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Abstract

We consider the problem of finding a best approximation pair, i.e., two points which achieve
the minimum distance between two closed convex sets in a Hilbert space. When the sets in-
tersect, the method under consideration, termed ASR for averaged successive reflections, is a
special instance of an algorithm due to Lions and Mercier for finding a zero of the sum of two
maximal monotone operators. We investigate systematically the asymptotic behavior of ASR in
the general case when the sets do not necessarily intersect and show that the method produces
best approximation pairs provided they exist. Finitely many sets are handled in a product
space, in which case the ASR method is shown to coincide with a special case of Spingarn’s
method of partial inverses.

Keywords: Best approximation pair, convex set, firmly nonexpansive map, Hilbert space, hy-
brid projection-reflection method, method of partial inverses, normal cone, projection, reflection,
weak convergence.
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and

(2) A and B are two nonempty closed convex (possibly non-intersecting) sets in X.

Let I denote the identity operator on X, and let PA and PB be the projectors (best approximation
operators) onto A and B, respectively. Given a point a ∈ X, the standard best approximation
problem relative to B is to [16]

(3) find b ∈ B such that ‖a− b‖ = inf ‖a−B‖.

A natural extension of this problem is to find a best approximation pair relative to (A,B), i.e., to

(4) find (a, b) ∈ A×B such that ‖a− b‖ = inf ‖A−B‖.

If A = {a}, (4) reduces to (3) and its solution is PBa. On the other hand, when the problem is
consistent, i.e., A ∩ B 6= Ø, then (4) reduces to the well-known convex feasibility problem for two
sets [4, 13] and its solution set is

{
(x, x) ∈ X ×X : x ∈ A ∩ B

}
. The formulation (4) captures a

wide range of problems in applied mathematics and engineering [11, 23, 26, 29, 34].

The method of alternating projections applied to the sets A and B is perhaps the most straight-
forward algorithm to obtain a best approximation pair. It is described by the algorithm

(5) Take x0 ∈ X and set (∀n ∈ N) xn = (PAPB)nx0.

It was shown in [10, Theorem 2] that if A or B is compact, then the sequence (xn, PBxn)n∈N
converges in norm to a best approximation pair. Best approximation pairs may not exist in general;
however, if they do, then the sequence generated by (5) solves (4) in the sense that (xn, PBxn)n∈N
converges weakly to some best approximation pair. This happens in particular when one of the
sets is bounded [3, 11, 23].

While simple and elegant, the method of alternating projections can suffer from slow convergence,
as theoretical [5, 20] and numerical [12] investigations have shown. We analyze an alternative
strategy based on reflections rather than projections. Denote the reflectors with respect to A and
B by RA = 2PA − I and RB = 2PB − I respectively, and consider the successive approximation
method

(6) Take x0 ∈ X and set (∀n ∈ N) xn = Tnx0,

where

(7) T = 1
2

(
RARB + I

)
.

The algorithm described by (6) iterates the operator T which is the average between the successive
reflectors RARB and I. We thus refer to (6)–(7) as the Averaged Successive Reflections (ASR)
method. This algorithm does not appear to be well known in approximation theory; consequently,
let us now provide some motivation for it.
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• If A ∩ B 6= Ø, then the ASR method is a special case of a nonlinear variant of the Douglas-
Rachford algorithm [17] proposed by Lions and Mercier in [25] to find a zero of the sum of
two maximal monotone operators (in our setting, the normal cone maps of A and B).

• Our work in the field of imaging [6, 7] motivated us to study the ASR method. In [7], we used
a relaxed version of (6)–(7), which we called the Hybrid Projection-Reflection (HPR) method,
to solve the (nonconvex) phase retrieval problem. This algorithm was inspired by our attempt
to use reliable convex optimization techniques as a basis to analyze current state-of-the-art
techniques in phase retrieval [6]. In fact, more than thirty years of numerical experience with
the phase retrieval problem have shown that HPR-type methods converge to an acceptable
neighborhood of the solution in fewer iterations than alternating projections.

