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Abstract. Recent work of Luke and Devaney showed that there exists an implementation of a
modified linear sampling method that is equivalent to a MUSIC algorithm for scattering from sound
soft obstacles. The correspondence is independent of the size of the scatterer or the wavelength of the
incident field. As the proof was not constructive, an explicit implementation could not be justified.
In the present work, we show that MUSIC is an instance of the factorization method applied to
any nonabsorbing scatterer, thus providing a justification for the MUSIC algorithm at arbitrary
illuminating frequency for arbitrary nonabsorbing scatterers. These results are also extended to
scattering from cracks. With explicit constructions in hand, we are also able to provide error and
stability estimates for practical implementations in noisy environments with limited data and to
explain a curious behavior of the factorization method in the case of noisy data.
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1. Introduction. The Multiple Signal Classification (MUSIC) algorithm is a
well-known method for determining the location of emitters from sensors with arbi-
trary locations and arbitrary directional characteristics such as gain, phase or polariza-
tion in a noise/interference environment [27]. The method is based on the observation
that the far field patterns of point sources with centers near the true signal source are
nearly orthogonal to the noise subspace of the far field operator, or the multi-static
response matrix, as it is known in the signal and image processing literature. The
connection between the MUSIC algorithm and other inverse scattering techniques has
been explored by several authors [5, 16, 23]. Earlier studies are limited to point-like
scatterers. More recent studies [11, 2, 12, 8, 9, 1] approach an application of the MU-
SIC algorithm to scatterers of some specified size, relative to the wavelength, and are
based on the finite-dimensional multi-static response matrix for point-like scatterers.
An anonymous referee brought to our attention [3] dealing with closely related ques-
tions for linearized scattering. In [23] Luke and Devaney combine the linear sampling
method of Colton and Kirsch [6] with the point source method of Potthast [26] to
show the existence of a field that is orthogonal to the far field patterns of point sources
centered on the boundary of the scatterers. This extends the MUSIC algorithm to
obstacles of arbitrary size, independent of the frequency. Missing from their analysis,
however, is a concrete way to construct such a field. Numerical experiments indicate
that fields constructed from elements of the noise subspace of the far field operator
(that is, the subspace corresponding to small eigenvalues of the far field operator)
yield the desired properties. In the present work we use Kirsch’s factorization method
[14] to prove this to be the case, thus yielding a constructive proof of the MUSIC
algorithm for extended obstacles. Moreover, our analysis is not limited to Dirichlet
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obstacles, but rather to scatterers whose corresponding far field operators are normal.
In particular, this is the case for non-absorbing scatterers.

Our formalism begins with exact measurements of the far field of a scatterer
embedded in a homogeneous medium and illuminated by a single frequency plane
wave. Which frequency one uses for the incident field is of no consequence to the
analysis or the method, though in practice this may be an important consideration
due to instrumentation limitations. Also, readers accustomed to incident pulses rather
than fields will note the conspicuous absence of multiple frequencies. We do not
address the issues of multiple frequency data since the method can be applied equally
to each incident field frequency, so long as these are distinct. Readers are referred to
[22, 24] for a discussion of how one combines single frequency reconstructions from
multiple frequency data. Limiting our focus to only single frequency fields also allows
us to treat two and three-dimensional scattering at the same time since our formalism
applies equally to each setting. As discussed in [22] this is not the case for multiple
frequency data. Our simulations are in two dimensions, but can be applied with equal
ease in three dimensions – the main difficulty being in the simulation of the far field
data rather than with the reconstruction.

We do not explicitly take into account clutter or instrument noise. Instead we
interpret noise generically in terms of the relative size of the spectrum of the far field
measurements to that of the systematic error, whatever its source. The point of the
analysis, however, is that we need not be concerned with the nature of the noise,
just its size. The key to our result is to relate the indicator function, which is used
in the factorization method to characterize the scatterer, to the value of a Herglotz
wave function with a specially chosen density. We show that this Herglotz wave
function is, roughly speaking, small on the obstacle and large in some region outside.
Taking a different perspective, the special densities we use are arbitrarily close to
being orthogonal to the data space of the far field operator, consisting of the first few
eigenvalues that can be measured with reliable precision. Typically, the data subspace
consists of eigenfunctions with associated eigenvalues above the noise level. The latter
observation concerning orthogonality is also clear from the construction of our special
densities within the noise space of the operator. This subspace is spanned by those
eigenfunctions that cannot be measured reliably – typically, the space spanned by
those eigenfunctions of the order of or below the noise level. Any measurement of
the far field operator will not faithfully reproduce these eigenfunctions, but rather
strongly perturbed versions of them. However, these will always be orthogonal to
the data subspace. This crucial property is the basis for our analysis in the case of
perturbed data arising either from a discretization or measurement error.

Our approach also gives rise to the construction of special entire solutions to the
Helmholtz equation which avoid the scatterer and hence produce little scattering. For
this reason, they are termed non-scattering fields in [23]. We provide some numerical
examples of such functions.

The main results of the paper are contained in Sections 3 and 5. The preceding
Section 2 provides the necessary mathematical and notational background. In Section
3 we state our result on the MUSIC algorithm for extended scatterers and construct
non-scattering fields. Section 4 contains equivalent results in the case of scattering
by a crack. In this case, the analysis of the factorization method requires more
sophisticated arguments, as such scatterers cannot be characterized using the far field
patterns of point sources. Section 5 is devoted to analyzing the stability of these
constructions in the case of a perturbed far field operator. All these results are valid
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for scattering problems in which the far field operator is normal. We use scattering
by a sound soft obstacle and by a penetrable obstacle as numerical examples. We
conclude with Section 6 where we use some of the derived estimates to explain a
curious behavior of the factorization method in the case of noisy data. The appendix
of the paper is devoted to establishing the relation of the spectral properties of the
continuous far field operator to those of the discrete version used implicitly throughout
the literature in numerical examples.

2. Direct and Inverse Scattering Background. We consider acoustic scat-
tering of small-amplitude, monochromatic and time-harmonic waves from one or more
scatterers embedded in an isotropic homogeneous medium. The scatterers are identi-
fied by the domain D ⊂ Rm, m = 2 or 3, which is assumed to be a bounded Lipschitz
domain with connected exterior and boundary ∂D; the unit outward normal to ∂D is
denoted by ν. Our model to mathematically describe wave propagation outside the
scatterer D is the Helmholtz equation,

(2.1)
(
∆ + k2

)
u(x) = 0, x ∈ Rm \D,

where ∆ denotes the Laplacian and k > 0 is the wavenumber. We denote by ui(x, η̂) =
exp(ikη̂ ·x) an incident plane wave of direction η̂ ∈ S := {x̂ ∈ Rm : |x̂| = 1} that causes
a scattered field us(·, η̂) satisfying (2.1) and the Sommerfeld radiation condition

(2.2) r
m−1

2

(
∂

∂r
− ik

)
us(x, η̂)→ 0, as r = |x| → ∞,

uniformly in all directions x̂ = x/|x|. We note that Sommerfeld’s radiation condition
implies that the scattered field has the behavior

us(x, η̂) =
eik|x|

|x|m−1
2

{
u∞(x̂, η̂) +O

(
|x|−1

)}
as |x| → ∞,

where the function u∞ is called the far field pattern of us, see, e.g., [7].
Of course, incident and scattered field are coupled via conditions describing the

physical nature of the scatterer. We discuss in this section two different kinds of
scatterers: impenetrable sound-soft obstacles and penetrable media. For a sound-soft
obstacle, the total field u : Rm \D → C given by u = ui +us satisfies a homogeneous
Dirichlet boundary condition u(x) = 0 for x ∈ ∂D.

