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Abstract. We study the convergence of an iterative projection/reflection algorithm originally proposed for solving what
are known as phase retrieval problems in optics. There are two features that frustrate any analysis of iterative methods
for solving the phase retrieval problem: nonconvexity and infeasibility. The algorithm that we developed, called Relaxed
Averaged Alternating Reflections (RAAR), was designed primarily to address infeasibility, though our strategy has advantages
for nonconvex problems as well. In the present work we investigate the asymptotic behavior of the RAAR algorithm for the
general problem of finding points that achieve the minimum distance between two closed convex sets in a Hilbert space with
empty intersection, and for the problem of finding points that achieve a local minimum distance between one closed convex set
and a closed prox-regular set, also possibly nonintersecting. The nonconvex theory includes and expands prior results limited
to convex sets with nonempty intersection. To place the RAAR algorithm in context, we develop parallel statements about the
standard alternating projections algorithm and gradient descent. All the various algorithms are unified as instances of iterated
averaged alternating proximal reflectors applied to a sum of regularized maximal monotone mappings.
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1. Introduction. Projection algorithms are simple yet powerful iterative techniques for finding the
intersections of sets. Perhaps the most prevalent example of a projection algorithm is the alternating
Projections Onto Convex Sets (POCS) dating back to von Neumann [54]. This and algorithms like it have
been applied in image processing [19], medical imaging and economics [14], and optimal control [27] to
name a few. For a review and historical background see [4]. The theory for these algorithms is limited
mainly to convex setting and to consistent feasibility problems, that is problems where the set intersection
is nonempty; if the intersection is empty the problem is referred to as an inconsistent feasibility problem.
Examples abound of practitioners using these methods for nonconvex and/or inconsistent problems. We
have in recent years been particularly interested in projection algorithms in crystallography and astronomy
[6, 39], and more recently in inverse scattering [34, 33, 15, 12, 11]. Until now, we have been forced to rely
on convex heuristics to justify certain strategies [7, 38] for want of an adequate nonconvex theory. In the
absence of a nonconvex theory, practitioners resort to ad hoc stopping criteria and other strategies to get
their algorithms to work according to user defined criteria. Depending on the algorithms, iterates tend to
either stagnate at an undesirable point, or “blow up”. We are particularly interested in those algorithms
that appear to be unstable. Using convex heuristics we were able to provide plausible explanations [8] and
remedies [38] for algorithmic instabilities, however a general theory was not pursued.

Our goal in this paper is two-fold: first to prove the convergence in the convex setting of an algorithm
that we have proposed to solve inconsistent feasibility problems [38], and second to modify the theory to
accommodate nonconvexity. Our algorithm, called relaxed averaged alternating reflections (RAAR), can be
viewed as a relaxation of a fixed point mapping used by Lions and Mercier to solve generalized equations
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involving the sum of maximal monotone mappings [37] and which is an extension of an implicit iterative
algorithm by Douglas and Rachford [24] for solving linear partial differential equations.

In Section 2 we analyze the RAAR algorithm in the convex setting. Our task here is to characterize the
fixed point set of the mapping, as well as to verify the assumptions of classical theorems. Our main result
for this section is Theorem 2.7 which establishes convergence of the RAAR algorithm with approximate
evaluation of the fixed point operator and variable relaxation parameter. The novelty of our mapping is that
it addresses the crucial instance of inconsistent feasibility problems. Inconsistency is a source of instability
for more conventional strategies. To place our new algorithm in the context of better-known strategies,
we show in Proposition 2.5 that RAAR, alternating projections and gradient descent are all instances of
iterated alternating averaged proximal reflectors – the Lions-Mercier algorithm – applied to the problem of
minimizing the sum of two regularized maximal monotone mappings.

In Section 3 we expand our convex results to accommodate nonconvexity. In addition to characterizing
the fixed point set, we formulate local, nonconvex versions of convex theorems, in particular formulations
where prox-regularity is central. Our main result in this section is Theorem 3.12 which establishes local
convergence of nonconvex applications of the RAAR slgorithm. While the nonconvex theory includes the
convex case, we present both separately to highlight the places where nonconvexity requires extra care, and
to make the nonconvex theory more transparent. The nature of nonconvexity requires focused attention to
specific mappings, however we generalize wherever possible. Failing that, we detail parallel statements about
the more conventional alternating projection algorithm; this also allows comparison of our algorithm with
gradient descent methods for solving nonlinear least squares problems.

Our analysis complements other results on the convergence of projection algorithms for consistent non-
convex problems [22, 36, 35]. In particular we point out that the key assumption that we rely upon for
convergence, namely a type of local nonexpansiveness of the fixed point mapping, does not appear to yield
rates of convergence as are achieved in [36, 35] using notions of regularity of the intersection. On the other
hand, regularity, in addition to assuming the intersection is nonempty, is a strong condition on the intersec-
tion that, in particular, is not satisfied for ill-posed inverse problems, our principal motivation.

To close this subsection we would like to clarify the relationship of the present work to previous work on
the phase retrieval problem in crystallography and astronomy that has been a major motivation for these
investigations. The results developed in this work apply in principle to the finite-dimensional phase retrieval
problem (that is, discrete bandlimited images), so long as certain regularity of the fixed point mapping,
namely local firm nonexpansiveness, can be determined. Such an investigation is beyond the scope of this
work. The infinite dimensional phase retrieval problem, on the other hand, as studied in [13] does not fall
within the theory developed here because the sets generated by the magnitude constraints are not weakly
closed [39, Property 4.1], hence not prox-regular.

1.1. Basic Tools and Results. We begin with the central tools and basic results that we will use in
our analysis. Throughout this paper H is a real Hilbert space with inner product 〈·, ·〉 and induced norm
‖ · ‖. For A,B ⊂ H closed, the underlying problem is to

find x ∈ A ∩B. (1.1)

Note that it could happen that A ∩ B = ∅, in which case one might naturally formulate the problem as a
nonlinear least squares problem

minimize
x

J(x) =
1
2

(
1
2 dist 2

A(x) + 1
2 dist 2

B(x)
)

(1.2)
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where dist C(x) is the distance of the point x to a set C:

dist C(x) := inf
c∈C

|x− c|.

If x∗ is a locally optimal point then 0 ∈ ∂J(x∗) where ∂ denotes the subdifferential [17, 51, 18, 30, 31, 32, 43].
Another characterization of a locally optimal point x∗ is to associate it with a best approximation pair (a, b)
satisfying b ∈ PBx∗ ⊂ PBa and a ∈ PAx∗ ⊂ PAb where PC is the projection defined by:

PCx := argmin c∈C |x− c| = {y ∈ C ⊂ H | |x− y| = dist C(x)} .

If C is convex then the projection is single-valued. If in addition C is closed and nonempty, then PCx is
characterized by [23, Theorem 4.1]

PCx ∈ C and 〈c− PCx, x− PCx〉 ≤ 0 for all c ∈ C. (1.3)

If C is not convex, then, the projection, if it exists, is a set. If the projection exists and is single-valued near
all points in C, then C is said to be prox-regular [49]. The relationship between the subdifferential of the
squared distance function to a prox-regular set C and the projection is shown in [49, Proposition 3.1] to be

∂
(
dist 2

C(x)
)

= 2(x− PCx) (1.4)

for x in a neighborhood of C. If C is convex this relationship holds globally. In particular, for A and B
prox-regular and x in a proximal neighborhood of both sets, we have

∂J(u) = 1
2 ((x− PAx) + (x− PBx)) .

Example 1.1 (gradient descent and averaged projections). Consider the steepest descent iteration with
step length λn where PA and PB are single-valued:

xn+1 = xn − λn∂J(xn)
= (1− λn)xn + λn

1
2 (PAxn + PBxn) . (1.5)

In other words, gradient descent for least squares minimization is a relaxed averaged projection algorithm.
We will come back to this particular algorithm below.

Projection algorithms seek to find an element in A ∩ B, or best approximation thereof, by iterated
projections, possibly with some relaxation strategy, onto A and B separately. The example above interprets
the steepest descent algorithm as a relaxed averaged projection algorithm. Another elementary projection
algorithm is the well-known alternating projections algorithm: Given x0 ∈ H generate the sequence {xn}n∈N
by

xn = (PAPB) xn−1. (1.6)

Example 1.2 (averaged projections and alternating projections). A standard formulation in the prod-
uct space [46] identifies the averaged projections (and hence steepest descent) given by (1.5) with alternat-
ing projections. To see this, consider the product space H × H with inner product 〈(x1, x2), (y1, y2)〉 :=
1
2 ((x1, y1) + (x2, y2)). Let C = {(x, y) ∈ H ×H |x = y } and D = {(x, y) ∈ H ×H |x ∈ A, y ∈ B }, then

PCPD(x, x) =
(

1
2 (PA + PB)x, 1

2 (PA + PB)x
)
.
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Our focus in this paper is on the convergence of projection algorithms, but the above example serves to
emphasize that convergence results about such algorithms can be very broadly applied.