• If B is the Cartesian product of finitely many halfspaces and A is the diagonal in the corre-
sponding product space, then the ASR method coincides with Spingarn’s method of partial
inverses for solving linear inequalities; see Section 4 for further details. Spingarn reports
on page 61 in [32] that his algorithm “does better on certain classes of poorly conditioned
problems,” although it “is outperformed by cyclic projections with overrelaxtion, at least
on well-conditioned problems.” An interesting open problem is to obtain some more precise
guidelines on when one should prefer the ASR method to cyclic projections and vice versa.

• The following example in the Euclidean plane illustrates a simple setting where the ASR
method is superior to the method of alternating projections. Let A = {(r, s) ∈ R2 : s ≤ 0}
and B = {(r, s) ∈ R2 : r ≤ s}. Fix x0 = (8, 4) as a starting point for the sequence (xn)n∈N
generated the ASR method (6)–(7). Then x1 = (6,−2), x2 = (2,−4), x3 = (−1,−3), and
x4 = xn = (−2,−2), for every n ≥ 4. Thus the ASR method finds the point (−2,−2) ∈ A∩B
in just four iterations. In contrast, the sequence generated by the method of alternating
projections (5) with the same starting point (8, 4) converges to (0, 0) ∈ A ∩ B, but not in
finitely many steps.

We now recall the known convergence results for the ASR method.

Fact 1.1 Suppose that A ∩ B 6= Ø and let (xn)n∈N be an arbitrary sequence generated by (6)–(7).
Then the following hold.

(i) (xn)n∈N converges weakly to some fixed point x of T and PBx ∈ A ∩B.

(ii) The “shadow” sequence (PBxn)n∈N is bounded and each of its weak cluster points belongs to
A ∩B.

Proof. See [25, Theorem 1] (specialized to the normal cone maps of A and B), or the more direct
proof of [6, Fact 5.9].

The aim of this paper is to analyze completely the asymptotic behavior of the ASR method
(6)–(7), covering in particular the case when A ∩ B = Ø. In addition, we shall briefly explore
extensions of our main results to the setting of finitely many sets.
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The paper is organized as follows. We provide basic facts on the geometry of two closed convex
sets in Section 2. In Section 3, we show that, for any sequence (xn)n∈N generated by (6)–(7),
either ‖PBxn‖ → +∞ and (4) has no solution, or

(
(PARBxn, PBxn)

)
n∈N is bounded and its weak

cluster points are solutions of (4). Additional results are presented for the case when A is a linear
subspace. This is of relevance in Section 4, where finitely many sets are handled in a product space.
We conclude by establishing a connection with Spingarn’s method of partial inverses [31, 32, 33].

Notation. The closure of a set C ⊂ X is denoted by C and its interior by intC; its recession
cone is rec(C) =

{
x ∈ X : x+C ⊂ C

}
(note that rec Ø = X) and its normal cone map is given by

NC : x 7→

{{
u ∈ X : (∀c ∈ C) 〈c− x, u〉 ≤ 0

}
, if x ∈ C;

Ø, otherwise.

If C is a convex cone, its polar cone is C	 =
{
x ∈ X : (∀c ∈ C) 〈c, x〉 ≤ 0

}
and C⊕ = −C	. The

range of an operator T is denoted by ranT (with closure ranT ) and its fixed point set by FixT .
Finally, ⇀ denotes weak convergence and N is the set of nonnegative integers.

2 The geometry of two closed convex sets

Recall (see [21, Theorem 12.1]) that an operator T̃ from X to X is firmly nonexpansive, i.e.,

(8) (∀x ∈ X)(∀y ∈ X) ‖T̃ x− T̃ y‖2 + ‖(I − T̃ )x− (I − T̃ )y‖2 ≤ ‖x− y‖2,

if and only if R̃ = 2T̃ − I is nonexpansive, i.e.,

(9) (∀x ∈ X)(∀y ∈ X) ‖R̃x− R̃y‖ ≤ ‖x− y‖.

Fact 2.1 Suppose that C is a nonempty closed convex set in X. Then, for every point x ∈ X, there
exists a unique point PCx ∈ C such that ‖x−PCx‖ = inf ‖x−C‖. The point PCx is characterized
by

(10) PCx ∈ C and (∀c ∈ C) 〈c− PCx, x− PCx〉 ≤ 0.