It is well known that this scattering problem is uniquely solvable (see e.g. [25]).
Consequently, there is a unique scattered field us ∈ H1

loc(Rm \ D) which is a weak
solution of (2.1) outside of D and satisfies the boundary condition us = −ui in the
trace sense of H1/2(∂D). More generally, there exists a bounded data-to-pattern
operator GD : H1/2(∂D)→ L2(S) which maps the Dirichlet boundary data on ∂D to
the far field pattern of the corresponding radiating solution of the Helmholtz equation.

Let us recall the outgoing free-space fundamental solution to (2.1),

Φ(x, y) :=
i

4
H

(1)
0 (k|x− y|), m = 2, Φ(x, y) :=

1

4π

eik|x−y|

|x− y|
, m = 3,

both for x 6= y. Here H
(1)
0 denotes the zeroth-order Hankel function of the first kind.

Each Φ(·, y) satisfying the Sommerfeld radiation condition is associated with a far
field pattern, denoted Φ∞(·, z) and given by [7]

(2.3) Φ∞(x̂, z) = βe−ikx̂·z, x̂ ∈ S,
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where β = eiπ4 /
√

8πk for m = 2 and β = 1/(4π) for m = 3.
A linear superposition of plane waves by a density g yields the Herglotz wave

function vg,

vg(x) :=

∫
S
eikη̂·x g(η̂) ds(η̂) for x ∈ Rm.

Obviously, vg satisfies the Helmholtz equation (2.1) in all of Rm. Since the Helmholtz
equation is a linear partial differential equation, the superposition principle states that
the far field pattern to a linear combination of incident plane waves ui(x, η̂) is the
corresponding linear combination of scattered fields us(x, η̂). The far field operator

(2.4) F : L2(S)→ L2(S), Fg :=

∫
S
u∞(·, η̂)g(η̂) ds(η̂),

captures this observation, mapping a density g ∈ L2(S) onto the far field of the
scattered field generated by the incident Herglotz wave function vg. Sometimes we
will need to distinguish far field operators for different types of scattering problems.
We will then write FD instead of F with the subscript D making reference to the
homogeneous Dirichlet boundary condition satisfied by the total field.

In addition to obstacles, we will also consider penetrable scatterers consisting of
an inhomogeneous medium, where the inhomogeneity is modeled by a nonnegative real
refractive index n2 with n2 = 1 on Rm \D. The contrast q is the difference between
the background medium and the refractive index, q = n2 − 1 in Rm. Obviously, q is
compactly supported. We assume that D is the support of q, even more, that

q ∈ L∞(D) and q ≥ c0 > 0 in D.

In particular, q is assumed to be real-valued. In a slight abuse of notation, we do not
distinguish between q and its extension to all of Rm by zero outside D.

Consider now scattering of a plane wave ui(·, η̂) by D. The total field u = ui+us

satisfies (∆+k2(1+q))u(·, η̂) = 0 in Rm and hence the scattered field us(·, η̂) satisfies
the inhomogeneous Helmholtz equation(

∆ + k2(1 + q)
)
us(·, η̂) = −k2qui(·, η̂), x ∈ Rm \ ∂D, η̂ ∈ S,

in addition to the Sommerfeld radiation condition (2.2). Under our assumptions,
this source problem has a unique solution in H1

loc(Rm) for any f = −k2qui(·, η̂) ∈
L2(D) [7]. Moreover, the data-to-pattern operator GM : L2(D)→ L2(S) which maps
f to the far field pattern of the radiating solution to this source problem is bounded.

Replacing again the individual plane wave ui(·, η̂) with the superposition vg, the
far field operator is formally again defined by (2.4). If we need to stress the dependence
on the type of scattering problem, we will write FM instead of F . Since the contrast
q is real valued, the medium is non-absorbing and the far field operator is normal, an
important prerequisite for the later analysis.

We now shift our attention to the inverse scattering problems of reconstruction
of the scatterer’s support from knowledge of F . In [14] the factorization method was
introduced as a simple and explicit method to reconstruct the scatterer’s support from
spectral data of F . Although various sophisticated extensions of this method exist
which make it applicable to cases where F is non-normal (see [17] and the references
stated therein), we only consider here the original version of the method presented in
[14] for the case of a normal far field operator. Another necessary ingredient is that
F is injective with dense range which is assured by the following assumptions.

Assumption 2.1.
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(a) When dealing with the Dirichlet scattering problem, we assume that k2 is not
a Dirichlet eigenvalue of −∆ in D.

(b) Concerning the medium scattering problem, we assume that k2 is not an in-
terior transmission eigenvalue of D. This means that there are no non trivial
weak solutions (u, v) ∈ H2(D)×H2(D) to

∆u+ k2(1 + q)u = 0 and ∆v + k2v = 0 in D

with u = v on ∂D and ∂u
∂ν = ∂w

∂ν on ∂D.

The idea of the factorization method is to characterize D via the range of the
square root of F . Kirsch proved in [14, 15] that the range R

(
(F ∗F )1/4

)
equals the

range of the data-to-pattern operator G and exploited the fact that the far field
pattern Φ∞(·, z) of a point source at z is in the range of G precisely if z is inside the
obstacle. We collect the statement of the factorization method for the two scattering
problems under investigation in the following theorem, which is shown in [17, 14, 15].

Theorem 2.2 (factorization method). We assume that Assumption 2.1 holds.
1. The data-to-pattern operator GD : H1/2(∂D)→ L2(S) is a compact, injective

bounded linear operator with dense range. R(GD) = R
(
(F ∗DFD)1/4

)
and

(F ∗DFD)−1/4GD is a norm isomorphism from H1/2(∂D) onto L2(S).
2. The data-to-pattern operator GM : L2(D) → L2(S) is compact with dense

range. Let H be the closure of {v ∈ C∞(D), ∆v + k2v = 0} in L2(D) and
denote by G|H the restriction of G to H. Then R(G|H) = R

(
(F ∗F )1/4

)
and

(F ∗MFM)−1/4GM is a norm isomorphism from H onto L2(S).
In either case, the far field pattern Φ∞(·, z) of the fundamental solution to the Helmholtz
equation is in the range of the data-to-pattern operator if and only if z ∈ D.

In the following sections we will at various stages present two dimensional nu-
merical examples. Since we are not using multiple frequencies, there is no qualitative
difference between scattering in two and three dimensions; the only significant numer-
ical difference is in the simulation of the far field data, not in the inversion algorithm.
Here, the direct scattering problem is solved for J directions of incidence distributed
uniformly on the unit circle, x̂j = (cos(2πj/J), sin(2πj/J))

>
, j = 0, . . . , J−1, and the

far field pattern of the scattered field is determined for those same J directions. Using
this data, the far field operator is approximated by replacing the integral by an order
J composite rectangular rule. In other words, a discrete linear map FFD : CJ → CJ
(FD short for fully discrete) is available where, for ξ ∈ CJ ,

(FFDξ)j =
2π

J

J−1∑
k=0

u∞(x̂j , x̂k) ξk, j = 0, . . . , J − 1.

Though it is rarely discussed in the literature, it is not obvious in what sense
the spectral data of the matrix FFD approximates the spectral data of the continuous
operator F . In the appendix, we investigate the relation of FFD to F . We show
that there is a semi-discrete operator FSD : L2(S) → L2(S) with the same non-
trivial eigenvalues as FFD which is close in norm to F . Arguments from operator
perturbation theory then show that the first few eigenvalues and eigenspaces of FFD

are good approximations to those of F .

