A Unified Approach to Periodic Wavelets

Gerlind Plonka and Manfred Tasche

Abstract. We sketch a new approach to p—periodic wavelets for general
periodic scaling functions. Our method is based on properties of periodic
shift-invariant spaces and related bracket products.

A special way to construct periodic wavelets is the periodization of a known
cardinal multiresolution. Using FFT-algorithms, efficient decomposition
and reconstruction algorithms are proposed.

§0. Introduction

A theory of periodic wavelets is the basic tool for an investigation of periodic
processes in signal processing and numerical analysis. One way to construct
periodic wavelets is the periodization of known cardinal wavelets. Y. Meyer
[13] was the first to study such periodic multiresolutions (see also I. Daubechies
[8], pp. 304 — 307). Further, V. Perrier and C. Basdevant [14] (see [20] for
a different approach) investigated orthogonal periodic spline wavelets defined
by periodization of Battle-Lemarié wavelets [1,10]. Recently, the authors [15]
considered semiorthogonal periodic spline wavelets which can be obtained by
periodization of Chui-Wang wavelets [4,6,7].

On the other hand, there are constructions of periodic wavelets which do not
use this periodization technique. Various trigonometric wavelets were studied
by C. K. Chui and H. N. Mhaskar [5] and by J. Prestin and E. Quak [17,18]
(see also [19]) without using knowledge about possibly existing corresponding
cardinal multiresolutions.

The aim of this paper is a unified introduction to periodic univariate wavelets
and to the corresponding decomposition and reconstruction algorithms based
on Fourier technique. It should be stressed that the presented theory does
not depend on the cardinal approach, i.e., it is not derived by periodization
of a cardinal multiresolution. But of course, special periodic multiresolutions
obtained by periodization are included.
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It turns out that similar ideas as used for the construction of cardinal wavelets
also succeed in the periodic case. The basic tool of our method is the detailed
analysis of p-periodic shift-invariant subspaces of the Hilbert space L]% of all
p—periodic square integrable functions. For j € INg, we put h; := p/d; with
dj »= 2/d (d € IN). We are especially interested in h;-shift-invariant spaces
S;(¢;) generated by hjZ—translations of one function ¢; € L]%. Our research is
influenced by [2,3,9]. In that papers, cardinal shift-invariant spaces in L? (]Rd)
have systematically been studied, and the results have been applied to a new
approach to wavelets on IR”.

The main idea in studying cardinal multiresolutions and wavelets is to consider
the corresponding problems in the Fourier transformed domain. In case of
periodic multiresolutions we will use the bijective mapping by the finite Fourier
transform instead.

The outline of our paper is as follows. In Section 1 we consider p—periodic
shift-invariant subspaces of L]%, which we describe by their finite Fourier trans-
forms. The scalar product between functions of p—periodic hj—shift-invariant
spaces can be simplified to a finite sum by means of the so-called bracket
product, which is closely related to the p—periodic autocorrelation symbol in-
troduced in Section 2. This bracket product is convenient for the description of
stable bases of Sj(¢;) (7 € INg) as well as for the characterization of orthogonal
shift-invariant spaces.

In Section 2 we define a p—periodic multiresolution of L]% by a nested sequence
of h;—shift-invariant spaces V; := S;(¢;) (j € INp). The required conditions of
a p-periodic multiresolution of L]% and their consequences for ¢; are analyzed
in some detail. In Section 3 we introduce the p-periodic wavelet space W;
(7 € INg) as orthogonal complement of V; in Vj4. Periodic wavelets 1, are
obtained by finding generators for the p—periodic h;—shift-invariant space Wj.
Using the two—scale symbol of ¢; and the periodic autocorrelation symbols of
¢; and @41, the possible wavelets ¢; are characterized in Theorem 3.4. Fur-
ther, the close connection between the Fourier transformed two-scale relations
of o and ¢; (j € INg) and the two—scale (2,2)-matrices is discussed. Assuming
the stability for the bases of V; and W; (5 € INg), all two-scale symbol matrices
are well-conditioned.

Section 4 is devoted to new efficient decomposition and reconstruction algo-
rithms based on Fourier technique and two—scale symbol matrices. Our wavelet
algorithms are very fast, numerically stable and do not contain truncation er-
rors.

