
Linear Convergence of the ADMM/Douglas
Rachford Algorithms for Piecewise Linear-Quadratic
Functions and Application to Statistical Imaging

Timo Aspelmeier∗, C. Charitha†, and D. Russell Luke‡

version August 18, 2015

Abstract

We consider the problem of minimizing the sum of a convex, piecewise linear-
quadratic function and a convex piecewise linear-quadratic function composed
with an injective linear mapping. We show that, for such problems, iterates of
the alternating directions method of multipliers converge linearly to fixed points
from which the solution to the original problem can be computed. Our proof
strategy uses duality and strong metric subregularity of the Douglas-Rachford
fixed point mapping. Our analysis does not require strong convexity and yields
error bounds to the set of model solutions. We demonstrate an application of
this result to exact penalization for signal deconvolution and denoising with
multiresolution statistical constraints.
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1 Introduction.

The alternating directions method of multipliers method (ADMM) has received a
great deal of attention recently for problems involving constraints on the image of the
unknowns under some linear mapping or for regularized linear inverse problems. The
analysis has focused on either global complexity estimates [29] or sufficient conditions
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for local linear convergence [22, 39]. The closely related Douglas-Rachford algorithm
has also been the focus of recent studies showing global complexity [34,40] and (local
linear) convergence in increasingly complex settings [1,2,4–6,11,30,31,42]. In the con-
vex setting, the convergence studies for both ADMM and Douglas-Rachford share a
common thread through the well-known duality between these algorithms [26]. Stud-
ies of the ADMM frequently invoke strong convexity. Studies of Douglas-Rachford,
on the other hand have, until very recently, been focused on feasibility problems and
corresponding notions of regularity of intersections. In the present work, we combine
an analysis of the ADMM algorithm with facts learned from the local convergence of
Douglas-Rachford to provide sufficient conditions for local linear convergence of se-
quences generated by ADMM without strong convexity. Our theoretical development
is specialized to the application of statistical multiscale image denoising/deconvolution
following [24].

1.1 Notation and definitions

Though many of the arguments presented here work equally well for infinite dimen-
sional Hilbert spaces, to avoid technicalities, it will be assumed throughout that U and
V are Euclidean spaces. We denote the extended reals by (−∞,+∞] := R ∪ {+∞}
and the nonnegative orthant by R+ := {x ∈ R |x ≥ 0}. The closed unit ball centered
at the origin is denoted by B. In the usual notation for the natural numbers N we
include 0. The mapping A : U → V is linear and the functional J : U → (−∞,+∞]
is proper (not everywhere +∞ and nowhere −∞), convex and lower semicontinuous
(lsc), as is the functional H : V → (−∞,+∞]. A proper function f : U → (−∞,+∞]
is strongly convex if there is a constant µ > 0 such that

f ((1− τ)x0 + τx1) ≤ (1− τ)f(x0) + τf(x1)− 1
2
µτ(1− τ)‖x0 − x1‖2 (1.1)

for all x0 and x1 and τ ∈ (0, 1). We will not assume smoothness of functions and so
will require the subdifferential. The subdifferential of a function f : U → (−∞,+∞]
at a point x ∈ dom f is defined by

∂f(x) := {v ∈ U | 〈v, x− x〉 ≤ f(x)− f(x), for all x ∈ U } . (1.2)

When x /∈ dom f the subdifferential is defined to be empty. Elements from the
subdifferential are called subgradients. The subdifferential of a proper, lsc convex
function is a maximally monotone set-valued mapping [44, Theorem 12.17]. The
Fenchel conjugate of a function f is denoted by f ∗ and defined by

f ∗(y) := inf {〈y, x〉 − f(x)} .

We use the notation Φ : U ⇒ V to denote a set-valued mapping Φ from U to V . A set
valued mapping Φ : U ⇒ V is said to be β-inverse strongly monotone [44, Corollary
12.55] if for all x, x′ ∈ U

〈v − v′, x− x′〉 ≥ β|v − v′|2, when ever v ∈ Φ(x), v′ ∈ Φ(x′). (1.3)
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We denote the resolvent of a (set-valued) mapping Φ : U ⇒ V by JΦ := (Id +Φ)−1

where Id denotes the identity mapping and the inverse is defined as

Φ−1(y) := {x ∈ U | y ∈ Φ(x)} . (1.4)

The corresponding reflector is defined by RηΦ := 2JηΦ − Id. A set-valued mapping
Φ : U ⇒ V is said to be Lipschitz continuous if for all u, u′ ∈ U there exists a τ ≥ 0
such that

Φ(u′) ⊂ Φ(u) + τ‖u′ − u‖B. (1.5)

Φ is said to be a polyhedral map (or piecewise polyhedral [44]) if its graph is the union
of finitely many sets that are polyhedral convex in U × V [17]. A key property of
set-valued mappings that we will rely on is metric subregularity [17, Exercise 3H.4].

Definition 1.1 ((strong) metric subregularity).

(i) The mapping Φ : U ⇒ V is called metrically subregular at x for y if (x, y) ∈
gph Φ and there is a constant c > 0 and neighborhoods O of x such that

dist (x,Φ−1(y)) ≤ c dist (y,Φ(x)) ∀ x ∈ O. (1.6)

(ii) The mapping Φ is called strongly metrically subregular at x for y if (x, y) ∈
gph Φ and there is a constant c > 0 and neighborhoods O of x such that

‖x− x‖ ≤ c dist (y,Φ(x)) ∀ x ∈ O. (1.7)

The constant c measures the stability under perturbations of inclusions y ∈ Φ(x).

Proposition 1.2 (polyhedrality implies strong metric subregularity). Let W ⊂ V
be an affine subspace and T : W ⇒ W . If T is polyhedral and Fix T ∩ W is an
isolated point, {x}, then Id−T : W → (W − x) is strongly metrically subregular,
hence metrically subregular, at x for 0.

Proof. If T is polyhedral, so is Φ−1 := (Id−T )−1. Now by [17, Propositions 3I.1 and
3I.2], since Φ−1 is polyhedral and x is an isolated point of Φ−1(0), then Φ = Id−T is
strongly metrically subregular at x for 0 with constant c on the neighborhood O of x
relative to W ((1.7)).

One prevalent source of polyhedral mappings is the subdifferential of piecewise
linear-quadratic functions (see Proposition 2.5 below).

Definition 1.3 (piecewise linear-quadratic functions). A function f : Rn → [∞,+∞]
is called piecewise linear-quadratic if domf can be represented as the union of finitely
many polyhedral sets, relative to each of which f(x) is given by an expression of the
form 1

2
〈x,Ax〉 + 〈a, x〉 + α for some scalar α ∈ R vector a ∈ Rn , and symmetric

matrix A ∈ Rn×n.
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1.2 Preparatory abstract results

To conclude this section we present general results about types of (firmly) nonexpan-
sive operators that clarify the underlying mechanisms yielding linear convergence of
many algorithms. The operative definitions are given here.