3. Non-Scattering Fields and the MUSIC Algorithm for Extended Scat-
terers. We will now show that from knowledge of the far field operator it is possible
to construct entire solutions of the Helmholtz equation in Rm that are arbitrarily small
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inside the scatterer. Moreover, there is always a region outside the scatterer where
these fields are large, i.e. these fields are non-trivial. By construction, these fields
are Herglotz wave functions with densities orthogonal to those first few eigenspaces
corresponding to the largest eigenvalues of F which can be measured with reliable pre-
cision. As we discussed in the introduction, we call the span of these spaces the signal
space and its orthogonal complement the noise space, in analogy to the terminology
used in connection with the MUSIC algorithm.

By the spectral theorem for compact normal operators the far field operator F
admits a system of eigenfunctions that form a complete orthonormal basis of L2(S)
and whose corresponding eigenvalues have a unique cluster point at 0. Let (λn, ξn) for
n ∈ N be the system of eigenvalues and orthonormal eigenvectors of F with eigenvalues
|λn| ≥ |λm| for m > n. For x, z ∈ Rm let M , N ∈ N with M ≤ N and define

(3.1) gM,N,z :=

N∑
n=M

1

|λn|1/2
〈Φ∞(·, z), ξn〉 ξn in L2(S).

Note that (F ∗F )
1/4

gM,N,z = PMNΦ∞(·, z) where PMN is the orthogonal projection
of L2(S) onto span{ξM , ξM+1, . . . , ξN}. Define the density

(3.2) ĝM,N,z :=
1

‖gM,N,z‖L2(S)

N∑
n=M

1

|λn|
〈Φ∞(·, z), ξn〉 ξn.

In [23] it was proved that there exists a nontrivial density in the noise space of the far
field operator. We show next that the density ĝM,N,z yields an explicit approximation
of such a density. Indeed (2.3) and (3.2) yield the following identity:

vĝM,N,z (x) =

∫
S
eikη̂·xĝM,N,z(η̂) ds(η̂)

=
1

β‖gM,N,z‖L2(S)

N∑
n=M

1

|λn|
〈Φ∞(·, z), ξn〉 〈Φ∞(·, x), ξn〉.(3.3)

Theorem 3.1. Under Assumption 2.1 we have that for given ε > 0 and given
compact domains K− ⊂ D and K+ ⊂ Rm \D there are M,N ∈ N with 0 < M < N
such that

(3.4) |vĝM,N,z (z)| < ε for z ∈ K− and |vĝM,N,z (z)| >
1

ε
for z ∈ K+

where vĝM,N,z (x) is defined by (3.3).
Proof. For any z ∈ Rm, M , N ∈ N such that 0 < M < N , we have

|vĝM,N,z (z)| =
1

‖gM,N,z‖L2(S)

∣∣∣∣∣ 1β
N∑

n=M

1

|λn|
〈Φ∞(·, z), ξn〉 〈Φ∞(·, z), ξn〉

∣∣∣∣∣
=

1

‖gM,N,z‖L2(S)

1

|β|

N∑
n=M

1

|λn|
|〈Φ∞(·, z), ξn〉|2 =

1

|β|
‖gM,N,z‖L2(S).(3.5)

Consider first z ∈ K− ⊂ D. From Theorem 2.2, we know that

vĝM,∞,z (z) := lim
N→∞

vĝM,N,z (z)
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is bounded on K−, and vĝM,∞,z (z) → 0 uniformly on K− as M → ∞. Uniformity
is due to Dini’s theorem, because the convergence ‖gM,∞,z‖L2(S) → 0 as M → ∞ is
monotonic for each z ∈ D. Hence by choosing M large enough, we obtain the upper
bound on K−.

Similarly, for z ∈ K+, we know that ‖gM,N,z‖L2(S) is unbounded as N → ∞.
Again using Dini’s theorem for 1/‖gM,∞,z‖L2(S) we obtain uniformity on the compact
domain K+ and hence the lower estimate by choosing N appropriately.

We remark that

(3.6) WM N (z) := |β vĝM,N,z (z)|2 =

N∑
n=M

1

|λn|
|〈Φ∞(·, z), ξn〉|2

is simply a partial sum of the Picard series in the factorization method; moreover,
up to weighting, it is the indicator computed in the MUSIC algorithm. A simple
algorithm for imaging scatterers is immediately suggested: for a predetermined M
and N evaluate WM N (z) at points zj on a grid in some computational domain. The
scatterer is estimated as those points where WM N (zj) is small.

As with many inverse scattering algorithms (e.g., the linear sampling method,
the factorization method, and the point source method) one has to choose a cutoff
value for the sampling function (3.6). Also, one must be able to choose M and N
large enough to observe the desired behavior. Choosing a cutoff and the parameters
M and N would be part of a calibration process that must be performed in any
practical implementation. In particular, if there is substantial noise in the far field
measurement, it is unrealistic to expect that such an M and N can be chosen to
achieve reasonable contrast. However, we show in the next section that any density
orthogonal to the signal space of F will yield a small amplitude Herglotz wave function
on closed subsets of the scatterer. In contrast, for z ∈ Rm \D there is no guarantee
that an arbitrary density in the space orthogonal to the signal space will generate the
desired blow-up. In other words, a blow up of the indicator function (3.4) or (3.6)
will generate a true positive, though the absence of such a blow-up is uninformative.
The key point for stability is that we generate ĝM,N,z in the noise subspace of F and
the only property we really exploit is that ĝM,N,z is in the orthogonal complement
of the data subspace. This property remains true under perturbation, even if the
eigenspaces themselves are strongly perturbed (note that in general the perturbed
operator will not possess eigenvalues).

A slight variation of the proof of Theorem 3.1 yields fields that are small on the
scatterer while large at least in some compact set outside. For the formulation of this
theorem we introduce the notation Bδ(z) for an open ball of radius δ centered at z.

Theorem 3.2 (nonscattering fields). Let Assumption 2.1 be satisfied. Given any
ε > 0, K− ⊂ D closed and K+ ⊂ Rm \D compact, there exist M,N ∈ N and δ > 0
such that

|vĝM,N,z (x)| < ε, x ∈ K−, z ∈ Rm and |vĝM,N,z (x)| > 1

ε
, z ∈ K+, x ∈ Bδ(z).
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Proof. Generalizing the approach in the proof of Theorem 3.1, we estimate

|vĝM,N,z (x)| ≤ 1

|β|‖gM,N,z‖L2(S)

N∑
n=M

1

|λn|

∣∣∣〈Φ∞(·, z), ξn〉 〈Φ∞(·, x), ξn〉
∣∣∣

≤ 1

|β|‖gM,N,z‖L2(S)

(
N∑

n=M

1

|λn|
|〈Φ∞(·, z), ξn〉|2

)1/2

×

(
N∑

n=M

1

|λn|
|〈Φ∞(·, x), ξn〉|2

)1/2

≤ 1

|β|

(
N∑

n=M

1

|λn|
|〈Φ∞(·, x), ξn〉|2

)1/2

=
1

|β|
‖gM,N,x‖L2(S).

As this upper bound is independent of z, we obtain the upper bound for x ∈ K− and
z ∈ Rm exactly as in the proof of the previous theorem.

On the other hand, if x = z ∈ K+, we directly use (3.5). Since z /∈ D, by The-
orem 2.2 we have that ‖gM,N,z‖L2(S) becomes arbitrarily large as N → ∞ uniformly
in z ∈ K+. We choose N such that |vĝM,N,z (z)| > 2/ε for z ∈ K+. As vĝM,N,z (x) is
continuous with respect to both x and z and K+ is compact, there is a radius δ such
that for any z ∈ K+ and x ∈ Bδ(z) we have |vĝM,N,z (x)| > 1/ε.

