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Abstract. We apply nonsmooth analysis to a well known optical inverse problem, phase retrieval. The phase retrieval
problem arises in many different modalities of electromagnetic imaging and has been studied in the optics literature for over forty
years. The state of the art for this problem in two dimensions involves iterated projections for solving a nonconvex feasibility
problem. Despite widespread use of these algorithms, current mathematical theory cannot explain their success. At the heart
of projection algorithms is a nonconvex, nonsmooth optimization problem. We obtain some insight into these algorithms by
applying techniques from nonsmooth analysis. In particular, we show that the weak closure of the set of directions toward
the projection generate the subdifferential of the corresponding squared set distance function. Following a pattern of proof
described in F.H. Clarke, Yu.S. Ledyaev, R.J. Stern, and P.R. Wolenski, Nonsmooth Analysis and Control Theory, Springer
(1998), this result is generalized to provide conditions under which the subdifferential of an integral function equals the integral
of the subdifferential.
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1. Introduction. The phase retrieval problem arises frequently in a number of different optical imaging
modalities including diffraction imaging and interferometry. While the imaging models differ slightly, the
feature common to these techniques is the problem of recovering the phase of a complex-valued function
from measurements of the amplitude of that function, as well as other a priori constraints. There are
many unsolved mathematical problems surrounding wavefront reconstruction and phase retrieval in general.
Nevertheless engineers and physicists have been solving this problem in some sense for over thirty years.
The most famous application of phase retrieval came with NASA’s Hubble Space Telescope (HST). Optical
wavefront reconstruction played a central role in the effort to identify gross manufacturing errors in the HST
and to design, in effect, a pair of glasses for the near-sighted telescope. We refer the reader to [16] for a
review and tutorial of wavefront reconstruction. Here we present only the abstract setting.

The forward imaging model is formulated on the space L2[R2,R2] of square integrable functions mapping
R2 to R2. The model input u : R2 → R2 is an optical field generated by the object we are trying to observe.
The optical device is characterized by a unitary bounded linear operator Fm : L2[R2,R2] → L2[R2,R2] .
The subscript m indicates certain parameter settings in the optical device that constitute a particular known
”tuning” such as focus. Let R+ denote the non-negative orthant. The model output, or data, corresponding
to the mth tuning of the device, ψm : R2 → R+ , are amplitude measurements. The imaging model is given
by

|Fm(u(· ))| = ψm(· ), m = 0, 1, . . . ,M (1.1)

where the modulus | · | is the pointwise Euclidean magnitude. Our discussion switches frequently between
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the finite- and infinite-dimensional settings. Whenever there is chance for confusion, we indicate a mapping
F on the function space explicitly as F (u(· )).

Wavefront reconstruction is an inverse problem: given Fm and ψm, m = 0, 1, . . . ,M, determine u
satisfying Eq.(1.1). For a more detailed review of the existence and uniqueness theory behind this problem
we refer to [16] and references therein. For our purposes it suffices to note that there is no known closed-form
solution to this inverse problem. Moreover, in the presence of noise it is likely that a solution does not exist,
thus solution techniques involve minimizing a performance measure. Even though the performance measure
that we consider is smooth, the modulus in Eq.(1.1) leads to a nonsmooth objective (see Theorem 3.1 in
Section 3). At first glance, it would seem that one could easily handle nonsmoothness by squaring both
sides of Eq.(1.1). It turns out, however, that objectives based on the modulus function, or a nearby smooth
approximation, perform better than objectives built upon the modulus squared [16]. Therefore, it can be
advantageous to exploit nonsmoothness rather than to avoid it.

Since noise in the data is most often modeled as additive white noise, the least squares error metric is
used to find the best fit to Eq.(1.1). For m = 0, 1, . . . ,M and ψm not equal to zero a.e., define

Qm :=
{
u ∈ L2[R2,R2] | |Fm(u)| = ψm a.e.

}
. (1.2)

The phase retrieval problem is given by

minimize J(u) (1.3)

over u ∈ L2[R2,R2].

where

J(u) =

M∑
m=0

βm
2

dist 2(u;Qm) (1.4)

is the weighted ( βm > 0 for m = 0, . . . ,M ) squared set distance error for the phase retrieval problem and

dist (u;Qm) := inf
w∈Qm

‖u− w‖. (1.5)

The error metric Eq.(1.4) has a long tradition in the optics literature [9, 10]. It has also been studied in the
convex setting where each of the sets Qm is assumed to be convex (e.g. see [2, 7]).

Problem Eq.(1.3) is often reformulated as a feasibility problem: the function u must lie in the intersection
of the sets Q0 ∩ Q1 ∩ · · ·Qm, assuming that this intersection is nonempty. Projection algorithms are often
used to find a point in the intersection of such a collection of sets. Independent of the mathematical literature
on projections (and in some cases before these algorithms appeared in the mathematical literature) optical
scientists developed image processing algorithms for recovering the phase from amplitude measurements
known in the optics literature as iterative transform methods. Here one adjusts the phase of the current
estimate, u(ν), at iteration ν by replacing the magnitude of the image Fm(u(ν)(· )) with the known pointwise
magnitude ψm(· ), and then inverse transforming the result, F∗m(ψm(· ) exp(

√
−1 arg(Fm(u(ν)(· ))))). It is

straight forward to show that this operation is a projection [16]. The Gerchberg-Saxton algorithm [10] is a
classical example of this type of algorithm. When the sets Qm are convex and the intersection is nonempty,
then this approach is perfectly reasonable since cyclic projections onto such a finite collection of convex
sets converges to the intersection (e.g. see [3] and the references therein). In the setting of phase retrieval,
however, the sets Qm are not even weakly closed, let alone convex [16, Property 4.1]. This poses serious
challenges to any convergence theory for algorithms based on projections. Not surprisingly many have noted
that iterative transform algorithms often stagnate. There are some well known strategies for dealing with
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these problems [9], but it has recently been observed that these too are applications of convex operator
splitting strategies in nonconvex, nonlinear settings [4], so convergence is still problematic.