Definition 1.4 ((S, ε)-(firmly-)nonexpansive mappings). Let D and S be nonempty
subsets of U and let T be a (multi-valued) mapping from D to U .

(i) T is called (S, ε)-nonexpansive on D if

‖x+ − x+‖ ≤
√

1 + ε ‖x− x‖ (1.8)

∀x ∈ D, ∀x ∈ S, ∀x+ ∈ Tx, ∀x+ ∈ Tx.

If (1.8) holds with ε = 0 then we say that T is S-nonexpansive on D.

(ii) T is called (S, ε)-firmly nonexpansive on D if

‖x+ − x+‖2 + ‖(x− x+)− (x− x+)‖2 ≤ (1 + ε) ‖x− x‖2 (1.9)

∀x ∈ D, ∀x ∈ S, ∀x+ ∈ Tx, ∀x+ ∈ Tx.

If (1.9) holds with ε = 0 then we say that T is S-firmly nonexpansive on D. If,
in addition, S = Fix T , then T is said to be quasi-firmly nonexpansive.

Theorem 1.5 (abstract linear convergence result). Let W ⊂ V be an affine subspace
and T : W ⇒ W be quasi-firmly nonexpansive on W . Let Fix T ∩W be an isolated
point, {x}. If Id−T : W → (W − x) is metrically subregular at x for 0, then there is
a neighborhood O ⊂ W of x such that

dist (x+,Fix T ) ≤
√

1− κ dist (x,Fix T ) ∀x+ ∈ Tx, ∀x ∈ O, (1.10)

where 0 < κ = c−2 for c a constant of metric subregularity of Id−T at x for the
neighborhood O. Consequently, the fixed point iteration xk+1 = Txk converges linearly
to Fix T with rate

√
1− κ for all x0 ∈ O.

Proof. Define Φ := (Id−T ) and note that {x} = (Id−T )−1(0) ⇐⇒ {x} = Fix T ,
hence

dist (x, (Id−T )−1(0)) = dist (x,Fix T ) = ‖x− x‖.

Suppose that Φ is metrically subregular at Fix T for 0. Then by Definition 1.1(i) we
have, for all x ∈ O ⊂ W and for all x+ ∈ T (x),

dist (x, (Id−T )−1(0)) = ‖x− x‖ = ≤ c dist (0, (x− Tx)) ≤ c‖x− x+‖,(1.11)

which is the coercivity condition of [30, Eq.(3.1), Lemma 3.1]. By assumption, T is
(Fix T, 0)-firmly nonexpansive (i.e., quasi-firmly nonexpansive) on W ⊃ O (Definition
1.4 (ii)). The result then follows from [30, Lemma 3.1] with rate

√
1− κ for κ = c−2.
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Corollary 1.6 (Polyhedrality implies linear convergence). Let W ⊂ V be an affine
subspace and T : W ⇒ W be quasi-firmly nonexpansive on W . Let Fix T ∩W be an
isolated point, {x}. If T is polyhedral, then there is a neighborhood O ⊂W of x such
that

dist (x+,Fix T ) ≤
√

1− κ dist (x,Fix T ) ∀x+ ∈ Tx, ∀x ∈ O,

where 0 < κ = c−2 for c a constant of metric subregularity of Id−T at x for the
neighborhood O. Consequently, the fixed point iteration xk+1 = Txk converges linearly
to Fix T with rate

√
1− κ for all x0 ∈ O.

Proof. The result follows immediately from Proposition 1.2 and Theorem 1.5.

The requirement of uniqueness is common in the inverse problems literature. It is well
known, however, that, even if the solution to (2.7) is unique, the set of fixed points
of the Douglas Rachford operator T need not be a singleton [36]. Recent work has
shown, however, that such uniqueness need only hold on appropriate affine subspaces
where the iterates lie [31, 42]. This feature has been exploited in the analysis of
the Douglas-Rachford algorithm applied to problems with polyhedral structure [35].
Metric (sub)regularity, on the other hand, is one of the central assumptions of well-
posedness of inverse problems [18, 32]. Other useful equivalent characterizations of
metric subregularity can be found in [17]. Polyhedrality can be quite easy to verify,
as we will see below.

2 Linear Convergence of Douglas-Rachford/

Alternating Directions Method of Multipliers

We consider problems in the following format:

minimize
u∈U

J(u) +H(Au). (P ′)

There are many possibilities for solving such problems. We focus our attention on
one of the more prevalent methods, the alternating direction method of multipliers
(primary sources include [20, 21, 26, 27, 43]). This method is one of many splitting
methods which are the principle approach to handling the computational burden of
large-scale, separable problems [12]. Introducing a new variable v ∈ V , our problem
is to solve

minimize
(u,v)∈U×V

J(u) +H(v), subject to Au = v. (2.1)

The augmented Lagrangian L̃ for (2.1) is given by

L̃(u, v, b) = J(u) +H(v) + 〈b, Au− v〉+ η
2
‖Au− v‖2, (2.2)

where b ∈ V , η > 0 is a fixed penalty parameter. The alternating directions method
of multipliers for solving (2.1) is, given (uk, vk, bk), k ∈ N, compute (uk+1, vk+1, bk+1)
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by

uk+1 = argmin u

{
J(u) + η

2
‖Au− vk + η−1bk‖2

}
; (2.3)

vk+1 = argmin v

{
H(v) + η

2
‖Auk+1 − v + η−1bk‖2

}
; (2.4)

bk+1 = bk + η(Auk+1 − vk+1). (2.5)

Using η
2
‖Au − v + η−1bk‖2 − 1

2η
‖bk‖2 = 〈bk, Au − v〉 + η

2
‖Au − bk‖2, the algorithm

(2.3)-(2.5) can be written equivalently as

Algorithm 2.1 (Alternating Directions Method of Multipliers).
Initialization. Choose η > 0 and (v0, b0) ∈ U × V × V .
General Step (k = 0, 1, . . .)

uk+1 = argmin u

{
J(u) + 〈bk, Au〉+ η

2
‖Au− vk‖2

2

}
; (2.6a)

vk+1 = argmin v

{
H(v)− 〈bk, v〉+ η

2
‖Auk+1 − v‖2

2

}
; (2.6b)

bk+1 = bk + η(Auk+1 − vk+1). (2.6c)

The penalty parameter η need not be a constant, and indeed evidence indicates that
the choice of η can greatly impact the complexity of the algorithm, but this is beyond
the scope of this investigation, so we have left this parameter constant. It is well
known [20,26] that the alternating directions method of multipliers algorithm can be
derived from the Douglas Rachford algorithm, and vice verse, and therefore sufficient
conditions for convergence of Douglas-Rachford also apply here. Our goal is to deter-
mine the rate of convergence of these algorithms so that they may be used as inner
routines in an iteratively regularized procedure. Knowing that an algorithm converges
linearly, for instance, yields rational stopping criteria with computable estimates for
the distance of the current iterate to the solution set.