Remark 3.3. The results of Theorems 3.1 and 3.2 are independent of the type of the
scattering problem and hold whenever the far field operator is normal, for instance for
obstacles with a Neumann boundary condition. The crucial ingredient is the behavior
of the Picard series in the factorization method and this is independent of the type of
scattering problem as long as the corresponding far field operator is normal.

For imaging purposes, Theorem 3.2 suggests to plot the Herglotz wave function
vĝM,N,z . The scatterer will be contained in the set where this function is small. If z is
located outside the scatterer, the function will also be large for x close to z.

In [23], numerical examples are shown for a MUSIC algorithm for extended scat-
terers with the Herglotz wave functions used in the indicator constructed by trial
and error. Here, we report similar results using our constructive approach. The
reconstructions obtained are similar to those reported for the factorization method.

As a numerical example, we consider scattering by two sound-soft kite-shaped ob-
stacles positioned in two-dimensional free space. Figure 1 (a) shows the configuration.
The wave number in this example is k = 1.

The scattering problem was solved numerically using a boundary integral equa-
tion method for 25 incident plane waves with directions x̂j , j = 0, . . . , 24 uniformly
distributed on [−π.π]; the far field pattern was sampled in those same directions to
obtain a corresponding operator FFD (see the end of Section 2). In Figure 1 (b) the
singular values of FFD are displayed. We have high confidence that these singular
values are extremely good approximations of the absolute values of the 25 largest
eigenvalues of F . As a test, we computed FFD with twice the number of incident and
observation directions and obtained the same values for the first 25 singular values
up to 16-digit numerical precision.

In Figure 1 (c) – (f) we show the value of the indicator WMN for various values
of M and N plotted over points on a grid. Values of WMN (z) > 1 are plotted with
the same color. As can be seen, increasing N is indeed responsible for larger values of
the indicator outside the obstacle. Increasing M visibly reduces WMN (z) for z inside
the obstacle while there is no visible change to the domain where WMN (z) > 1.
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(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) Configuration for the example problem. (b) Singular values of FFD generated from
25 incident plane waves with directions uniformly distributed on [−π, π]. (c)–(f) Plots of the MUSIC
indicator WMN for (c) M = 1, N = 10, (d) M = 1, N = 25, (e) M = 8, N = 25, (f) M = 12,
N = 25

(a) z = (0, 0)> (b) z = (−2.5, 0)> (c) z = (20, 0)>

Fig. 2. Absolute values of non-scattering fields for M = 22, N = 25 and various locations of z.

Non-scattering fields are displayed in Figure 2 (a) – (c). The plots seem to
indicate, that |vgM,N,z (x)| depends very little on the position of z. Even for z ∈ D, as
in Figure 2 (b), the value is quite large away from the obstacle which is more than
could be expected from Theorem 3.2.

4. Plane Wave Scattering For Open Arcs. At the heart of the theory above
is Green’s theorem, hence one cannot directly apply the factorization technique de-
scribed therein to scattering from cracks. Fortunately, the theory can be modified
yielding a technique for “imaging” cracks that, for all practical purposes, is identical
to the method developed above. We treat the two dimensional case here and consider
weak solutions to the Dirichlet problem

(4.1)
(
4+ k2

)
u = 0, in DΓ := R2 \ Γ, u = f on Γ,

where Γ ⊂ R2 is a piecewise analytic curve with closed relative interior that has
a parameterization of the form x = z(s), s ∈ [−1, 1], for some injective analytic
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function z : [−1, 1] → R2 with z′(s) 6= 0 for all s. In addition to (4.1) the scattered
field satisfies the Sommerfeld radiation condition (2.2).

For f ∈ H1/2(Γ), u ∈ H1
loc(DΓ) is a weak solution to (4.1) – that is, u also

satisfies the Sommerfeld radiation condition and
∫
DΓ

(
∇u · ∇φ− k2uφ

)
dx = 0 for

all compactly supported test functions φ ∈ H1(DΓ) with φ|Γ = 0. The far field
patterns of these solutions uniquely determine the cracks [19]. We denote the far field
operator generated by incident plane waves by FΓ and the data-to-pattern operator
GΓ : H1/2(Γ)→ L2(S) . We impose the following assumption to guarantee denseness
of the far field patterns.

Assumption 4.1. There is no Herglotz wave function that vanishes on Γ.
Theorem 4.2. Let Assumption 4.1 hold. The data-to-pattern operator GΓ :

H1/2(Γ)→ L2(S) has the following properties:
1. GΓ is a compact, injective and bounded linear operator with dense range.
2. The ranges of GΓ and (F ∗ΓFΓ)1/4 coincide: R(GΓ) = R((F ∗ΓFΓ)1/4).
3. The operator (F ∗ΓFΓ)−1/4GΓ is a norm isomorphism from H1/2(Γ) to L2(S).

4. Let H̃(T ) denote the completion of C∞0 (T ) with respect to H−1/2(C) and C is
the extension of T to a simple closed curve. For any analytic non-intersecting
arc T and density ρ ∈ H̃−1/2(T ) define

rT (x̂) :=

∫
T

ρ(y)e−ikx̂·y ds(y) x̂ ∈ S.

Then rT (x̂) ∈ R(GΓ) if and only if T ⊂ Γ.
Proof. Boundedness and injectivity of GΓ are immediate. Compactness of GΓ

follows by extending the arc Γ to an arbitrary simple closed curve and applying
the standard argument for compactness of data-to-pattern operators for Dirichlet
problems (see, for instance[17, Lemma 1.13]). Next note that the far field operator
has the factorization [18, Lemma 3.4]

FΓ =
√

8πkeiπ/4GΓS
∗
ΓG
∗
Γ

where SΓ is the single-layer boundary operator on Γ. Since FΓ is injective, so is G∗Γ as
S∗Γ is injective, whence (i) follows. Properties (ii)-(iii) are the content of [18, Theorem
3.7]; property (iv) is established by [18, Theorem 3.8].

By the spectral theorem the far field operator FΓ admits an eigensystem (λn, ξn)
such that the eigenfunctions form a complete orthonormal basis of L2(S) and the
eigenvalues have a unique cluster point at 0. For x, z ∈ R2 let M,N ∈ N with M ≤ N
and define

gM,N,T :=

N∑
n=M

〈rT , ξn〉
|λn|1/2

ξn and ĝM,N,T :=
1

‖gM,N,T ‖

N∑
n=M

〈rT , ξn〉
|λn|

ξn.

In order to distinguish different functions rT we center the curve segment on the
point x and denote this by Tx. The definition of ĝM,N,T yields the following identity:

(4.2) vĝM,N,Tx (z) :=

∫
S
rTz (η̂)ĝM,N,Tx(η̂) ds(η̂) =

1

‖gM,N,Tx‖

N∑
n=M

〈rTx , ξn〉
|λn|

〈rTz , ξn〉.

By interchanging the order of integration in (4.2) we see that vĝM,N,Tx (z) is the product
of mollified Herglotz wave functions:

vĝM,N,Tx (z) =
1

‖gM,N,Tx‖

N∑
n=M

1

|λn|
〈ϕx, vξn〉Tx 〈ϕz, vξn〉Tz .
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Here ϕx is the mollification function centered on x, vξn is the Herglotz wave func-
tion with density ξn, and 〈·, ·〉Tx is the Euclidean inner product with respect to the
seminorm on Tx. The next result is an analog of Theorems 3.1 and 3.2.