§1. Periodic Shift—Invariant Spaces

Let p > 0 and d € IN be fixed. Put d; := 27d, h; := p/d; (j € Ny). Consider
the Hilbert space L]% of all p—periodic, square integrable functions f : R — C
with the scalar product

(f.g) = 3/p fgdt (f.g € L2)
P Jo
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and the related norm || - ||. Introduce the finite Fourier transform of f € L]% by

e(f) == (cu(f))52_oe € 1* with

cu(f) = (f,™ ) (u € Z).

For v € Z and f € L]%, we have

cu(f(- = kh)) =w!*eu(f) (k=0,...,d; —1) (1.1)
with w; := exp(—2mi/d;).

A linear subspace S of L]% is called h;-shift-invariant, if for each f € S all h;—
shifts f(- —kh;) (k =0,...,d; —1) are contained in S. The h;-shift-invariant
subspace generated by ¢ € L]% is defined by

Si(¢) :=span {¢(- —kh;): k=0,...,d; —1}.

A useful characterization of the functions of S;(¢) can be given by their finite
Fourier transforms:

Lemma 1.1 (see [16]) Let ¢ € L and j € Ny be given.
(1) We have f € S;(¢) if and only if

cu(f) =dju(f)eu(e) (u€Z)
with
aju(f) € C, aju(f)=ajuta;(f) (u€Z).
(ii) Let f € S;(¢). Then S;(f) = S;(¢) if and only if
supp ¢(f) = supp ¢()

with the support supp e(f) :={u € Z : c,(f) # 0} of e(f).

For a detailed analysis of periodic shift-invariant spaces we introduce the
following notion. Let the bracket product of level j (j € INg) be defined for

a:=(a,)52_., b:=(b,)2_. € by [a,b]; := ([a,b]j7k)ij:_()1, where
[a, b]]‘7k = Z ak+udj bk—}-udj (k = 0, e ,d]‘ — 1).

Then, [a,a];; > 0 (k =0,...,d; — 1) for a € [>. Further, [a,a];; = 0 (k =
0,...,d; — 1) if and only if a = (0)52_ . By Cauchy-Schwarz inequality, we
have for k =0,...,d; — 1

[ b],x* < [a,a]; [b.b];x < |lal[i> [b]lj> < co.

The bracket product will be an important tool for the description of shift—
invariant spaces as well as for the characterization of their bases.
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Lemma 1.2 Let ¢, ¢ € L]% and j € INg. Further let f € S;(¢), g € Sj(¢) with

calf) = aju(f)ea(v)s culg) = bjulg)ca(¥) (u € Z)

~

be given, where a; ,(f), bju € C possess the properties

ju(f) = @jusa;(F)y bjul9) = bjuta;(9) (u€ ).

Then we have
dj —1

(f.9) =" ajx(f)

k=0

o

ik (9) [e(e), e()] k-

Proof: From the Parseval identity, it follows that

o0

<f7g> = Z Cu(f) Cu(g)

U=—O

d; —1 %)

Z Ck+uvd,; (f) Ck+vd; (g)

k=0 v=
d4

[y

J o0

= ajn(Hbir(9) D chrud; () chpod; (),

k

0 V=—00

and hence the assertion. W

As a consequence of Lemma 1.2 we obtain:

Corollary 1.8 Let @, ¢ € L]% and j € Ny be given. Then we have
(i)
d;—1

(- —1hy), ) = > wille(e),e()jn (1=0,...,d; —1). (1.2)

k=0

(ii) Sj(¢) L S;(v) if and only if
[e(@) e(¥)]jie =0 (k=0,....d;j = 1).

For ¢ € L]%, we consider the system B;(¢) := {p(- —(h;): 1 =0,...,d; — 1}.

By (1.2), the corresponding Gramian matrix is circulant and reads as follows

(- = Thy), (- = nhj))ioy = F (diag [e(e), e(¢)],) F, (1.3)

with the d;—th Fourier matrix

Thus we find:
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Lemma 1.4 Let ¢ € L]% and j € INg be given.
(1) B;(p) is a basis of Sj(y) if and only if

[e(p),e()]jxr >0 (k=0,...,d; —1). (1.4)

(ii) B;(¢) is an orthonormal basis of S;(y) if and only if

djle(p),ele)lje =1 (k=0,...,d; —1).

(iii) If ¢ satisfies (1.4) and if * € L? is defined by

cule®) = d 7 [e(0), (@) cul)  (u € i uy = umoddy),  (1.5)

Jyu
then B;(¢*) is an orthonormal basis of S;(y).

