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The phase retrieval problem

Far field:
“Given |F f |, recover f .”

Near field:
“Given |Rτ f |, recover f .”

where:
F f (ξ) =

1

2π

∫

R2

e−ixξ f (x) dx,

Rτ f (ξ) =
1

τ2

∫

R2

eiπ
‖x−ξ‖2

τ2 f (x) dx, τ =
√
λd
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The Fresnel transform

Rτ f (ξ) =
1

τ2

∫

R2

eiπ
‖x−ξ‖2

τ2 f (x)dx
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The phase retrieval problem in the Fresnel regime

“Given |Rτ f |, recover f .”

a priori information:

I Usually:
object f real, with compact support, positive (non-negative)

I We use structural information:
f is sparse in a suitable function frame enforcing f to be in a
certain function space (“smooth”).
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Shearlet frame: generalization of wavelet bases

We use a representation

f (x) =
∑

j ,k,n

cj ,k,n ψj ,k,n(x)

where

ψj ,k,n(x) =
(

2jbj/2c
)1/2

ψ0(Bk
0A

j
0x− n)

with

Aj
0 =

(
2j 0

0 2bj/2c

)
, Bk

0 =

(
1 k
0 1

)

Here ψ0 is the mother shearlet. See [Lim2010, Kittipoom2010].

Gerlind Plonka Universität Göttingen

Sparse Encoding Techniques in X-Ray Imaging 6 / 24



Introduction Shearlets & Sparsity Projection algorithms Proximity operators Numerical results Further results

Fourier space tiling & support
LIM: DISCRETE SHEARLET TRANSFORM: A NEW DIRECTIONAL TRANSFORM 1167

Also, for and , we define the following
unitary operators:

and

Here, we denote the set of all invertible matrices
with real entries. Finally, for and , we define

and (1)

and

and (2)

We are now ready to define a shearlet frame as follows. Let
and be the sampling constant. For

and , define

and

where

and
(3)

If (or ) is a frame for , then we call the functions
and in the system (or ) shearlets.

Observe that shearlets in are obtained by applying trans-
lations with the sampling constant followed by applying
anisotropic scaling matrices and shear matrices to the
fixed generating functions and . Those matrices and

lead to windows which can be elongated along arbitrary di-
rections and the geometric structures of singularities in images
can be efficiently represented and analyzed using those window
functions. In fact, it was shown that 2-D piecewise smooth
functions with singularities can be approximated with
nearly optimal approximation rate using shearlets. We refer to
[11] for details. Furthermore, one can show that shearlets can
completely analyze the singular structures of piecewise smooth
images [12]. Those properties of shearlets are useful especially
in image processing since singularities and irregular structures
carry essential information in an underlying image. For ex-
ample, discontinuities in the intensity of an image indicate the
presence of edges. The following example shows how shearlets
localize the frequency domain. Let us assume that and

in (1) and (2). For any (or ), let
and be given by

Fig. 1. Tiling of the frequency plane induced by shearlets in .

where are infinitely smooth functions,
and . We

assume that

for

and

for

Then it can be easily shown that the band-limited functions
and generate a tight frame for with an appro-
priate choice of and some modification of shearlet elements

and whose frequency support intersects the line
or (see [11] for more details). Fig. 1

shows the tiling of the frequency plane using the band-lim-
ited shearlet system that we described above. It was shown
that this band-limited system can provide nearly optimal ap-
proximation for a piecewise smooth function with smooth-
ness except at points lying on curves [11]. However, the
band-limited shearlet elements have an unbounded support in
the space domain. Thus, they are not well localized in the space.
Furthermore, it is not clear how to develop the discrete shearlet
transform naturally derived from this construction so that it in-
herit the appropriate mathematical properties from the corre-
sponding shearlet system on continuous domain.

The aim of this paper is basically to provide the novel con-
struction of shearlets which overcomes the drawbacks of the
band-limited shearlets and other directional representation sys-
tems. In addition to directionality and anisotropy, we identify a
wish list for the new construction of shearlets.

1) Frame property: This will lead to a stable reconstruction of
a given image.

2) Localization: The each of shearlet frame elements needs
to be well localized in both the space and the frequency
domain.