The operator PC : X → C : x 7→ PCx is called the projector onto C; it is firmly nonexpansive and
consequently, the reflector RC = 2PC − I is nonexpansive.

Proof. See [16, Theorems 4.1 and 5.5], [21, Chapter 12], [22, Propositions 3.5 and 11.2], or [35,
Lemma 1.1].

Fact 2.2 Suppose that C is a nonempty closed convex set in X. Then ran (I − PC) =
(

rec(C)
)	

.

Proof. See [35, Theorem 3.1].
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In order to study the geometry of the given two closed convex sets A and B, it is convenient to
introduce the following objects, which we use throughout the paper:

(11) D = B −A, v = PD(0), E = A ∩ (B − v), and F = (A+ v) ∩B.

It follows at once from (10) that

(12) −v ∈ ND(v).

Note also that if A ∩ B 6= Ø, then E = F = A ∩ B. However, even when A ∩ B = Ø, the sets E
and F may be nonempty and they serve as substitutes for the intersection. Indeed, ‖v‖ measures
the “gap” between the sets A and B.

Fact 2.3

(i) ‖v‖ = inf ‖A−B‖, and the infimum is attained if and only if v ∈ B −A.

(ii) E = Fix(PAPB) and F = Fix(PBPA).

(iii) E + v = F .

(iv) If e ∈ E and f ∈ F , then PBe = PF e = e+ v and PAf = PEf = f − v.

(v) E and F are nonempty provided one of the following conditions holds:

(a) A ∩B 6= Ø.

(b) B −A is closed.

(c) A or B is bounded.

(d) A and B are polyhedral sets (intersections of finitely many halfspaces).

(e) rec(A) ∩ rec(B) is a linear subspace, and A or B is locally compact.

Proof. See [2, Section 5] and [3, Section 2].

Proposition 2.4 Suppose that f ∈ F and y ∈ ND(v), and set e = f − v ∈ E. Then the following
hold.

(i) ND(v) = NB(f) ∩
(
−NA(e)

)
.

(ii) PB(f + y) = f .

(iii) PA(e− y) = e.

Proof. (i) follows from (11). (ii) and (ii) follow from (i) and (10).
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Proposition 2.5 Suppose that (an)n∈N and (bn)n∈N are sequences in A and B, respectively. Then

(13) bn − an → v ⇔ ‖bn − an‖ → ‖v‖.

Now assume that bn − an → v. Then the following hold.

(i) bn − PAbn → v and PBan − an → v.

(ii) The weak cluster points of (an)n∈N and (PAbn)n∈N (resp. (bn)n∈N and (PBan)n∈N) belong to
E (resp. F ). Consequently, the weak cluster points of the sequences(

(an, bn)
)
n∈N,

(
(an, PBan)

)
n∈N,

(
(PAbn, bn)

)
n∈N

are best approximation pairs relative to (A,B).

(iii) If E = Ø (or, equivalently, F = Ø), then min
{
‖an‖, ‖PAbn‖, ‖bn‖, ‖PBan‖

}
→ +∞.

Proof. The implication “⇒” is clear. Conversely, let (∀n ∈ N) dn = bn−an ∈ B−A ⊂ B −A = D.
It follows from (10) that (∀n ∈ N) 〈dn − v, v〉 ≥ 0. Hence

(14) (∀n ∈ N) ‖dn‖2 − ‖v‖2 = ‖dn − v‖2 + 2〈dn − v, v〉 ≥ ‖dn − v‖2,

which proves (13). Assume for the remainder of the proof that bn − an → v or, equivalently,
‖bn − an‖ → ‖v‖. Since

(∀n ∈ N) ‖bn − an‖ ≥ max
{
‖bn − PAbn‖, ‖PBan − an‖

}
≥ min

{
‖bn − PAbn‖, ‖PBan − an‖

}
≥ ‖v‖,

we conclude that
(
‖bn − PAbn‖

)
n∈N and

(
‖PBan − an‖

)
n∈N both converge to ‖v‖. As just proved,

this now yields bn − PAbn → v and PBan − an → v. Hence (i) holds. Let a ∈ A be a weak cluster
point of (an)n∈N, say akn ⇀ a. Then bkn ⇀ v+a ∈ B ∩ (v+A) = F . Hence a ∈ A∩ (B− v) = E.
The remaining three sequences are treated similarly and thus (ii) is verified. Finally, (iii) is a direct
consequence of (ii).