When A ∩ B = ∅ we say that the feasibility problem (1.1) is inconsistent. The distinction between
inconsistent and consistent feasibility problems has profound implications for the stability and convergence
of numerical algorithms. It is convenient to define difference set B −A. The gap between the sets A and B
is the point in B −A closest to the origin. Specifically,

G := B −A, g := PG0, E := A ∩ (B − g), and F := (A + g) ∩B, (1.7)

where B −A denotes the closure of B − A. Note that these definitions only make sense when A and B are
convex. We will generalize these sets in Section 3. Basic characterizations are given in [3, 8]. We note that
if A ∩ B 6= ∅, then E = F = A ∩ B. Even in the case where A ∩ B = ∅, the gap vector g is unique and
always well-defined. A useful characterization of the gap vector g is via the normal cone mapping of G: for
G convex −g ∈ NG(g) where NG(g) is the defined by

NG : g 7→

{
{y ∈ H | 〈c− g, y〉 ≤ 0 for all c ∈ G} , if g ∈ G;
∅, otherwise.

(1.8)

Example 1.3 (projections and normal cone mappings for convex sets ). If C is convex, then the normal
cone mapping is the subdifferential of the (infinite) indicator function, ιC , of the set C:

ιC(x) :=

{
0 for x ∈ C

∞ else
(1.9)

∂ιC(x) = NC(x) (1.10)
(I + ρNC)−1x = PCx for all ρ > 0. (1.11)

The mapping (I + NC)−1 is called the resolvent of the normal cone mapping, or equivalently in this case,
the resolvent of ∂ιC . Specializing to C = A ∩B, the indicator function of the intersection is the sum of the
indicator functions of the individual sets,

ιA+B = ιA + ιB

and, for A and B convex, the resolvent (I + (NA + NB))−1 is the projection onto A ∩ B supposing this is
nonempty. In other words, an element of A∩B is a zero of ∂ιA∩B. The parameter ρ in (1.11) is interpreted
as a step size consistent with backward-stepping descent algorithms (see [25]).

We compare throughout this work the asymptotic properties of alternating projections to more recent
projection strategies. A common framework in the convex setting that provides an elegant synthesis of these
algorithms is through operator splitting strategies for solving

minimize
x∈H

f1(x) + f2(x) (1.12)

where f1 and f2 are proper, lower semi-continuous (l.s.c.) convex functions from H to R ∪ {∞}. The
subdifferentials ∂fj are then maximal monotone [44, Proposition 12.b.], that is, gph ∂fj cannot be enlarged
in H×H without destroying monotonicity of ∂fj defined by

〈v2 − v1, x2 − x1〉 ≥ 0 whenever v1 ∈ ∂fj(x1), v2 ∈ ∂fj(x2).

We then seek points that satisfy the inclusion for the sum of two maximal monotone mappings:

0 ∈ ∂f1(x) + ∂f2(x). (1.13)



PROX-REGULAR BEST APPROXIMATION 5

Iterative techniques for solving (1.13) are built on combinations of forward- and backward-stepping mappings
of the form (I − λ∂fj) and (I + λ∂fj)−1 respectively. For proper, l.s.c. convex functions fj Moreau [44]
showed the correspondence between the resolvent (I + λ∂fj)−1 and the argmin of the regularized mapping
fj centered on x. In particular, define the Moreau envelope, eλf , and the proximal mapping, proxλ,f , of a
function f by

eλ,fx := inf
w

{
f(w) +

1
2λ
|w − x|2

}
and proxλ,f x := argmin w

{
f(w) +

1
2λ
|w − x|2

}
.

Then by [44, Proposition 6.a] we have

prox1,fj
x = J∂fj x := (x + ∂fj(x))−1 (1.14)

where J∂fj
is the resolvent of ∂fj . The Moreau envelope at zero, eλ,f0, is perhaps better known as Tikhonov

regularization [53, 52].

Maximal monotonicity of ∂fj is equivalent to firm nonexpansiveness of the resolvent J∂fj whose domain
is all of H [42]. A mapping T : dom T = X → X is nonexpansive on the closed convex subset X ⊂ H if

|Tx− Ty| ≤ |x− y| for all x, y ∈ X; (1.15)

we say that T is firmly nonexpansive on X when

|Tx− Ty|2 ≤ 〈x− y, Tx− Ty〉 for all x, y ∈ X. (1.16)

Firmly nonexpansive mappings also satisfy the following convenient relation:

|Tx− Ty|2 + |(I − T )x− (I − T )y|2 ≤ |x− y|2 for all x, y ∈ X. (1.17)

For more background see [28, Theorem 12.1] and [23, Theorem 5.5].

Example 1.4 (projections onto and reflections across convex sets). Let C be a nonempty closed convex set
in H. The projection onto C is firmly nonexpansive on H [23, Theorem 5.5] and the corresponding reflection,
defined by RC := 2PC − I is nonexpansive.

The following central result upon which we build concerns the convergence of iterated nonexpansive
mappings allowing for approximate evaluation of dynamically relaxed mappings with variable step sizes. Our
formulation follows [20] which is a generalization of an analogous result in [25]. Both [25] and [20] synthesize
previous work of Rockafellar [50], Gol’stein and Tret’yakov [29], and are also related to work of Martinet
[40, 41] and Brezis and Lions [10] concerning resolvents of maximally monotone mappings. The theorem is
formulated for a common relaxation of the fixed point mapping T . For any arbitrary nonexpansive mapping
T , the standard relaxation of the iteration xn+1 = Txn is to a Krasnoselski-Mann iteration [9] given by

xn+1 = U(T, λn)xn := λnTxn + (1− λn)xn, 0 < λn < 2. (1.18)

By Example 1.1, gradient descent for the squared distance objective (1.2) with step length λn is equivalent
to a Krasnoselski-Mann relaxation of the averaged projection mapping T := 1

2 (PA + PB). In general, the
Krasnoselski-Mann relaxation does not change the set of fixed points of T denoted Fix T .

Lemma 1.5. Let T = (I + ρS)−1 (ρ > 0) be firmly nonexpansive with dom T = H. Then Fix T = ∅ if
and only if there is no solution to 0 ∈ Sx.

Proof. T with dom T = H is firmly nonexpansive if and only if it is the resolvent of a maximally
monotone mapping F : H → 2H [42]. Direct calculation then shows that Fix T = ∅ is equivalent to
{x ∈ H |Fx = 0} = ∅.
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Theorem 1.6 (inexact evaluation of firmly nonexpansive mappings). Let T be a firmly nonexpansive
mapping on H with dom T = H. Given any x0 ∈ H, let the sequence {xn}n∈N be generated by

xn+1 = (1− λn)xn + λn (Txn + εn) ∀n ≥ 0 (1.19)

where {λn}n∈N ⊂ ]0, 2[ and {εn}n∈N ⊂ H are sequences with

∞∑
n=0

|εn| < ∞, λ− = inf
n≥0

λn > 0, λ+ = sup
n≥0

λn < 2. (1.20)

Then if T possesses a fixed point, xn converges weakly to a fixed point of T . Convergence is strong if any
one of the following hold:

• lim dist Fix T (xn) = 0;
• int Fix T 6= ∅
• T is demicompact at 0: that is, for every bounded sequence {xn}n∈N with Txn − xn converging

strongly to y, the set of strong cluster points of {xn}n∈N is nonempty.

If T is firmly nonexpansive with dom T = H and Fix T = ∅, then {xn}n∈N is unbounded.

Proof. All but the last statement is the content of Theorem [20, Theorem 5.5]. To show that xn is
unbounded if T does not have a fixed point for T firmly nonexpansive with dom T = H, we note that by
Lemma 1.5 Fix T = ∅ if and only if there is no solution to 0 ∈ Fx where T is the resolvent of the maximally
monotone mapping F . The result now follows from [25, Theorem 3].

For the remainder of this paper we will be concerned with applying the above results to particular instances
of the mapping T for convex and nonconvex settings. Our principal task, therefore, is to characterize Fix (T )
and to modify the above theory to accommodate nonconvexity. To account for realistic limitations in
computing accuracy we consider fixed point iterations where T is only approximately evaluated. With this
in mind, and in the context of (1.12), we compare the following approximate algorithms:

Algorithm 1.7 (approximate alternating proximal mappings). Choose x0 ∈ H. For n ∈ N set

xn+1 = (1− λn)xn + λn

(
prox1,f1

(
prox1,f2

xn

)
+ εn

)
. (1.21)

Algorithm 1.8 (approximate averaged alternating proximal reflections). Choose x0 ∈ H. For n ∈ N set

xn+1 = (1− λn)xn +
λn

2
(Rf1 (Rf2xn + εn) + ρn + xn) . (1.22)

where Rfj x := 2 prox1,fj
x− x.

The parameter λn is the Krasnoselski-Mann relaxation parameter, and the terms ρn and εn account for
the error made in the calculation of each of the resolvents separately.