3) Efficient implementation: The discrete implementation
needs to be naturally derived from the construction of
shearlets so that it inherit the nice properties of the corre-
sponding shearlet system.

Fourier space tiling
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1shearlets with compact support

I sparse representation of smooth regions

I sparse representation of singularities along smooth curves

I fast and numerically stable transforms available [Lim2010]
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Sparsity of functions in shearlet frames

1

wavelets

1

shearlets

I unlike wavelets, shearlets provide directional information
I curve-like singularities are sparsely represented by shearlets
I shearlets provide sparse representations for images
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Examples of frame functions in the shearlet frame

!p. 334–336", it is also explained that the reconstruction formula
!equation 2" is equivalent to requiring that Plancherel’s formula
holds, i.e.,

!f!2 ! "
!!M

#$f ,c!%#2, ∀ f ! L2. &3'

The energy of a signal is conserved through decomposition !equa-
tion 2". Considering that curvelets are constructed by windowing the
spectral domain, it therefore suffices if the energy of the employed
windows sums to one for the resulting curvelets to form a tight
frame. Because there are many different windows that satisfy this
constraint, many variants of curvelets can be constructed using dif-
ferent windows in the angular or radial direction of the spectral do-
main !Chauris, 2006". The decay properties of the employed win-
dows in the Fourier domain, however, determine the redundancy of
the frame, while their smoothness is closely related to the decay
properties of curvelets in the spatial domain, much as with wavelets
!Mallat, 1998".

Digital curvelets

In the construction of curvelets treated so far, the sampling of the
spectral domain is done in polar coordinates, while the sampling of
the spatial domain is Cartesian !Figure 2a and b". For the purpose of
digital curvelet transforms, the polar coordinates in the spectral do-
main are replaced with Cartesian coordinates. This allows straight-
forward application of fast Fourier transform algorithms. To go from
polar coordinates to Cartesian coordinates in the spectral domain,
the concentric circles in Figure 2a are replaced with concentric
squares !Figure 3, right column"; hence, the rotational symmetry is
replaced with a sheared symmetry. As a consequence, the Cartesian
sampling in the spatial domain is a Cartesian grid that is sheared
rather than rotated !cf. Figures 2b and the middle column of Figure
3". Here, the centers of the cells are the locations of the centers of the
curvelets in space. This construction allows a rapidly computable,
digital curvelet transform !Candès et al., 2006". For more details on
the implementation of digital curvelet transforms, we refer to Can-

dès et al. !2006". Throughout this work, we use
the nonequispaced, fast-Fourier-transform-based
curvelet transform that induces a sheared spatial
grid, which changes as a function of angular and
scale indices l and j, as opposed to the wrapping-
based transform, which induces a rectangular
grid that is independent of the angular index l and
depends only on the scale index j. The wrapping-
based transform, moreover, has the advantage
that the inverse curvelet transform equals the ad-
joint curvelet transform, allowing fast computa-
tion of the inverse transform. It achieves this,
however, at the cost of increasing the number of
frame elements and thus the redundancy of the
transform !Candès et al., 2006".

With the aim of migration with curvelets in
mind and from the intuition that such migration
should contain at least a rotation of curvelets
!Douma and de Hoop, 2005", Chauris !2006" de-
velops a digital transform that maintains the polar
coordinates of the original curvelet transform to
be able to implement rotation simply as an inter-
polation between curvelet coefficients. A rotation
of a curvelet can also be written as the combina-
tion of a shear and a dilation procedure, two oper-
ations that are natural in the existing published
digital implementations of the curvelet trans-
form. Therefore, a rotation can similarly be im-
plemented in the curvelet domain using interpo-
lation between coefficients from existing digital
curvelet transforms.