To overcome some of the problems inherent in treating the leading algorithms as nonconvex instances of
projection algorithms, we approach the problem in its variational form Eq.(1.3) using the tools of nonsmooth
analysis. We show that, for the squared set distance error metric Eq.(1.4), some projection algorithms can be
viewed as subgradient descent algorithms. Thus, the critical object for our analysis is the subdifferential, or
generalized derivative of the squared set distance error metric J(u). In this analysis, the space to which the
data {ψm : m = 0, 1, . . .M} belongs is of critical importance. We require these functions to be non-negative
and finite-valued with their value tending to zero as their argument diverges to infinity in norm. Specifically,
we assume that the data belongs to the set U where

U =
{
v ∈ L1 ∩ L2 ∩ L∞[R2,R] such that v(x) ≥ 0 a.e. and |v(x)| → 0 as |x| → ∞

}
. (1.6)

In section 2 we review the theory of projections applied to this problem. The most common projection
algorithms, stated in general form in Section 2.3, are central to current numerical techniques for this problem.
In Section 3, we look at the problem from the perspective of nonsmooth least squares, beginning first with
finite-dimensional nonsmooth analysis in Section 3.2 and building toward the infinite-dimensional analysis
in Section 3.5. We then apply these results to the problem of wavefront reconstruction in Section 3.6. In
the final section of the paper we present a result on the exchange of subdifferentiation and integration. Such
results have a long history beginning with Rockafellar’s result [20] for convex normal integrands. Our result
is in the spirit of [6, Theorem 3.5.18]. Indeed, our method of proof parallels that given by Clarke, Ledyaev,
Stern, and Wolenski. The key difference between our result and [6, Theorem 3.5.18] is that our domain of
integration is all of R2 as opposed to an interval in R.

2. Geometric Approaches .

2.1. Projections. In general, it may be difficult to prove that the projection of a given point onto a
given set exists, much less identify it with a formula. Much of the general theory of projections [24] does
not apply since the sets in question are neither weakly closed nor convex [16, Property 4.1]. However, in the
application to phase retrieval there is a very simple characterization in terms of pointwise, finite-dimensional
projections.

Our focus is on sets of the form

Q(b) :=
{
u ∈ L2[R2,R2] | |u| = b a.e.

}
. (2.1)

Here the set Q(b) is parameterized by the function b : R2 → R+ . Alternatively, one can think of this set as
being parameterized pointwise by x ∈ R2, that is, at each point x, the set Q(b(x)) ⊂ R2 is simply the sphere
of radius b(x), denoted b(x)S, where S is the unit sphere in R2. For the closed set Q in the Hilbert space
X, we define the projection operator ΠQ(v) as the multi-valued mapping, or multifunction, given as the set
of all solutions to the minimum distance problem for the set Q:

ΠQ(v) := arg min
u∈Q
‖v − u‖ = {ū ∈ Q : ‖v − ū‖ = inf

u∈Q
‖v − u‖}. (2.2)

It is a simple matter to characterize the pointwise projection Πb(x)S : R2 ⇒ R2 :

Πb(x)S(v) = b(x)ΠS(v) = b(x)×
{ v
|v| for v 6= 0

S for v = 0
, v ∈ R2. (2.3)

Note that the projection is multi-valued at v = 0. In the following sections we construct the infinite-
dimensional projection ΠQ(b) : L2[R2,R2] ⇒ L2[R2,R2] onto Q(b) from the corresponding pointwise projec-
tion at the point x, Πb(x)S : R2 ⇒ R2 onto b(x)S.
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2.2. Measurable multifunctions. We now review some of the properties of measurable multifunctions
used in this study [1, 6, 11, 21]. In Section 3.3 we extend this review to include the integration theory of
measurable multi-valued mappings. For more information on this and related topics, we refer the interested
reader to [21, Chapter 14].

Let Ω 6= ∅ and let A be a σ-field of subsets of Ω, called the measurable subsets of Ω or the A-measurable
subsets. The corresponding measure space is denoted (Ω,A). Our discussion is limited to complete non-
atomic measure spaces.

The multifunction F : Ω ⇒ Rn is said to be A-measurable, or simply measurable, if for all open sets
V the set {x |V ∩ F (x) 6= ∅} is in A. The multifunction F is said to be A ⊗ Bn-measurable if gph(F ) =
{(x, v) | v ∈ F (x)} ∈ A⊗Bn. Here Bn denotes the Borel σ-field on Rn and A⊗Bn is the σ-field on Ω×Rn
generated by all sets A×D with A ∈ A and D ∈ Bn. If F (x) is closed for each x then F is closed. Similarly,
F is said to be convex if F (x) is convex for each x. Finally, we note that the completeness of the measure
space guarantees the measurability of subsets of Ω obtained as the projections of measurable subsets G of
Ω× Rn:

G ∈ A⊗ Bn =⇒ {ω ∈ Ω | ∃ x ∈ Rn with (ω, x) ∈ G} ∈ A,

and thus F is A-measurable if and only if F is A⊗ Bn-measurable [21, Theorem 14.8].

Let F : Ω ⇒ Rn . Denote by S(F ) the set of µ-measurable functions f : Ω → Rn that satisfy
f(x) ∈ F (x) a.e. in Ω (x ∈ Ω). We call S(F ) the set of measurable selections of F .

Theorem 2.1 (Measurable selections). [21, Corollary 14.6] A closed-valued measurable map F : Ω ⇒ Rn
always admits a measurable selection.

For a measurable function f = (f1, . . . , fn), fi : Ω→ R , for i = 1, . . . , n, the integral
∫
fdµ is defined to

be the vector (∫
f1, dµ, . . . ,

∫
fndµ

)
.

The set {∫
fdµ | f ∈ S(F )

}
is the integral of the multi-valued mapping F : Ω ⇒ Rn and is denoted by

∫
Fdµ or

∫
F. We say that F :

Ω ⇒ Rn is integrably bounded, or for emphasis µ-integrably bounded, if there is a µ-integrable a : Ω→ Rn+
such that

(|v1|, . . . , |vn|) ≤ a(x)

for all pairs (x, v) ∈ (Ω,Rn) satisfying v ∈ F (x). Here and elsewhere we interpret vector inequalities as
element-wise inequalities. If a(x) in the above inequality is square-integrable with respect to the measure µ
on the measure space (Ω,A, µ), then the multifunction F is said to be L2-bounded. When Ω = Rn we let
L2
m(Rn,A, µ) denote the Hilbert space of functions mapping Rn to Rm with inner product on the measure

space (Rn,A, µ) given by

〈f, g〉 =

∫
Rn

(f(x), g(x))µ(dx) (2.4)

where (·, · ) denotes the usual finite-dimensional vector inner product.
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The next property is a generalization of [6, Exercise 3.5.14].

