithmetic of double precision, we
have t = 53, emin = −1021, emax = 1024, and u = 2−53 ≈ 1.11× 10−16 (see [8], p. 41).
We are especially interested in a rounding analysis for matrix-vector products. First, we
consider inner products. With the unit roundoff u let now

γn := nu
1−nu (n ∈ N, nu < 1).

Further, for vectors a = (ai)n−1
i=0 ∈ Rn and matrices A = (ai,k)

m−1,n−1
i,k=0 ∈ Rm×n let

|a| := (|ai|)n−1
i=0 and |A| := (|ai,k|)m−1,n−1

i,k=0 be the corresponding vectors and matrices of
absolute values. Then we have

Lemma 3.1 Let n ∈ N be given with nu < 1. Then for a recursive computation of the
inner product of arbitrary vectors a, b ∈ Fn, we have

|fl(aTb)− aTb| ≤ γn |a|T |b| = (nu +O(u2)) |a|T |b|.

Proof. The proof follows immediately by induction over n (see e.g. [8], p. 68–69). ✷

If the vector a ∈ Fn possesses at most l ≤ n nonzero entries, then we obtain as a trivial
consequence of Lemma 3.1 that for arbitrary b ∈ Fn

|fl(aTb)− aTb| ≤ γl |a|T |b|.

Now we consider matrix-vector products. For a matrix A = (ai,k)
m−1,n−1
i,k=0 ∈ Rm×n let

signA := (sign ai,k)
m−1,n−1
i,k=0 be the corresponding sign matrix, where for a ∈ R, sign a :=

a/|a| for a 
= 0 and sign 0 := 0. Further, for two vectors a = (ai)n−1
i=0 , b = (bi)n−1

i=0 ∈ Rn

we write a ≤ b, if ai ≤ bi for all i = 0, . . . , n − 1. Analogously, we write A ≤ B for two
matrices A, B of the same size, if this inequality is true for each element. Then we obtain
(see also [14])
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Lemma 3.2 Let m, n, l ∈ N with 2 ≤ l < n and lu < 1 be given. Let A = (ai,k)
m−1,n−1
i,k=0 ∈

R
m×n be a matrix containing at most l nonzero entries in each row. Further let each ai,k

lie in the range of F. Assume that the nonzero entries ai,k are precomputed by âi,k ∈ F,
where

|âjk − ajk| ≤ η u (3.2)

with some constant η > 0, and set âi,k := 0 if ai,k = 0. Let Â := (âi,k)
m−1,n−1
i,k=0 .

Then for arbitrary x ∈ Fn, the error fl(Âx)−Ax satisfies the elementwise estimate

|fl(Âx)−Ax| ≤ γl |A||x|+ (η u + γl η u) |signA| |x|

in the case of recursive summation.

Proof. The assumption (3.2) implies that

|Â−A| ≤ η u |signA|.

Hence the error vector fl(Âx)−Ax can be estimated as follows

|fl(Âx)−Ax| ≤ |fl(Âx)− Âx|+ |(Â−A)x|
≤ |fl(Âx)− Âx|+ η u | signA| |x|.

For the first term we obtain by Lemma 3.1

|fl(Âx)− Âx| ≤ γl |Â| |x|
≤ γl |A| |x|+ γl |Â−A| |x|
≤ γl |A| |x|+ γl η u |signA| |x|,

where we have used that each row contains at most l nonzero entries. ✷

Using the spectral norm of the matrix A ∈ Rm×n, given by

‖A‖2 :=
√

ρ(ATA),

where ρ(ATA) denotes the spectral radius of ATA, we finally obtain an error estimate in
the Euclidian norm

‖fl(Âx)−Ax‖2 ≤ γl ‖ |A| ‖2 ‖x‖2 + (1 + γl) η u ‖ |signA| ‖2 ‖x‖2.

4 Numerical stability of wavelet decomposition

First we introduce the vectors hj := (hj,k)
nj−1
k=0 , h̃j := (h̃j,k)

nj−1
k=0 , gj := (gj,k)

nj−1
k=0 , and

g̃j := (g̃j,k)
nj−1
k=0 . The forward shift matrix Sj of order nj is defined for arbitrary x =

(xk)
nj−1
k=0 ∈ Rnj by

Sj x := (xnj−1, x0, x1, . . . , xnj−2)T .
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Then the matrices Hj , H̃j , Gj , and G̃j in Section 2 can be expressed by shifts of the first
columns:

Hj :=
(
hj , S2

jhj , S4
jhj , . . . , Snj−2

j hj

)
,

H̃j :=
(
h̃j , S2

j h̃j , S4
j h̃j , . . . , Snj−2

j h̃j

)
,

Gj :=
(
gj , S2

jgj , S4
jgj , . . . , Snj−2

j gj

)
,

G̃j :=
(
g̃j , S2

j g̃j , S4
j g̃j , . . . , Snj−2

j g̃j

)
,

such that

HT
j Hj = G̃T

j G̃j = circuj−1, H̃T
j H̃j = GT

j Gj = circ ũj−1 (4.1)

are circulant matrices of order nj−1 with the characteristic vectors

uj−1 :=
(
(hj)Thj , (S2

jhj)Thj , . . . , (Snj−2
j hj)Thj

)T
,

ũj−1 :=
(
(h̃j)T h̃j , (S2

j h̃j)T h̃j , . . . , (Snj−2
j h̃j)T h̃j

)T
.