Examples of digital curvelets

Figure 3 shows examples of digital curvelets.
The left column shows curvelets in the spatial do-
main, while the right column shows their associ-
ated amplitude spectra. Superimposed on the
spectra is the spectral tiling of the digital curvelet
transform. The middle column shows the associ-
ated spatial lattice for each of the curvelets, where
the centers of the cells are the locations of the cen-
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Figure 3. A curvelet !a". Figure b–d shows, respectively, the curvelet when changing the
translation indices, the angular index, and the scale index. First column: curvelets in the
spatial domain. Second column: associated spatial lattices, and spatial cells colored ac-
cording to the value of the coefficient !black is one, white is zero". Third column: ampli-
tude spectra and frequency-domain tilings.
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Examples of frame functions in shearlet frame

!p. 334–336", it is also explained that the reconstruction formula
!equation 2" is equivalent to requiring that Plancherel’s formula
holds, i.e.,

!f!2 ! "
!!M

#$f ,c!%#2, ∀ f ! L2. &3'
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the frame, while their smoothness is closely related to the decay
properties of curvelets in the spatial domain, much as with wavelets
!Mallat, 1998".

Digital curvelets

In the construction of curvelets treated so far, the sampling of the
spectral domain is done in polar coordinates, while the sampling of
the spatial domain is Cartesian !Figure 2a and b". For the purpose of
digital curvelet transforms, the polar coordinates in the spectral do-
main are replaced with Cartesian coordinates. This allows straight-
forward application of fast Fourier transform algorithms. To go from
polar coordinates to Cartesian coordinates in the spectral domain,
the concentric circles in Figure 2a are replaced with concentric
squares !Figure 3, right column"; hence, the rotational symmetry is
replaced with a sheared symmetry. As a consequence, the Cartesian
sampling in the spatial domain is a Cartesian grid that is sheared
rather than rotated !cf. Figures 2b and the middle column of Figure
3". Here, the centers of the cells are the locations of the centers of the
curvelets in space. This construction allows a rapidly computable,
digital curvelet transform !Candès et al., 2006". For more details on
the implementation of digital curvelet transforms, we refer to Can-

dès et al. !2006". Throughout this work, we use
the nonequispaced, fast-Fourier-transform-based
curvelet transform that induces a sheared spatial
grid, which changes as a function of angular and
scale indices l and j, as opposed to the wrapping-
based transform, which induces a rectangular
grid that is independent of the angular index l and
depends only on the scale index j. The wrapping-
based transform, moreover, has the advantage
that the inverse curvelet transform equals the ad-
joint curvelet transform, allowing fast computa-
tion of the inverse transform. It achieves this,
however, at the cost of increasing the number of
frame elements and thus the redundancy of the
transform !Candès et al., 2006".

With the aim of migration with curvelets in
mind and from the intuition that such migration
should contain at least a rotation of curvelets
!Douma and de Hoop, 2005", Chauris !2006" de-
velops a digital transform that maintains the polar
coordinates of the original curvelet transform to
be able to implement rotation simply as an inter-
polation between curvelet coefficients. A rotation
of a curvelet can also be written as the combina-
tion of a shear and a dilation procedure, two oper-
ations that are natural in the existing published
digital implementations of the curvelet trans-
form. Therefore, a rotation can similarly be im-
plemented in the curvelet domain using interpo-
lation between coefficients from existing digital
curvelet transforms.

Examples of digital curvelets

Figure 3 shows examples of digital curvelets.
The left column shows curvelets in the spatial do-
main, while the right column shows their associ-
ated amplitude spectra. Superimposed on the
spectra is the spectral tiling of the digital curvelet
transform. The middle column shows the associ-
ated spatial lattice for each of the curvelets, where
the centers of the cells are the locations of the cen-
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Figure 3. A curvelet !a". Figure b–d shows, respectively, the curvelet when changing the
translation indices, the angular index, and the scale index. First column: curvelets in the
spatial domain. Second column: associated spatial lattices, and spatial cells colored ac-
cording to the value of the coefficient !black is one, white is zero". Third column: ampli-
tude spectra and frequency-domain tilings.
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Feasibility problem: “find g ∈ M ∩ C”

Measurements Constraints

Feasible Solutions

1

I Easy, if M,C convex and M ∩ C 6= ∅.
I Much harder, if M or C non-convex.
I Be careful, if M ∩ C = ∅ (e.g. due to noise).
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Feasibility problem

Instead: “find g with minimal distance to M and C”

Measurements Constraints

Nearest Point

1

I infeasible case: nearest point  local best approx. point
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Feasibility problem