We present sufficient conditions for linear convergence of Algorithm 2.1. The
first convergence result was by Lions and Mercier [36], in the dual setting under the
assumption of strong convexity and Lipschitz continuity of J . Recent published work
in this direction includes [29]. Convergence rate of order 1

k
was established in [29,46]

which is pessimistic compared to our rate 1
k2

(for a piecewise linear quadratic map J).
A faster convergence rate of order 1

k2
due to [46] was under the assumption that J is

quadratic. Our strategy is to consider the dual to the alternating directions method
of multipliers algorithm, the Douglas-Rachford algorithm, which is more amenable to
the tools of abstract fixed point theory presented in Section 1.2. In the first main
result, Theorem 2.2, we describe two conditions that guarantee linear convergence of
alternating directions method of multipliers . The first of these conditions follows
from classical results of Lions and Mercier [36]. The second condition is based on
work of more recent vintage [30], and is much more prevalent in applications.

The (Fenchel-Legendre) dual problem corresponding to the problem (P ′) is (see,
for instance [10])

min
w∈V

J∗(A∗w) +H∗(−w).

Here J∗ and H∗ are the Fenchel conjugates of J and H respectively. Instead of working
with this dual, we work with the following equivalent form with the change of variable
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v = −w:
min
v∈V

J∗(−A∗v) +H∗(v). (D′)

Under the assumption that the solutions u and b of the primal and dual problems exist
and that the dual gap is zero, the following two inclusions characterize the solutions
of the problems (P ′) and (D′) respectively:

0 ∈ ∂J(u) + ∂(H ◦ A)(u);

0 ∈ ∂ (J∗ ◦ (−A∗)) (b) + ∂H∗(b).

In both cases, one has to solve an inclusion of the form

0 ∈ B +D (2.7)

for general set-valued mappings B and D. For any η > 0, the Douglas Rachford
algorithm [19,36] for solving (2.7) is given by

bk+1 ∈ T ′bk (k ∈ N) (2.8)

for T ′ := JηD (JηB(Id−ηD) + ηD) , (2.9)

where JηD and JηB are the resolvents of ηD and ηB respectively. The connection be-
tween the alternating directions method of multipliers algorithm (2.6a)-(2.6c) and the
Douglas-Rachford algorithm (2.8) was first discovered by Gabay [26] and is rederived
for convenience in Appendix 4.2.

Given b0 and v0 ∈ Db0, following [45], define the new variable x0 := b0+ηv0 so that
b0 = JηDx0. We thus arrive at an alternative formulation of the Douglas-Rachford
algorithm (2.8):

xk+1 = Txk (k ∈ N) (2.10)

for T := 1
2
(RηBRηD + Id) = JηB(2JηD − Id) + (Id−JηD), (2.11)

where RηD and RηB are the reflectors of the respective resolvents. This is exactly
the form of Douglas-Rachford considered in [36]. Note that for our application
B := ∂ (J∗ ◦ (−A∗)) and D := ∂H∗, and so the resolvent mappings are the proxi-
mal mappings of the convex functions (J∗ ◦ (−A∗)) and H∗ respectively, and hence
the resolvent mappings are single-valued [38].

Proposition 2.1. Let J : U → R∪{+∞} and H : V → R be proper, lsc and convex.
Let A : U → V be linear and suppose there exists a solution to 0 ∈ B + D, for
B := ∂ (J∗ ◦ (−A∗)) and D := ∂H∗. For fixed η > 0, given any initial points x0

and (b0, v0) ∈ gphD such that x0 = b0 + ηv0, the sequences
(
bk
)
k∈N,

(
xk
)
k∈N and(

vk
)
k∈N defined respectively by (2.8), (2.10) and vk := 1

η

(
xk − bk

)
converge to points

b ∈ Fix T ′, x ∈ Fix T and v ∈ D (Fix T ′). The point b = JηDx is a solution to (D′),
and v = 1

η

(
x− b

)
∈ Db. If, in addition, A has full column rank, then the sequence(

bk, vk
)
k∈N corresponds exactly to the sequence of points generated in steps (2.6b) and

(2.6c) of Algorithm 2.1 and the sequence
(
uk+1

)
k∈N generated by (2.6a) converges to

u, a solution to (P ′).
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Proof. Following [20, 45], we rewrite the Douglas Rachford iteration 2.8 in two steps:
Given (b0, v0) ∈ gphD, for k ∈ N do

find (qk+1, sk+1) ∈ gph(B) such that qk+1 + ηsk+1 = bk − ηvk; (2.12a)

find (bk+1, vk+1) ∈ gph(D) such that bk+1 + ηvk+1 = qk+1 + ηvk . (2.12b)

The existence and uniqueness in the above steps follows from the representation lemma
[20, Corollary 3.6.3]. The mappings B,D are maximal monotone operators as the
subdifferentials of proper lsc convex functions. This together with the fact that the
solution set of (2.7) is non-empty yields that the sequence (bk, vk)k∈N defined by the
algorithm (2.12) converges to some (b, v) such that v ∈ Db and b solves (D′) [45,
Theorem 1]. By the change of variables xk = bk + ηvk, it follows that xk → x ∈ Fix T
for T given by (2.11).

For these definitions of B and D, the sequence
(
bk
)
k∈N generated by bk := JηDxk

for xk generated by (2.10) corresponds exactly to the sequence
(
bk
)
k∈N generated by

(2.8). Moreover, if A is full column rank, then by the discussion in [20] (see Appendix
4.2) both

(
bk
)
k∈N and the sequence

(
vk
)
k∈N generated by vk := 1

η

(
xk − bk

)
∈ Dbk

correspond exactly to the sequences of points bk and vk generated by (2.6a)-(2.6c).
Consequently, by [20, Proposition 3.42]1 the sequence

(
uk
)
k∈N defined by (2.6a) con-

verges to a solution of (P ′).
We now state sufficient conditions guaranteeing linear convergence of the ADMM

and the Douglas-Rachford algorithms. The first conditions (i) of Theorem 2.2 are
classical. The second conditions are new.

Theorem 2.2 (local linear convergence I). Let J : U → R ∪ {+∞} and H : V → R
be proper, lsc and convex. Suppose there exists a solution to 0 ∈ B + D for B :=
∂ (J∗ ◦ (−A∗)) and D := ∂H∗ where A : U → V is an injective linear mapping. Let
x̂ ∈ Fix T for T defined by (2.11). For fixed η > 0 and any given triplet of points
(b0, v0, x0) satisfying x0 := b0 + ηv0, with v0 ∈ Db0, generate the sequence (vk, bk)k∈N
by (2.6a)-(2.6c) and the sequence (xk)k∈N by (2.10).

(i) Let O ⊂ U be a neighborhood of x̂ on which H is strongly convex with con-
stant µ and ∂H is β-inverse strongly monotone for some β > 0. Then, for
any (b0, v0, x0) ∈ O satisfying x0 := b0 + ηv0 ∈ O, the sequences (xk)k∈N and
(vk, bk)k∈N converge linearly to the respective points x ∈ Fix T and

(
b, v
)

with

rate at least K = (1− 2ηβµ2

(µ+η)2
)

1
2 < 1.