Remark 2.6 Sequences conforming to the assumptions described in Proposition 2.5 can be gen-
erated by (5), upon rewriting it as

(15) Take b−1 ∈ B and set (∀n ∈ N) an = PAbn−1 and bn = PBan.

Indeed, [3, Theorem 4.8] implies that bn−an → v (see also [11]). This happens also for the iterates
generated by Dykstra’s algorithm [3, Theorem 3.8]. In Theorem 3.13 below, we shall see that the
ASR method also gives rise to sequences with this behavior.

Corollary 2.7 v ∈ (PB − I)(A) ∩ (I − PA)(B) ⊂ (recB)⊕ ∩ (recA)	.

6



Proof. In view of Proposition 2.5(i) and Remark 2.6,

(16) v ∈ (PB − I)(A) ∩ (I − PA)(B) ⊂ ran (PB − I) ∩ ran (I − PA).

Now apply Fact 2.2.

Remark 2.8 Corollary 2.7 can be refined in certain cases.

(i) First assume that A = a+K and B = b+ L, where K and L are closed convex cones. Then
rec(A) = K and rec(B) = L. Hence, by Corollary 2.7, v ∈ L⊕ ∩ K	. In fact, [2, Ex. 2.2]
shows that

v = PL⊕∩K	(b− a).

(ii) Now assume that A is a closed affine subspace, say A = a + K, where K is a closed linear
subspace. Then K = A−A and hence

v ∈ (A−A)⊥.

3 The Averaged Successive Reflections (ASR) method

Let us start with a key observation concerning the operator T = (RARB + I)/2.

Proposition 3.1 T is firmly nonexpansive and defined on X.

Proof. By Fact 2.1, the projectors PA and PB are firmly nonexpansive. As pointed out in the
beginning of Section 2, the corresponding reflectors RA and RB are nonexpansive. It follows that
RARB is nonexpansive as well and, hence, that T is firmly nonexpansive.

Several fundamental results on firmly nonexpansive maps have been discovered over the past
four decades. Specializing these to T , we obtain the following.

Fact 3.2 Let x0 ∈ X. Then:

(i) (Tnx0−Tn+1x0)n∈N converges in norm to the unique element of minimum norm in ran (I−T );

(ii) FixT 6= Ø ⇔ (Tnx0)n∈N converges weakly to some point in FixT ;

(iii) FixT = Ø ⇔ ‖Tnx0‖ → +∞.

Proof. (See also [9].) (i): [1, Corollary 2.3] and [28, Corollary 2] (ii): [27, Theorem 3]. (iii): [1,
Corollary 2.2].

The following identities will be useful later.
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Proposition 3.3 Let x ∈ X. Then:

(i) x− Tx = PBx− PARBx;

(ii) ‖x− Tx‖2 = ‖x− PBx‖2 + 〈x− PARBx,RBx− PARBx〉.

Proof. Indeed,

x− Tx = x− 1
2(RARBx+ x) = 1

2(x− 2PARBx+RBx) = 1
2(x− 2PARBx+ 2PBx− x)

= PBx− PARBx.

Hence (i) holds, and we obtain further

‖x− Tx‖2 = ‖PBx− PARBx‖2

= ‖PBx− x‖2 + ‖x− PARBx‖2 + 2〈x− PARBx, PBx− x〉
= ‖PBx− x‖2 + ‖x− PARBx‖2 + 〈x− PARBx,RBx− x〉
= ‖PBx− x‖2 + ‖x− PARBx‖2 + 〈x− PARBx, (RBx− PARBx)− (x− PARBx)〉
= ‖PBx− x‖2 + 〈x− PARBx,RBx− PARBx〉,

as announced in (ii).

Theorem 3.4 The unique element of minimum norm in ran (I − T ) is v.