Always: valid measurements

M = {f : |Rτ f (ξ)| = m(ξ)}

Usually: compact support constraint

C = {f : f (x) = 0 outside Br}

Here: sparse representation in suitable frame: f =
∑

j cj(f )ψj

S = {f : ‖c(f )‖0 ≤ N}
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Projection algorithm with sparsity constraint

Measurements: projection onto magnitude

PMg(x) =
(
R−1τ h

)
(x), h(ξ) =




m(ξ) Rτg(ξ)

|Rτg(ξ)| , if |Rτg(ξ)| 6= 0

m(ξ), if |Rτg(ξ)| = 0

Sparsity: soft threshold in the shearlet frame

PS,γg(x) =
(
S+TγSg

)
(x), Tγ(c) =





c − γ, c > γ

c + γ, c < −γ
0, otherwise
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RAAR algorithm
Relaxed Averaged Alternating Reflections [Luke2005, Luke2008]

gn+1 =

[
β

2
(RSRM + I ) + (1− β)PM

]
gn

where:
RM := 2PM − I , RS := 2PS,γ − I

I convex combination of PM and Douglas-Rachford

I parameter β > 0 relaxes/regularizes the solution

I relaxation parameter can avoid local minima

I finds local best approximation points
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Soft frame shrinkage operators are proximity operators!

Theorem (Geppert, Plonka (2019))

Let S ∈ RM×N with M ≥ N be a matrix with full rank N. Then
the operator

PS ,γ := S+Tγ S
with

Tγ(c) =





c − γ, c > γ

c + γ, c < −γ
0, otherwise

is the proximity operator of a convex, proper, lower
semi-continuous function ψ. This function is usually not equal to
‖S · ‖1.
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Soft frame shrinkage operators are proximity operators!
Idea of proof

Consider the set-valued mapping

y ∈ H(x) :⇐⇒ y = S+Tγ S(x + y)

and show that H = ∂ψ for some ψ ∈ Γ0(R).

Employing the Theorem of Rockafellar, we need to show that H(x)
is maximally cyclically monotone.
We can show:

1. y ∈ H(0) iff ‖Sy‖∞ ≤ γ
2. For mink |(Sx)k | > γ the mapping H(x) is single-valued.

Gerlind Plonka Universität Göttingen

Sparse Encoding Techniques in X-Ray Imaging 17 / 24



Introduction Shearlets & Sparsity Projection algorithms Proximity operators Numerical results Further results

Soft frame shrinkage operators

y ∈ H(x) :⇐⇒ y = S+Tγ S(x + y)

Example

Let S =

(
1
2

)
and γ > 0. Then

H(x) =





[−γ/2, γ/2] x = 0

γ/2 + x/4 x ∈ (0, 25γ]

3γ/5 x > 2
5γ.

Gerlind Plonka Universität Göttingen

Sparse Encoding Techniques in X-Ray Imaging 18 / 24



Introduction Shearlets & Sparsity Projection algorithms Proximity operators Numerical results Further results

Support vs shearlet constraint
Simulated measurements: λ = 1Å, d = 100mm, dx = 100nm
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S. Loock, G. Plonka: Phase retrieval for Fresnel measurements using a shearlet

sparsity constraint. Inverse Problems 30(5) (2014), 055005.
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Support vs shearlet constraint
Poisson distributed data with t = 105
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S. Loock, G. Plonka: Phase retrieval for Fresnel measurements using a shearlet

sparsity constraint. Inverse Problems 30(5) (2014), 055005.
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Separate shearlet constraints for amplitude and phase