(ii) Suppose that T : W → W for some affine subspace W ⊂ U with x̂ ∈ W . On the
neighborhood O of x̂ relative to W , that is O ⊂ W , suppose there is a constant
κ > 0 such that

‖x− x+‖ ≥
√
κ dist (x,Fix T ) ∀x ∈ O, ∀x+ ∈ Tx. (2.13)

Then the sequences (xk)k∈N and (vk, bk)k∈N converge linearly to the respective
points x ∈ Fix T ∩W and

(
b, v
)

with rate bounded above by
√

1− κ.

1By convergence of vk → v and bk → b and the update rule (2.6c), Auk → v, from which the
claim follows - see Appendix 4.2.
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In either case, the limit point b = JηDx is a solution to (D′), v ∈ Db and the sequence(
uk
)
k∈N given by (2.6a) of Algorithm 2.1 converges to u, a solution of (P ′).

Proof. The final statement of the theorem and the statements about the sequence(
bk, vk

)
follows from Proposition 2.1 where it is shown that the sequence (vk, bk)k∈N

generated by (2.6a)-(2.6c) corresponds to sequences
(
bk
)
k∈N and

(
vk
)
k∈N generated

respectively by (2.8) and vk = 1
η

(
xk − bk

)
∈ Dbk for

(
xk
)
k∈N generated by (2.10).

The linear convergence of the iterates of Algorithm 2.1 claimed in statements (i) and
(ii) follows from the properties of the operators T ′ and T defined respectively by (2.9)
and (2.11).

Part (i). Since H is assumed to be strongly convex with µ > 0 the modulus of
convexity onO, ∂H is strongly monotone with modulus of monotonicity µ [3, Example
22.3]. Since ∂H is also maximally monotone, using the identity ∂H = (∂H∗)−1 (see,
for example, [41, Corollary 3.49]) we conclude that ∂H∗ is Lipschitz continuous with
constant 1

µ
. Moreover, since ∂H is β-inverse strongly monotone on O, we have for

any x, y ∈ O

〈u− v, x− y〉 ≥ β|u− v|2, whenever u ∈ ∂H(x), v ∈ ∂H(y).

Hence ∂H∗ is strongly monotone with modulus β and Proposition 4 of [36] applies to
yield linear convergence of the sequences

(
xk
)

and
(
bk
)

to the respective limit points

x and b
‖xk − x‖ ≤ LKk; ‖bk − b‖ ≤ LKk, (2.14)

where L is some constant, K = (1− 2ηβ
(1+ηξ)2

)
1
2 and ξ = 1

µ
is the Lipschitz constant for

the set-valued map ∂H∗ on O. Now, since vk = 1
η
(xk − bk), we have for vk → v :=

1
η
(x− b) with the same rate as xk and bk, modulo a constant:

‖vk − v‖ ≤ 1
η

(
‖xk − x‖+ ‖b− bk‖

)
≤ 2LKk

η
. (2.15)

This completes the proof of the first statement. 4
Part (ii). Since B and D are maximal monotone operators the reflected resolvents

RηB and RηD are nonexpansive [3, Proposition 23.7]. The composition RηBRηD is
nonexpansive which implies that the T is firmly nonexpansive [3, Proposition 4.2], and
hence quasi-firmly nonexpansive onW . Condition (2.13) is the coercivity condition (b)
of [30, Lemma 3.1] which guarantees local linear convergence of fixed-point mappings
for (S, ε)-firmly nonexpansive mappings (S ⊂ Fix T ∩W ). Quasi-firmly nonexpansive
mappings, under consideration here, are (Fix T ∩W, 0)-firmly nonexpansive. Thus,
by [30, Lemma 3.1] the sequence (xk)k∈N converges linearly on the neighborhood O
with rate

√
1− κ. Nonexpansiveness of the resolvent JηD and the relations bk = JηDxk

and vk = 1
η

(
xk − bk

)
then complete the proof of the second statement.

Remark 2.3. The strong convexity assumption ( (i) of Theorem 2.2 fails in a wide
range of applications, and in particular for feasibility problems (minimizing the sum of
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indicator functions). By Theorem 1.5, case (ii) of Theorem 2.2, in contrast, holds in
general for mappings T for which Id−T is metrically subregular and the fixed point
sets are isolated points with respect to an affine subspace to which the iterates are
confined. The restriction to the affine subspace W is a natural generalization for the
Douglas Rachford algorithm, where the iterates are known to stay confined to affine
subspaces orthogonal to the fixed point set [31, 42]. It would be far too restrictive to
require that Fix T be a singleton on the entire ambient space V rather than with respect
to just the affine hull of the iterates. We show that metric subregularity with respect
to this affine subspace holds in many applications.

Remark 2.4. Proposition 2.1 and Theorem 2.2 and their proofs also hold in infinite
dimensional Hilbert spaces. Lemma 3.1 of [30] is stated for Euclidean spaces, but the
proof holds also on general Hilbert spaces.

Proposition 2.5 (polyhedrality of the Douglas-Rachford operator). Let J : U →
R ∪ {+∞} and H : V → R be proper, lsc and convex. Suppose, in addition, that J
and H are piecewise linear-quadratic (see Definition 1.3). Define B := ∂ (J∗ ◦ (−A∗))
and D := ∂H∗ where A : U → V is a linear mapping. With η > 0 fixed, the operator
T : V → V defined by (2.11) is ployhedral.

Proof. Since the maps J and H are proper, lsc, convex and piecewise linear-quadratic,
by [44, Theorem 11.14] so are the Fenchel conjugates, J∗ and H∗. The subdifferen-
tials B := ∂ (J∗ ◦ (−A∗)) and D := ∂H∗ and their resolvents, therefore, are polyhedral
mappings [44, Proposition 12.30]. Since the graphs of reflectors RηB and RηD cor-
respond to the graphs of their respective resolvents JηB and JηD through a linear
transformation RηB and RηD are also polyhedral maps. Note that the resolvent map-
pings JηB and JηD are the proximal mappings of the convex functions (J∗ ◦ (−A∗))
and H∗ respectively and, hence, are single-valued [38]. The reflectors RηB and RηD

are then also single-valued and therefore T = 1
2
(RηBRηD + I) is polyhedral as the

composition of single-valued polyhedral maps.