Lemma 4.1 If a filter h = (hk)∞k=−∞ has a finite length lh and if supph = {a, a +
1, . . . , a + lh − 1} (a ∈ Z), then for all j ∈ N with nj ≥ lh, we have

‖HT
j Hj‖1 = µ2

h, ‖Hj‖2 ≤ µh

with the constant

µ2
h :=

nj−1−1∑
m=0

∣∣
nj−1∑
k=0

hj,k hj,k−2m

∣∣

=
a+lh−1∑

k=a

h2
k + 2

�(lh−1)/2�∑
m=1

∣∣
a+lh−1∑
k=a+2m

hk hk−2m

∣∣.

If hk ≥ 0 for all k ∈ Z, then ‖Hj‖2 = µh.

Proof. (i) From (4.1) it follows immediately that

‖HT
j Hj‖1 = ‖circuj−1‖1 = ‖uj−1‖1

=
nj−1−1∑

m=0

∣∣
nj−1∑
k=0

hj,k hj,k−2m

∣∣ = µ2
h.

Without loss of generality we can assume that a = 0. Further, nj ≥ lh. Then we have
hj,k = hk 
= 0 for k ∈ {0, . . . , lh − 1} and hj,k = 0 for k ∈ {lh, . . . , nj − 1}. Note that
(hj,k)∞k=−∞ is nj-periodic. Hence we obtain that

nj−1−1∑
m=0

∣∣
nj−1∑
k=0

hj,k hj,k−2m

∣∣ =
nj−1−1∑

m=0

∣∣
lh−1∑
k=0

hk hj,k−2m

∣∣

=
lh−1∑
k=0

h2
k +

nj−1−1∑
m=1

∣∣
lh−1∑
k=0

hk hj,k−2m

∣∣

=
lh−1∑
k=0

h2
k + 2

�(lh−1)/2�∑
m=1

∣∣
lh−1∑
k=2m

hk hk−2m

∣∣.
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(ii) Let Fj−1 := (wmn)nj−1−1
m,n=0 be the Fourier matrix of order nj−1, where w := exp(−2πi

nj−1
).

Since the circulant matrix HT
j Hj = circuj−1 can be diagonalized by Fj−1 [7], i.e.

Fj−1(HT
j Hj)F−1

j−1 = diag (Fj−1uj−1),

we see that the eigenvalues of HT
j Hj are the components of the vector Fj−1uj−1. Hence

we obtain that

‖HT
j Hj‖2 = ‖Hj‖22 = max{|(Fj−1uj−1)k| : k = 0, . . . , nj−1 − 1}

= ‖Fj−1uj−1‖∞ ≤ ‖uj−1‖1 = µ2
h

such that ‖Hj‖2 ≤ µh. If all filter coefficients hk are non-negative, then uj−1 ≥ oj−1 such
that ‖Fj−1uj−1‖∞ = ‖uj−1‖1 and ‖Hj‖2 = µh. ✷

Corollary 4.2 For lh ≤ nj−1 we have

‖ |sign Hj | ‖2 ≤




1
2

√
2 lh if lh even,

1
2

√
2

√
l2h + 1 if lh odd .

Proof. (i) For even lh, we obtain

(lh, lh − 2, lh − 4, . . . , 2, 0, . . . , 0, 2, . . . , lh − 4, lh − 2)T ∈ Rnj−1

as characteristic vector of the circulant matrix |sign Hj |T |sign Hj |. By Lemma 4.1 we see
that

‖ |sign Hj | ‖22 = 2
(
2 + 4 + . . . + (lh − 2)

)
+ lh = 1

2 l2h.

(ii) For odd lh, the characteristic vector of the circulant matrix |sign Hj |T |sign Hj | reads
as follows

(lh, lh − 2, lh − 4, . . . , 1, 0, . . . , 0, 1, . . . , lh − 4, lh − 2)T ∈ Rnj−1 .

Then by Lemma 4.1 it follows that

‖ |sign Hj | ‖22 = 2
(
1 + 3 + . . . + (lh − 2)

)
+ lh = 1

2 (l2h + 1).

This completes the proof. ✷

Now we consider biorthogonal low-pass filters h and h̃ with finite lengths. The correspond-
ing high-pass filters are denoted by g and g̃. Let l = max{lh, lg} ≤ nj . By definition of µh

in Lemma 4.1 we see immediately that µg̃ = µh and µg = µh̃. Further we obtain

‖Hj‖2 = ‖G̃j‖2 , ‖Gj‖2 = ‖H̃j‖2 ,

‖ |Hj | ‖2 = ‖ |G̃j | ‖2 , ‖ |Gj | ‖2 = ‖ |H̃j | ‖2 ,

‖ |sign Hj | ‖2 = ‖ |sign G̃j | ‖2 , ‖ |sign Gj | ‖2 = ‖ |sign H̃j | ‖2 .