Pγa,γpS g = S+TγaS|g | · exp(i · S+TγpSφ(g))

not seem to be of particular importance in this setting. This may be attributed to the fact that the
restriction of the exit wave to the box support is not a very strong constraint as the diffraction
fringes in the measurement merely exceed the region of the box.
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Fig. 2. Simulated x-ray propagation imaging experiment. (a), (b) Phase and amplitude of
the complex-valued exit wave field in the object plane (512⇥512 pixel). The dashed black
frames indicate the support considered for the support & range constraint (341⇥256 pixel).
(c) Simulated intensity measurement with Fresnel number F = 4 ·10�3 and artificial Pois-
son noise (50 photons per pixel). The coarse outlines of the fish and the elephant are still
visible. (d), (e), (f) Exit waves reconstructed with the RAAR algorithm (after 100 itera-
tions) and different object plane constraints. The phase is shown in the upper row and the
amplitude in the lower row. The amplitudes obtained with the range constraint and the sup-
port & range constraint are displayed after only 3 iterations since the corresponding error
increases with the number of iteration steps, see (g). (g) RMS error decay of the phase and
amplitude from the three different reconstructions, calculated according to Eq. (9) and (10),
while taking the region inside the box support into account.

In Fig. 2(g) we have plotted the root mean square (RMS) error decay of the phase and the
amplitude for the three different reconstructions, calculated by

RMSn
phase =

"
1

NxNy

Nx

Â
nx=1

Ny

Â
ny=1

⇣
j(y(nx,ny))�j(yn(nx,ny))

⌘2
#1/2

, (9)

RMSn
amplitude =

"
1

NxNy

Nx

Â
nx=1

Ny

Â
ny=1

⇣
|y(nx,ny)|� |yn(nx,ny)|

⌘2
#1/2

. (10)

For a fair comparison, only the region inside the box support is taken into account for the
calculations. The shearlet & range constraint provides the smallest error for both the phase and
the amplitude after 100 iterations. For the range constraint and the support & range constraint,
the RMS error of the amplitude does not decrease but increases with the number of iterations,

#255498 Received 11 Dec 2015; revised 23 Feb 2016; accepted 23 Feb 2016; published 8 Apr 2016 
© 2016 OSA 18 Apr 2016 | Vol. 24, No. 8 | DOI:10.1364/OE.24.008332 | OPTICS EXPRESS 8339 

(a), (b) Phase and amplitude of the complex valued exit wave field in the
object plane.

(c) Simulated intensity measurement with Fresnel number 4 · 10−3 and

artificial Poisson noise (50 photons per pixel)
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Separate shearlet constraints for amplitude and phase

not seem to be of particular importance in this setting. This may be attributed to the fact that the
restriction of the exit wave to the box support is not a very strong constraint as the diffraction
fringes in the measurement merely exceed the region of the box.
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Fig. 2. Simulated x-ray propagation imaging experiment. (a), (b) Phase and amplitude of
the complex-valued exit wave field in the object plane (512⇥512 pixel). The dashed black
frames indicate the support considered for the support & range constraint (341⇥256 pixel).
(c) Simulated intensity measurement with Fresnel number F = 4 ·10�3 and artificial Pois-
son noise (50 photons per pixel). The coarse outlines of the fish and the elephant are still
visible. (d), (e), (f) Exit waves reconstructed with the RAAR algorithm (after 100 itera-
tions) and different object plane constraints. The phase is shown in the upper row and the
amplitude in the lower row. The amplitudes obtained with the range constraint and the sup-
port & range constraint are displayed after only 3 iterations since the corresponding error
increases with the number of iteration steps, see (g). (g) RMS error decay of the phase and
amplitude from the three different reconstructions, calculated according to Eq. (9) and (10),
while taking the region inside the box support into account.

In Fig. 2(g) we have plotted the root mean square (RMS) error decay of the phase and the
amplitude for the three different reconstructions, calculated by

RMSn
phase =

"
1

NxNy

Nx

Â
nx=1

Ny

Â
ny=1

⇣
j(y(nx,ny))�j(yn(nx,ny))

⌘2
#1/2

, (9)

RMSn
amplitude =

"
1

NxNy

Nx

Â
nx=1

Ny

Â
ny=1

⇣
|y(nx,ny)|� |yn(nx,ny)|

⌘2
#1/2

. (10)

For a fair comparison, only the region inside the box support is taken into account for the
calculations. The shearlet & range constraint provides the smallest error for both the phase and
the amplitude after 100 iterations. For the range constraint and the support & range constraint,
the RMS error of the amplitude does not decrease but increases with the number of iterations,
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Exit waves constructed by RAAR with 100 iterations.

Upper row: phase, lower row: amplitude
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