Proposition 2.2 (Weak compactness of measurable selections). Let the multifunction F : Rn ⇒ Rm
be closed, convex-valued and L2-bounded on L2

m(Rn,Mn, νn) where Mn is the Lebesgue field on Rn and νn
is the n-dimensional Lebesgue measure. Then the set of measurable selections S(F ) is a weakly compact,
convex set in L2

m(Rn,Mn, νn).

Proof. This set is clearly convex since F is pointwise convex-valued. Thus, by [8, Theorem 1, pg. 58]
we need only show that S(F ) is weakly sequentially compact. Consider any sequence {fi} ⊂ S(F ). We
must show that {fi} has a weakly convergent subsequence with limit f∗ ∈ S(F ). Since the sequence is L2-
bounded, reflexivity, separability and Alaoglu’s Theorem [23, Exercise 18(b), pg. 269] imply that there exists
a weakly convergent subsequence whose limit belongs to the weak closure of S(F ). Since S(F ) is convex
the strong and weak closures of S(F ) coincide. Hence the result follows if S(F ) is strongly closed. Since
strong convergence implies the existence of a subsequence that is almost everywhere pointwise convergent
[23, Theorem 3.12], and F (x) is pointwise closed, we have that S(F ) is strongly closed.

2.3. Application to wavefront reconstruction: projection algorithms. We now characterize the
projections associated with the problem of phase retrieval in terms of the corresponding pointwise projections.
This allows us to describe a general algorithmic framework that includes many of the currently used phase
retrieval algorithms. Let b ∈ L2[R2,R] with b(x) ≥ 0 a.e., let the pointwise projection b(x)ΠS be defined by
Eq.(2.3), and let Q(b) be defined by Eq.(2.1). For u, v ∈ L2[R2,R2], it is shown in [16, Theorem 4.2] that
the projection ΠQ(b) : L2[R2,R2] ⇒ L2[R2,R2] onto Q(b) is characterized as the collection of measurable
selections from the pointwise projection mapping Eq.(2.3):

ΠQ(b)(u) = S (b(· )ΠS(u(· ))) and dist (u;Q(b)) = ‖ |u| − b ‖. (2.5)

One can characterize the projection onto the sets Qm defined in Eq.(1.2) in a similar fashion. The Fm-
transform of ΠQ(b)(u) is the Fm-transform of all v ∈ ΠQ(b)(u) and is written Fm

(
ΠQ(b)(u)

)
. For each of the

unitary operators Fm and all u ∈ L2[R2,R2], we know from [16, Corollary 4.3] that

ΠQm
(u) = F∗m

(
ΠQ(ψm)(Fm(u))

)
and dist (u;Qm) = ‖ |Fm(u)| − ψm‖ . (2.6)

A general framework for projection algorithms can be found in Ref.[3] which considers sequences of weighted
relaxed projections of the form

u(ν+1) ∈

(
M∑
m=0

γ(ν)m

[
(1− α(ν)

m )I + α(ν)
m ΠQm

])
(u(ν)). (2.7)

Here I is the identity mapping, α
(ν)
m is a relaxation parameter usually in the interval [0, 2], and the

weights γ
(ν)
m are non-negative scalars summing to one. General results for these types of algorithms apply

only to convex sets. In the convex setting the inclusion in Alg.(2.7) is an equality since projections onto
convex sets are single-valued. In the non-convex setting this is not the case.

It is shown in [16] that the Gerchberg-Saxton algorithm [10] and its variants can be viewed as an instance

of Alg.(2.7). As in [16] we use the change of variables λ(ν)β
(ν)
m = γ

(ν)
m α

(ν)
m to rewrite Alg.(2.7) as

u(ν+1) ∈
(
I − λ(ν)G(ν)

)
(u(ν)), (2.8)

where for all ν the operators G(ν) : L2 → L2 are given by

G(ν) :=

M∑
m=0

G(ν)m with G(ν)m := β(ν)
m (I −ΠQm) . (2.9)
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In Alg.(2.8) the non-negative weights β
(ν)
m do not necessarily sum to 1, and the parameters λ(ν) are to be

interpreted as step lengths. This formulation of the projection algorithm is shown in the next section to
correspond to a steepest descent algorithm for a weighted squared distance function.

3. Nonsmooth Analysis. Convergence results for projection methods applied to the phase retrieval
problem are not possible in general due to the nonconvexity of the constraint sets. The nonconvexity of
the constraint sets is associated with the nonsmoothness of the square of the set distance error dist (u;Qm)
defined in Eq.(1.5). This is fundamentally different from the convex setting in a Hilbert space where the
squared distance function is smooth.

3.1. Least Squares. In general the optimal value of the weighted squared set distance error J(u)
defined by Eq.(1.4) is non-zero. Classical techniques for solving the problem numerically are based on
satisfying a first-order necessary condition for optimality. For smooth functions this condition simply states
that the gradient takes the value zero at any local solution to the optimization problem. However, the
functions dist 2(u;Qm) are not differentiable. The easiest way to see this is to consider the one dimensional
function a(x) = | |x| − b|2 where b > 0. This function is not differentiable at x = 0 (indeed, it is not even
subdifferentiably regular at x = 0 – see Eq.(3.4)). It is precisely at these points that the finite-dimensional
projection operator ΠbS is multi-valued. Similarly, dist 2(u;Qm) is not differentiable at functions u for
which there exists a set Ω ⊂ supp (ψm) of positive measure on which u vanishes.