Proof. It follows from Fact 3.2(i) that ran (I−T ) possesses a unique element of minimum norm, say
w. We shall show that w = v. On the one hand, by Proposition 3.3(i), we have ran(I−T ) ⊂ B−A
and hence w ∈ B −A = D. On the other hand, it follows from Proposition 3.3(ii) and (10) that,
for every a ∈ A,

‖w‖2 ≤ ‖a− Ta‖2 = ‖PBa− a‖2 + 〈a− PARBa,RBa− PARBa〉 ≤ ‖PBa− a‖2 = inf ‖B − a‖2.

Hence ‖w‖ ≤ inf ‖B −A‖ and, therefore, w = PD0 = v.

Theorem 3.5 The set Fix(T + v) is closed and convex. Moreover,

(17) F +ND(v) ⊂ Fix(T + v) ⊂ v + F +ND(v).

Proof. Since T is firmly nonexpansive, so is T + v. Hence Fix(T + v) is closed and convex (see, for
instance, [21, Lemma 3.4] or [22, Proposition 5.3]). Now pick f ∈ F , y ∈ ND(v), and set x = f + y.
By Proposition 2.4(ii), we have PBx = f . Hence RBx = 2PBx− x = 2f − (f + y) = f − y. Now,
let e = f − v. It follows from (12) that y − v ∈ ND(v). Therefore, using Proposition 2.4(iii), we
obtain PARBx = PA(f −y) = PA(e− (y−v)) = e = f −v. Hence PBx−PARBx = f − (f −v) = v.
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By Proposition 3.3(i), x− Tx = PBx− PARBx = v and, in turn, x = Tx+ v, i.e., x ∈ Fix(T + v).
Thus,

(18) F +ND(v) ⊂ Fix(T + v).

To establish the remaining inclusion, pick x ∈ Fix(T + v). Then x − Tx = v or, equivalently (see
Proposition 3.3), PBx − PARBx = v. Let f = PBx = v + PARBx and y = x − v − f . Then
f ∈ B ∩ (A+ v) = F and x = v + f + y. It now suffices to show that y ∈ ND(v). To see this, pick
a ∈ A and b ∈ B. On the one hand, since f = PBx, Fact 2.1 results in 〈b − f, x − f〉 ≤ 0. Using
the definition of y, we write the last inequality equivalently as

(19) 〈b− f, y + v〉 ≤ 0.

On the other hand, PA(2f − x) = PA(2PBx − x) = PARBx = f − v. Again using Fact 2.1, we
deduce 〈a− f + v,−y〉 = 〈a− (f − v), (2f − x)− (f − v)〉 ≤ 0. Hence

(20) 〈f − a− v, y〉 ≤ 0.

Adding (19) and (20), we obtain 〈b−a−v, y〉+〈b−f, v〉 ≤ 0. This inequality, (12), Proposition 2.4(ii),
and Fact 2.1 now yield 〈b − a − v, y〉 ≤ 〈b − f,−v〉 = 〈b − f, (f − v) − f〉 ≤ 0. We conclude that
y ∈ ND(v).

Remark 3.6 A little care with (17) shows that rec(F ) +ND(v) ⊂ rec(Fix(T + v)). In particular,
if F 6= Ø, then −v ∈ rec(Fix(T + v)) (use (12)).

The next two examples illustrate that the bracketing given for Fix(T +v) in Theorem 3.5 is tight.

Example 3.7 Let X = R, A = {0}, and B = [1,+∞[. Then D = B, v = 1, F = {1}, and
Fix(T + v) = F +ND(v).

Example 3.8 Let X = R, A = [1,+∞[, and B = {0}. Then D = ]−∞,−1], v = −1, F = B, and
Fix(T + v) = v + F +ND(v).

The following result, which improves upon [6, Fact A1], gives a complete description of FixT in
the consistent case.

Corollary 3.9 Suppose that A∩B 6= Ø. Then FixT = (A∩B) +ND(0) and PB(FixT ) = A∩B.

Proof. Since A ∩B 6= Ø, we have v = 0 and F = A ∩B. The formula for FixT (resp. PB(FixT ))
follows from Theorem 3.5 (resp. Proposition 2.4(ii)).