Theorem 4.3. Under Assumption 4.1, given any ε > 0, Γ0 ⊂ Γ closed and
K ⊂ R2 \ Γ compact, there is a radius δ > 0 and M , N ∈ N with M < N such that

|vĝM,N,Tx (z)| < ε for z ∈ Γ0, Tz ⊂ Γ, x ∈ R2;

|vĝM,N,Tx (z)| > 1

ε
for x, z ∈ K with x ∈ Bδ(z).

(4.3)

The proof is very similar to the proofs of Theorems 3.1 and 3.2 and we omit it here.
As with Dirichlet obstacles and inhomogeneous media we determine the shape

and location of the crack by evaluating the magnitude of the constructed incident
field vĝM,N,Tz (z). Comparing Theorem 4.2(4) to Theorem 2.2 we note what appears
to be a fundamental difference between the factorization theory for scattering from
cracks and scattering from obstacles or inhomogeneous media: in the latter cases the
scatterer is found by conducting a pointwise search to determine those points z for
which Φ∞(·, z) ∈ R(G), whereas for cracks one must search along curves T . It is
common to make the approximation rT (·) ≈ Φ∞(·, z) [18, 4]. We will essentially take
the same approach, however we show explicitly how this approximation depends on
the sampling rate in the near field of the crack. We compute next an explicit estimate
of the approximation of rTz by the far field of a point source centered on Tz.

Consider the segment of Γ with arclenth δ centered at z, and the C∞0 mollifying
function ϕz(y) satisfying

∫
Tz
ϕz(y)ds(y) = 1. Writing Tz in terms of the parameteri-

zation y : [−t, t]→ R2 for t > 0 where y(0) = z, we have

rTz (η̂) =

∫ t

−t
ϕz(y(s))e−ikη̂·y(s)y′(s)ds = e−ikη̂·z

∫ t

−t
ϕz(w(s) + z)e−ikη̂·w(s)w′(s)ds.

Here w(s) = y(s)− z, and hence w(0) = 0. Now expanding e−ikη̂·w(s) yields

rTz (η̂) = e−ikη̂·z
∫ t

−t
ϕz(w(s)+z)

(
1− (kη̂·w′(0))

2
s2

2 +O(s3)

)
w′(s)ds = e−ikη̂·z+o(δ).

Since the behavior established by Theorem 4.3 is independent of the segment Tz
we conclude that the dominant part of the behavior in (4.3) is due to the leading-
order term of rTz . In other words,

√
8πke−iπ/4Φ∞(η̂, z) := e−ikη̂·z is a sufficient test

function for implementation of the MUSIC algorithm. This is demonstrated in Figure
3 where we determine the shape and location of sound soft cracks by plotting

(4.4) WM,N (z) = |βvĝM,N,z (z)|2 =

N∑
n=M

1

|λn|
|〈Φ∞(·, z), ξn〉|2 .

5. Using useless data. The data required for the construction of the densities
ĝM,N,z is spectral data corresponding to small eigenvalues of the far field operator.
In general, due to super algebraic decay of the eigenvalues of F the size of these will
be smaller than the noise level of any physical measurement device or background
clutter. Hence, the available data seems to be useless to implement non-scattering
fields or a MUSIC algorithm for extended scatterers. Surprisingly, this is not the case.
We show next that it is not critical which functions are used to construct the indicator



12 ARENS, LECHLEITER, LUKE

(a) (b) (c)

Fig. 3. (a) Sound-soft arcs to be recovered. (b) Decay of the singular values of the far field
operator sampled at 32 observation and 32 incident plane waves with directions evenly distributed
on [−π, π]. (c) The magnitude of the incident field WM,N (z) calculated by (4.4) with M = 20, and
N = 32.

function and corresponding nonscattering fields, provided that they are orthogonal to
the signal space. In Section 6, we will consider similar questions in a fully discrete
setting.

Let us assume we are given some approximation F δ of the far field operator F
with ‖F − F δ‖ < δ‖F‖, where the norm ‖ · ‖ denotes the operator norm in L2(S).
The approximation F δ is typically finite-dimensional. Due to the noise on F δ, we will
work with the singular value decomposition in the sequel,

(5.1) F δη =

N∑
j=1

σδj 〈η, ηδj 〉 ξδj , ξ ∈ L2(S).

For δ = 0 we find F = F 0 and denote λj = sjσ
0
j and ξj = ξ0

j , where (λj , ξj) is
an eigensystem of the normal operator F and sj a complex number of magnitude 1.
Working with the singular value decomposition is necessary, as we cannot guarantee
normality of the perturbed operators F δ and thus existence of an orthogonal system
of eigenvectors. The singular vectors, however, will always be orthogonal. For M <
N ∈ N we define the subspaces

UδMN = span {ξδM , . . . , ξδN}, UM∞ = U⊥1M−1 and U δM∞ =
(
Uδ1M−1

)⊥
,

and by P δMN we denote the orthogonal projection of L2(S) onto U δMN . Continuity
of the spectrum and the eigenspaces of a bounded linear operator with respect to
bounded perturbations yields bounds on the difference P δ1N − P1N .

Lemma 5.1. Let N ∈ N, δ > 0 and let N∗ be the largest integer with λN∗ = λN .
We assume that

∣∣ |λN∗ |2 − |λN∗+1|2
∣∣ > C(F, δ) := 4‖F‖2δ + 2‖F‖2δ2. Then

‖P δ1N − P1N‖ ≤
C(F, δ)N∗

| |λN∗ |2 − |λN∗+1|2 | − C(F, δ)
.

Proof. For the proof of this lemma, we assume that the reader is familiar with
basic definitions from spectral theory. The estimate follows from perturbation theory
of linear operators combined with the fact that F ∗Fξj = |λj |2ξj . Therefore the
projections PMN can be expressed as projections onto eigenspaces of F ∗F . Note that
‖F δ∗F δ − F ∗F‖ ≤ 2‖F‖2δ + ‖F‖2δ2. We can represent the orthogonal projection
on the eigenspaces corresponding to the first N∗ eigenvalues of F ∗F by a contour
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integral, see, e.g., [21, Section 4]: we integrate the resolvent λ 7→ (λI − F ∗F )−1 over
a positively oriented path γ in the complex plane, which encloses exactly the first N∗

eigenvalues. More precisely, the index of the first N∗ eigenvalues of F ∗F with respect
to γ is one while the index of all other eigenvalues vanishes. Then

P1N =
1

2πi

∫
γ

(λI − F ∗F )−1 dλ,

and if δ > 0 is small enough such that γ does not meet the spectrum of F δ∗F δ,
the analogous formula holds for P δ1N with F ∗F replaced by F δ∗F δ. Therefore the
resolvent identity

(λI − F ∗F )−1 − (λI − F δ∗F δ)−1 = (λI − F ∗F )−1(F ∗F − F δ∗F )(λI − F δ∗F δ)−1,

for λ in the resolvent set of F ∗F and F δ∗F δ, and the estimate ‖(λI−F ∗F )−1‖L2(S) ≤
supj∈N

∣∣ |λj |2 − λ∣∣−1
from [13, V.4.3] imply

‖P δ1N−P1N‖L2(S) ≤
(
2‖F‖2δ + δ2‖F‖2

) |γ|
2π

sup
λ∈γ

[
sup
j∈N

∣∣ |λj |2 − λ∣∣−1
sup
j∈N

∣∣ |λδj |2 − λ∣∣−1
]
.