In the nonsmooth setting the usual first-order necessary condition for optimality is replaced by a first-order
variational principle of the form 0 ∈ ∂J(u∗), where ∂ denotes a subdifferential operator such as those studied
in [5, 6, 12, 13, 15, 18]. In this paper, the phrase the subdifferential refers to the non-convex subdifferential
introduced by Kruger and Mordukhovich [15]. This subdifferential is precisely described in Definition 3.12,
and its calculus is extensively developed in [18]. The main result of this paper is the characterization of
the subdifferential of the distance functions dist 2(·;Qm) and the objective function J (Eq.(1.4)). We do
this by following the pattern of proof used by Clarke, Ledyaev, Stern, and Wolenski in [6, Theorem 3.5.18].
A consequence of this approach is that we also establish the subdifferential regularity of the functions
dist 2(·;Qm) and J . This in turn implies that for these functions the Clarke subdifferential [5, 6] and the
non-convex subdifferential [15] are equivalent. The statement of the main result now follows.

Theorem 3.1 (Projections and subdifferentials ). Let ψm : R2 → R+ belong to U where the set U is
defined in Eq.(1.6), and let ΠQm

: L2 ⇒ Qm be defined by Eq.(2.2). Then the functions dist 2(·;Qm) and J
are everywhere subdifferentially regular and for u ∈ L2[R2,R2] we have

∂
(
dist 2(u;Qm)

)
= 2cl∗ (I −ΠQm(u)) (3.1)

and

∂J(u) =

M∑
m=0

cl∗ (Gm(u)) (3.2)

where Gm is defined by Eq.(2.9), J is defined in Eq.(1.4), and cl∗ (· ) denotes the weak-star closure.

Note that in a Hilbert-space setting cl∗ (· ) = w−cl (· ) where w−cl (· ) denotes the weak closure. The
proof is given at the end of this section. In passing we note that in the convex case Theorem 3.1 is an
elementary consequence of a much more general result for convex functions given in [19, Theorem 20]. For
further results along these lines we refer the reader to [5, Proposition 2.5.4] and [21, Example 8.53].

3.2. Finite-dimensional nonsmooth analysis. In [16, Theorem 4.2] it is shown that the squared set
distance error dist 2(u;Q(b)) defined in Eq.(2.1) is given as the integral of the pointwise distance function
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defined by Eq.(2.5). In Theorem 3.1 we extend this correspondence to the subdifferentials of the associated
infinite- and finite-dimensional functions. We begin this analysis by introducing the necessary tools from
finite-dimensional variational analysis.

Recall that

dist 2(u;Q(b)) =

∫
R2

r2(u(x); b(x))dx = ‖u‖2 + ‖b‖2 + 2h(u; b),

where the pointwise residual r : R2 × R+ → R and the mapping h : L2[R2,R2]→ R are given by

r(u(x); b(x)) = |u(x)| − b(x) and h(u; b) :=

∫
R2

−|u(x)| b(x)dx, (3.3)

respectively. While dist 2(u;Q(b)) is not smooth, it is straightforward to show that it is Lipschitz continuous
on bounded subsets of L2[R2,R2].

A function f : X → R is locally Lipschitz near x if there exists a constant K ≥ 0 and a neighborhood
V(x) ⊂ X of x such that

|f(z)− f(y)| ≤ K‖z − y‖ ∀ z, y ∈ V(x).

For any set V ⊂ X over which f is finite-valued, f is said to be locally Lipschitz on V if it is locally Lipschitz
at every x ∈ V. The function is said to be (globally) Lipschitz on V if

|f(x)− f(y)| ≤ K‖x− y‖ ∀x, y ∈ V.

Proposition 3.2 (Lipschitz constants). If b ∈ L2[R2,R] with b(x) ≥ 0 a.e., then the mapping
dist 2(·;Q(b)) : L2[R2,R2] → R+ is finite-valued and Lipschitz on any bounded subset V ⊂ L2[R2,R2]
with Lipschitz constant

K = K‖·‖2 +K2h(·;b)

where K‖·‖2 = 2sup
u∈V
‖u‖ is a Lipschitz constant for ‖u‖2 on V and K2h(·;b) = 2‖b‖ is a Lipschitz constant for

h(·; b), independent of V.

Proof. This follows from the proof of [16, Lemma B.2].

Lipschitz continuity of the squared set distance error J is a straightforward consequence of Proposition 3.2
and the fact the mappings Fm are unitary.

We now introduce some basic definitions from nonsmooth analysis. In our discussion we allow mappings to
have infinite values, thus it is convenient to define the extended reals R, where R = R∪{+∞}. The effective
domain of f : Rn → R , denoted dom f ⊂ Rn, is the set on which f is finite. To avoid certain pathological
mappings the discussion is restricted to proper, i.e. not everywhere infinite, lower semi-continuous (l.s.c.)
functions.

Definition 3.3 (Subderivatives). [21] For a Lipschitz function f : Rm → R and a point u∗ ∈ Rm with
f(u∗) finite,

(i) the subderivative function df(u∗) : Rm → R is defined by

df(u∗)(w) := lim inf
τ↘0

f(u∗ + τw)− f(u∗)

τ
;
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(ii) the regular subderivative function, (or the Clarke generalized directional derivative when f is Lips-

chitz) d̂f(u∗) : Rm → R is defined by

d̂f(u∗)(w) := lim sup
u→u∗, τ↘0

f(u+ τw)− f(u)

τ
.

Definition 3.4 (Subgradients : finite-dimensions). [21] Consider a function f : Rm → R, a point
v ∈ Rm, and a point u∗ ∈ Rm with f(u∗) finite.

(i) v is a regular subgradient of f at u∗ if

lim inf
u→u∗
u 6=u∗

f(u)− f(u∗)− 〈v, u− u∗〉
|u− u∗|

≥ 0.

We call the set of regular subgradients v the regular subdifferential of f at u∗ and denote this set by
∂̂f(u∗).

(ii) v is a (general) subgradient of f at u∗ if there are sequences u(ν) → u∗ and v(ν) ∈ ∂̂f(u(ν))
with f(u(ν)) → f(u∗) and v(ν) → v. We call the set of (general) subgradients v the (general)
subdifferential of f at u∗ and denote this set by ∂f(u∗).

(iii) v is a Clarke subgradient of f at u∗ if f is l.s.c. on a neighborhood of u∗ and v satisfies

〈v, w〉 ≤ d̂f(u∗)(w) for all w ∈ Rm.

We call the set of Clarke subgradients v the Clarke subdifferential of f at u∗ and denote this set by
∂f(u∗).