Theorem 2.6 (local linear convergence II). Let J : U → R∪{+∞} and H : V → R be
proper, lsc, convex, piecewise linear-quadratic functions (see Definition 1.3). Suppose
there exists a solution to 0 ∈ B + D for B := ∂ (J∗ ◦ (−A∗)) and D := ∂H∗ where
A : U → V is an injective linear mapping. With η > 0 fixed, define the operator
T : V → V by (2.11). Suppose T : W → W for W some affine subspace of V and
that Fix T ∩W is an isolated point {x}. Then there is a neighborhood O ⊂ W of x
such that, for all starting points (x0, v0, b0) with x0 := b0 + ηv0 ∈ O for v0 ∈ D(b0)
so that JηDx0 = b0, the sequence (xk)k∈N generated by (2.10) converges linearly to x
where b := JηDx is a solution to (D′). The rate of linear convergence is bounded above
by
√

1− κ, where κ = c−2 > 0, for c a constant of metric subregularity of Id−T at
x for the neighborhood O. Moreover, the sequence

(
bk, vk

)
k∈N generated by Algorithm

2.1 converges linearly to
(
b, v
)

with v = 1
η

(
x− b

)
, and the sequence

(
uk
)
k∈N defined

by (2.6a) of Algorithm 2.1 converges to a solution to (P ′).
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Proof. By Proposition 2.5 the Douglas-Rachford operator T is polyhedral and thus
the first statement follows from Corollary 1.6. The statement about the sequences
generated by Algorithm 2.1 follows as in Theorem 2.2.

3 Error Bounds and Iterative Penalization

3.1 Structured Constraints and penalization

In this section, we discuss an iteratively regularized algorithmic scheme for solving
the problems of the form

min {J(u) |u ∈ U and fj(Au) ≤ εj, j = 1, 2, . . . ,M }

where J : U → (−∞,+∞] is proper lsc and convex, the mapping A : U → V is linear,
for all j the nonnegative-valued function fj : V → R+ is convex and smooth (at least
at points that matter) and εj > 0. We refer to the inequality constraints as structured
constraints. It will be convenient to introduce the following notation that will help
to reduce clutter. We collect the constraints into a vector-valued function so that we
can write the problem as

minimize
u∈U

J(u)

subject to Fε(Au) ≤ 0
(P)

where
Fε : V → RM := v 7→ (f1(v)− ε1, f2(v)− ε2, . . . , fM(v)− εM)T . (3.1)

Here the vector inequality is understood as holding element-wise.
A common approach to solving problems of the type (P) arising from inverse

problems is implicitly to apply the structured constraint by adding some (usually
smooth) quantification of the constraint violation into the objective function:

minimize
u∈U

J(u) + ρθ(Fε(Au)), (Pρ)

where θ : RM → (−∞,+∞] is a proper, lsc convex function and ρ > 0. Problem
(Pρ) is the specialization of (P ′) with H(Au) = ρθ(Fε(Au)).

As is often seen in the inverse problems literature, the constraint violation pa-
rameter εj = 0 (j = 1, . . . ,M), essentially penalizing divergence from the origin. A
prominent instance of this form of regularization is the squared norm: θ(v) := ‖v‖2.
There are many efficient methods available for solving (Pρ). It is clear that for a
certain value of ρ the optimal solution to (Pρ), uρ, will satisfy fj(Auρ) ≤ εj(ρ) with
the effective error εj(ρ) depending on ρ. What is not true in general, however, is that
the solution to (Pρ) corresponds to the solution to (P) for the constraint error ε(ρ).
Moreover, for our intended applications, U is a finite dimensional Euclidean space
with dimension n and the dimensionality of the constraints M grows superlinearly as
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a function of n, so we would like to consolidate the constraints somehow while ex-
ploiting the phenomenon that, at the solution to (P) relatively few of the constraints
are in fact tight or active.

We consider convex penalties that reduce the dimensionality of the constraint
structure and have the property that θ(Fε(Au)) = 0 if and only if Fε(Au) ≤ 0.
Of particular interest among penalties with this property are exact penalties, that
is penalties θ with the property that solutions to (Pρ) correspond to solutions to
(P) for all values of ρ beyond a certain threshold ρ. For more background on exact
penalization see, for example, [8, 9, 14, 16, 23, 28, 37]. We point also to Friedlander
and Tseng [25] for a connection between exact penalization and what they call ex-
act regularization as this fits well with our viewpoint that the structured constraints
Fε(Au) ≤ 0 constitute a regularization of the model with regularization parameter
ε. This illustrates the distinction between model-based regularization, that is, reg-
ularization of the constraints motivated by external (eg. statistical) considerations,
versus numerical regularization motivated solely on the grounds of enabling efficient
(approximate) numerical solutions to (P).

Define
C := {u ∈ U |Fε(Au) ≤ 0} . (3.2)

This is a closed convex set since the fj are lsc and convex. If there exists some
α ∈ R such that C ∩ lev ≤α J is nonempty and bounded then (P) has a solution [3,
Theorem 11.9]. This will happen, for instance, if dom (J)∩C 6= ∅ and J is coercive [3,
Proposition 11.12], that is J satisfies

lim
‖u‖→∞

J(u) = +∞. (3.3)

Such assumptions are naturally satisfied in many applications. Moreover, lev ≤α J(u),
the lower level-set of J corresponding to the optimal value α in (P), is convex and
so the set of optimal solutions to (P) is also convex. Define Jρ := J + ρθ(Fε ◦ A)
for the convex, lsc function θ satisfying θ(w) ≥ 0 for all w and θ(w) = 0 if and only
if Fε(w) ≤ 0. Then Jρ is convex, lsc and corresponds exactly to J on the set C.
Otherwise Jρ increases pointwise to +∞ at points outside C as ρ → ∞. For (ρk)k∈N
with ρk → ∞, the sequence of functions (Jρk) epi-converges (see [44, Definition 7.1])
to J + ιC as k → +∞ where ιC is the indicator function of the set C. As we will
allow approximate solution of problems (Pρ) it will be helpful to recall the set of
γ-minimizers: γ − argmin Jρ := {u | Jρ(u) ≤ inf Jρ + γ }. The relation between the
solution sets to (P) and (Pρ) is detailed in the following, which is a direct application
of [44, Theorem 7.33].

Proposition 3.1. Let J : U → (−∞,+∞], Fε : V → RM and θ : RM → R
be proper, lsc and convex, and let A : U → V be linear. Let J be coercive with
dom J ∩ C 6= ∅ for C defined by (3.2). Suppose further that θ(w) ≥ 0 and that
θ(w) = 0 if and only if Fε(w) ≤ 0. Define Jρk := J + ρkθ(Fε ◦ A) where ρk ↗ +∞
as k ↗ +∞. Then inf Jρk → inf J + ιC < +∞. Moreover, for any sequence of
errors γk ↘ 0 and corresponding points uk ∈ γk − argmin Jρk , the sequence

(
uk
)
k∈N

is bounded, and all its cluster points belong to argmin {J + ιC}.
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Proof sketch. The property of the convex penalty θ that θ(w) ≥ 0 and θ(w) = 0
if and only if Fε(w) ≤ 0 yields epi-convergence of Jρk to J + ιC. Coercivity of J
guarantees that Jρ is level bounded for all values of ρ > 0. These two properties,
together with lower semicontinuity and the fact that J and Jρ are proper, are all that
is needed to prove the result. 2

If the regularization were exact, then we would know that for all parameter values
ρ large enough, the solutions to (Pρ) coincide with solutions to (P). We return to
this later.