Thus we conclude that

‖Hj‖2 = ‖G̃j‖2 ≤ µh , ‖Gj‖2 = ‖H̃j‖2 ≤ µg. (4.2)

We introduce the following notations

µ|h| := ‖ |Hj | ‖2, µ|sign h| := ‖ |sign Hj | ‖2,
µ|g| := ‖ |Gj | ‖2, µ|sign g| := ‖ |sign Gj | ‖2.

In Table 2 we present the corresponding constants for the special biorthogonal filters of
Table 1.
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wavelet µh µg µ|h| µ|g| µ|sign h| µ|sign g|
CDF(3,1) 1

√
17/4 1 5/4

√
2 3

√
2

CDF(5,1) 1
√

4721/64 1 89/64
√

2 5
√

2
CDF(2,2) 1

√
2 1

√
10/2 2

√
13

CDF(4,2) 1
√

2 1
√

754/16
√

5
√

41
CDF(1,3) 1 2 1 2 2

√
2 2

√
2

CDF(3,3) 1 2 1 2 2
√

2 4
√

2
binomial-2

√
10/2 1

√
10/2 1 2 2

binomial-3 2 1 2 1 2
√

2 2
√

2
binomial-4

√
614/8 1

√
674/8 1

√
13

√
13

binomial-5 4 1 19/4 1 3
√

2 3
√

2
binomial-6

√
3291/8 1

√
4138/8 1 5 5

Barlaud 1 1459/1400 37/25 1972/1225
√

13 5

Table 2: Constants for biorthogonal filters in Table 1

Let j, p ∈ N with p < j be given. Assume that l = max {lh, lg} ≤ nj−p+1. In Section 2,
the p-level wavelet decomposition of an input vector cj ∈ Fnj has been given by

cj−ν = H̃T
j−ν+1cj−ν+1, dj−ν = G̃T

j−ν+1cj−ν+1 (ν = 1, . . . , p). (4.3)

Thus the vector cj is decomposed into the vector
(
cT

j−p, dT
j−p, . . . , dT

j−1

)T ∈ Rnj . The
corresponding computed vectors have the form

ĉj−ν := fl
( ˆ̃H

T

j−ν+1ĉj−ν+1

)
, d̂j−ν = fl

( ˆ̃G
T

j−ν+1ĉj−ν+1

)
(ν = 1, . . . , p)

with ĉj = cj . First we observe the following estimate of the forward error for 1-level
wavelet decomposition and partial reconstruction.

Lemma 4.3 (i) Let h̃ = (h̃k)∞k=−∞ be a filter of finite length lh̃ ≤ nj. Assume that all the

filter coefficients h̃k 
= 0 are precomputed by ˆ̃
hk ∈ F, where

|ˆ̃hk − hk| < η u

with some constant η > 0, and set ˆ̃
hk := 0 if h̃k = 0. Let ˆ̃Hj := (ˆ̃hj,r−2k)

nj−1,nj−1−1
r,k=0 be

the precomputed matrix of H̃j . Then for arbitrary cj ∈ Fnj , the error ĉj−1 − cj−1 can be
estimated by

‖ĉj−1 − cj−1‖2 = ‖fl( ˆ̃H
T

j cj)− H̃T
j cj‖2 ≤

(
lh̃ µ|h̃| u + η µ|sign h̃| u +O(u2)

)
‖cj‖2.

(ii) Let h = (hk)∞k=−∞ be a filter of finite length lh ≤ nj−1. Assume that all the filter
coefficients hk 
= 0 are precomputed by ĥk ∈ F, where

|ĥk − hk| < η u

with some constant η > 0, and set ĥk := 0 if hk = 0. Let Ĥj := (ĥj,r−2k)
nj−1,nj−1−1
r,k=0 be the

precomputed matrix of Hj . Then for arbitrary cj−1 ∈ Fnj−1, the error fl(Ĥjcj−1)−Hjcj−1

can be estimated by

‖fl(Ĥjcj−1)−Hjcj−1‖2 ≤
(
�lh/2�µ|h| u + η µ|sign h| u +O(u2)

)
‖cj−1‖2.
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Proof. This follows immediately from Lemma 3.2. ✷

Iterated application of Lemma 4.3 leads to the following estimates for the forward error
of ν-level wavelet decomposition (ν = 1, . . . , p).

Theorem 4.4 Let h = (hk)∞k=−∞ and h̃ = (h̃k)∞k=−∞ be biorthogonal low-pass filters with
finite lengths. Assume that for some η > 0, the precomputed filter coefficients in F satisfy
the conditions

|ĥk − hk| ≤ η u (k ∈ supph), ĥk = 0 (k ∈ Z \ supph),

|ˆ̃hk − h̃k| ≤ η u (k ∈ supp h̃), ˆ̃
hk = 0 (k ∈ Z \ supp h̃).