(iv) A Lipschitz function f : Rn → R is said to be (subdifferentially) regular at u∗ ∈ dom f with
∂f(u∗) 6= ∅ if

∂f(u∗) = ∂̂f(u∗). (3.4)

Remark 3.5 (Subdifferentials with closed graphs). From the definitions it can be shown that if f : Rn →
R is continuous then the subgradients ∂f and ∂̂f are closed with ∂̂f convex and ∂̂f ⊂ ∂f . Moreover, the
mapping ∂f is outer semicontinuous [21, Definition 5.4]. Therefore, by [21, Theorem 5.7] the graph of ∂f
is closed.

Remark 3.6 (Subdifferentials of compositions). If g : X→ R is given as the composition of two functions
f : Y → R and h : X → Y , i.e. g(x) = (f ◦ h)(x) = f(h(x)), then we write ∂g(x) = ∂(f ◦ h)(x). On the
other hand, we write ∂f(h(x)) to denote the subdifferential of f evaluated at h(x).

The subdifferential definitions are illustrated with the following important example.

Example 3.7 (Subdifferential of the modulus). Let b ∈ (0,∞). Since the function b|u| is convex it is
subdifferentially regular for all u, and

∂ (b|u|) = b∂ (|u|) =

{
b u|u| if u 6= 0

bB if u = 0

where bB is the ball of radius b: B = {u : |u| ≤ 1}.

In contrast, the function −b|u| for b ∈ (0,∞) is not regular at 0. Nevertheless for all u

∂ (−b|u|) = b∂ (−|u|) =

{
−b u|u| if u 6= 0

bS if u = 0
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where bS is the sphere of radius b: S = {u : |u| = 1}. The Clarke subdifferential of −b|u| is the convex hull,
denoted conv (· ), of the generalized subdifferential:

∂ (−b|u|) = conv ∂ (−b|u|) = −∂(b|u| )

Proof. The first part of the statement is a trivial modification of [21, Exercise 8.27]. The last statement
follows from [21, Theorem 8.49].

This example yields the following correspondence between finite-dimensional projections ΠbS and the
subdifferential ∂(−b|u| ).

Proposition 3.8 (Pointwise projections and subdifferentials). Let ΠbS(u) be the projection defined in
Eq.(2.3). For u ∈ R2, b ∈ R+ and r2 : R2 → R+ defined in Eq.(3.3) we have

∂(−b|u| ) = −ΠbS(u), ∂(−b|u| ) = − conv (ΠbS(u)), and ∂r2(u; b) = 2(I −ΠbS(u)),

where I is the finite-dimensional identity operator. Moreover,

∂r2(u; b) = conv [2(I −ΠbS(u))].

As with the finite-dimensional projection ΠbS and the infinite-dimensional projection ΠQ(b) : L2[R2,R2] ⇒
L2[R2,R2] defined in Eq.(2.5), there is a relationship between the finite-dimensional Clarke subdifferential
∂r2(u(x); b(x)) (x fixed) and the “subdifferential” of the square distance function, ∂(dist 2(u;Q(b))). In
infinite-dimensional spaces there are several possible definitions for the subdifferential depending on the
underlying geometry and topology of the space. Fortunately, in the separable Hilbert space setting of phase
retrieval many of these definitions coincide [18, Theorem 9.2]. Thus we can choose the characterization that
is most convenient. The following development parallels that of Clarke, Ledyaev, Stern, and Wolenski in [6,
Chapter 3, Section 5]. We begin by recalling the definitions and theorems necessary for the analysis.

3.3. Integrals of multi-valued functions. We now develop some properties of integrals of multi-
valued mappings. The next theorem, due to Hildenbrand [11], is a restatement of Theorems 3 and 4 of
Aumann [1] for multifunctions on the non-atomic measure space (Ω,A, µ). These results are central to the
theory of integrals of multi-valued functions.

Theorem 3.9 (Integrals of multifunctions). [11, Theorem 4 and Proposition 7] The following properties
hold for integrably bounded multifunctions F : Ω ⇒ Rn on non-atomic measure spaces (Ω,A, µ):

(i) if F is A⊗ Bn-measurable then
∫
F =

∫
conv F ;

(ii) if F is closed (not necessarily A⊗ Bn-measurable), then
∫
F is compact.

The following result is instrumental in the proof of our main result. It is a generalization of [6, Exercise
3.5.17].

Proposition 3.10 (Weak closure of nonconvex multi-valued integrands). Let v be chosen from the set
of selections S(conv F ) where F : R2 ⇒ R2 is a nonempty, closed, M2 ⊗ B2-measurable, L2-bounded
multifunction on L2

2(R2,M2, P ) for the probability measure P (dx) = b(x)dx defined by the density b :
R2 → R+ . Then there exists a sequence {fi} of measurable selections of F which converges weakly to v.
Consequently,

S(conv F ) ⊂ cl∗ (S(F )). (3.5)
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Proof. Consider the box In = [−n, n]× [−n, n] for n = 1, 2, 3, . . . . Suppose each box In is partitioned into
(2n2)2 pixels of width 1/n. Set

tnk =
k

n
− n for k = 0, 1, . . . , 2n2,

and for each t ∈ [−n, n] define

(t)
n

= max{tnk : tnk ≤ t, k = 0, . . . , 2n2} and (t)n = min{tnk : tnk ≥ t, k = 0, . . . , 2n2}.

Note that 0 < max{t − (t)
n
, (t)n − t} ≤ 1/n whenever t ∈ [−n, n]. By Theorem 3.9 there exists a selection

fn ∈ F on (R2,M2, P ) corresponding to the partition of the box In such that

∫
R2

fn(x)b(x)dx =

∫
R2

v(x)b(x)dx

with

∫ tnj+1

tnj

∫ tnk+1

tnk

fn(x)b(x)dx =

∫ tnj+1

tnj

∫ tnk+1

tnk

v(x)b(x)dx, n = 1, 2, 3, . . . ; j, k = 0, . . . , 2n2.

We show that the sequence fn converges weakly to v. Let g ∈ C∞[R2,R2] and XM be the indicator of the
box M = [α, β]× [γ, η]. Given ε > 0 we will show that there exists n′ such that |〈gXM, fn − v〉| ≤ ε for all
n ≥ n′, i.e. 〈gXM, fn − v〉 → 0.