Proof: 1. By (1.3), the Gramian matrix related to B;(¢) is regular if and only
if diag [e(p), e(p)]; is regular, i.e., if (1.4) is satisfied.
2. Note that

F]‘ F]‘ = d]‘I]‘

with the d;-th identity matrix I;. Now, B;(¢) is an orthonormal basis of S;(¢)
if and only if the Gramian matrix of B;(¢) is equal to I;. This is true if and
only if (ii) holds.

3. Since

[e(e™), el )ik = dj' (k=0,....d; —1),

the Gramian matrix of B;(¢*) is equal to I;. Hence, B;(¢*) is an orthonormal

basis of S;(¢*). By Lemma 1.1 (ii) and by (1.5), we have S;(¢*) = S;(¢). B

§2. Periodic Multiresolution

For each j € INg, we form h;—shift—invariant subspaces V; := S;(¢,) generated
by ¢; € L]%. Put @k = (- —khj) (k=0,...,d; —1). We say that {V;}32,
forms a p—periodic multiresolution, if the following three conditions are satisfied
(compare [12,11,3]):

(M1) Vi C Vit (J € No).
(M2) clos (‘Uo Vi) = L]%.
]:

(M3) There exist positive constants «, 3 such that for all j € Ny and for any
(aj7n)dj_1 € Cdj7

n=0

d;—1 d;—1 d;—1

1/2
oY ol < 1Y andi ginl* <8 lajal*.
n=0 n=0 n=0
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By (M3), Bj(d}ﬂcpj) is a basis of V;. Furthermore, if the condition (M3) is
satisfied, then the system {Bj(d}ﬂcpj) : J € INg} is called L]%fstable. The
h;—shift-invariant subspace V; is called sample space of level j. A generating
function d}/2 @; of V; is the scaling function or generator of V;. If all systems
1/2

Bj(d}ﬂ ;) are orthonormal bases of V; (j € INg), then we say that d;'” ¢;

is an orthonormal scaling function of level 7. In this case the constants in
condition (M3) read a = 8 = 1. Note that dim V; = d;. Concerning (M2) we

observe the following

Theorem 2.1 (see [16]) Let {V;}52, be a nested sequence of h;—shift-invariant
subspaces V; := S;(p;) with ¢; € L2. Then we have

clos (U Vi) = L;
=0

if and only if

o0

| supp e(y)) = Z. (2.1)

=0
For (M3) the following equivalence is known:
Theorem 2.2 (see [16]) The system {Bj(d}ﬂcpj) : j € INo} is L7-stable with
positive constants o, 3 if and only if for n =0,...,d; — 1 and for j € INg,
o < djle(¢;),e(¢;)]jm < B- (2.2)

Further, a basis Bj(d}ﬂcpj) (7 € INg) is orthonormal if and only if

d? [e(p),e(¢)]ljm=1 (n=0,...,d; —1).

Remark. By dim V; < oo, we can find positive constants «a;, 3; satisfying
(2.2) in each level j € IN if (1.4) is supposed. But for L;—stability we need that

a:=inf{a;: €N} >0, [:=sup{f;:j€ Ny} < oo,

i.e., (2.2) sharpens (1.4).

In the following we assume that (2.2) is satisfied. From (M1), it follows
@j € Vg1, i.e., there exist unique coefficients oj41 1 € C (k=0,...,d;41 — 1)
such that
djp1—1
pi= Y, apikpik (€ No).
k=0
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This is the so—called two-scale relation or refinement equation of ¢;. Using
(1.1), we obtain the Fourier transformed two—scale relation of ¢;

culps) = 2 g (i) caloisr) (v € ) 2.3
with the two-scale symbol or refinement mask of ¢;

j+1—1

d
1
Aja(z) = D) Z ajprez’ (2 € Tip),
k=0

where T; := {w;’ : n=0,...,d;—1} denotes the set of all d;—th complex roots
of unity.

If a scaling function d}/2 ¢vj (7 € INg) satisfying (2.2) is given, then an or-
thonormal basis Bj(d}ﬂ c,oj) (7 € INp) can easily be obtained by the following
orthogonalization trick: Let 7 (j € INo) be defined by their Fourier coefficients

1
i (le(e;)se(9))]ju;

cu(0]) =~ 72 culj) (ueZ)

with u; := v mod d;. Then from Lemma 1.4 (iii), it follows that Bj(d}ﬂ ©7)
is an orthonormal basis of V; = Sj(¢;) and the relation d7 [¢(¢7), ¢(¢%)]jn =
1 (n =0,...,d; — 1) is obvious. Furthermore, the two-scale symbol ATy
satisfying

CU(‘P;) = 2A;+1(W;L+1) Cu(‘P;Jrl) (v € Z)

is connected with A;41 forn =0,...,d;41 —1 by

*
Al

W) = [e(pjt1) e(@jt1)]j+1,m V2 L Ln
<J“)’2< e(25)-e(p7)m ) A (@)

A different approach to the bracket product [e(p;),e(¢;)]; can be described by
the so—called p-periodic autocorrelation symbol of ¢; defined by

d;—1

®i(2) = > (pj-neiz (2 €T).