Let j, p ∈ N with p ≤ j and l = max {lh, lg} ≤ nj−p+1 be given. Then for ν = 1, . . . , p
we have

‖ĉj−ν − cj−ν‖2 ≤ ν
(
lg µ|g| u + η µ|sign g| u +O(u2)

)
µν−1

g ‖cj‖2 ,

‖d̂j−ν − dj−ν‖2 ≤
(
lh µ|h| u + η µ|sign h| u +O(u2)

)
µν−1

g ‖cj‖2

+ (ν − 1) µh

(
lg µ|g| u + η µ|sign g| u +O(u2)

)
µν−2

g ‖cj‖2 .

Proof. We know by (4.3) that for ν = 1, . . . , p

ĉj−ν − cj−ν =
(
ĉj−ν − H̃T

j−ν+1ĉj−ν+1

)
+ H̃T

j−ν+1(ĉj−ν+1 − cj−ν+1).

By Lemma 4.3 (i), we can estimate

‖ĉj−ν − H̃T
j−ν+1ĉj−ν+1‖2 ≤

(
lg µ|g| u + η µ|sign g| u +O(u2)

)
‖ĉj−ν+1‖2 ,

‖d̂j−ν − G̃T
j−ν+1ĉj−ν+1‖2 ≤

(
lh µ|h| u + η µ|sign h| u +O(u2)

)
‖ĉj−ν+1‖2 .

Further we obtain by Lemma 4.3 (i), (4.3), and (4.2) that for ν = 1, . . . , p− 1

‖ĉj−ν‖2 ≤ ‖H̃T
j−ν+1cj−ν+1‖2 + ‖ĉj−ν − cj−ν‖2

≤
(
‖H̃j−ν+1‖2 +O(u)

)
‖cj−ν+1‖2 ≤

(
µg +O(u)

)
‖cj−ν+1‖2

≤
(
µν

g +O(u)
)
‖cj‖2 .

Hence we get

‖ĉj−ν − H̃T
j−ν+1ĉj−ν+1‖2 ≤

(
lg µ|g| u + η µ|sign g| u +O(u2)

)
µν−1

g ‖cj‖2 ,

‖d̂j−ν − G̃T
j−ν+1ĉj−ν+1‖2 ≤

(
lh µ|h| u + η µ|sign h| u +O(u2)

)
µν−1

g ‖cj‖2

such that the results follow immediately by iterative application of this procedure. ✷

Now we discuss the backward error of the p-level wavelet decomposition. Therefore we
introduce the backward error vector ∆(p)cj which is defined by

cj + ∆(p)cj = Hj . . .Hj−p+1ĉj−p + Hj . . .Hj−p+2Gj−p+1d̂j−p + . . .

+HjHj−1Gj−2d̂j−3 + HjGj−1d̂j−2 + Gjd̂j−1 .

12



Thus the backward error vector ∆(p)cj of the p-level wavelet decomposition is explained
by the p-level wavelet reconstruction of the numerically decomposed vectors. A p-level
wavelet decomposition is called numerically backward stable, if there is a positive constant
kp with kp u� 1 such that

‖∆(p)cj‖2 ≤
(
kp u +O(u2)

)
‖cj‖2

for all input vectors cj ∈ Fnj . The constant kp measures the numerical backward stability
of the p-level wavelet decomposition.

Theorem 4.5 Under the assumptions of Theorem 4.4, the p-level wavelet decomposition
is numerically backward stable with the constant

kp = p µp
h µp−1

g (lg µ|g| + η µ|sign g|)

+
p−1∑
k=0

(
k µk+1

h µk
g (lg µ|g| + η µ|sign g|) + µk

h µk+1
g (lh µ|h| + η µ|sign g|)

)
.

Proof. The p-level wavelet reconstruction of cj in (2.2) and the definition of ∆(p)cj yield

∆(p)cj = Hj . . .Hj−p+1 (ĉj−p − cj−p) + Hj . . .Hj−p+2Gj−p+1 (d̂j−p − dj−p) + . . .

+HjHj−1Gj−2 (d̂j−3 − dj−3) + HjGj−1 (d̂j−2 − dj−2) + Gj (d̂j−1 − dj−1) .

From

‖∆(p)cj‖2 ≤ µp
h ‖ĉj−p − cj−p‖2 + µp−1

h µg ‖d̂j−p − dj−p‖2 + . . .

+µ2
h µg ‖d̂j−3 − dj−3‖2 + µh µg ‖d̂j−2 − dj−2‖2 + µg ‖d̂j−1 − dj−1‖2

and Theorem 4.4, the assertion follows immediately. ✷

Biorthogonal low-pass filters of CDF wavelets (see Table 1) possess the property

‖Hj‖2 = ‖G̃j‖2 = µh = 1.

Binomial wavelets (see Table 1) satisfy the condition

‖Gj‖2 = ‖H̃j‖2 = µg = 1.

In these cases, Theorem 4.5 can be simplified.

Corollary 4.6 Under the assumptions of Theorem 4.4, we have in the case µh = 1 and
µg > 1 that

kp = (2p−1)µp+1
g −3pµp

g+pµp−1
g +µg

(µg−1)2
(lg µ|g| + η µ|sign g|) + µp+1

g −µg

µg−1 (lh µ|h| + η µ|sign h|).