Let n1 be such that M ⊂ In1
for all n ≥ n1. Choose n ≥ n1. Integration by parts yields

〈gXM, fn − v〉 = (
g(β, η),

∫ η

γ

∫ β

α

[fn(s, t)− v(s, t)]b(s, t)ds dt

)
(3.6)

−
∫ η

γ

(
gy(β, y),

∫ y

γ

∫ β

α

[fn(s, t)− v(s, t)]b(s, t)ds dt

)
dy (3.7)

−
∫ β

α

(
gx(x, η),

∫ η

γ

∫ x

α

[fn(s, t)− v(s, t)]b(s, t)ds dt

)
dx (3.8)

+

∫ η

γ

∫ β

α

(
gxy(x, y),

∫ y

γ

∫ x

α

[fn(s, t)− v(s, t)]b(s, t)ds dt

)
dx dy (3.9)
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Note that each of these terms contains an expression of the form∫ η̂

γ̂

∫ β̂

α̂

(fn(s, t)− v(s, t))b(s, t)ds dt =

∫ η̂

(η̂)
n

∫ β̂

α̂

(fn(s, t)− v(s, t))b(s, t)ds dt

+

∫ (γ̂)n

γ̂

∫ β̂

α̂

(fn(s, t)− v(s, t))b(s, t)ds dt

+

∫ (η̂)
n

(γ̂)n

∫ (α̂)n

α̂

(fn(s, t)− v(s, t))b(s, t)ds dt

+

∫ (η̂)
n

(γ̂)n

∫ β̂

(β̂)
n

(fn(s, t)− v(s, t))b(s, t)ds dt,

(3.10)

where [γ̂, η̂]× [α̂, β̂] ⊂ [γ, η]× [α, β] ⊂ [−n, n]× [−n, n]. Let a ∈ L2
2(R2,M2, P ) be an L2-bound for conv F .

For any box of the form [α′, β′]× [γ′, η′], we have the bound∣∣∣∣∣
∫ η′

γ′

∫ β′

α′
(fn(s, t)− v(s, t))b(s, t)ds dt

∣∣∣∣∣ ≤
∫ η′

γ′

∫ β′

α′
|fn(s, t)− v(s, t)|b(s, t)ds dt

≤
∫ η′

γ′

∫ β′

α′
2|a(s, t)|b(s, t)ds dt

= 2

∫
R2

|a(x)|X[α′,β′]×[γ′,η′](x)b(x)dx

≤ 2‖a‖
∫
R2

X[α′,β′]×[γ′,η′](x)b(x)dx

= 2‖a‖
∫
[α′,β′]×[γ′,η′]

b(x)dx.

Next note that the Lebesgue measure of each of the sets [(η̂)
n
, η̂]× [α̂, β̂], [γ̂, (γ̂)n]× [α̂, β̂],

[(γ̂)n, η̂]× [α̂, (α̂)n], and [(γ̂)n, (η̂)
n
]× [(β̂)

n
, β̂] appearing in (3.10) is bounded by

1

n
max{(η − γ), (β − α)}

which can be made arbitrarily small. By [23, Exercise 12, page 33], for every ε̄ > 0 there is a δ(ε̄) > 0 such
that ∫

E
b(x)dx ≤ ε̄ whenever M(E) ≤ δ(ε̄),

where M(E) is the Lebesgue measure of the set E. Therefore, given ε̄ > 0, we can choose n so that
1
n max{(η − γ), (β − α)} < δ(ε̄). By combining this with Eq.(3.10), we obtain the bound∣∣∣∣∣

∫ η̂

γ̂

∫ β̂

α̂

(fn(s, t)− v(s, t))b(s, t)ds dt

∣∣∣∣∣ ≤ 8‖a‖ε̄. (3.11)

If we set

Γ = max {|g(s, t)|, |gy(s, t)|, |gx(s, t)|, |gxy(s, t)| : (s, t) ∈ [α, β]× [γ, η]}
11



the bound Eq.(3.11) yields the following bound for the sum of the 4 integrands Eq.(3.6)-(3.9):

|〈gXM, fn − v〉| ≤ Γ[1 + (η − γ) + (β − α) + (η − γ)(β − α)] [8‖a‖ε̄]

Given any ε > 0 there exists an ε̄ > 0 such that the left hand side, and so also the right hand side, of this
inequality is less than ε, moreover, for this ε̄ there is an n′ such that

1

n
max{(η − γ), (β − α)} < δ(ε̄) ∀n ≥ n′.

Therefore, for all n ≥ n′ we have |〈gXM, fn − v〉| ≤ ε, which is what we set out to show. Since functions of
the form gXM, where g ∈ C∞[R2,R2] and M ⊂ R2 is a box, are dense in L2

2(R2,M2, P ) we have that the
sequence fn converges weakly to v.

3.4. Application to wavefront reconstruction. We now apply the above results to the weighted
negative modulus mapping −b(· )|u(· )|.

Proposition 3.11 (Integrals of projections and subgradients). Let b ∈ U be a density function for the
probability measure P (dx) = b(x)dx on (R2,M2) and let u ∈ L2[R2,R2]. The negative modulus function
−|u(x)| has the following properties:

(i) S
(
b(· )∂(−|u(· )| )

)
is a weakly compact, convex set in L2

2(R2,M2, ν2);

(ii)

∫
∂(−|u(x)| )b(x)dx =

∫
− conv (ΠS(u(x))) b(x)dx, and

∫
∂(−|u(x)| )b(x)dx is a compact subset of

R2;
(iii) S

(
b(· )∂(−|u(· )| )

)
⊂ −cl∗

(
ΠQ(b)(u)

)
for all u ∈ L2[R2,R2] where Q(b) is defined by Eq.(2.1) and

ΠQ(b)(u) by Eq.(2.2).

Proof. (i) At each x, b(x)∂(−|u(x)| ) is closed and convex-valued. In addition, by Example 3.7 every
element of the set ∂(−|u(x)| ) has magnitude less than or equal to 1 and so the multifunction b(· )∂(−|u(· )| )
is L2-bounded in (R2,M2, ν2). Hence, by Proposition 2.2, the multifunction S

(
b(x)∂(−|u(x)| )

)
is weakly

compact in L2
2(R2,M2, ν2).