The exact version of Algorithm 1.8 was proposed by Lions and Mercier [37] who adapted the Douglas-
Rachford [24] algorithm to solving 0 ∈ F +G for general maximal monotone mappings F and G. Convergence
results for the application of this algorithm hinge on the following assumption:

Assumption 1.9. There exist x ∈ H, a ∈ ∂f1(x), and b ∈ ∂f2(x) such that a + b = 0.
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The key result of Lions and Mercier adapted to our setting is that, if Assumption 1.9 holds, then the sequence
of iterates {xn}n∈N generated by Algorithm 1.8 with εn = ρn = 0 for all n converges weakly to x ∈ H as
n →∞ such that x∗ = J∂f2x solves (1.12) [37, Theorem 1].

Example 1.10 (specialization of (1.12) to convex feasibility). Let f1 = ιA and f2 = ιB in (1.12) where A
and B are convex. Then following Example 1.3 we have

prox1,f1
prox1,f2

= PAPB (1.23)
1
2 (Rf1Rf2 + I) = 1

2 (RARB + I) (1.24)

Specialization of Algorithm 1.7 to this setting yields the classical alternating projection algorithm. Con-
vergence of the exact algorithm was obtained in [16, Theorem 4] under the assumption that either (a) one of
A or B is compact, or (b) one of A or B is finite dimensional and the distance between the sets is attained.
In other words, A ∩ B can be empty. Rates of convergence, however, appear to require a certain regularity
of the intersection [35].

Specialization of Algorithm 1.8 yields the Averaged Alternating Reflection algorithm studied in [8]. It
follows immediately from Example 1.4 that 1

2 (RARB+I) is firmly nonexpansive (see also [8, Proposition 3.1]).
Assumption (1.9) reduces to A∩B 6= ∅. If A∩B = ∅ then by Theorem 1.6 we have | 12 (RARB + I)xn| → ∞
as n → ∞. Nevertheless, as long as there exist nearest points in B to A, then the sequences {PBxn}n∈N
and {PAPBxn}n∈N are bounded with weak cluster points belonging to the sets F and E defined by (1.7) [8,
Theorem 3.13]. Indeed, regardless of whether or not A∩B = ∅, the set Fix (TAAR + g) is closed and convex
and [8, Theorem 3.5]

F + NG(g) ⊂ Fix (TAAR + g) ⊂ g + F + NG(g). (1.25)

In other words, if A ∩ B = ∅ then TAAR does not have fixed points, but rather has fixed directions or
velocities. Examples 3.7 and 3.8 of [8] show that the upper and lower bounds on this fixed point set are tight,
consistent with the case A∩B 6= ∅. The salient point here is that convergence of this algorithm is contingent
on the consistency of the feasibility problem.

Generalizations of Lions and Mercier’s results to approximate evaluation of the resolvents of maximally
monotone mappings have been investigated in [25, 20, 21]. The following theorem, adapted from [21], is a
specialization of Theorem 1.6 to Algorithms 1.7 and 1.8.

Corollary 1.11 (specialization to Algorithms 1.7 and 1.8). Let f1 and f2 be proper, l.s.c. convex
functions from H to R ∪ {∞}, let {ρn}n∈N and {εn}n∈N be sequences in H, and let {λn}n∈N be a sequence
in ]0, 2[.

(i) Let E := Fix prox1,f1
prox1,f2

6= ∅ and {εn}n∈N and {λn}n∈N satisfy (1.20). Then every sequence
{xn}n∈N of Algorithm 1.7 converges weakly to a point in E. If int E 6= ∅ then convergence is strong.

(ii) If Assumption 1.9 holds and {λn}n∈N ⊂]0, 2[ with
∑

n∈N λn(2−λn) = ∞ and
∑

n∈N λn (‖ρn‖+ ‖εn‖) <
∞, then the sequence {xn}n∈N generated by Algorithm 1.8 converges weakly to x ∈ H as n → ∞
such that x∗ = J∂f2x solves (1.12). If Assumption 1.9 does not hold, then the sequence {xn}n∈N
generated by Algorithm 1.8 is unbounded.

Proof. (i) is an immediate specialization of Theorem 1.6. For (ii), all but the last statement is [21,
Corollary 5.2] with γ = 1. The last statement of (ii) follows from Theorem 1.6 since 1

2 (Rf1Rf2 + I) is firmly
nonexpansive.
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2. Convex Analysis. For this section we will assume that the sets A and B are closed and convex.
Denote

TAP := PAPB and TAAR := 1
2 (RARB + I) (2.1)

discussed in Example 1.10. As discussed in Example 1.10 the existence of fixed points of TAP is independent
of whether or not the feasibility problem is consistent. Indeed, it is easy to see that Fix TAP = E for E
defined by (1.7). This is not the case for TAAR. We will argue in the nonconvex setting that the fact that
TAAR has no fixed points if A ∩ B = ∅ has tremendous algorithmic potential since it means that averaged
alternating reflections will not get stuck in a local minimum. Other algorithms for solving feasibility problems
do not suffer from such instabilities with inconsistent problems (alternating projections for instance), but
for nonconvex problems, this stability is at the cost of getting caught in local minima. It is this resilience of
the AAR algorithm in nonconvex applications that first attracted our attention and, we believe, warrants a
closer look. In the next section we compare the behavior of these algorithms in the convex setting.

2.1. Relaxations/Regularizations. In this subsection we consider relaxations of TAAR whose asso-
ciated mappings have fixed points independent of whether or not A ∩B = ∅. The common relaxation that
we have already discussed is of the form

U(T, λ) := λT + (1− λ)I, 0 < λ < 2 (2.2)

for the generic mapping T . If the mapping T is firmly nonexpansive (for instance TAP or TAAR) then this
property is preserved under the relaxation U(T, β) for β ∈]0, 1[. Krasnoselski-Mann iterations have been
extensively studied in Hilbert spaces and more general normed spaces [9] so there is ample theory to draw
from for the study of the relaxation U(T, β).

An advantage and disadvantage of this relaxation is that the fixed points of U(T, λ) are the same as those
of T . In particular, since TAAR has a fixed point if and only if A ∩B 6= ∅, it follows immediately that the
same holds for U(TAAR, λ): for inconsistent problems neither mapping has a fixed point. To remedy this we
consider the following alternative relaxation:

V (T, β) := βT + (1− β)PB , 0 < β < 1. (2.3)

Like the Krasnoselski-Mann relaxation, for A and B convex and T firmly nonexpansive, then V (T, β) is
also firmly nonexpansive since it is the convex combination of firmly nonexpansive mappings. Hence if
Fix V (TAAR, β) is nonempty, then the associated approximate fixed point iteration converges to the fixed
point set according to Theorem 1.6. One of the principal advantages of this relaxation is that, as we show
in Lemma 2.1, Fix V (TAAR, β) is independent of whether or not the associated problem (1.1) is feasible.
Moreover, the relaxation parameter β can be used to exert some control on the iterates (see Subsection 2.2).

In characterizing the fixed points we note that the relaxation V (TAAR, β) is fundamentally different than
the standard relaxation U(TAAR, λ) which has little qualitative effect on the set of fixed points. The two
are independent and may be used together without any redundancy of effect. There can, however, be
diminishing returns to the addition of parameters to algorithms of this sort. For our application we have
found no significant advantage to employing relaxations of the form (2.2). Nevertheless, by Example 1.1, for
cases where the relaxation is related to a step length in a gradient descent algorithm, then optimization of
λn in (2.2) can clearly lead to improved performance. We therefore retain this relaxation and, for the sake
of generality, consider nested relaxations of the form

U (V (U(TAAR, λ1), β) , λ2) = λ2V (U(TAAR, λ1), β) + (1− λ2)I, where λ2 ∈ ]0, 2[ . (2.4)

The next theorem is a generalization of [38, Theorem 2.2] where we determined the fixed points of the
mapping V (TAAR, β) alone. The following analysis of the nested relaxations demonstrates the relative
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importance of the relaxation strategies. This is discussed in greater detail following the proof of the next
observation.

Lemma 2.1 (characterization of fixed points). Let β ∈ ]0, 1[ and λ1, λ2 ∈ ]0, 2[. Then

Fix U (V (U(TAAR, λ1), β) , λ2) = F − βλ1

1− β
g, (2.5a)

where F and g are defined by (1.7). Moreover, Fix U (V (U(TAAR, λ1), β) , λ2), is closed and convex and, for
every x ∈ Fix U (V (U(TAAR, λ1), β) , λ2), we have the following:

x = PBx− βλ1

1− β
g; (2.5b)

PBx− PARBx = g; (2.5c)
PBx ∈ F and PAPBx ∈ E. (2.5d)

In the special case where β = 1, we have

F + NG(g) ⊂ Fix (U(TAAR, λ) + λg) ⊂ g + F + NG(g). (2.5e)

By comparison,

Fix U(V (U(TAP , λ1), β), λ2) = F − βg. (2.6)

Proof. For all β ∈ [0, 1[, since Fix (λT + (1 − λ)I) = Fix T for any mapping T , the fixed point set is
invariant with respect to the outer relaxation (λ2V (U(T, λ1)) + (1− λ2)I), so without loss of generality we
ignore this relaxation.