3.2 Solution to the regularized Subproblem and error bounds

We now turn our attention to solution of the problem (Pρ) for a fixed value of ρk.
The alternating directions method of multipliers discussed in Section 2 is useful for
solving this problem in the sense that it has an error bound under specific assumptions
which gives a stopping rule. This is not unique to Algorithm 2.1, but we focus on this
method due to its prevalence in practice.

Recall the unregularized problem (P):

minimize
u∈U

J(u)

subject to Fε(Au) ≤ 0
(P)

It will be convenient to rewrite the penalized problem2 (Pρ) as

minimize
u∈U

1

ρ
J(u) + θ(Fε(Au)). (Pρ)

Consider also the limiting problem

minimize
u∈U

θ(Fε(Au)). (P∞)

We view problem (Pρ) as the regularized version of (P∞) with J as the regularizing
functional and 1

ρ
as the regularization parameter. Denote the solution sets to these

problems by

S := argmin {J(u) |u ∈ U, Fε(Au) ≤ 0} ,

Sρ := argmin

{
1

ρ
J(u) + θ (Fε(Au)) |u ∈ U

}
,

S∞ := argmin {θ (Fε(Au)) |u ∈ U } .

If the penalization θ satisfies θ(Fε(Au)) = 0 if and only if Fε(Au) ≤ 0, then it
is immediately clear that S∞ corresponds to the feasible set of problem (P) hence
S ⊂ S∞. What is more remarkable is that, if a Lagrange multiplier for (P) exists,
then Sρ = S for all ρ large enough, that is, the penalty θ is exact.

2Of course, the value of the problem is not the same, but the solutions are.

13



Theorem 3.2 (Theorem 4.2 of [25]). Suppose that S is nonempty and compact, and
that there exist Lagrange multipliers λ for (P). Let θ in (Pρ) be convex and satisfy
θ(Fε(Au)) = 0 if and only if Fε(Au) ≤ 0. Then the solution set to the penalized
problem Sρ coincides with the solution set to the exact problem, S, for all ρ > θ◦(λ)

where θ◦ is the polar function of θ given by θ◦(λ) = supx�0
λT x
θ(x)

.

It is easy to check whether a solution uρ ∈ Sρ is in fact feasible for (P) (and
hence also in S) by simply evaluating the value of θ (Fq(Auρ)). More generally, one
would check whether the first order optimality conditions for (P∞) are satisfied at uρ,
namely

0
?
∈ ∂θ (Fε ◦ A(·)) at uρ. (3.4)

An explicit formula for the subdifferential in (3.4) for image denoising and deconvolu-
tion is given in Section 4 as this will be needed for computing Step (2.6b) of Algorithm
2.1.

If, in addition, S∞ is weakly sharp, then one can obtain an upper bound for the
distance of solutions to (Pρ) to feasible solutions to (P), even in the absence of La-
grange multipliers for (P). The notion of weak sharpness for convex optimization
was introduced by Burke and Ferris [13]. The solution set argmin {f(x) |x ∈ Ω} for
a nonempty closed convex set Ω, is weakly sharp if, for p = infΩ f , there exists a
positive number α (sharpness constant) such that

f(x) ≥ p+ α d(x, Sf ) ∀x ∈ Ω.

Similarly, the solution set Sf is weakly sharp of order γ if there exists a positive
number α (sharpness constant) such that, for each x ∈ Ω,

f(x) ≥ p+ α d(x, Sf )
γ ∀x ∈ Ω.

Assumption 3.3.

(i) The solution set S∞ of problem (P∞) is nonempty.

(ii) lev ≤α J is bounded for each α ∈ R and infx∈U > −∞.

(iii) The solution set S∞ of (P∞) is weakly sharp of order γ ≥ 1.

Theorem 3.4. Suppose Assumption 3.3(i)-(ii) hold.

(i) For any ρ > 0,
⋃
ρ≥ρ Sρ is bounded.

(ii) If, in addition, Assumption 3.3(iii) holds with modulus of sharpness γ, then for
any ρ > 0 there exists τ > 0 such that

dist(uρ, S∞)γ−1 ≤ τ

ρ
, ∀uρ ∈ Sρ, ρ ≥ ρ. (3.5)

(iii) If, in addition, Assumption 3.3(iii) holds and the penalization θ is exact, then
for all ρ large enough, uρ ∈ S and dist(uρ, S∞) = dist(uρ, S) = 0.

14



Proof. (i) and (ii). Under the assumption 3.3, Theorem 5.1 in [25] directly applies to
yield the result. 4

(iii). If the penalization θ is exact, then θ(Fε(Au)) = 0 if and only if Fε(Au) ≤ 0,
hence S = Sρ for all ρ large enough, and S∞ corresponds exactly to the feasible set
in (P).

Remark 3.5. The error bound (3.5) holds independent of the existence of Lagrange
multipliers for (P), hence, for exact penalization under Assumption 3.3, Theorem 3.4
yields an upper bound on the distance of solutions to (Pρ) to feasible points for (P).

While it is nice to know that, with exact penalization, one can achieve an exact cor-
respondence between the original constrained optimization problem and the penalized
problem, the whole point of relaxing the constraints is to reduce the computational
burden of strictly enforcing the constraints. As is often done in practice, one grad-
ually strengthens the constraints, finding intermediate points that nearly solve the
relaxed problem and using these as starting points for solving a more strictly penal-
ized problem. Together with Theorem 3.4, the linear convergence rate established in
Theorem 2.2, or alternatively Theorem 2.6, yield estimates on the distance of inter-
mediate points in an iteratively penalized algorithm, not only to the solution set of
the relaxed problem, but also to the feasible set of the unrelaxed problem.

4 Application: image deconvolution and denoising

with statistical multiscale analysis

We specialize the above results to the application of optimization with statistical
multiscale side constraints. In particular, the problem at hand involves image decon-
volution and denoising with statistical multiscale estimation as presented in [24]. We
are well aware that there are many ways to model such problems that permit much
less computationally intensive numerical solutions than the technique we present here.
Our interest in multiresolution deconvolution/denoising model of [24] is two-fold: first,
it is one of the few techniques we are aware of that yields quantitative (i.e. statisti-
cal) guarantees for the recovered images, and secondly, it is an important instance of
convex optimization problems where the number of constraints grows superlinearly as
a function of the number of unknowns. Our numerical demonstration addresses the
first issue of quantitative image denoising: if the numerics do not permit estimates for
the distance to the model solution, then the quantitative assurances of the model are
irrelevant. Unlike the numerical approach proposed in [24], the numerical approach
we present here permits error bounds to within machine accuracy of our numerical
solution to the true model solution.