(ii) We wish to apply Theorem 3.9, so we must show that the multifunction F written as the composition
of a multifunction with a measurable function

F (x) = [∂(−| · | ) ◦ u](x) = ∂(−|u(x)| )

is P -integrably bounded and M2 ⊗ B2-measurable. By Example 3.7, the multifunction F : R2 ⇒ R2 is
P -integrably bounded with bound equal to 1. By Remark 3.5 ∂(−| · | ) : R2 ⇒ R2 has closed graph and
is therefore M2 ⊗ B2-measurable. By hypothesis, the function u is a Lebesgue measurable mapping from
(R2,M2) into (R2,M2). Thus, by [11, Proposition 1.b, pg 59] the composite multifunction F defined above
is M2 ⊗ B2-measurable. Therefore Theorem 3.9 applies to give the result.

(iii) By Proposition 3.10 every v(· ) ∈ S
(
b(· )∂(−|u(· )| )

)
is the weak limit of a sequence of functions in

S (b(· )∂(−|u(· )| )) , since conv (∂(−|u(· )| )) = ∂(−|u(· )| ) (see Example 3.7). If v ∈ S (b(· )∂(−|u(· )| )) , then
by [16, Theorem 4.2] and Proposition 3.8 −v ∈ ΠQ(b)(u). Hence

S (b(· )∂(−|u(· )| )) ⊂ −ΠQ(b)(u)

from which the result follows.
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3.5. Infinite-dimensional nonsmooth analysis. The next step is to relate the subdifferential of the
integral to the integral of the subdifferential. We begin with a brief review of infinite-dimensional nonsmooth
analysis. For a complete discussion see Ref. [5, 6, 12, 13, 14, 15, 17, 18] and the references therein. To begin

with, let df(u) and d̂f(u) be defined in exactly the same way that they were defined in the finite-dimensional
setting in Definition 3.3.

Definition 3.12 (Subgradients : infinite-dimensions). Let X be a separable Hilbert space, let f : X→ R
be locally Lipschitz continuous, and let u∗ ∈ dom f .

(i) A vector v ∈ X∗ is a Dini ε-subgradient of f at u∗ if

〈v, w〉 ≤ df(u∗)(w) + ε‖w‖ ∀w ∈ X

where df(u∗)(w) is the infinite-dimensional version of the subderivative defined in Def.3.3(i). We
call the set of Dini ε-subgradients v the Dini ε-subdifferential of f at u∗ and denote this set by
∂−ε f(u∗). When ε = 0, we write ∂−f(u∗) instead of ∂−0 f(u∗). By the definition of the subderivative
function Def.3.3(i) and the regular subgradient Def.3.4(i) it can be shown that for Lipschitz f the
Dini 0-subdifferential is simply the infinite-dimensional version of the regular subgradient, ∂−f(u∗) =

∂̂f(u∗).
(ii) A vector v ∈ X∗ is a subgradient of f at u∗ if there are sequences ε(ν) ↘ 0, u(ν) → u∗ and v(ν) ∈

∂−ε f(u(ν)) with v(ν)
w∗→ v where

w∗→ denotes weak-star convergence. We call the set of subgradients v
the subdifferential of f at u∗ and denote this set by ∂f(u∗).

(iii) We define the Clarke generalized subdifferential, ∂f(u∗) of f at u∗ as in the finite-dimensional case,
Definition 3.4(iii).

(iv) The function f is said to be subdifferentially regular at u∗ if ∂f(u∗) 6= ∅ and

∂f(u∗) = ∂̂f(u∗)

Remark 3.13. This construction of the subdifferential comes from [14] where it is used the to construct the
A-subdifferential, or approximate subdifferential. However, due to the equivalence theorem of Mordukhovich
and Shao [18, Theorem 9.2] it can also be used in the separable Hilbert space setting to define the subdiffer-
ential given in [15]. From Mordukhovich and Shao [18, Theorem 8.11], we also obtain the relation

∂f(u∗) = cl∗ (conv ∂f(u∗)). (3.12)

In particular, this implies that f is subdifferentiably regular at u∗ if and only if

∂f(u∗) = ∂f(u∗).

In addition, when f is strictly differentiable, then ∂f(u) coincides with the Fréchet derivative. Finally, we
note that the sets ∂f(u) are weakly closed.

Until now we have been concerned with the issue of when a subset of Rn depends measurably on the
parameter x ∈ Ω. It is equally important for us to consider the properties of measurable real-valued
functions on Rn. For this we make use of normal integrands as defined in [21, Definition 14.27]. A function
f : Ω× Rn → R is called a normal integrand if its epigraphical mapping epi f(x, · ), x ∈ Ω, is closed-valued
and measurable. Any autonomous, Lipschitz continuous mapping i.e. f(x, u) := g(u) where g : Rn → R is
Lipschitz, is a normal integrand [21, Example 14.30]. For example, the mapping |u| is a normal integrand.
We use normal integrands to prove the measurability of the following important mappings.

Lemma 3.14 (Measurability of exposed faces). Consider a closed-valued Lebesgue measurable multifunc-
tion F : Rm ⇒ Rn . For x ∈ Rm and w ∈ Rn define F∗ : Rm × Rn ⇒ Rn by

F∗(x,w) = argmax {〈v , w〉 | v ∈ F (x)} .
13



Then F∗ is closed-valued and Lebesgue measurable.

Remark 3.15. Whenever the set F∗(x,w) is non-empty it is called an exposed face of the convex set F (x)
[22, Section 18]. It is easily shown that these sets are indeed faces of F (x) in the sense of [22, Section 18].
Here we have focused on Lebesgue measure, but other σ-finite complete measures are possible.

Proof. Since F is closed-valued and measurable, [21, Example 14.32] implies that the function f : (Rm ×
Rn)× Rn → R given by

f(x,w, v) = 〈v , −w〉+ δF (x)(v)

is a normal integrand. Hence the result follows from [21, Theorem 14.37] since

F∗(x,w) = argmin f(x,w, v).

We remark that if, in addition, F is compact-valued, then so is F∗.