If µg = 1 and µh > 1, then

kp = (2p−1)µp+2
h −3pµp+1

h +pµp
h+µ2

h

(µh−1)2
(lg µ|g| + η µ|sign g|) + µp

h−1

µh−1 (lh µ|h| + η µ|sign h|).
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Proof. In the case µh = 1 and µg > 1, Theorem 4.5 implies that

kp = p µp−1
g (lg µ|g| + η µ|sign g|) +

p−1∑
k=1

k µk
g (lg µ|g| + η µ|sign g|)

+
p−1∑
k=0

µk+1
g (lh µ|h| + η µ|sign h|).

By
p−1∑
k=0

µk+1
g = µp+1

g −µg

µg−1 ,

p−1∑
k=1

k µk
g = (p−1)µp+1

g −pµp
g+µg

(µg−1)2

we obtain the above stability constant kp. The case µg = 1 and µh > 1 can be handled
quite similarly such that this proof is omitted. ✷

Example 4.7 For the biorthogonal low-pass filters of the CDF(1,3) wavelets (see Tables
1 and 2) we obtain the stability constant

kp = 2p (12 p + 3
√

2 η p− 8) + 8.

For the biorthogonal low-pass filters of the binomial-3 wavelets (see Tables 1 and 2) we
find

kp = 2p
(
12 p + (6p− 4)

√
2 η − 8

)
+ 8 + 6

√
2 η.

Note that the stability constants kp depend on the level p, but they do not depend on
the length nj of the input vectors. Hence, these constants are also true for the wavelet
decomposition with non-periodic biorthogonal wavelets.

Now we illustrate the results of Corollary 4.6 by numerical tests. We choose 50 random vec-
tors c10 ∈ F1024. Every component of these vectors is a random number being uniformly
distributed in [0, 1]. For the determination of the backward error vector, we compute
the p–level wavelet decomposition in IEEE arithmetic of single precision and the p–level
wavelet reconstruction in IEEE arithmetic of double precision with p ∈ {1, . . . , 8}. To
illustrate the results in the Figures 1 and 2, we plot the relative roundoff error norms for
different levels p. The solid line indicates the worst case error bound kp u from Corollary
4.6. Each “+” corresponds to the numerical error ‖∆(p)c10‖2/‖c10‖2 for one of the 50
simulations. Figures 1 and 2 show the numerical stability of the p–level wavelet decom-
position with CDF(3,1) and binomial–6 wavelets, respectively. We see that the numerical
stability for CDF(3,1) wavelets is much better than for binomial–6 wavelets. In [10], this
behavior of binomial–6 wavelets is called “instable”.
Observe that the obtained estimates for the worst case error exceed the indeed errors by
about a factor 10. This can be seen as a rule of thumb. But the qualitative error is
reflected suitably.

5 Numerical stability of wavelet reconstruction

Let h and h̃ be given biorthogonal low-pass filters with finite lengths. Further let g and g̃ be
the corresponding high-pass filters. Let j, p ∈ N with p < j and l = max {lh, lg} ≤ nj−p+1.

14
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Figure 1: Relative backward error of the p-level decomposition with CDF(3,1) wavelets
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Figure 2: Relative backward error of the p-level decomposition with binomial-6 wavelets

Now we consider the numerical stability of the p-level wavelet reconstruction which reads
as follows

cν = Hk cν−1 + Gν dν−1 (ν = j − p + 1, . . . , j). (5.1)

Starting with the block vector

(cT
j−p, dT

j−p, . . . , dT
j−1)

T ∈ Fnj (cν , dν ∈ Fnν ),
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we reconstruct the vector cj ∈ Rnj . Assume that for some η > 0, the precomputed filter
coefficients ĥk and ĝk satisfy the conditions

|ĥk − hk| ≤ η u (k ∈ supph), ĥk = 0 (k ∈ Z \ supph) ,

|ˆ̃hk − h̃k| ≤ η u (k ∈ supp h̃), ˆ̃
hk = 0 (k ∈ Z \ supp h̃) .

By Ĥk and Ĝk we denote the matrices with precomputed entries corresponding to Hk

and Gk. Instead of cj ∈ Rnj , we compute the vector c(p)
j ∈ Fnj by the following recursive

procedure:

c(1)
j−p+1 := fl

(
fl(Ĥj−p+1 cj−p) + fl(Ĝj−p+1 dj−p)

)
,

c(2)
j−p+2 := fl

(
fl(Ĥj−p+2 c(1)

j−p+1) + fl(Ĝj−p+2 dj−p+1)
)

,

...
c(p)

j := fl
(
fl(Ĥj c(p−1)

j−1 ) + fl(Ĝj dj−1)
)

.

First we consider the forward error of the reconstruction algorithm.

Theorem 5.1 Let h = (hk)∞k=−∞ and h̃ = (h̃k)∞k=−∞ be biorthogonal low-pass filters with
finite lengths. Assume that for some η > 0, the precomputed filter coefficients in F satisfy
the conditions

|ĥk − hk| ≤ η u (k ∈ supph), ĥk = 0 (k ∈ Z \ supph) ,

|ˆ̃hk − h̃k| ≤ η u (k ∈ supp h̃), ˆ̃
hk = 0 (k ∈ Z \ supp h̃) .