Equation (2.6) follows immediately from Fix TAP = E.

What remains, then, is to show (a) that F − βλ1
(1−β)g ⊂ Fix V (U(TAAR, λ1), β) and, conversely, (b) that

Fix V (U(TAAR, λ1), β) ⊂ F − βλ1
(1−β)g.

We first establish the inclusion F − βλ1
1−β g ⊂ Fix V (U(TAAR, λ1), β). Pick f ∈ F and let x = f − βλ1

1−β g

and define e := f − g. Now, since f ∈ F and g ∈ PG0, then e ∈ E and −γg ∈ NB(f) and γg ∈ NA(e) for all
γ > 0. Hence PBx = f and PA(e + γg) = e, thus

RBx = 2PBx− x = f +
βλ1

1− β
g,

and

PARBx = PA

(
f +

βλ1

1− β
g

)
= PA

(
e +

1 + β(λ1 − 1)
1− β

g

)
= e = f − g.

Hence PBx− PARBx = g. This together with the observation that

x− TAARx = PBx− PARBx for all x ∈ H (2.7)

implies x−βU(TAAR, λ1)x− (1−β)PBx = βλ1(x−TAARx)+(1−β)(x−PBx) = βλ1g +(1−β)(x−f) = 0.
Thus, as claimed, F − βλ1

1−β g ⊂ Fix (βU(TAAR, λ1) + (1− β)PB).
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We show next that Fix (βU(TAAR, λ1) + (1 − β)PB) ⊂ F − βλ1
1−β g. To see this, pick any x ∈

Fix (βU(TAAR, λ1) + (1− β)PB). Let f = PBx and y = x− f . Recall that

PA(2f − x) = PA(2PBx− x) = PARBx. (2.8)

This, together with the identity (2.7) yields

PA(2f − x) = f + TAARx− x. (2.9)

For our choice of x we have βU(TAAR, λ1)x + (1 − β)PBx = βλ1TAARx + βx − βλ1x + (1 − β)PBx = x,
which yields

TAARx− x =
1− β

βλ1
(x− PBx). (2.10)

Then (2.9) and (2.10) give

PA(2f − x) = f +
1− β

βλ1
(x− f) = f +

1− β

βλ1
y. (2.11)

Now, for any a ∈ A, since A is nonempty, closed and convex, we have

〈a− PA(2f − u), (2f − u)− PA(2f − u)〉 ≤ 0, (2.12)

and hence

0 ≥
〈

a−
(

f +
1− β

βλ1
y

)
, (2f − x)−

(
f +

1− β

βλ1
y

)〉
=

〈
a−

(
f +

1− β

βλ1
y

)
, − y − 1− β

βλ1
y

〉
=

β(λ1 − 1) + 1
βλ1

〈−a + f, y〉+
(1− β)(β(λ1 − 1) + 1)

(βλ1)2
|y|2. (2.13)

Here we have used (2.12), (2.11) and the fact that y = x− f . On the other hand, for any b ∈ B, since B is
a nonempty closed convex set and f = PBx, we have

〈b− PBx, x− f〉 ≤ 0, (2.14)

which yields

〈b− f, y〉 = 〈b− f, x− f〉 ≤ 0. (2.15)

Note that for β ∈ ]0, 1[ and λ1 ∈ ]0, 2[ the numerator β(λ1 − 1) + 1 > 0, thus (2.13) and (2.15) yield

〈b− a, y〉 ≤ −1− β

βλ1
|y|2 ≤ 0. (2.16)

Now take a sequence {an}n∈N in A and a sequence {bn}n∈N in B such that gn = bn − an → g. Then

〈gn, y〉 ≤ −1− β

βλ1
|y|2 ≤ 0 for all n ∈ N. (2.17)

Taking the limit and using the Cauchy-Schwarz inequality yields

|y| ≤ βλ1

1− β
|g|. (2.18)
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Conversely, x− (βU(TAAR, λ1)x + (1− β)PBx) = βλ1 (f − PA(2f − x)) + (1− β)y = 0 gives

|y| = βλ1

1− β

∣∣∣f − PA(2f − x)
∣∣∣ ≥ βλ1

1− β
|g|. (2.19)

Hence |y| = βλ1
1−β |g| and, taking the limit in (2.17), y = − βλ1

1−β g, which confirms the identity (2.5b). From
(2.8) and (2.11) with y = − βλ1

1−β g it follows that f − PARBx = g which proves (2.5c) and, by definition,
implies that PBx = f ∈ F and PAPBx ∈ E. This yields identity (2.5d) and proves (2.5a). The closedness
and convexity of the fixed point set then follows from the fact that F is closed and convex. (More generally,
the fixed point set of any nonexpansive map defined everywhere in a Hilbert space is closed convex; see [28,
Lemma 3.4]).

For the special case where β = 1, a straightforward calculation shows that Fix (TAAR + g) =
Fix (U(TAAR, λ) + λg). Since, by [8, Theorem 3.5], we have

F + NG(g) ⊂ Fix (TAAR + g) ⊂ g + F + NG(g), (2.20)

the result follows immediately, which completes the proof.

Remark 2.2. Lemma 2.1 shows that the inner relaxation parameter λ1 has only a marginal effect on the
set of fixed points of TAAR compared to the β relaxation, which, provided g 6= 0, is unbounded as β → 1; it
has no effect on the set of fixed points of TAP . The outer relaxation parameter λ2 has no effect on either
mapping. In stark contrast to these, the relaxation parameter β in the relaxation V (T, β) has a profound
impact on the set of fixed points of TAAR and marginal impact on the fixed points of TAP . Indeed, from
(2.20) and (2.5a) it is clear that, for all 0 < β < 1, Fix V (TAAR, β) ⊂ Fix (TAAR + g), thus, by definition,
xβ −TAARxβ = g where xβ ∈ Fix V (TAAR, β). More interestingly, however, the fixed point set becomes vastly
larger at β = 1. Similarly, at β = 0 the fixed point set becomes all of B.

Having characterized the fixed points of V (TAAR, β) we turn our attention to inexact Relaxed Averaged
Alternating Reflections (RAAR) iterations:

Algorithm 2.3 (inexact RAAR algorithm). Choose x0 ∈ H and the sequence {βn}n∈N ⊂]0, 1[. For
n ∈ N set

xn+1 =
βn

2
(RA (RBxn + εn) + ρn + xn) + (1− βn)

(
PBxn +

εn

2

)
. (2.21)

The analogous algorithm to this for inexact alternating projections is the following.

Algorithm 2.4 (inexact alternating projection algorithm). Choose x0 ∈ H and the sequence {ηn}n∈N ⊂
]0, 1[. For n ∈ N set

xn+1 = (1− ηn)xn + ηn (PA (PBxn + εn) + ρn) . (2.22)

For fixed relaxation parameter β, additional insight into the relaxation V (TAAR, β) and the Krasnoselski-
Mann-relaxed alternating projection algorithm is gained by considering regularizations of iterated proximal
mappings applied to (1.12).

Proposition 2.5 (unification of algorithms).

(i) Algorithm 1.8 applied to (1.12) with

f1(x) =
β

2(1− β)
dist 2

A(x) and f2(x) = ιB(x) (2.23)
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and λn = 1 for all n is equivalent to Algorithm 2.3 with βn = β for all n.
(ii) Algorithm 1.8 applied to (1.12) with

f1(x) = 1
2 dist 2

A(x), and f2(x) = 1
2 dist 2

B(x) (2.24)

and relaxation parameter λn is equivalent to Algorithm 2.4 with ηn = λn/2.
(iii) Algorithm 1.8 applied to (1.12) on the product space with f1 and f2 defined by

f1(x, y) = 1
2 dist 2

C(x, y), and f2(x, y) = 1
2 dist 2

D(x, y) (2.25)

for C = {(x, y) ∈ H ×H |x = y }, D = {(x, y) ∈ H ×H |x ∈ A, y ∈ B }, εn = ρn = 0 for all n
and relaxation parameter λn is equivalent to gradient descent with step length λn/2 applied to the
nonlinear least squares problem (1.2).

Proof. (i) Let

f1(x) =
β

2(1− β)
dist 2

A(x), and f2(x) = ιB(x)

then prox1,f2
(x) = PBx and a short calculation yields prox1,f1

(x) = x+β(PAx−x). The result then follows
upon substituting these expressions into (1.22) with λn = 1 for all n and ρn of Algorithm 1.8 replaced by
ρn of (2.21) scaled by β.

(ii) A similar calculation shows that when f1(x) = 1−β
2β dist 2

A(x), and f2(x) = β
2(1−β) dist 2

B(x) the recur-
sion (1.22) is equivalent to

xn+1 = (1− λn)xn + λn

(
(1− β)PAyn + β(2β − 1)PBxn + 2(β − β2)xn + (β − 1

2 )εn + 1
2ρn

)
(2.26)

where yn = (1 − 2β)xn + 2βPBxn + εn. In particular, when β = 1/2 we have xn+1 = (1 − λn

2 )xn +
λn

2 (PA(PBxn + εn)+ ρn), the Krasnoselski-Mann relaxation of approximate alternating projections given by
(2.22) with relaxation parameter ηn = λn/2 for all n.