Remark 3.10 We show that if the sets A and B do not “overlap sufficiently”, then FixT may be
strictly larger than A ∩ B. Indeed, let X = R, A = {0}, and B = [0,+∞[. Then D = B, v = 0,
F = {0} = A∩B, yet FixT = ]−∞, 0]. This simple example shows that iterating T alone may not
yield a point in A∩B. Hence it is important to monitor the “shadow sequence” (PBT

nx0)n∈N; see
Fact 1.1 and Theorem 3.13 below.

9



Remark 3.11 If 0 ∈ int(B−A) (a fortiori if the Slater-type condition
(
A∩int(B)

)
∪
(
B∩int(A)

)
6=

Ø holds), then ND(0) = {0} and consequently (Corollary 3.9) FixT = A ∩B.

Lemma 3.12 Suppose that F 6= Ø, let y0 ∈ Fix(T + v) and set yn = Tny0, for all n ∈ N. Then
(yn)n∈N = (y0 − nv)n∈N lies in Fix(T + v). Moreover,

(21) (∀n ∈ N) ‖xn+1 − y0 + (n+ 1)v‖2 + ‖xn − xn+1 − v‖2 ≤ ‖xn − y0 + nv‖2.

Proof. The proof proceeds by induction on n. Clearly, y0−0v = y0 ∈ Fix(T +v). Now assume that
yn = y0−nv ∈ Fix(T+v), for some n ∈ N. Then y0−nv = yn = (T+v)(yn) = Tyn+v = yn+1+v and
hence yn+1 = y0−(n+1)v. Moreover, (17) is precisely what is needed to show that yn+1 ∈ Fix(T+v).
Hence the claims regarding (yn)n∈N are proven. Next, (21) follows from the firm nonexpansiveness
of T (Proposition 3.1) applied to xn and yn = y0 − nv.

Theorem 3.13 (Averaged Successive Reflections (ASR) method) Let x0 ∈ X and set
xn = Tnx0, for all n ∈ N. Then the following hold.

(i) xn − xn+1 = PBxn − PARBxn → v and PBxn − PAPBxn → v.

(ii) If A ∩ B 6= Ø, then (xn)n∈N converges weakly to a point in Fix(T ) = (A ∩ B) + ND(0);
otherwise, ‖xn‖ → +∞.

(iii) Exactly one of the following two alternatives holds.

(a) F = Ø, ‖PBxn‖ → +∞, and ‖PAPBxn‖ → +∞.

(b) F 6= Ø, the sequences (PBxn)n∈N and (PAPBxn)n∈N are bounded, and their weak cluster
points belong to F and E, respectively; in fact, the weak cluster points of

(22)
(
(PARBxn, PBxn)

)
n∈N and

(
(PAPBxn, PBxn)

)
n∈N

are best approximation pairs relative to (A,B).

Proof. (i): On the one hand, Proposition 3.3(i) yields

(23) (∀n ∈ N) xn − xn+1 = xn − Txn = PBxn − PARBxn.

On the other hand, Fact 3.2(i) and Theorem 3.4 imply

(24) xn − xn+1 = Tnx0 − Tn+1x0 → v.

Altogether, we obtain the first claim and, by Proposition 2.5(i), PBxn − PAPBxn → v. (ii):
This follows immediately from Fact 3.2(ii)&(iii) and Corollary 3.9. (iii): If F = Ø, then (i) and
Proposition 2.5(iii) yield ‖PBxn‖ → +∞ and ‖PAPBxn‖ → +∞. Now assume that F 6= Ø. We
claim that (PBxn)n∈N is bounded. Indeed, fix f ∈ F ⊂ Fix(T + v) (see Theorem 3.5). Repeated
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use of (21) (with y0 = f) in Lemma 3.12 yields ‖xn − (f − nv)‖ ≤ ‖x0 − f‖, for all n ∈ N. Also,
since PB(f − nv) = f (Proposition 2.4(ii)) and PB is nonexpansive (Fact 2.1), we have

(∀n ∈ N) ‖PBxn − f‖ = ‖PBxn − PB(f − nv)‖ ≤ ‖xn − (f − nv)‖ ≤ ‖x0 − f‖.

Hence (PBxn)n∈N is bounded. The remaining statements regarding the weak cluster points now
follow from (i) and Proposition 2.5(ii).

Remark 3.14 The conclusions of Theorem 3.13 can be strengthened provided A or B has addi-
tional properties.