Let j, p ∈ N with p ≤ j and l = max {lh, lg} ≤ nj−p be given.
Then the forward error of the p-level wavelet reconstruction can be estimated by

‖c(p)
j − cj‖2 ≤ (p µp−1

h eh u +O(u2)) ‖cj−p‖2

+
p∑

n=1

(
(n− 1) µn−2

h µg eh u + µn−1
h eg u +O(u2)

)
‖dj−n‖2 (5.2)

with
eh := �lh/2�µ|h| + η µ|sign h| + µh , eg := �lg/2�µ|g| + η µ|sign g| + µg .

Proof. We apply induction over p.
(i) Let p = 1. With

c(1)
j := fl

(
fl(Ĥjcj−1) + fl(Ĝjdj−1)

)

we denote the computed vector of cj of the 1-level wavelet reconstruction. Using (5.1)
and triangle inequality, we can estimate

‖c(1)
j − cj‖2 ≤ ‖c(1)

j − (fl(Ĥjcj−1) + fl(Ĝjdj−1))‖2
+ ‖(fl(Ĥjcj−1)−Hjcj−1‖2 + ‖(fl(Ĝjdj−1)−Gjdj−1‖2 . (5.3)
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From Lemma 4.3 (ii), it follows that

‖fl(Ĥjcj−1)−Hjcj−1‖2 ≤ ((eh − µh)u +O(u2)) ‖cj−1‖2 , (5.4)

‖fl(Ĝjdj−1)−Gjdj−1‖2 ≤ ((eg − µg)u +O(u2)) ‖dj−1‖2 . (5.5)

By assumption (3.1) of Wilkinson, we obtain the componentwise estimate

|c(1)
j − (fl(Ĥjcj−1) + fl(Ĝjdj−1))| ≤ |fl(Ĥjcj−1) + fl(Ĝjdj−1)|u

and therefore

‖c(1)
j − (fl(Ĥjcj−1) + fl(Ĝjdj−1))‖2 ≤ ‖fl(Ĥjcj−1)‖2 u + ‖fl(Ĝjdj−1)‖2 u .

Using (5.4), (5.5), and Lemma 4.1, we find

‖fl(Ĥjcj−1)‖2 ≤ ‖fl(Ĥjcj−1)−Hjcj−1‖2 + ‖Hjcj−1‖2 ≤ (µh +O(u)) ‖cj−1‖2 ,

‖fl(Ĝjdj−1)‖2 ≤ ‖fl(Ĝjdj−1)−Gjdj−1‖2 + ‖Gjdj−1‖2 ≤ (µg +O(u)) ‖dj−1‖2 .

Thus we see that

‖c(1)
j − (fl(Ĥjcj−1) + fl(Ĝjdj−1))‖2 ≤ (µh u +O(u2)) ‖cj−1‖2 + (µg u +O(u2)) ‖dj−1‖2 .

(5.6)

Finally, (5.3) – (5.6) yield the wanted estimate

‖c(1)
j − cj‖2 ≤ (eh u +O(u2)) ‖cj−1‖2 + (eg u +O(u2)) ‖dj−1‖2 . (5.7)

(ii) Let j, p ∈ N with p + 1 ≤ j and l ≤ nj−p−1 be given. Assume that the estimate (5.2)
is true for p. The (p + 1)-level wavelet reconstruction starts with the given block vector

(cT
j−p−1, dT

j−p−1, . . . , dT
j−1)

T ∈ Fnj

and reads as follows

cν = Hν cν−1 + Gν dν−1 (ν = j − p, . . . , j)

such that for ν = j − 1 we have

cj−1 = Hj−1 . . .Hj−pcj−p−1 + Hj−1 . . .Hj−p+1Gj−pcj−p−1 + . . . + Gj−1dj−2 .

Hence by Lemma 4.1 it follows that

‖cj−1‖2 ≤ µp
h ‖cj−p−1‖2 +

p+1∑
n=2

µn−2
h µg ‖dj−n‖2 . (5.8)

By our assumption of induction we have

‖c(p)
j−1 − cj−1‖2 ≤ (p µp−1

h eh u +O(u2)) ‖cj−p−1‖2

+
p∑

n=1

(
(n− 1) µn−2

h µg eh u + µn−1
h eg u +O(u2)

)
‖dj−n−1‖2 .(5.9)
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Introducing the auxiliary vector c̃j := Hjc
(p)
j−1 + Gjdj−1, we can estimate that

‖c(p+1)
j − cj‖2 ≤ ‖c(p+1)

j − c̃j‖2 + ‖c̃j − cj‖2 . (5.10)

From (5.7) it follows immediately that

‖c(p+1)
j − c̃j‖2 ≤ (eh u +O(u2)) ‖c(p)

j−1‖2 + (eg u +O(u2)) ‖dj−1‖2 (5.11)

where

‖c(p)
j−1‖2 ≤ ‖c

(p)
j−1 − cj−1‖2 + ‖cj−1‖2 . (5.12)

By (5.1) and Lemma 4.1, we obtain that

‖c̃j − cj‖2 = ‖Hj(c
(p)
j−1 − cj−1)‖2 ≤ µh ‖c(p)

j−1 − cj−1‖2 . (5.13)