(iii) We use the product space formulation as in Example 1.2. By (ii) of this theorem, Algorithm 1.8, with
relaxation parameter λn applied to (1.12) where f1 and f2 are defined by (2.25), is equivalent to alternating
projections on the product space – Algorithm 2.4 with xn+1 = (1−λn/2)xn+λn/2PCPDxn. But by Example
1.2 alternating projections is equivalent to Krasnoselski-Mann-relaxed averaged projections on the product
space with relaxation parameter λn/2. To complete the proof we note that, by Example 1.1, Krasnoselski-
Mann-relaxed averaged projections on the product space with relaxation parameter λn/2 is equivalent to
gradient descent with step length λn/2 applied to the nonlinear least squares problem (1.2).

In other words, V (TAAR, β) is not a relaxation of TAAR but rather the exact instance of Algorithm 1.8
applied to (1.12) with f1 and f2 defined by (2.23). Similarly, alternating projections are also an instance of
Algorithm 1.8, which, in turn, yields the equivalence of this algorithm to gradient descent.

Proposition 2.5 yields a proof of the next theorem by direct application of Corollary 1.11 with λn = 1 for
all n.

Theorem 2.6 (the inexact RAAR algorithm with fixed β). Let {ρn}n∈N and {εn}n∈N be sequences in H
such that

∑
n∈N ‖ρn‖ + ‖εn‖ < ∞, and fix β ∈]0, 1[, x0 ∈ H, and λn = 1 for all n. If F defined by (1.7) is

nonempty, then the sequence {xn}n∈N generated by Algorithm 2.3 with βn = β for all n converges weakly to
x ∈ H as n →∞ such that x∗ = PBx solves

minimize
x∈H

β

2(1− β)
dist 2

A(x) + ιB(x). (2.27)
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If F = ∅, then the sequence {xn}n∈N generated by (2.21) is unbounded.

Proof. The result follows from Corollary 1.11(ii) once the equivalence of the condition F 6= ∅ to As-
sumption (1.9) is established. To see this, note that by Proposition 2.5 the recursion (2.21) is equivalent
to (1.22) with λn = 1 for all n applied to (2.27). Moreover, for f1 = β

2(1−β) dist 2
A(x) and f2 = ιB ,

∂f1(x) = β
1−β (x−PAx) and ∂f2(x) = NB(x) (see (1.10) and (1.4)), so the existence of points x ∈ F implies

that β
1−β (x − PAx) = β

1−β g ∈ −NB(x), hence Assumption (1.9) holds. Conversely, the existence of points
x ∈ H and a ∈ ∂f1(x) and b ∈ ∂f2(x) such that a+ b = 0 implies that, for such x, β

1−β (x−PAx) ∈ −NB(x),
hence x ∈ F , which completes the proof.

While the above theorem takes advantage of regularizations to reinterpret the relaxation (2.3), it does not
easily allow us to verify the effect of variable β. To account for variable βn we take a different approach.

Theorem 2.7 (the inexact RAAR algorithm with variable β). Fix β ∈ ]0, 1[ and x0 ∈ H. Let
{βn}n∈N be a sequence in ]0, 1[, and {xn}n∈N ∈ H be generated by Algorithm 2.3 with corresponding er-
rors {εn}n∈N, {ρn}n∈N ⊂ H. Define

νn = 2|βn − β| |(PA − I)RBxn| . (2.28)

If F 6= ∅ and ∑
n∈N

|εn|+ |ρn|+ νn < +∞, (2.29)

then {xn}n∈N converges weakly to a point x∗ ∈ F − βg/(1− β).

Proof. The mapping V (TAAR, β) = βTAAR + (1 − β)PB . Then V (TAAR, β) is firmly nonexpansive as
a convex combination of the two firmly nonexpansive mappings TAAR and PB . Accordingly, the mapping
R = 2V (TAAR, β)−I is nonexpansive since V (TAAR, β) is firmly nonexpansive if and only if 2V (TAAR, β)−I
is nonexpansive [28, Theorem 12.1]. Moreover, it follows from Lemma 2.1 that Fix R = Fix V (TAAR, β) =
F − βg/(1− β) 6= ∅. Setting rn = 2xn+1 − xn, an elementary calculation shows that

|rn −Rxn| ≤ βn|RA (RBxn + εn)−RARBxn|+ βn|ρn|+ (1− βn)|εn|+ 2|βn − β| |(PA − I)RBxn| . (2.30)

Now, since RA is nonexpansive

|RA (RBxn + εn)−RARBxn| ≤ |εn|

and from (2.28)

|rn −Rxn| ≤ |ρn|+ |εn|+ νn. (2.31)

The recursion (2.21) can thus be rewritten as

x0 ∈ H and xn+1 = 1
2xn + 1

2rn for all n ∈ N, (2.32)

where, from (2.29) and (2.31), ∑
n∈N

|rn −Rxn| < +∞. (2.33)

It then follows from [20, Theorem 5.5(i)] that {xn}n∈N converges weakly to a fixed point of R, which proves
the result.
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Analogous results for the important case of the RAAR algorithm with β = 1, that is, the AAR algorithm,
have been treated extensively in [8]. Surprisingly, the proof techniques for these two cases are distinct and
it appears that a unification is not readily available.

A more detailed picture of the behavior of iterates of the exact RAAR algorithm can be obtained in the
following restricted setting.

Corollary 2.8 (exact RAAR algorithm in Euclidean space). Let H be Euclidean space. Fix β ∈ ]0, 1[
and let

x0 ∈ Rn and xn+1 = V (TAAR, β)xn for all n ∈ N.

Suppose that F 6= ∅. Then {xn}n∈N converges to some point x ∈ F − βg/(1− β) and furthermore,

(i) PBxn − PAPBxn → g;
(ii) PBxn → PBx and PAPBxn → PAPBx;
(iii) PBx− PAPBx = g, hence PBx ∈ F and PAPBx ∈ E.

Proof. The convergence of {xn}n∈N follows from Theorem 2.7 (with εn = ρn = νn := 0); denote the limit
by x. From (1.7) we can write x ∈ F − βg/(1− β) as x = f − βg/(1− β), where f = PBx ∈ F (see also [8,
Proposition 2.4.(ii)]). Since the mappings PA, PB , RA, RB are continuous, (ii) follows. Next, using (2.5c),
we have

PBxn − PARBxn → PBx− PARBx = g. (2.34)

Hence

|g| ≤ |PBxn − PAPBxn| ≤ |PBxn − PARBxn| → |g|, (2.35)

and thus |PBxn − PAPBxn| → |g|. Now (i) follows from [8, Proposition 2.5]. Taking the limit in (i) yields
(iii).

We would like to note in closing this subsection that the duality theory for (1.12) with f1 and f2 given by
(2.23) has been detailed in [2, Section 2]. The connection between algorithms (1.8) and (1.7) and (2.3) allows
for an attractive synthesis in the convex setting. However, at this time the nonconvex theory is much less
developed than the convex theory. A notable exception is the recent work of Moudafi [45], who studies the
convergence of the prox-gradient method in a prox-regular setting. Nevertheless, the view of the parameter
β as a weight in a regularized objective does not, in our opinion, lead to a natural justification for dynamic
βn as does the interpretation of this parameter as a relaxation. This is discussed in greater detail in the
next section.

2.2. Controlling the iterates. The implementation of the RAAR algorithm that we studied in [38]
was motivated by the following observation that indicates that the relaxation parameter β might be used to
steer the iterates.

Proposition 2.9. Let x ∈ H and suppose that F 6= ∅.

(i) dist
(
x,Fix V (TAP , β)

)
= dist

(
x, F + βg

)
for all β ∈ (0, 1].

(ii) If A ∩ B 6= ∅, then dist
(
x,Fix V (TAAR, β)

)
= dist

(
x,A ∩ B

)
for all β ∈ ]0, 1[; otherwise,

limβ↗1 dist
(
x,Fix V (TAAR, β)

)
= +∞.

Proof. The proof of (i) follows immediately from (2.6). To see (ii), note that if A ∩ B 6= ∅, then g = 0
and Fix V (TAAR, β) = A ∩ B, which proves the first part of the statement. Now assume A ∩ B = ∅ and
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fix f0 ∈ F . Then g 6= 0 and F is contained in the hyperplane {x ∈ H | 〈x− f0, g〉 = 0} [3, Lemma 2.2(v)].
Hence, it follows from Lemma 2.1 that

Fix V (TAAR, β) = F − β

1− β
g ⊂

{
x ∈ H

∣∣∣∣ 〈
x +

β

1− β
g − f0, g

〉
= 0

}
= Hβ . (2.36)

Accordingly,

dist
(
x,Fix V (TAAR, β)

)
≥ dist (x,Hβ) =

∣∣∣〈x + β
1−β g − f0, g

〉∣∣∣
|g|

≥ β

1− β
|g| − |〈x− f0, g〉|

|g|
(2.37)

which proves the second assertion of part (ii).