For our demonstration, we are presented with an image y ∈ Rn (Figure 1(a))
generated from a Stimulated Emission Deletion (STED) microscopy experiment con-
ducted at the Laser-Laboratorium Göttingen examining tubulin, represented as the
“object” u ∈ Rm. The imaging model is simple linear convolution, Au ≈ y where A
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is a convolution matrix with point-spread function shown in Figure 1(e). The mea-
surement y is noisy or otherwise inexact, and thus an exact solution Au = y is not
desirable. Although the noise in such images is usually modeled by Poisson noise,
a Gaussian noise model with constant variance suffices as the photon counts are of
the order of 100 per pixel and do not vary significantly across the image. Figure 1
(b) shows a close-up which we used as the noisy data y ∈ R2 with n = 64 × 64 data
points. We calculate the numerically reconstructed tubulin u shown in Figure 1(c)
that minimizes the qualitative objective

J(u) := α||u||22, (4.1)

subject to structured constraints (see problem (P)) given by a statistical property that
is consistent with the noise in the observation y. The numerical “image” generated
from the reconstructed tubulin u is given by v = Au and is shown in Figure 1(d).

We emphasize that, since this is experimental data, there is no “truth” for compar-
ison. One can, however, get statistical guarantees on the reliability of the reconstruc-
tions. Following the approach proposed in [24] we quantify the difference between an
estimate v = Au and the data y via the maximum absolute value of all weighted inner
products of the residual function 4(·; y) : Rn → Rn:

fj(v) := |〈ωj,4(v; y)〉| , j ∈ {1, 2, . . . ,M}. (4.2)

The residual function used in [24] 4 is simply v − y. The weights ωj are normalized
window functions of all squares of side lengths 1 and 2 pixels so that the set I ⊂
{1, 2, . . . ,M} is the index set corresponding to all collections of these square subsets
of the image. The statistical multiscale analysis presented in [24] requires that, on
each window,

max
j∈I
{fj(v)} ≤ q. (4.3)

The same error q is specified at all scales. Hence Fε in (3.1) specializes to

Fq : Rn → RM+1 := v 7→ (f1(v)− q, f2(v)− q, . . . , fM(v)− q, 0)T . (4.4)

for fj : Rn → R defined by (4.2) (j = 1, . . . ,M) and

θ : RM+1 → R : θ(w) := max{w1, w2, . . . , wM+1}. (4.5)

(Here we are expanding the original Fε by the constant function fM+1(v) := 0.) The
max function is a standard tool in exact penalization methods [9, 16].
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Algorithm 4.1 (Sequential ADMM: deconvolution/denoising).
Initialization. Given an image y, a sequence of error tolerances (γk)k∈N
with 0 ≤ γk → 0 Choose parameters: β > 1 and the penalty parameter
η ∈ (0, 2). Initialize k = 0 = i, b0,0 = 0, v0 = y, u0,0 = A∗y, and compute
u0,1 = argmin u

{
J(u) + 〈b0,0, Au〉+ η

2
‖Au− v0,0‖2

2 + 1
2
‖u− u0,0‖2

M1

}
for J defined

by (4.1).

For k = 0, 1, 2, . . .

• While ‖uk,i+1 − uk‖ > γk

– Compute (vk,i+1, bk,i+1) via Algorithm 2.1 steps (2.6b)-(2.6c) with H :=
ρkθ (Fq (·)) for θ given by (4.5) and Fq given by (4.4).

– Increment i = i+ 1 and calculate uk,i+1 via Algorithm 2.1 step (2.6a).

• Update/reset: Set uk+1,1 := uk,i+1 and ρk+1 = βρk. Set k = k+ 1 and i = 0.
If θ

(
Fq
(
uk,1
))

= 0, set γk = 0.

For the image size n = 64×64 with the window system of squares of lengths 1 and
2, the number of windows is M = 8065. The constant α in (4.1) is, strictly speaking,
redundant but was introduced as an additional means to balance the contributions of
the individual terms to make the most of limited numerical accuracy (double preci-
sion). We chose α = 0.01. The constant q was taken to be 3σ. Algorithm 4.1 does
not specify how the iterates uk,j and vk,j are calculated. We discuss this in the next
section.

4.1 Subdifferential Projection

Computation of uk,i+1 in Algorithm 4.1 involves minimizing a convex quadratic func-
tion without constraints, which is unproblematic. Computation of vk,i+1 involves
minimizing the sum of a convex, piecewise linear function θ(Fq(v)) and a quadratic
function h(v) := η

2
‖Auk,i+1 − v‖2. This can be solved via any number of techniques

ranging from first order methods like FISTA [7] to higher-order nonlinear optimization
methods like quasi-Newton methods studied in [33]. In order to take advantage of the
relative sparsity of the active constraints, we propose the following (exact) algorithm.
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(a) (b)

(c) (d)

(e)

Figure 1: (a) Original data (STED image of Tubulin), (b) an enlargement of the
indicated box, (c) the reconstruction for ρ = 4096, (d) the reconstruction convolved
with the PSF and (e) PSF. Length of scale bar in (a) is 1µm, size of (b), (c) and (d)
is 640× 640 nm2, and size of (e) is 290× 290 nm2. Within each window used for the
reconstruction, the sum of the pixel values in (d) lie within a confidence interval of
3σ of those in (b).
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Algorithm 4.2 (Steepest Subdifferential Descent).
Initialization. Given b, u, the constant η > 0 and an initial point v0, compute
the residual r0 := b+ ηAu− ηv0 and the projected residual z0 := P∂(θ(Fq(v0)))(r

0) for
∂(θ(Fq(v

0))) given by (4.11).

For l = 0, 1, 2, . . .

• If zl = rl

– set v = vl and STOP;

• else

– set vl+1 = vl+λl
(
zl − rl

)
where λl > 0 is the largest constant λ such that

θ
(
Fq
(
vl + λ

(
zl − rl

)))
= fi

(
vl + λ

(
zl − rl

))
− q for i ∈ I(vl) with

I(v) := {j | fj(v)− q = θ(Fq(v))} ; (4.6)

– compute rl+1 := b+ ηAu− ηvl+1 and the projected residual

zl+1 := P∂(θ(Fq(vl+1)))(r
l+1); (4.7)

– increment l = l + 1.

Algorithm 4.2 is an active set method and the set I(v) defined by (4.6) is the set of
active indexes at v. Another helpful interpretation is as a steepest subgradient descent
method for solving

argmin v

{
G(v) := θ (Fq(v))− 〈b, v〉+ η

2
‖Au− v‖2

2

}
. (4.8)

The steepest descent step is
vl+1 = vl + λld

l

for dl := P∂G(v)(0) = −rl + zl with zl := P∂θ(Fq(vl))
(
rl
)

and rl = b + η
(
Au− vl

)
.

The choice of the step length λl ensures that, at each step l, the active set is growing;
specifically,

I
(
vl
)
⊂ I

(
vl + λld

l
)
.