=0

We observe a close connection between the bracket product [e(¢;),e(p;)];, the
two-scale symbol A;;1 and the p—periodic autocorrelation symbols ®; and

Djt1.
Lemma 2.3 For j € Ng and k=0,...,d; — 1, we have

®;(wh) =d;[e(p;), e(e;)]jiks (2.4)

D;(2%) =2]Aj11 ()P @jqa(2) + 2|Ajp1(—2) @j1a(—2) (2 € Tjz1). (2.5)



8 G. Plonka and M. Tasche
The condition (M3) is equivalent to

0<a<d®jw)<B<oo (j€Ng, k=0,...,d; —1). (2.6)

Proof: Let 7 € INg. By (2.3), we obtain for £ =0,...,d; — 1,

o0 o0

[C(@j),C(@j)]Lk: Z |Ck+udj+1(99j)|2+ Z |Ck+dj+udj+1(9oj)|2

= 4[Aj 1 (wf )P [e(@z), e(@ivn)] sk

+4 |Aj+1(_wf+1)|2[c(90j+1)7C(@j+1)]j+1,k+dj-
By (1.2), we have for [ =0,...d; — 1,

dj—l
(o)=Y wi™e(e;). e(#;)]jm:
n=0

and hence,
d; —1

Oi(2) =Y wi™e(p;).c(p)]imz (2 €T)

l,n=0

For z = wf (k=0,...,d; — 1), this yields (2.4) by

d;—1

Z w;k_n)l =d; 0 n.

=0

From (2.4), it follows immediately (2.5). W

83. Periodic Wavelet Spaces

Now we define the p-periodic wavelet space W; of level j (j € INg) as the
orthogonal complement of V; in Vj4:

Wi=Visn eV, (j€No).
Then it follows dim W; = d;41—d; = d; and the orthogonal sum representation
Vipn=V; & W; (j € No). (3.1)
By definition, the wavelet spaces W; (5 € INg) are mutually orthogonal. Note

that f € Vi1 implies f(-—2hj41) = f(-—hj) € Vj41. It can be easily observed
that W; is h;—shift-invariant.
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By (M1) — (M2), we obtain the orthogonal sum decomposition
L=V, o Pw;.
=0

Assume that for each j € INg, the h;—shift-invariant subspace W; is generated
by a function ¢; € W;, i.e. W; = S;(¢;). Further, we suppose that there exist

positive constants v, such that for all j € INg and for any (bjm)ij:_ol e ¢l

d;—1 d;—1 d; —1

S P <Y b d PP <6y [l (3.2)
n=0 n=0 n=0

In other words, {B]‘(d}/2 i) 7 € Notis L]%fstable. Under these assumptions,
d}/2 ; 1s called p-periodic semiorthogonal wavelet of level 5 or p—periodic pre-
wavelet of level 7. If all Bj(d}ﬂ Y;) (7 € INg) are orthonormal bases, then

d}ﬂz/}]‘ (7 € INg) is called p—periodic orthonormal wavelet of level j.
For orthonormal wavelets, the property (3.2) is automatically satisfied,

. d; —1 d;
since for (b; ), € CY,

d;—1 d;—1

1/2
IS b d w0l =3 (bl
n=0 n=0

ie. ¥ =460 = 1. From (M1) and (3.1), it follows »; € V;41. Then there exist
unique coefficients 3,415 € C (k=0,...,d;41 — 1) such that

dj41—1

vi= Y Birik @itk

k=0

This is the so—called two-scale relation or refinement equation of ¢;. By (1.1),
we obtain the Fourier transformed two-scale relation of 1;

calt) = 2Biaa(wly) culpsnr) (u € Z) (33)
with the two-scale symbol or refinement mask of 1;

j+1—1

d
1
Bjii(z) = 3 Z Biv1kz" (2 € Tixa).
k=0

Further, we introduce the p-periodic autocorrelation symbol of 1; by

d;—1
Uj(z) o= Y (b n,0) 2 (2 €T;).
=0

Then we observe the following connection between the bracket product
[e(;),e(tp)];, the two—scale symbol B,y and the p—periodic autocorrelation
symbols ¥; and ¥;4 ;.
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Lemma 8.1 For j € Ng and k =0,...,d; — 1, we have
Uj(wi) = djle(e)), ()]s
U;(2*) = 2[Bjt1 ()] Bjs1(2) +2|Bjr (—2) ja(—2) (2 € Tjgr). (3:4)
The condition (3.2) is equivalent to

0<vy<d;¥(wh)<d<oo (j€Ng, k=0,....d; —1). (3.5)

The proof is similar to that of Lemma 2.3 and is omitted here.