Here, |γ| means the length of the curve γ. We need to specify this contour. Consider
a ball in the complex plane of radius

∣∣ |λN |2 − |λN+1|2
∣∣ /2 around each of the points

|λj |2, j ≤ N∗. These balls might overlap and we choose the piecewise smooth curve
γ to be the boundary of the union of these balls. For λ ∈ γ we have by construction∣∣ |λj |2 − λ ∣∣ =

∣∣ |λ∗N |2 − |λN∗+1|2
∣∣ /2 and continuous dependence of the spectrum on

its operator [21, Theorem 4.1] gives
∣∣ |λδj |2 − λ ∣∣ ≥ ∣∣ |λ∗N |2 − |λN∗+1|2

∣∣ /2− 2‖F‖2δ −
‖F‖2δ2. Since |γ| can be estimated from above by π

(∣∣ |λ∗N |2 − |λN∗+1|2
∣∣)N∗, we find

‖P δ1N − P1N‖L2(S) ≤
(
2‖F‖2δ + ‖F‖2δ2

)
N∗

| |λ∗N |2 − |λN∗+1|2 | /2− 2‖F‖2δ − ‖F‖2δ2
.

For the rest of this section we investigate the perturbed indicator

W δ
MN (z) :=

N∑
n=M

1

|σδn|
∣∣〈Φ∞(·, z), ξδn〉

∣∣2 z ∈ Rm.

This function is the analog to (3.6) using the singular values σδn of the perturbed far
field operator F δ since we cannot guarantee normality of F δ and thus existence of an
orthogonal system of eigenvectors. We will assume as a notational simplification that
all singular values have multiplicity one as the extension to multiple singular values
is immediate. Crucial for our analysis is the following estimate for P δM∞: Due to
Lemma 5.1 we have

‖P δM∞ − PM∞‖ = ‖I − P δ1M−1 + (I − P1M−1)‖

= ‖P δ1M−1 − P1M−1‖ ≤
C(F, δ)M

| |λM−1|2 − |λM |2| − C(F, δ)
.
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Consider a point z ∈ D. For such a point we can estimate

W δ
MN (z) ≤ 1

min
j=M,...,N

|σδj |

N∑
j=M

|〈Φ∞(·, z), ξδj 〉N |2 ≤
1

min
j=M,...,N

|σδj |
∥∥P δM∞Φ∞(·, z)

∥∥2

≤ 1

min
j=M,...,N

|σδj |

(
‖PM∞Φ∞(·, z)‖2 +

C(F, δ)M ‖Φ∞(·, z)‖2L2(S)

| |λM−1|2 − |λM |2| − C(F, δ)

)

≤
max

j=M,...,N
|λj |

min
j=M,...,N

|σδj |

(
N∑

j=M

|〈Φ∞(·, z), ξj〉N |2

|λj |
+

C(F, δ)M ‖Φ∞(·, z)‖2L2(S)

| |λM−1|2 − |λM |2| − C(F, δ)

)

≤
max

j=M,...,N
|λj |

min
j=M,...,N

|σδj |

(
WMN (z) +

C(F, δ)M ‖Φ∞(·, z)‖2L2(S)

| |λM−1|2 − |λM |2| − C(F, δ)

)
.(5.2)

We will discuss this estimate in the context of a numerical example. The problem
is an inverse medium scattering problem. The configuration is shown in Figure 4 (a).
Inside the circle and the kite-shaped region, the index of refraction is 10 while it is 1
outside these areas; a constant contrast is of course no requirement of the inversion
method, as we showed in Section 3. The wave number is k = 2. We use 32 incident
plane waves uniformly distributed on [−π, π] to generate the fully discrete far field
operator, FFD. The spectral norm of FFD is approximately 3.54 in this case.

The singular values of the corresponding far field operator are shown in Figure
4 (b). The following table displays maximum values of δ such that the assumption∣∣ |λM−1|2 − |λM |2

∣∣ > C(F, δ) is valid for given M .

M 2 3 4 5 6 7
δ 0.5132 0.5611 0.2320 0.2498 0.0629 0.0222

These values show that the estimate can be be applied for, e.g., δ = 0.1 up toM = 5 for
this example. In cases where it can be applied, estimate (5.2) guarantees a stability of
the MUSIC algorithm with respect to localizing the scatterer. The perturbed indicator
function W δ

M N cannot be arbitrarily larger than WM N . Note that all quantities in
the estimate except for WM N itself are independent of z.

This effect can also be clearly seen in the numerical example. Figure 4 (c) is
a plot of the reciprocal value of W5 20 for unperturbed data, while Figures 4 (d)–(f)
show reconstruction for various levels of artificial noise added to FFD. Here, perturbed
data is obtained by adding uniformly distributed random numbers to the entries of
the matrix FFD.

For points outside the scatterer we are not able to provide such a complete analysis
for noisy data. Obviously, W δ

MN (z) ≥ (maxj=M,...,N |σδj |)−1‖P δMNΦ∞(·, z)‖2, but it
is unclear to us how to reasonably estimate the latter quantity from below. Indeed,
our numerical experiments in Figure 4 indicate that W δ

MN (z) can be rather small in
a neighborhood outside D.

6. The Factorization Method with Noisy Data. Similar estimates as those
presented in Section 5 can be derived for the factorization method in the case of noisy
data. It has been a long standing issue of how many terms to use in the Picard series
for reconstructions of obstacles and inclusions. The methods derived in this paper
provide a partial answer. In contrast to the analysis above, we make explicit use of
the finite dimensionality present in any numerical computation.
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Inverse medium scattering: (a) Location of the penetrable scatterers. (b) Singular values
of FFD and F 0.01

FD generated from 32 incident plane waves with directions uniformly distributed on
[−π, π]. (c)–(f) Plot of W5 20(z)−1 for noise levels (c) δ = 0, (d) δ = 0.01, (e) δ = 0.05 and (f)
δ = 0.1

As an example we consider again the scattering from the sound soft obstacle
shown in Figure 1 (a) with k = 1. We use the same 25 incident plane waves as in
Figure 1. As noise will be introduced, we make use of the singular value decomposition
of FFD,

FFDξ =

N∑
j=1

σj (ξ · ξ(j)) η(j), ξ ∈ CN ,

with the normalized scalar product ξ · η = (2π/N)
∑N
j=1 ξjηj , for ξ, η ∈ CN . For

simplicity we have taken J , the number of incident plane waves used to generate the
fully discrete operator, to be the same as the number of terms in the Picard series,
N . Using the normalization means that the scalar product is exactly the composite
rectangular rule applied to the L2-scalar product for the corresponding interpolating
functions in L2(S).

We generate a reconstruction of the obstacle, by introducing the vector φz =
(Φ∞(x̂0, z), . . . ,Φ

∞(x̂N−1, z))
>

, and defining the function

WM (z) :=

M∑
j=1

|φz · ξ(j)|2

|σj |
.

This is the discrete analog of (3.6). As with the perturbed far field operator given by
(5.1), we cannot assume the existence of eigenvalues, hence we formulate the indicator
function in terms of the singular values σj . The reciprocal value of WM is plotted on
a grid for M = 25, yielding Figure 6 (a).

Next, we add noise to the data. By adding uniformly distributed random numbers
to all entries of FFD, we obtain a perturbed matrix F δFD such that

∥∥FFD − F δFD

∥∥
2

=
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Fig. 5. Singular values of the correct and perturbed discrete operators and the relative error in
singular values 1–12. The dashed red line indicates a relative error of 0.1 .

δ ‖FFD‖2, where ‖·‖2 indicates the spectral norm. For an example using δ = 0.05, the
singular values of F δFD are shown in Figure 5 on the left as circles while the correct
singular values are shown as crosses. The plot on the right shows the relative error in
the first 12 singular values of F δFD.