By Proposition 2.9, for any estimate xn “close” to Fix V (TAAR, βn), there is a βn+1 such that xn is com-
paratively distant to Fix V (TAAR, βn+1). It will become clear in the next section that it is the proximity
to the set F , rather than Fix V (TAAR, βn), that is critical to the quality of an iterate xn. We therefore use
the relaxation parameter βn to control the step size of an iterate toward the set F . By comparison, the
relaxation parameter β has very little effect on the iterates xn of the alternating projection algorithm. The
next proposition shows that by varying β the step size can be regulated in the direction of the gap vector g.

Proposition 2.10. Let x ∈ H satisfy |x− xβ1 | < δ where xβ1 ∈ Fix V (TAAR, β1), δ > 0 and β1 ∈ ]0, 1[.
Then, for all β2 ∈ ]0, 1[, we have ∣∣∣∣V (TAAR, β2)x−

(
fβ1 −

β2

1− β1
g

)∣∣∣∣ < δ, (2.38)

where fβ1 = PBxβ1 ∈ F .

Proof. This was proved in [38, Proposition 2.3]

This ability to control the step lengths with the relaxation parameter stands out next to other relaxed
projection algorithms. For this reason descent algorithms are often preferred since there is ample theory for
determining optimal step sizes.

3. Nonconvex analysis.

3.1. Prox-regular Sets. In this section A is still convex, but we allow the set B to be nonconvex.
Such a situation is encountered in the numerical solution to the phase retrieval problem in inverse scattering
[39, 6, 38], and is therefore of great practical interest. Indeed, our results form the basis for proving local
convergence of some phase retrieval algorithms for inconsistent (noisy) problems which, to our knowledge,
would be the first such results. The central notion for getting a handle on this situation is prox-regularity
as developed by Poliquin and Rockafellar[48, 47]. Prox-regular sets were, to our knowledge, first introduced
by Federer [26] though he called them sets of positive reach, and are characterized as those sets C for which
the projection is locally single-valued and continuous from the strong topology in the domain to the weak
topology in the range [49, Theorem 3.1]. The main difficulty for our analysis is that prox-regularity is a local
property relative to elements of the set B while the fixed points of the mapping V (T, β) lie somewhere in
the normal cone to B at the local best approximation points of this set. A localized normal cone mapping
is obtained through the truncated normal cone mapping

Nr
C(x) :=

{
NC(x) ∩ int B(0, r) x ∈ C

∅ x /∈ C
(3.1)
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where B(0, r) is the closed ball of radius r centered on the origin. The principal result we draw from can be
found in [49], Corollary 2.2 and Proposition 3.1.

Lemma 3.1 (properties of prox-regular sets). Let C ⊂ H be is prox-regular at x. Then for some r > 0
and a neighborhood of x, denoted N (x), the truncated normal cone mapping Nr

C is hypomonotone on N (x),
that is, there is a σ > 0 such that

〈y1 − y2, x1 − x2〉 ≥ −σ|x1 − x2|2 whenever yi ∈ Nr
C(xi) and xi ∈ N (x).

As suggested by Proposition 2.9 we can control to some extent the location of the fixed points of V (T, β)
by adjusting the parameter β. In particular, note that for β = 0 we have V (T, 0) = PB hence we can adjust
β so that the fixed points remain in prox-neighborhoods of the best approximation points in B.

The next result is a prox-regular analog of (1.3).

Lemma 3.2. For C prox-regular at x there exist ε > 0 and σ > 0 such that whenever x ∈ C and v ∈ NC(x)
with |x− x| < ε and |v| < ε one has

〈x′ − x, v〉 ≤ σ|x′ − x|2 for all x′ ∈ C with |x′ − x| < ε. (3.2)

Proof. Since C is prox-regular at x, by Lemma 3.1 the truncated normal cone mapping Nr
C(x) is hy-

pomonotone on a neighborhood N (x), that is, there are σ > 0 and ε > 0 such that

〈x′ − x, v〉 ≤ σ|x′ − x|2,

whenever v ∈ NC(x), and 0 ∈ NC(x′) with |v| < ε and |x′ − x| < ε.

A stronger version (with different proof) of the above proposition can be found in [49, Proposition 1.2]

For this prox-regular setting we must define local versions of the sets G, E, and F defined in (1.7).

Definition 3.3 (local best approximation points). For A convex and B nonconvex, a point f ∈ B is a
local best approximation point if there exists a neighborhood N (f) on which |f − PAf | ≤ |b − PAb| for all
b ∈ B ∩N (f). For such a point, we define

GN (f) := (B ∩N (f))−A and for g := f − PAf ∈ PGN(f)0
EN (f)(g) := A ∩ ((B ∩N (f)))− g), FN (f)(g) := (A + g) ∩ (B ∩N (f)). (3.3a)

If |f −PAf | ≤ |b−PAb| for all b ∈ B then f ∈ B is a global best approximation point. Whether or not such
a point exists, the following sets are well defined

G := B −A and for g ∈ PG0
E(g) := A ∩ (B − g), F (g) := (A + g) ∩B. (3.3b)

From the above definition it is immediate that any global best approximation point is also a local best
approximation point. Note that PGN(f)0 and PG0 are now possibly sets of gap vectors since, for A convex
and B prox-regular, G = B −A is not in general convex. For any g1, g2 ∈ PGN(f)0, although it may happen
that g1 6= g2, it is still the case that |g1| = |g2|, hence the (local) gap between the sets A and B in the
nonconvex setting is still well defined.

We will assume the following throughout the rest of this work.
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Assumption 3.4 (prox-regularity of G). The set G is prox-regular at all g ∈ PG0 and for every local
best approximation point f ∈ B, the set GN (f) is prox-regular at the corresponding point gf := f − PAf ∈
PGN(f)0.

Example 3.5. Consider the example in R2 where A = {(0, x2) for x2 ∈ [−2, ε]} for ε ≥ 0 and

B =

(x1, x2) ∈ R2

∣∣∣∣∣∣
x1 = ±

√
1− x2

2 for x2 ≥ 0,
x1 = −1 for x2 ∈ [0,−1],

x1 = −
√

1− (x2 + 1)2 for x2 ∈ [−2,−1]

 .

The corresponding set G is not prox-regular everywhere. In particular, if ε = 0 it is not prox-regular at the
point (−

√
3/2, 1/2) since the projection onto G is multivalued along the line segment (−

√
3/2, 1/2) + τ(1, 0)

for all τ ∈ [0,
√

3/2]. For this example, however, this is the only point in G where prox-regularity fails. Since
A and B intersect at the point (0,−2), the global gap vector is (0, 0), and F = E = {(0,−2)}. Each of the
vectors in the set

{
(x1, x2) ∈ R2

∣∣∣x1 = ±
√

1− x2
2 for x2 ≥ 0,

}
, on the other hand, is a local gap vector

relative to some neighborhood of points in B. At the point f = (0, 1), for example, all of these vectors are local
gap vectors of the set GN (f) where N (f) is a disk of radius

√
2. The corresponding local best approximation

points in B are FN (f)(g) = {g} while the local best approximation points in A, EN (f)(g) = {(0, 0)} for
all g ∈

{
(x1, x2) ∈ R2

∣∣ x2
1 + x2

2 = 1 for x2 ≥ 0
}
. We call this collection of best approximation points a fan,

characterized by the nonuniqueness of the gap vector. We shall disallow such regions in what follows. Indeed,
if in the definition of A we set 0 < ε � 1, then there is no such fan region and the unique best approximation
point in B corresponding to (0, ε) ∈ A is f = (0, 1) with corresponding unique gap vector g = (0, 1− ε).

The next fact is an adjustment of [8, Proposition 2.5] for B prox regular.

Proposition 3.6. Let A be closed convex and B prox-regular subsets of H. Suppose that {an}n∈N and
{bn}n∈N are sequences in A and B ∩ N (f), respectively with f a local best approximation point, N (f) a
suitable neighborhood and bn − an → g = f − PAf ∈ PGN(f)0. Then the following hold.

(i) bn − PAbn → g while PBan − an → G̃N (f) ⊂ PGN(f)0.
(ii) The cluster points of {an}n∈N and {PAbn}n∈N belong to EN (f)(g). The cluster points of {bn}n∈N

belong to FN (f)(g). Consequently, the cluster points of the sequences{
(an, bn)

}
n∈N,

{
(PAbn, bn)

}
n∈N

are local best approximation pairs relative to (A,B),
(iii) If g is the unique gap vector on N (f), that is if PGN(f)0 = g, then

bn − an → g ⇐⇒ |bn − an| → |g|.