At termination, the subdifferential ∂θ
(
Fq
(
vl
))

is large enough that it contains the
residual rl. The terminal point of Algorithm 4.2, v, is a point in (4.8) since it satisfies
the first-order optimality conditions:

0 = z − b− η (Au− v) ∈ ∂θ (Fq(v))− b− η (Au− v) = ∂G(v) (4.9)

where z = P(∂θ(Fq(v))) (b+ η (Au− v)). Replacing u and b with uk,i+1 and bk,i respec-
tively yields the update for vk,i in Algorithm 4.1.

The expression for the subdiffferential ∂θ (Fq) is particularly simple in this case.
Note that I(v) 6= ∅ for all v. Applying the (convex) calculus of subdifferentials to the
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objective θ(Fε(v)), as permitted by the regularity of θ and F (see, for instance [15,
Section 2.3]), yields

∂θ (Fq(v)) = co {∇fj(v) | j ∈ I(v)} (4.10)

where co denotes the convex hull of a set of points. This, of course, assumes that
fj is differentiable at v for those j ∈ I(v). Inspection of (4.2) shows that this is not
the case in general, in particular at points v∗ where fj(v

∗) = 0. However, such points
will never be in the active set I(v∗) since f(v∗) − q < 0 ≤ θ (Fq (v∗)) for all q > 0,
so we can safely apply formula (4.10) without further ado. This yields the following
specialization for fj(v) = |〈wj, v − y〉| given by (4.2):

∂θ (Fq (v)) = co {∇fj(v) | j ∈ I(v)} (4.11)

=

{
co {{sign (〈wj, v − y〉)wj | j ∈ I(v) \ {M + 1}} , 0} θ(Fq(v)) ≤ 0

co {sign (〈wj, v − y〉)wj | j ∈ I(v)} θ(Fq(v)) > 0.

4.2 Numerical results

In Figure 2 a sample run of the algorithm shows a succession of outer iterations.
Within each outer iteration, the inner iteration proceeds with the current value of
ρk until the step size between successive iterates uk+1,j and uk,j drops below the
tolerance γk = 10−3. Then ρk is increased by a constant factor. Since, for this model
the penalization θ is exact, once the constraints appear to be satisfied (as determined
by monitoring the value of θ

(
Fq
(
vk
))

), the penalty ρ no longer needs to be updated,
and the inner loop of the algorithm can be run to the desired accuracy. As indicated
in Figure 2, the constraints appear to be satisfied exactly for a value of ρk = 2048,
where the penalty term ρkθ

(
Fq
(
vk
))

(cyan plot) drops suddenly to 10−8. However,
this value of the penalty parameter is apparently just below the critical value, as the
algorithm switches back to some constraint violation in preference of reducing the
residual error around iteration 24000. Jumps in the constraint penalty term, and
hence the step-lengths in the uk and vk iterates, reflect the nonsmoothness of the max
function. For ρk = 4096 (beyond iteration 29000) the constraint penalty remains at
machine zero for the given residual and step tolerances and the algorithm meets the
termination criteria after 31000 iterations.
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Appendix

Duality of ADMM and the Douglas-Rachford Algorithm. Consider the sequence
(
bk, vk

)
k∈N

of the Douglas Rachford iteration 2.8, for the case B := ∂(J∗ ◦ (−A∗)); D := ∂H∗.
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Figure 2: Sample run of the algorithm, starting with ρ = 1. Whenever the step
size ||uk+1 − uk|| falls below γk := 10−3, the inner iteration is terminated and ρk is
increased according to algorithm 4.1 with β = 2. At ρk = 2048 the value of the penalty
term ρkθ

(
Fq
(
vk
))

where θ is the max function (cyan plot) drops suddenly to 10−8

indicating that the exact constraints ((4.3)) are satisfied to within machine precision.
For this value of the penalty parameter, however, the algorithm switches back to
some constraint violation in preference of reducing the residual error as can be seen
in the jump of the cyan plot around iteration 24000. For ρk = 4096 (beyond iteration
29000) the constraint penalty remains at machine zero for the given residual and step
tolerances and the algorithm meets the termination criteria after 31000 iterations.
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Recalling the two-step implementation (2.12), denote p̄ := bk − ηvk and p′ := qk+1.
Then (2.12a) is the proximal step p′ = (I + η∂(J∗ ◦ (−A∗)))−1p̄ on the operator
B = ∂(J∗ ◦ (−A∗)). If A has full column rank, by [20, Proposition 3.32(iv)], this step
can be performed by

uk+1 = arg min
u
{J(u) + 〈p̄+ ηvk, Au〉+ η

2
‖Au− vk‖2} (4.12)

p′ = p̄+ ηAuk+1. (4.13)

Indeed, since A has full rank, J(u) + 〈p̄+ ηvk, Au〉+ η
2
‖Au− vk‖2 is a proper strongly

convex function of u and has a unique minimizer uk+1. From the optimality condition
for (4.12),

0 ∈ ∂J(uk+1) + A∗(p̄+ ηAuk+1) = ∂J(uk+1) + A∗p′.

Hence, (uk+1,−A∗p′) ∈ gph ∂J which implies (−A∗p′, uk+1) ∈ gph ∂J∗. This gives

⇔ (p′, uk+1) ∈ gph (∂J∗ ◦ (−A∗))
⇔ (p′,−Auk+1) ∈ gph (−A ◦ ∂J∗ ◦ (−A∗)) ⊆ gph ∂ (J∗ ◦ (−A∗)) .

Using (4.13),

(p′, 1
η
(p̄− p′) ∈ gph ∂ (J∗ ◦ (A∗))

⇔ p′ = (I + η∂(J∗ ◦ (A∗)))−1p̄.

Substituting p̄ = bk − ηvk in (4.12)-(4.13) yields

uk+1 = arg min
u
{J(u) + 〈bk − ηvk + ηvk, Au〉+ η

2
‖Au− vk‖2}; (4.14)

qk+1 = bk − ηvk + ηAuk+1. (4.15)

Similarly, if we denote p̄ := qk+1 + ηvk(= bk + ηAuk+1) and p′ := bk+1, (2.12b)
is the proximal step p′ = (I + η∂H∗)−1p̄ on the operator D = ∂H∗ which can be
performed via

vk+1 = arg min
v
{H(v)− 〈p̄− ηAuk+1, v〉+ η

2
‖Auk+1 − v‖2};

p′ = p̄− ηvk+1.

Substituting p̄ = bk + ηAuk+1,

vk+1 = arg min
v
{H(v)− 〈bk + ηAuk+1 − ηAuk+1, v〉+ η

2
‖Auk+1 − v‖2} (4.16)

bk+1 = bk + ηAuk+1 − ηvk+1. (4.17)

Now, (4.14)-(4.15) and (4.16)-(4.17) together yield

uk+1 = arg min
u
{J(u) + 〈bk, Au〉+ η

2
‖Au− vk‖2}

vk+1 = arg min
v
{H(v)− 〈bk, v〉+ η

2
‖Auk+1 − v‖2}

bk+1 = bk + η(Auk+1 − vk+1).

This is the ADMM algorithm (2.6a)-(2.6c) for the primal problem (Pλ). 2
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