(i) Best approximation pairs exist and can be found as described in Theorem 3.13(iii)(b) when-
ever (at least) one of the conditions listed in Fact 2.3(v) is satisfied.

(ii) Suppose that best approximation pairs relative to (A,B) exist, i.e., F 6= Ø. If PB is weakly
continuous (as is the case when X is finite-dimensional or B is a closed affine subspace), then(
(PARBxn, PBxn)

)
n∈N and

(
(PAPBxn, PBxn)

)
n∈N both converge weakly to such a pair.

We shall discuss the important case when A is an affine or linear subspace in Theorem 3.17 and
Proposition 3.19 below.

Remark 3.15 If x0 ∈ X and y0 ∈ Fix(T + v), then (21) implies that
(
‖Tnx0 + nv − y0‖

)
n∈N is

decreasing. Consequently, (Tnx0 +nv)n∈N is Fejér monotone with respect to Fix(T +v). In certain
settings, Fejér monotonicity sheds further light on the behavior of the sequence (Tnx0 + nv)n∈N.
For instance, if int Fix(T + v) 6= Ø, then (Tnx0 + nv)n∈N must converge in norm. See [4, 14] for
this and further properties.

Remark 3.16 Pick x0 ∈ X and set xn = Tnx0, for every n ∈ N.

(i) Theorem 3.13(i) states that PBxn − PAPBxn → v. Hence, using Fact 2.3(i), (δn)n∈N =(
‖PBxn − PAPBxn‖2

)
n∈N converges to ‖v‖2 = inf ‖A − B‖2, the (squared) gap between A

and B. In [7, Section 4], a normalized version of δn was employed as a stopping criterion and
error measure in an application of the ASR method to image processing.

(ii) By [28, Corollary 2], xn/n → −v. Hence, one can monitor the value of ‖xn/n‖ during the
execution of the ASR method as an approximation of the gap ‖v‖.

Theorem 3.17 (when A is an affine subspace) Suppose that A is a closed affine subspace and
x0 ∈ X. Let xn = Tnx0, for all n ∈ N. Then

(25) PBxn − PAxn → v.

If F 6= Ø, then (PAxn)n∈N is bounded and its weak cluster points belong to E. If furthermore
A ∩ B 6= Ø, then (xn)n∈N converges weakly to some point x ∈ (A ∩ B) + ND(0). Moreover,
(PAxn)n∈N and (PBxn)n∈N converge weakly to PAx ∈ A ∩B.
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Proof. Since A is an affine subspace, PA is an affine operator. It follows that PARB = PA(PB +
PB − I) = PAPB + PAPB − PA = 2PAPB − PA and hence PB − PARB = PB + PA − 2PAPB =
2(PB − PAPB) + PA − PB. In turn, this implies

(26) PB − PA = 2(PB − PAPB)− (PB − PARB).

Now apply (26) to (xn)n∈N, invoke Theorem 3.13(i), and deduce that PBxn−PAxn → v. If F 6= Ø,
then (PBxn)n∈N is bounded (Theorem 3.13(iii)(b)). Consequently, (25) implies that (PAxn)n∈N is
bounded and that every weak cluster point of (PAxn)n∈N belongs to E (Proposition 2.5(ii)). Now
assume that A ∩B 6= Ø, whence v = 0 and E = F = A ∩B. It follows from Theorem 3.13(ii) that
xn ⇀ x ∈ (A ∩ B) +ND(0). Since PA is weakly continuous, we have PAxn ⇀ PAx. By (25) and
the weak closedness of B, we conclude that PBxn ⇀ PAx ∈ A ∩B.

Remark 3.18 The convergence statement (25) need not hold if A is not an affine subspace: indeed,
if x0 = 0 in Example 3.8, then PBxn − PAxn = −max{1, n} → −∞.

When A is a linear subspace, an additional property complements the results of Theorem 3.17.

Proposition 3.19 (when A is a linear subspace) Suppose that A is a closed linear subspace.
Then PA

(
Fix(T + v)

)
= E. If A ∩B 6= Ø, then PA

(
Fix(T )

)
= A ∩B.