Proof. Since

|bn − an| ≥ max
{
|bn − PAbn|, |PBan − an|

}
≥ min

{
|bn − PAbn|, |PBan − an|

}
≥ |g|,

we conclude that
{
|bn − PAbn|

}
n∈N and

{
|PBan − an|

}
n∈N both converge to |g̃| for any g̃ ∈ PGN(f)0. Since

A is convex, PAbn is single-valued and continuous, hence bn − PAbn → g. Since B is prox-regular PB is
possibly set-valued and limn→∞ PBan − an = G̃N (f) a subset of PGN(f)0. Hence (i) holds. Let a ∈ A be
a cluster point of {an}n∈N, say ank

→ a. Then bnk
→ g + a ∈ B ∩ N (f) ∩ (g + A) = FN (f)(g), hence

a ∈ A ∩ (B ∩ N (f) − g) = EN (f)(g). The arguments for {bn}n∈N and {PAbn}n∈N are similar. Finally, (iii)
follows from (i) and the fact that g is the unique gap vector.
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Remark 3.7. Convergence of |bn − an| → |g| does not in general imply that bn − an → g. To see this,
consider B and A in Example 3.5 with ε = 0. Construct the sequences an := (0,−1/n) and bn := (−1,−1/n)
for all n and let g = (0, 1). Now, an → (0, 0), bn → (−1, 0) and bn − an → (−1, 0) = g̃ 6= g, even though
both belong to PGN(f)0 and |bn − an| → |g| when f = (0, 1) and N (f) a disk of radius

√
2. Note also that

PBan → (−1, 0) while PBa =
{
(x1, x2) ∈ R2

∣∣ x2
1 + x2

2 = 1 and x2 ≥ 0
}
.

3.2. Relaxed Averaged Alternating Reflections: prox regular sets. The difference between
TAP and TAAR is in the control exerted on the fixed points of the respective mappings by the relaxation
strategy V (T, β). As shown in (2.6) in the case of TAP , the relaxation β ∈ (0, 1] simply shifts the set of
fixed points from best approximation points in A to their corresponding points in B. In the nonconvex
setting this shift property is restricted to local best approximation points. Hence, the relaxation parameter
does not change in any significant way the set of fixed points and, in particular, it does not change the
correspondence between the set of local best approximation points and the fixed points of V (TAP , β). For
TAAR the relaxation parameter in (2.21) the nonconvex situation is quite different. Indeed, as we show in
Lemma 3.8, the relaxation parameter β can be chosen to limit the set of local best approximation points
that correspond to fixed points of V (TAAR, β), thus eliminating bad local best approximation points.

Before proceeding with the prox-regular versions of Theorem 2.7 and Corollary 2.8, we need to define
what we mean by V (T, β)x in the case when PBx is multi-valued. We shall define this as

V (TAP , β)x := {v = βPAb + (1− β)b | b ∈ PBx} . (3.4a)

V (TAAR, β)x :=
{

v =
β

2
(RA(2b− x) + x) + (1− β)b | b ∈ PBx

}
. (3.4b)

Lemma 3.8 (characterization of fixed points). For A closed and convex and B prox-regular, suppose that
Assumption 3.4 holds and define V (TAAR, β) by (3.4b) for β ∈]0, 1[ fixed. Then

Fix V (TAAR, β) ⊂
{

f − β

1− β
(f − PAf) | f ∈ B is a local best approximation point

}
(3.5a)

and the two sets are equal for all β ≤ 1/2. Moreover, for every x ∈ Fix V (TAAR, β), there is a local best
approximation point f and corresponding gap vector gf with

x ∈ PBx− β

1− β
gf , (3.5b)

gf ∈ PBx− PARBx. (3.5c)

By comparison, for all β ∈]0, 1[ fixed,

Fix V (TAP , β) = {f − β(f − PAf) | f ∈ B is a local best approximation point} . (3.6)

Proof. The proof is almost identical to that of Lemma 2.1. We skip most of the details and point only to
the main differences.

To prove (3.5a)-(3.5c) we must take account of two issues: first, that PB might not be single-valued
at all x ∈ Fix V (TAAR, β) and the relation (2.14) does not hold for B prox-regular. The possible multi-
valuedness of PBx is handled by choosing f ∈ PBx for a given x ∈ Fix V (TAAR, β) and setting y = x − f .
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The corresponding gap vector is uniquely determined by gf = f − PA(f). This changes (2.8) and (2.9) to
inclusions

PA(2f − x) ∈ PARBx and PARBx− PBx = TAARx− x (3.7)

by (2.7). The second equation is actually an expression of set equality. When TAAR is restricted to the
selection f ∈ PBx, which we write as TAAR|f , this yields

PA(2f − x)− f = TAAR|fx− x. (3.8)

For x ∈ Fix (V (TAAR, β)) equations (3.7) and (3.8) give

(1− β)(x− f) = β(TAAR|f − x) = β(PA(2f − x)− f) (3.9)

hence, with y = x− f ,

f +
1− β

β
y = PA(2f − x). (3.10)

This is the same result as (2.11) for the selection f ∈ PBx. As with (2.13), using (2.12) and (3.10) we have,
for any a ∈ A nonempty, closed and convex,

1
β
〈−a + f, y〉+

1− β

β2
|y|2 ≤ 0. (3.11)

On the other hand, since B is nonempty prox-regular and f ∈ PBx, by Lemma 3.2 we have

〈b− f, x− f〉 ≤ σ|f − b|2 (3.12)

where x− f ∈ NB(f), and 0 ∈ NB(b) for b close enough to f . This yields (compare to (2.15))

〈b− f, y〉 = 〈b− f, x− f〉 ≤ σ|b− f |2. (3.13)

Now, (3.11) and (3.13) yield

〈b− a, y〉 ≤ 〈b− f, y〉 − 1− β

β
|y|2 ≤ σ |f − b|2 − 1− β

β
|y|2. (3.14)

The right hand side is nonpositive for all b close enough to f . The rest of the proof follows the proof of
Lemma 2.1 with the caveat that the sequence bn → f be chosen close enough to f that

σ |f − bn|2 −
1− β

β
|y|2 ≤ 0 for all n.

The identities (3.5b)-(3.5c) follow immediately since f ∈ PBx is a local best approximation point.

To prove that the set inequality in (3.5a) is not, in general, tight we show that, given a local best
approximation point f ∈ B and corresponding gap vector gf ,

f − β

1− β
gf ∈ Fix V (TAAR, β) if and only if f ∈ PB

(
f − β

1− β
gf

)
. (3.15)

The “easy” implication is that the left hand side of (3.15) implies the right hand side (expand 0 ∈
(I − V (TAAR, β))

(
f − β

1−β gf

)
in terms of PB and PA and “solve” for PB

(
f − β

1−β gf

)
). The other im-

plication follows exactly as in Lemma 2.1 with the generalization to inclusions since the projection onto B
need not be single-valued.
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Finally, to show that set equality holds in (3.5a) for all β ≤ 1/2 note that, for any local best approximation
point f ∈ B with B prox-regular, f ∈ PB(f − β

1−β gf ) for all β ∈ [0, 1/2] where gf is the corresponding gap
vector. The result then follows from (3.15).

For TAP , since the parameter β simply shifts the fixed point within the gap of a local best approximation
pair as β ranges from 0 to 1, the fixed points of V (TAP , β) coincide precisely with the local best approximation
points of A and B, whence (3.6).

Corollary 3.9. Fix V (TAAR, β) = ∅ for all β > 0 if and only if B does not contain a local best
approximation point.

Proof. This follows immediately from (3.5).

Remark 3.10. Note that, while in the case of TAAR all local best approximation points correspond to
fixed points of V (TAAR, β) for β ∈ [0, 1/2], this is not the case for β > 1/2. Indeed, by (3.15) of Lemma
3.8, the fixed points of V (TAAR, β) consist only of local best approximation points for which f − β

1−β gf is
in a proximal neighborhood of B. This certainly will not hold for all β ∈ [1/2, 1[. One might envision an
algorithmic strategy for filtering out certain local best approximation points by choosing β large enough.
Of course, how such a filtering might work in practice depends entirely on local proximal properties the set
B. The point is that by simply increasing β, one can avoid local minima. This is a potentially powerful
algorithmic tool for global projection algorithms for nonconvex problems.

We finish this section with nonconvex versions of Theorem 2.7 and Corollary 2.8. The convex results
exploited the firm nonexpansiveness of the fixed point mapping, or equivalently maximal monotonicity. We
show that, for the nonconvex problem, if this property holds locally, then local versions of the results of
Section 2.1 follow. This is not an empty assumption as Example 3.5 illustrates. Indeed, for the sets defined
there with ε > 0, an elementary calculation of V (TAAR, 1/2)x for points x on convex neighborhoods of
(0, ε) ∈ Fix V (TAAR, 1/2) (not even very small neighborhoods) shows that 2V (TAAR, 1/2)−I is nonexpansive,
hence V (TAAR, 1/2) is locally firmly nonexpansive.

One consequence of such an assumption is the following.

Proposition 3.11. For either T = TAAR or T = TAP , if V (T, β) is firmly nonexpansive on a neighbor-
hood N (x0) of x0 ∈ Fix V (T, β) then g0 = PBx0 − PAPBx0 is the unique gap vector on N (x0), that is, for
all x ∈ Fix V (T, β) ∩ N (x0) one has PBx − PAPBx = PBx0 − PAPBx0. Moreover, PB is single-valued on
N (x0).