Using (5.10) – (5.13), we conclude that

‖c(p+1)
j − cj‖2 ≤ (eh u +O(u2)) (‖c(p)

j−1 − cj−1‖2 + ‖cj−1‖2) + (eg u +O(u2)) ‖dj−1‖2
+µh ‖c(p)

j−1 − cj−1‖2

such that by (5.8) and (5.9) we get the estimate (5.2) in the case p + 1. ✷

With this result, we are able to describe the backward error for the p-level wavelet recon-
struction. Let c(p)

j be the numerically reconstructed vector of the p-level wavelet recon-
struction of the input block vector

b := (cT
j−p, dT

j−p, . . . , dT
j−1)

T ∈ Fnj . (5.14)

The error vector ∆(p) of the p-level wavelet reconstruction is explained by the exact p-
level decomposition of the numerically reconstructed vector c(p)

j , i.e., we have the backward
error block vector

∆(p) := ((∆cj−p)T , (∆dj−p)T , . . . , (∆dj−1)T )T

with

cj−p + ∆cj−p = H̃T
j−p+1 . . . H̃T

j c(p)
j ,

dj−p + ∆dj−p = G̃T
j−p+1H̃

T
j−p+2 . . . H̃T

j c(p)
j , (5.15)

...
dj−1 + ∆dj−1 = G̃T

j c(p)
j .

We say that a p-level wavelet reconstruction is numerically backward stable, if there exists
a positive constant k̃p with k̃p u� 1 such that

‖∆(p)‖2 ≤ (k̃p u +O(u2)) ‖b‖2

for all input block vectors (5.14). Hence the constant k̃p measures the numerical backward
stability of the p-level wavelet reconstruction.
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Theorem 5.2 Under the assumptions of Theorem 5.1, the p-level wavelet reconstruction
is numerically backward stable with the constant k̃p, where

k̃2
p = (µ2p

g + µ2
h

p−1∑
m=0

µ2m
g )

[
p2 µ2p−2

h e2
h +

p∑
n=1

(
(n− 1) eh µn−2

h µg + µn−1
h eg

)2]
.

Proof. By (2.1) and (5.15) we get

∆cj−p = H̃T
j−p+1 . . . H̃T

j (c(p)
j − cj) ,

∆dj−p = G̃T
j−p+1H̃

T
j−p+2 . . . H̃T

j (c(p)
j − cj) ,

...
∆dj−1 = G̃T

j (c(p)
j − cj)

such that by (4.2) the backward error block vector ∆(p) can be estimated as follows

‖∆(p)‖22 ≤
(
µ2p

g + µ2
h

p−1∑
m=0

µ2m
g

)
‖c(p)

j − cj‖22 .

Further by Theorem 5.1 and Cauchy-Schwarz inequality, we see that

‖c(p)
j − cj‖22 ≤

[
p2µ2p−2

h e2
h +

p∑
n=1

(
(n− 1)µn−2

h µgeh + µn−1
h eg

)2
+O(u)

]
u2 ‖b‖22 ,

where b is defined in (5.14). This completes the proof. ✷

Example 5.3 For the biorthogonal low-pass filters of the CDF(1,3) wavelets (see Tables
1 and 2), we obtain eh = 3 + 2

√
2η and eg = 6 + 2

√
2η. Thus by Theorem 5.2 it follows

that

k̃2
p = 4p+1−1

9 [(36 + 48
√

2η + 32η2) p3 + (81 + 72
√

2η + 24η2) p2 + (18− 12
√

2η − 8η2) p] .

Now we illustrate the results of Theorem 5.2 by numerical tests. We choose 50 random
block vectors b ∈ F1024 of the form (5.14). Every component of these vectors is a random
number being uniformly distributed in [0, 1]. For the determination of the backward error
vector ∆(p), we compute the p–level wavelet reconstruction in IEEE arithmetic of single
precision and the p–level wavelet decomposition in IEEE arithmetic of double precision
with p ∈ {1, . . . , 8}. To illustrate the results in the Figures 3 and 4, we plot the relative
roundoff error norms for different levels p. The solid line indicates the worst case error
bound k̃p u found in Theorem 5.2. For each of the 50 simulations the computed relative
error ‖∆(p)‖2/‖b‖2 is indicated by “+”. Figures 3 and 4 show the numerical stability
behavior of the p–level wavelet reconstruction with CDF(3,1) and binomial–6 wavelets,
respectively.
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Figure 3: Relative backward error of the p-level reconstruction with CDF(3,1) wavelets
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Figure 4: Relative backward error of the p-level reconstruction with binomial-6 wavelets

6 Wavelet decomposition-reconstruction

Finally we consider the worst case error of the p-level wavelet decomposition with enclosed
reconstruction, called p-level wavelet decomposition-reconstruction. This case appears in
many applications of the wavelet theory.
Let h and h̃ be given biorthogonal low-pass filters with finite lengths. Further let g and g̃ be
the corresponding high-pass filters. Let j, p ∈ N with p < j and l = max {lh, lg} ≤ nj−p+1.
Then by computation of the p-level wavelet decomposition of an arbitrary input vector
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cj ∈ Fnj , we obtain the vectors