Proof. In view of Theorem 3.5 and Fact 2.3(iii), we may assume that E 6= Ø. Pick e ∈ E. Adding
A⊥ to (17) yields

(27) F +ND(v) +A⊥ ⊂ Fix(T + v) +A⊥ ⊂ v + F +ND(v) +A⊥.

On the other hand, v ∈ A⊥ (Remark 2.8(ii)) and ND(v) ⊂ −NA(e) = A⊥ (Proposition 2.4(i)).
Hence (27) implies F+A⊥ = Fix(T+v). Together with Fact 2.3(iv), this yields PA

(
Fix(T+v)

)
= E.

Now suppose A∩B 6= Ø. By (11), v = 0 and E = A∩B. Therefore, PA

(
Fix(T + v)

)
= E becomes

PA

(
Fix(T )

)
= A ∩B.

We conclude this section with another special case.

Remark 3.20 Suppose that A is an obtuse cone, i.e., A⊕ ⊂ A. Pick x0 ∈ A and set xn = Tnx0,
for all n ∈ N. Since ranRA = A [8], the entire sequence (xn)n∈N lies in A.

4 Finitely many sets

In this final section, we show how one can adapt the two-set results of Section 3 to problems with
finitely many sets. We assume that

(28) C1, . . . , CJ are finitely many nonempty closed convex sets in X.
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The following product space technique was first introduced in [30]. Pick (λj)1≤j≤J in ]0, 1] such

that
∑J

j=1 λj = 1 and denote by X the Hilbert space obtained by equipping the Cartesian product

XJ with the inner product
(
(xj)1≤j≤J , (yj)1≤j≤J

)
7→
∑J

j=1 λj〈xj , yj〉. Let

(29) A =
{

(x, . . . , x) ∈ X : x ∈ X
}

and B = C1 × · · · × CJ .

Then the set
⋂J

j=1Cj in X corresponds to the set A ∩ B in X. Moreover, the projections of
x = (xj)1≤j≤J ∈ X onto A and B are given by

(30) PAx =
(∑J

j=1λjxj , . . . ,
∑J

j=1λjxj
)

and PBx = (PC1x1, . . . , PCJ
xJ),

respectively. By analogy with (11), we now set

(31) D = B−A, v = PD(0), E = A ∩ (B− v), and F = (A + v) ∩B.

Then a point (e, . . . , e) ∈ X belongs to E if and only if e minimizes the proximity function

(32) x 7→
∑J

j=1 λj‖x− PCjx‖2

or, equivalently, if e ∈ Fix
∑J

j=1 λjPCj (see [3, 11, 15] for details). Further, let

(33) T = 1
2(RARB + I),

fix x0 ∈ A, and set xn = Tnx0, for all n ∈ N. Then we obtain the ASR method in X for the two sets
A and B and, as seen in Remark 3.10, the pertinent sequence to monitor is the “shadow sequence”
(PBxn)n∈N. The results of Section 3 can be applied to this product space setting which, in turn,
yield new convergence results for algorithms operating in the original space X via (30). Rather
than detailing these counterparts, we shall bring to light a particularly interesting connection with
Spingarn’s method of partial inverses [31] (see also [18, 19, 24]).

Remark 4.1 (Spingarn’s method of partial inverses) Since A is a closed linear subspace,
Theorem 3.17 is applicable and one can thus monitor the sequence (PBxn)n∈N or the sequence
(PAxn)n∈N. The latter corresponds precisely to Spingarn’s method of partial inverses for finding
a zero of

∑J
j=1 λjNCj =

∑J
j=1NCj , i.e., for finding a point in

⋂J
j=1Cj ; see [31, Section 6]. It is

noteworthy that the main convergence result of Spingarn [31, Corollary 5.1] in this setting can also
be deduced from Theorem 3.13 and Proposition 3.19.

Spingarn analyzed further the case when X is a Euclidean space and each set Cj is a halfspace
in [32] and [33]. Specifically, he proved that F 6= Ø (this can also be deduced from Fact 2.3(v)(d)),
that (PAxn)n∈N converges linearly to some point in E [33, Theorems 1 and 2], and that convergence
occurs in finitely many steps provided that int

⋂J
j=1Cj 6= Ø [32, Theorem 2].
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