Proof. We prove the statement for T = TAAR as the proof for T = TAP is almost identical. Let x1 be any
fixed point on N (x0) with corresponding gap vectors g1 ∈ PBx1 − PAPBx1 and let bj ∈ PBxj , for j = 0, 1.
Then by Lemma 3.8 xj = bj − 1−β

β gj , j = 0, 1. Since PA is nonexpansive we have

|g1 − g0|2 = |b1 − b0|2 + |PAb1 − PAb0|2 − 2 〈b1 − b0, PAb1 − PAb0〉 ≤ |b1 − b0|2 − |PAb1 − PAb0|2 (3.16)

and

|PAb1 − PAb0| ≤ |b1 − b0|. (3.17)

If |PAb1 − PAb0| = |b1 − b0| then by (3.16) g1 = g0. If, on the other hand, |PAb1 − PAb0| < |b1 − b0|
then |y1 − x0| < |x1 − x0| where y1 := b1 −

(
1−β

β + ε
)

g1 for some ε > 0 small enough. A straightforward
calculation shows that

Ry1 = b1 −
(

1− β

β
+ (2β − 1)ε

)
g1 and Rx0 = x0
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where R := 2V (TAAR, β)− I. So for β < 1, |y1 − x0| < |Ry1 −Rx0| which contradicts the assumption that
V (TAAR, β) is firmly nonexpansive. It must hold, then, that |PAb1 − PAb0| = |b1 − b0| hence g1 = g0.

To see that the projection PB is single-valued on N (x0), consider any x ∈ N (x0) and the corresponding
vectors y1 = b1 − x and y2 = b2 − x with bj ∈ PBx (j = 1, 2). The same argument as above above applies
here with A replaced by {x} to show that y1 = y2 since V (TAAR, β) is firmly nonexpansive, hence b1 = b2.
Since x was arbitrarily chosen, this completes the proof.

The inexact RAAR Algorithm 2.3 is modified in the obvious way to inclusions for B prox-regular. For
variable relaxation parameters, we then have the following generalization of Theorem 2.7.

Theorem 3.12 (inexact prox-regular RAAR algorithm, variable β). For A closed and convex and B
prox-regular, suppose that Assumption 3.4 holds. Let β ∈ ]0, 1[ be small enough that Fix V (TAAR, β) 6= ∅.
Suppose that V (TAAR, β) is firmly nonexpansive on a convex neighborhood N (x) of x ∈ Fix V (TAAR, β)
with dom V (TAAR, β) = H. Choose x0 ∈ N (x), let {βn}n∈N be a sequence in ]0, 1[, and {xn}n∈N ⊂ H be
generated by Algorithm 2.3 with corresponding errors {εn}n∈N, {ρn}n∈N ⊂ H. Define

νn = 2|βn − β| |(PA − I)RBxn| (3.18)

and suppose that ∑
n∈N

|εn|+ |ρn|+ νn = M (3.19)

for M ∈ R small enough that {xn}n∈N ⊂ N (x). Then {xn}n∈N converges weakly to a point in

Fix V (TAAR, β) ∩N (x) ⊂
{

f − β

1− β
(f − PAf)

∣∣ f ∈ FPBN (x)

}
,

where FPBN (x) denotes the set of best approximation points in B corresponding to the projected neighborhood
PBN (x). Convergence is strong if any one of the following hold:

• lim dist Fix V (TAAR,β)(xn) = 0;
• int Fix V (TAAR, β) 6= ∅
• V (TAAR, β) is demicompact at 0.

Proof. Let R = 2V (TAAR, β) − I and note that Fix R = Fix V (TAAR, β), which, by assumption, is
nonempty. Moreover, it follows from Lemma 3.8 that

Fix R ∩N (x) = Fix V (TAAR, β) ∩N (x) ⊂
{

f − β

1− β
(f − PAf)

∣∣ f ∈ FPBN (x)

}
.

Following the proof of Theorem 2.7, let rn = 2xn+1 − xn and rewrite the recursion (2.21) as

x0 ∈ H and xn+1 = 1
2xn + 1

2rn for all n ∈ N, (3.20)

where, from (3.19) and

|rn −Rxn| ≤ |ρn|+ |εn|+ νn, (3.21)

it holds that ∑
n∈N

|rn −Rxn| < M (3.22)
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for M small enough that {xn}n∈N ⊂ N (x). Since V (TAAR, β) is firmly nonexpansive on this neighborhood
with dom V (TAAR, β) = H then R is nonexpansive on the same neighborhood with dom R = H. The result
then follows from [20, Theorem 5.5].

A more detailed picture of the behavior of iterates of the exact RAAR algorithm can be obtained in the
following restricted setting.

Corollary 3.13 (exact prox-regular RAAR algorithm in Euclidean space). Let H be Euclidean space.
For the assumptions of Theorem 3.12, fix β ∈ ]0, 1[ small enough that Fix V (TAAR, β) 6= ∅ and let

x0 ∈ N (x) and xn+1 = V (TAAR, β)xn for all n ∈ N

where x ∈ Fix V (TAAR, β) with corresponding local best approximation point f = PBx and gap vector gf =
f − PAf . Then {xn}n∈N converges to a point x ∈ FN (f)(gf )− βgf/(1− β) and

(i) PBxn − PAPBxn → gf ;
(ii) PBxn → PBx and PAPBxn → PAPBx;
(iii) PBx− PAPBx = gf , hence PBx ∈ FN (f)(gf ) and PAPBx ∈ EN (f)(gf ).

Proof. The convergence of {xn}n∈N follows from Theorem 3.12 (with µn := νn := 0); denote the limit by
x. From (3.3a) we can write x ∈ FN (f)(gf )−βgf/(1−β) as x = f−βgf/(1−β), where f = PBx ∈ FN (f)(gf )
(see also [8, Proposition 2.4.(ii)]). Since the mappings PA, PB , RA, RB are continuous, (ii) follows. Next,
using (3.5c), we have

PBxn − PARBxn → PBx− PARBx = gf . (3.23)

Hence

|gf | ≤ |PBxn − PAPBxn| ≤ |PBxn − PARBxn| → |gf |, (3.24)

and thus |PBxn − PAPBxn| → |gf |. Now (i) follows from Proposition 3.6 and Proposition 3.11. Taking the
limit in (i) yields (iii).

4. Conclusion and Open Problems. In this work we have laid some groundwork for a comprehensive
theory of the asymptotic behavior of projection algorithms in prox-regular settings, with particular focus
on the RAAR algorithm. The RAAR algorithm has many attractive features, namely that it is robust for
consistent and inconsistent problems, the relaxation parameter can be interpreted as a step length and thus
can be optimized, and moreover, the relaxation parameter can be used to avoid “bad” local minima. In
the convex setting the RAAR algorithm, together with the classical alternating projections and averaged
projections algorithms, can be viewed as instances of the classical Lions-Mercier/Douglas-Rachford algorithm
applied to the problem of minimizing the sum of two maximal monotone mappings, hence the analysis of
the RAAR algorithm can be broadly applied. We conjecture that these correspondences carry over to the
nonconvex setting, however the details of this correspondence are beyond the scope of the present study.

The analytical tools that we use derive from analogs in convex theory. As one would expect from nonconvex
problems, our most general results are local in nature. Our hope is that this analysis can serve as a guide to
the analysis of similar algorithms. For the purpose of proving the convergence of the RAAR algorithm for the
phase retrieval problem in crystallography, it remains to be shown that the fixed point mapping V (TAAR, β) is
firmly nonexpansive on a neighborhood of a fixed point. This question would be quickly resolved by sufficient
conditions under which firm nonexpansiveness holds in nonconvex settings. Less restrictive notions of firm
nonexpansiveness, namely quasi-1/2-averaged mappings as studied in [5, 20], could also be quite fruitful
here. Another key assumption for our results was the prox-regularity of the set GN (f) = B ∩N (f)−A
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at local best approximation points f . We conjecture that this assumption as well as the assumption of
local firm nonexpansiveness of the corresponding reflection can be removed on neighborhoods of local best
approximation points. The assumption that one of the sets is convex, not just prox-regular, was useful for
our proofs, but is probably not necessary in general. With the exception of what we called fan regions,
local best approximation points will by definition be in the proximal neighborhood of the other set. We
therefore conjecture that these results can be extended to two prox-regular sets. Finally we note that our
use of hypomonotonicity defined in Lemma 3.1 might be relaxed to approximate monotonicity of the closed
set C at a point x ∈ C defined by

〈y1 − y2, x1 − x2〉 ≥ −σ|x1 − x2| whenever yi ∈ Nr
C(xi) and xi ∈ N (x).

for all σ > 0. By [35, Corollary4.11] this is equivalent to the super-regularity of C [35, Definition 4.4], a
weaker condition than prox-regularity. This generalization would immediately extend our results to sets
with other types of regularity such as subsmooth sets [1].

Acknowledgments The author would like to thank the anonymous reviewers for their thoughtful
comments, particularly with regard to the interpretation of RAAR as a regularization rather than relaxation.
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