ĉj−ν := fl
( ˆ̃H

T

j−ν+1ĉj−ν+1

)
, d̂j−ν = fl

( ˆ̃G
T

j−ν+1ĉj−ν+1

)
(ν = 1, . . . , p)

with ĉj = cj . Starting with the block vector
(
ĉT

j−p, d̂T
j−p, . . . , d̂T

j−1

)T ∈ Fnj

we realize the p-level wavelet reconstruction. Then we obtain the resulting vector ĉ(p)
j ∈ Fnj

computed recursively by

ĉ(1)
j−p+1 := fl

(
fl(Ĥj−p+1 ĉj−p) + fl(Ĝj−p+1 d̂j−p)

)
,

ĉ(2)
j−p+2 := fl

(
fl(Ĥj−p+2 ĉ(1)

j−p+1) + fl(Ĝj−p+2 d̂j−p+1)
)

,

...
ĉ(p)

j := fl
(
fl(Ĥj ĉ(p−1)

j−1 ) + fl(Ĝj d̂j−1)
)

.

By the perfect reconstruction property, the p-level wavelet decomposition-reconstruction
coincides with the identity such that ĉ(p)

j should be an approximation of cj . We say that a
p-level wavelet decomposition with enclosed reconstruction is numerically backward stable,
if there exists a positive constant k̂p with k̂pu� 1 such that

‖ĉ(p)
j − cj‖2 ≤ (k̂p u +O(u)) ‖cj‖2

for all input vectors cj ∈ Fnj . Hence the constant k̂p measures the numerical backward
stability of the p-level decomposition-reconstruction.

Theorem 6.1 Under the assumptions of Theorem 5.1, the p-level wavelet decomposition-
reconstruction is numerically stable with the constant

k̂p = p eh µp−1
h µp

g +
p∑

ν=1

(
(ν − 1) eh µν−1

h µν
g + eg µν

h µν−1
g

)
.

Proof. Using Theorem 5.1, we can estimate that

‖ĉ(p)
j − cj‖2 ≤ (p eh µp−1

h u +O(u2)) ‖ĉj−p‖2

+
p∑

ν=1

(
(ν − 1) µν−2

h µg eh u + µν−1
h eg u +O(u2)

)
‖d̂j−ν‖2 .

By Theorem 4.4, (4.2), and (2.1) we conclude that

‖ĉj−p‖2 ≤ ‖ĉj−p − cj−p‖2 + ‖cj−p‖2 ≤ ‖ĉj−p − cj−p‖2 + µp
g ‖cj‖2

≤ (µp
g +O(u)) ‖cj‖2 .

Analogously we see that for ν = 1, . . . , p

‖d̂j−ν‖2 ≤ (µh µν−1
g +O(u)) ‖cj‖2 .

This completes the proof. ✷

In the cases µh = 1 and µg = 1, respectively, Theorem 6.1 can be simplified:
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Corollary 6.2 Under the assumptions of Theorem 5.1, we have in the case µh = 1 and
µg > 1 that

k̂p = (2p−1)µp+2
g −3pµp+1

g +pµp
g+µ2

g

(µg−1)2
eh + µp

g−1
µg−1 eg .

If µg = 1 and µh > 1, then

k̂p = (2p−1)µp+1
h −3pµp

h+pµp−1
h +µh

(µh−1)2
eh + µp+1

h −µh

µh−1 eg .

The proof follows immediately from Theorem 6.1 and is omitted here.

Example 6.3 For the biorthogonal low-pass filters of the CDF(1,3) wavelets (see Tables
1 and 2), we obtain eh = 3 + 2

√
2η and eg = 6 + 2

√
2η. Thus by Corollary 6.2 it follows

that

k̂p = (3 p 2p − 2p+2 + 4) eh + (2p − 1) eg

= 2p (9 p + 6 p η
√

2− 6 η
√

2− 6) + 6 η
√

2 + 6 .
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Figure 5: Relative backward error of the p-level decomposition-reconstruction with
CDF(3,1) wavelets

Finally we illustrate the results of Corollary 6.2 by numerical tests. We choose 50 ran-
dom vectors c10 ∈ F1024. Every component of these vectors is uniformly distributed in
[0, 1]. For the determination of the backward error vector, we compute the p–level wavelet
decomposition-reconstruction in IEEE arithmetic of double precision with p ∈ {1, . . . , 8}.
To illustrate the results in the Figures 5 and 6, we plot the relative roundoff error norms for
different levels p. The solid line indicates the worst case error bound k̂p u found in Corol-
lary 6.2. For each of the 50 simulations the computed relative error ‖ĉ(p)

10 −c10‖2/‖c10‖2 is
denoted by “+”. Figures 5 and 6 show the numerical stability of the p–level decomposition-
reconstruction with CDF(3,1) and binomial–6 wavelets, respectively. We see again that
CDF(3,1) wavelets have a better numerical stability than binomial–6 wavelets.
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Figure 6: Relative backward error of the p-level decomposition-reconstruction with
binomial-6 wavelets
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