(a) singular values 1–25 (b) singular values 1–8 (c) singular values 1–9
(correct) (noisy) (noisy)

(d) singular values 1–10 (e) singular values 1–15 (f) singular values 1–25
(noisy) (noisy) (noisy)

Fig. 6. Reconstructions using noisy singular values

Using only those singular values with a relative error of less than 10%, i.e. the
first eight, gives Figure 6 (b). Figures 6 (c) through (f) show reconstructions using
more and more of the singular values of F δFD with a relative error of more than 10%.
While the values computed for points inside the obstacles do not change appreciably,
the reconstruction significantly improves for points outside the obstacle. It appears
that using incorrect spectral information is not only helpful but crucial for a good
reconstruction using the factorization method. We will provide some insight into why
this is the case.

The problem with Figure 6 (b) is that, even though WM (z) → ∞ (M → ∞)
for z /∈ D, the values of WM (z) computed for some points z outside the obstacle are
still rather small. The divergence of the Picard series for such points influences the
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behavior of WM (z) for larger values of M only.
We note that for any continuous function g on S and ξ ∈ CN such that ξj = g(x̂j),

φz · ξ ≈ 〈Φ∞(·, z), g〉 = β

∫
S

e−ikz·η̂ g(η̂) ds(η̂) = β vg(z).

A general result on Herglotz functions is the asymptotic formula

vg(z) = γ g(ẑ)
eik|z|

|z|m−1
2

− γ g(−ẑ) e
−ik|z|

|z|m−1
2

+ o

(
1

|z|

)
, |z| → ∞,

which is well known in the literature (see e.g. [10]). The proof can be carried out by
expanding vg in spherical harmonics in angular and Bessel functions in radial direc-
tions. This gives the asymptotic behavior with certain far field patterns. The exact
patterns can be obtained by computing the coefficients in the expansion explicitly
using the Funk-Hecke formula. As a consequence, any partial sum of the Picard series
will be arbitrarily small on an appropriately chosen subset of the plane. This is not
a contradiction to the factorization method which states that given any compact set
away from the obstacle, an appropriately chosen partial sum of the Picard series will
be arbitrarily large.

Next, we provide a partial explanation for why it is beneficial to use incorrect
spectral information for the reconstruction. Suppose that the first M singular values
and corresponding vectors are known exactly while the singular triplets (σj , ξ

(j), η(j))
are replaced by (σδj , ξ

(j,δ), η(j,δ)), j = M + 1, . . . , N . Note however, that these form a

singular system of the matrix F δFD and hence the singular vectors form an orthonormal
basis of CN .

Next we define two subspaces, UM = span{ξ(1), . . . , ξ(M)} and VM = U>M . From
the properties of the singular value decomposition, we immediately obtain

VM = span {ξ(M+1), . . . , ξ(N)} = span {ξ(M+1,δ), . . . , ξ(N,δ)}.

By PM : CN → UM and QM : CN → VM we denote the orthogonal projections onto
these subspaces, respectively. Finally, we define the perturbed indicator

W δ
N (z) = WM (z) +

N∑
j=M+1

|φz · ξ(j,δ)|2

|σδj |
.

Consider now a point z ∈ D. For such a point we can estimate

W δ
N (z)−WM (z) ≤ 1

min
j=M+1,...,N

|σδj |

N∑
j=M+1

|φz · ξ(j,δ)|2

=
1

min
j=M+1,...,N

|σδj |
‖QMφz‖2 ≤

max
j=M+1,...,N

|σj |

min
j=M+1,...,N

|σδj |

N∑
j=M+1

|φz · ξ(j)|2

|σj |

≤WN (z)−WM (z) +

 max
j=M+1,...,N

|σj |

min
j=M+1,...,N

|σδj |
− 1

 N∑
j=M+1

|φz · ξ(j)|2

|σj |
.

This estimate can be interpreted in the following way: at a point inside the obstacle, if
using only the correct singular values yields an estimate that is less than the value of
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the Picard series, then the effect of adding the incorrect terms will not be significant.
Firstly, the remainder term

∑N
j=M+1 |φz · ξ(j)|2 /|σj | will be small for such points.

Secondly, all perturbed singular values are more or less the same size. The effect is
most clearly visible in Figures 6 (c) and (d), where the values computed for points
inside the obstacle decrease significantly. If 15 singular values are used, the ratio
maxj=M+1,...,N{|σj |}/minj=M+1,...,N{|σδj |} is roughly 2; for 25 singular values it is
roughly 29.

Next, we consider the situation for z /∈ D. As already described in Section 5,
it is not possible to present a complete analysis with precise estimates in this case.
However, useful partial results are possible.

Assume, there is z /∈ D such that ‖PMφz‖ < ε ‖φz‖. Consequently

WM (z) =

M∑
j=1

|φz · ξ(j)|2

σj
<

1

min
j=1,...,M

σj

M∑
j=1

|φz · ξ(j)|2 < ε2 ‖φz‖2

min
j=1,...,M

σj
.

If ε is small enough, the behavior of WM indicates (incorrectly) that this point is
inside the obstacle. However,

W δ
N (z)−WM (z) =

N∑
j=M+1

|φz · ξ(j,δ)|2

σj
≥ ‖QMφz‖2

max
j=M+1,...,N

σδj
=

(1− ε2) ‖φz‖2

max
j=M+1,...,N

σδj
.

Noting that ‖φz‖2 = (2π/N)
∑N
j=1 |Φ∞(x̂j , z)|2 = 2π |β|2, all quantities in this lower

bound except for ε are independent of z. Consequently, using incorrect data will, for
example, guarantee that

W δ
M (z) >

3

4

2π |β|2

min
j=M+1,...,N

σδj

for all z /∈ D satisfying ‖PMφz‖ < ‖φz‖/2.

Unfortunately, in the numerical example presented in this section, ε > 1/2 for all
points on the grid. For the point z = (2.8,−0.3)> where using only the first 8 singular
values gives a bad result, the optimal ε is close to 0.9. We can predict some increase
in the value of W δ

N (z) as opposed to WM (z), but the prediction is far from sharp.

In conclusion, we have shown that using incorrect spectral data for points inside
the scatterer is not too harmful, while the same incorrect spectral data can enhance
the contrast on the outside of the scatterer.

7. Conclusion. Appendix A. Discrete Approximation of F .

In this appendix, we study, in two dimensions, the relation of the spectral infor-
mation of the fully discrete operator FFD introduced in Section 2 to the continuous
operator F . Although it is plausible that these are closely related, to the authors’
knowledge an analysis of this fact has not been published to date. Some related
considerations for an inverse elliptic boundary value problem are contained in [21].

We introduce the trigonometric monomials on L2(S) by setting

tk(x̂) =
1√
2π

eikϕ, k ∈ Z, where x̂ =

(
cosϕ
sinϕ

)
, ϕ ∈ [0, 2π).
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Note that {tk : k ∈ Z} forms a complete orthonormal system of L2(S) and more
generally provides a basis of the Sobolev space Hs(S), s ≥ 0, defined by

Hs(S) =

{
g =

∑
k∈Z

αk tk :
∑
k∈Z

(1 + k2)s|αk|2 <∞

}
, ‖g‖2Hs =

∑
k∈Z

(1 + k2)s|αk|2.