Now the following question is of interest: How can we choose the two—scale
symbol Bjiq such that S;(¢;) L V; and (3.2) or (3.5) are satisfied? One
condition for Bj;q follows from the orthogonality of S;(v;) and V.

Lemma 3.2 For j € INg, we have S;(v;) L V; if and only if for z € T;14

Ajy1(2) Bj(2) ®j41(2) + Ajpa(=2) Bjg1(—2) ®jya(—2) = 0. (3.6)

The proof is based on Corollary 1.3 (ii) and the two—scale relations (2.3) and
Now let us introduce the two-scale symbol matrices of the j-th level (j €
INo)

o (A B )y
sim= (470 i) ceme 00

In the next section, these matrices and their inverses will play the main role
for the decomposition and reconstruction algorithms. We investigate the in-
vertibility of §;41(z):

Lemma 3.3 Assume that (2.6) and (3.5) are true. For j € INg, the two—scale
symbol matrices S;j41(z) (z € Tj41) are regular with

Further, we have

Siti(z)7' =

N (3.9)
diag (®;(22)7", U;(22)™)7T 8;41(2) diag (®;41(2), ®j401(—2))T.

Proof: Using (2.5), (3.4) and (3.6), we obtain for z € T4 that

Sj+1(2)T diag (®,11(2), ®jp1(—2))" Sj41(2) = diag (®,(=%), T;(*)".
(3.10)
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By known properties of the determinant, this equation yields
Bjp1(2) @jpr(—2) [det Sjpi (2)* = @;(2%) Tj(2*) (2 € Tjn).

Then by (2.6) and (3.5), all matrices S;41(2) (2 € T;41) are regular with (3.8).
From (3.10), it follows directly (3.9). W

Remark. The assertion of Lemma 3.3 emphasizes the importance of the L]%f
stability of {Bj(d}ﬂcpj) : j € Ng} and {Bj(d}ﬂg/)j) : J € INg}. If the systems
{Bj(d}ﬂcpj) : 7 € No}or {Bj(d}ﬂg/)j) : j € Ng} are not L2-stable, then the
two—scale symbol matrices are not well-conditioned such that the existence

of numerically stable algorithms for decomposition and reconstruction is not
ensured (see Section 4).

Now, with the help of the conditions (3.4) — (3.6) the two—scale symbol
Bjt1 can be described more exactly.

Theorem 3.4 (see [16]) Assume that (2.6) holds. For every j € INg, B4 :
Ti+1 — C is a two-scale symbol of a p-periodic semiorthogonal wavelet

d}/z i € L7 satisfying the property (3.5) if and only if

Cji(=2) Ajri(=2) o

Bj+1(2) = Zq)]‘(22) X‘7‘(’?’42) (267}+1)7

where K; : T; — C satisfies the condition
O0<pu<|Kj(z)|]<v<oo (2€T;)

with positive constants pu, v.

In the case of orthonormal wavelets the corresponding two—scale symbol
B?., even satisfies the following

Corollary 3.5 Assume that Bj(d}ﬂ ¢7) are orthonormal bases of V; and A%,

(7 € INg) the corresponding two—scale symbols of c,o}*. Then for every j € INg,
B}, i Tj+1 — C is a two-scale symbol of a p—periodic orthonormal wavelet

d}/z 5 € Ly if and only if Bj,, has the form

B;+1(Z) = i22n_1A§+1(—2) (Z - 7}+1)

with n € {0,...,d; — 1}. For the related two—scale matrices

Su=(nl) JnC ) et

]‘+1(_2) B]‘+1(_2)

we have

| det S;+1(2)| = |A;+1(2)|2 + |A§+1(_2)|2 =1 (2 €Tjt1)
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The proof follows directly from Theorem 3.4, taking in consideration the rela-
tions i ,

dj @5(wy) = djle(e]). e(ej)]in =1,
(W)ie=1 (k=0,...,d; = 1)

QL
.
S
[GVE
€
Sl
I
=8
Do
=X
<
~
\’O

instead of (2.6) and (3.5).