As above, for simplicity we take the number of incident plane waves J used in the
construction of FFD to be the same as the number of terms retained in the Picard
series. We introduce the finite dimensional spaces

T2N−1 =

{
N∑

k=−N

αk tk, αk ∈ C

}
, T2N =

{
N∑

k=−N

αk tk, αk ∈ C, α−N = αN

}
,

for N ∈ N. Two projection operators on these spaces come into play. By PN :
L2(S) → TN we denote the orthogonal projection onto TN with respect to the L2

scalar product. By LN : Hs(S) → TN for s > 1/2 we denote the operator of inter-
polation by a trigonometric polynomial in the points {x̂j : j = 0, . . . , N − 1}. We
remind the reader that functions in Hs(S) are continuous if s > 1/2 and hence the
interpolation operator makes sense.

We next introduce a semi discrete operator FSD : L2(S)→ L2(S) defined by

FSDg = LN

(
2π

N

N−1∑
k=0

u∞(·, x̂k) (PNg)(x̂k)

)
, g ∈ L2(S).

As the far field u∞ is analytic with respect to both arguments, we certainly are dealing
with a bounded linear operator.

Lemma A.1. Suppose λ ∈ C \ {0}. Then λ is an eigenvalue of FSD if and only
if it is an eigenvalue of FFD.

Proof. Suppose first that (λ, g) ∈ C×L2(S) is an eigenpair of FSD. Then g ∈ TN
and we can define g̃ ∈ CN by setting g̃k = g(x̂k), k = 0, . . . , N − 1. Noting PNg = g
and the interpolation property, an easy computation shows

(FFDg̃)j =
2π

N

N−1∑
k=0

u∞(x̂j , x̂k)g(x̂k) = (FSDg)(x̂j) = λ g(x̂j) = λ g̃j .

Hence (λ, g̃) ∈ C× CN is an eigenpair of FFD.
Conversely, suppose that (λ, g̃) ∈ C × CN is an eigenpair of FFD with λ 6= 0.

Define g ∈ TN by g = (1/λ)LN

(
(2π/N)

∑N−1
k=0 u∞(·, x̂k)g̃k

)
. Then

(PNg)(x̂j) = g(x̂j) =
1

λ

2π

N

N−1∑
k=0

u∞(x̂j , x̂k)g̃k =
1

λ
(FFDg̃)j = g̃j

and we obtain λ g = FSDg. This completes the proof.
By next proving that FSD approximates F , we can use results from operator

perturbation theory [13] to argue that the first few eigenvalues and eigenspaces of
FSD and F and hence of FFD and F must be close.

Theorem A.2. There holds FSD → F (N →∞) in the operator norm on L2(S).
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Proof. We first introduce the auxiliary operator Faux : L2(S)→ L2(S) by

Fauxg(x̂) =
2π

N

N−1∑
k=0

u∞(x̂, x̂k) (PNg)(x̂k), x̂ ∈ S.

Then, noting Faux PN = Faux, we have F − FSD = F (I − PN ) + (F − Faux)PN +
Faux − FSD. However, the composite rectangular rule on S integrates trigonometric
polynomials of degree at most N/2 exactly, so (F −Faux)|TN = 0. Noting further that
FSD = LN Faux, we obtain F − FSD = F (I − PN ) + (I − LN )Faux.

We start by estimating the second difference. From [20, Theorem 11.8] we obtain

‖(I − LN ) g‖L2 ≤ C(s)

Ns
‖g‖Hs , g ∈ Hs(S),

for any s > 1/2. Furthermore, using the Cauchy-Schwarz inequality,

‖Fauxg‖2Hs =
4π2

N2

∑
j∈Z2

(1 + j2)s

∣∣∣∣∣
N−1∑
k=0

∫
S

u∞(x̂, x̂k) tj(x̂) ds(x̂) (PNg)(x̂)k

∣∣∣∣∣
2

≤ 4π2

N2

(
N−1∑
k=0

|(PNg)(x̂)k|2
)∑

j∈Z2

(1 + j2)s

∣∣∣∣∣
N−1∑
k=0

∫
S

u∞(x̂, x̂k) tj(x̂) ds(x̂)

∣∣∣∣∣
2
 .

As u∞ is analytic, the last factor is bounded independently of N for any s ≥ 0. Hence

(A.1) ‖(I − LN )Fauxg‖L2 ≤ C(s)

Ns+1

(
N−1∑
k=0

|(PNg)(x̂)k|2
)1/2

, g ∈ L2(S).

From the error estimate for the composite rectangular rule, we obtain

1

N

N−1∑
k=0

|(PNg)(x̂)k|2 ≤ C
(
‖PNg‖2L2 +

‖(|PNg|2)′‖∞
N

)
≤ C

(
‖PNg‖2L2 +

‖PNg‖∞ ‖(PNg)′‖∞
N

)
.

Using the continuous embedding of Hµ1(S) into C1(S) for µ1 > 3/2 and of Hµ2(S)
into C(S) for µ2 > 1/2 and the inverse estimate ‖q‖Hµ ≤ C (1 + N2)µ/2 ‖q‖L2 for
q ∈ TN , we conclude

(A.2)
1

N

N−1∑
k=0

|(PNg)(x̂)k|2 ≤ C(µ)

(
1 +

(1 +N2)µ

N

)
‖PNg‖2L2

for any µ > 1. Observing ‖PN‖ = 1, choosing s and µ appropriately and combining
(A.1) and (A.2) yields ‖(I − LN )Faux‖ → 0 as N → ∞. Note that we can achieve
any order of convergence by choosing s large enough.

It remains to prove F (I − PN ) → 0, which we do by bounding Fq for q ∈ T⊥N ,
the orthogonal complement of TN . We represent q and Fq by their Fourier series,
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respectively, q =
∑
|k|≥N/2 αk tk and Fq =

∑
l∈Z γl tl. Then, by partial integration,

γl =
1

2π

∫
S

Fq(x̂) tl(x̂) ds(x̂) =
1

2π

∫
S

∫
S

u∞(x̂, ŷ) q(ŷ) tl(x̂) ds(ŷ) ds(x̂)

=
1

2π

∑
|k|≥N/2

αk

∫
S

∫
S

u∞(x̂, ŷ) tk(ŷ) tl(x̂) ds(ŷ) ds(x̂)

=
−i
2π

∑
|k|≥N/2

αk
k

∫
S

∫
S

∂u∞(x̂, ŷ)

∂ŷ⊥
tk(ŷ) tl(x̂) ds(ŷ) ds(x̂).

Here the symbol ∂/∂ŷ⊥ denotes a derivative in the angular direction with respect to
ŷ. Consequently,

|γl|2 ≤
1

(2π)2

 ∑
|k|≥N/2

∣∣∣αk
k

∣∣∣2
 ∑

|k|≥N/2

∣∣∣∣∫
S

∫
S

∂u∞(x̂, ŷ)

∂ŷ⊥
tk(ŷ) tl(x̂) ds(ŷ) ds(x̂)

∣∣∣∣2


≤ 1

(πN)2
‖q‖2L2

 ∑
|k|≥N/2

∣∣∣∣∫
S

∫
S

∂u∞(x̂, ŷ)

∂ŷ⊥
tk(ŷ) tl(x̂) ds(ŷ) ds(x̂)

∣∣∣∣2


We now have the estimate

‖Fq‖2L2 =
∑
l∈Z
|γl|2 ≤

1

(πN)2

∥∥∥∥∂u∞(x̂, ŷ)

∂ŷ⊥

∥∥∥∥2

L2(S×S)

‖q‖2L2

for all q ∈ T⊥N . As ‖I − PN‖ = 1, we have proved F (I − PN ) → 0 as N → ∞.
Note again that we can in fact prove any order of convergence by carrying out further
partial integrations with respect to I − PN , i.e. convergence is super-algebraic.
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