84. Decomposition and Reconstruction Algorithms

In this section we shall derive efficient decomposition and reconstruction al-
gorithms based on Fourier technique. In order to decompose a given function
f]‘+1 € ‘/}‘_}_1 (j € ]No) of the form

dj41—1

fisr="Y_ ajpiaeipra (a1 € C), (4.1)
1=0

uniquely determined functions f; € V; and ¢g; € W; have to be found such that

fiv1 = fi + g (4.2)

Assume that the coefficients a;41; € C (I =0,...,dj41 — 1) of fj41 or their
DFT(d]+1) data

dj41—1

d]‘+17k = Z aj+17lwf_l+_1 (k == 0, Ce ,dj+1 — ].) (43)
=0

are known. The wanted functions f; € V; and g; € W; can uniquely be
represented by

dj—l dj—l
=Y tin@ine gi= Y bjntjn (4.4)
n=0 n=0

with unknown coefficients a; ,, b; ,, € C.

In order to reconstruct fj11 € Vi1 (7 € INg), we have to compute the sum (4.2)
with given f; € V; and ¢g; € W;. Assume that a;,, b;, € C(n=0,...,d;—1)
in (4.4) or their DFT(d;) data

d;—1 d; —1
aj k= Z ajn w;m, bk = Z bjn w;m (k=0,...,d; — 1) (4.5)
n=0 n=0

are known. The function f;1 € Vj41 can be uniquely represented in the form
(4.1) with unknown coefficients a;41,; (I =0,...,d;j4+1 —1). The decomposition
and reconstruction algorithms are based on the following
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Theorem 4.1 Assume that
supp (1) 2 {—dj,...,d; =1} (5 € Np). (4.6)

For j € Ny, let fi41 € Vi1, fj € V; and g; € W; with (4.1) — (4.5) be given.
Then we have forn =0,...,d;41 — 1,

~

Ajt1,n = 2050 Ajr1(wiy) + 2050 Bipi(wiy), (4.7)

ie, fork=0,...,d; —1,

(o0 Y =2t (5. (45)

Aj+1,k+d; bjk

Proof: From

cul(fit1) = culfi) +eulgs) (v € ),
it follows by (4.1) and (4.4)

dj+1—1 dj—l
Y aiicalein) = Y (aincul@in) + bjnculthjn)) (v € Z),
=0 n=0

and hence by (1.1), (4.3) and (4.5)

~

Ajr1,u Cu(@jr1) = Gjuculp)) +bjucu(ty) (v €Z).

Using the Fourier transformed two—scale relations (2.3) and (3.3), we obtain

it culirn) = (250 Ajri (@) + 2bju Biri (@) cul@jrr)  (u € Z).
Since the coefficients of ¢, (¢;4+1) are dj4q-periodic, we conclude from the as-
sumption (4.6) that (4.7) holds. Thus, we have for k =0,...,d; —1

i1k = 2050 Ay (@hyr) + 26,0 Big (i),

Q1 prd; = 2050 Ay (—w0f41) + 2bx Bia(—wiis),
that means (4.8). W
Remark. From (4.6) it follows directly (2.1). In all theories on periodic

wavelets known up to now (see [5,14,15,17,18]), the condition (4.6) is satis-
fied.

From Theorem 4.1, we obtain immediately:
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Algorithm 4.2 (Decomposition Algorithm)
Input:

j € No, d € N (power of 2), d; := 27 d,
d]‘—}-l,k S C (k:07...7dj+1 —1)

1. Precompute Sj+1(w;€+1)_1 (k=0,...,d; — 1) (given by (3.9)) by FFT.
2. Compute for k =0,...,d; —1

d]‘7k 1 Eo\—1 aj+1,k
] = =8 (wh LT :
(bj,k> 5 Sit1n) (“HLH%‘)
Output: a; r, Z;j,k (k=0,...,d; = 1).

Algorithm 4.8 (Reconstruction Algorithm)

Input:

j € No, d € N (power of 2), d; := 27 d,

de, ZA)]‘JC eC (k = 0,...,dj - 1).

1. Precompute Sj+1(wf+1) (k=0,...,d; — 1) (given by (3.7)) by FFT.
2. Compute (4.8) for k =0,...,d; — 1.

Output: d]‘+17k (k :0,...,d]‘+1 — ].)
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