Lemma 3.16 (Subgradients of normal integrands). [21, Theorem 14.56] Let (Ω, A, µ) be a complete
measure space. For the proper normal integrand f : Ω × Rn → R , and any u(x) ∈ dom f(x, · ) depending
measurably on x ∈ Ω, the subderivative functions

(x,w) 7→ d̂f(x, u(x))(w), (x,w) 7→ df(x, u(x))(w)

are normal integrands and the subdifferential mappings

x 7→ ∂̂f(x, u(x)), x 7→ ∂f(x, u(x))

are closed-valued and measurable.

In the remainder of this section, whenever we speak of measure we will be referring to Lebesgue measure.

Lemma 3.17 (Measurable selections for the regular subderivative). Let f : Rn → R be locally Lipschitz
and let u : Rm → Rn and w : Rm → Rn be measurable mappings. Then the subdifferential mapping
∂f(u(· )) is measurable and possesses a measurable selection v : Rm → Rn such that

〈v(x) , w(x)〉 = d̂f(u(x))(w(x)) a.e. x ∈ Rm. (3.13)

Proof. By [21, Theorem 14.56] the mapping ∂f is measurable. Since ∂f(u) is simply the convex hull of
∂f(u) for all u ∈ Rn, [21, Exercise 14.12] implies that ∂f is compact convex-valued and measurable. Hence,
by [21, Theorem 14.13], the mapping ∂f(u(· )) is also compact convex-valued and measurable. It remains to
establish the existence of a measurable selection satisfying (3.13).

By [21, Theorem 8.49], we have d̂f(u)(w) = sup
〈
∂f(u) , w

〉
for all w ∈ Rn, and we have shown that the

mapping ∂f is compact convex-valued and measurable. Therefore, by Lemma 3.14, the mapping

F∗(u,w) = argmax
{
〈v , w〉

∣∣ v ∈ ∂f(u)
}

is also compact convex-valued and measurable with

dom (F∗) = {(u,w) |F∗(u,w) 6= ∅} = Rn × Rn.
14



Again, by [21, Theorem 14.13], the mapping F∗(u(· ), w(· )) is also compact convex-valued and measurable.
The measurable selection theorem Theorem 2.1 now implies the existence of a measurable function v(· ) such
that v(x) ∈ F∗(u(x), w(x)) a.e. which proves the lemma.

We now have our first general result on the interchange of integration and subdifferentiation.

Lemma 3.18 (Interchange of subdifferentiation and integration: I).
Let H = L2

m(Rn,Mn, νn) be the Hilbert space of square integrable functions mapping from Rn to Rm defined
in Section 2.2 where Mn is the σ-field of Lebesgue measurable sets on Rn and νn is Lebesgue measure. For
simplicity, we write dx = νn(dx). Let f : Rm → R be globally Lipschitz continuous with Lipschitz constant
K, and suppose there exists û ∈ H such that f ◦ û is an L2-bounded function on the space (Rn,Mn, µ) where
µ = bνn where b : Rn → R+ with b ∈ L1 ∩ L2 ∩ L∞[Rn,R]. Define the integral functional J : H → R by

J(u) =

∫
f(u(x))b(x)dx.

Then J is globally Lipschitz with Lipschitz constant K‖b‖2, and for every u ∈ H the mapping f ◦ u is
L2-bounded and

∂J(u) ⊂ S(b(· )∂f(u(· ))). (3.14)

Proof. Let u ∈ H. The fact that f ◦ u is L2-bounded follows immediately from the inequality

|f(u(x))| ≤ |f(û(x))|+K|u(x)− û(x)|.

The global Lipschitz continuity of J is a consequence of the following derivation:

|J(u)− J(v)| ≤
∫
K|u(x)− v(x)|b(x)dx

= K〈|u− v|, b〉
≤ K‖b‖2‖u− v‖2.

Remark 3.13 tells us that ∂J(u) is a weakly compact convex subset of H for all u ∈ H. We also have
from Proposition 2.2 that the set S(b(· )∂f(u(· ))) is also a weakly compact convex subset of H for all u ∈ H.
Hence the inclusion Eq.3.14 follows if it can be shown that

sup
{
〈v , w〉

∣∣ v ∈ S(b(· )∂f(u(· )))
}
≥ d̂J(u)(w)

for all w ∈ H.

Let w ∈ H and let {ui} ⊂ H and {τi} ⊂ R+ be such that {ui} strongly converges to u and τi ↓ 0 with

d̂J(u)(w) = lim
i→∞

J(ui + τiw)− J(ui)

τi
.

Then, by Fatou’s Lemma,

d̂J(u)(w) = lim
i→∞

∫
f(ui(x) + τiw(x))− f(ui(x))

τi
b(x)dx

≤
∫

lim sup
i→∞

f(ui(x) + τiw(x))− f(ui(x))

τi
b(x)dx

≤
∫
d̂f(u(x))(w(x))b(x)dx. (3.15)
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By Lemma 3.17, the multifunction ∂f(u(· )) possesses a measurable selection v such that

d̂f(u(x))(w(x)) = 〈v(x) , w(x)〉 a.e. on Rn. Therefore, by (3.15) we have

d̂J(u)(w) ≤
∫
〈v(x) , w(x)〉 b(x)dx

≤ sup
{
〈v , w〉

∣∣ v ∈ S(b(· )∂f(u(· )))
}

proving the result.

3.6. Application to wavefront reconstruction. In the next proposition we establish the connection
between the projection ΠQ(b) defined by Eq.(2.2) and the subdifferential of h : L2[R2,R2] → R defined by
Eq.(3.3) where b ∈ U with U defined in Eq.(1.6). Proposition 3.19 is a special case of a more general result
to be proved in the final section (Theorem 4.2). However, here we provide a separate and fundamentally
different proof which provides the motivation for the perturbation methods studied in [16].

Proposition 3.19 (Projection-subdifferential equivalence). Let b ∈ U and let ΠQ(b) : L2 ⇒ Q(b) be as

defined in Eq.(2.2) with Q(b) defined by Eq.(2.1), and h : L2[R2,R2] → R be as defined by Eq.(3.3). Then
for all u ∈ L2[R2,R2]

∂ (h(u; b)) = S
(
b(· )∂ (−|u(· )|)

)
= cl∗

(
−ΠQ(b)(u)

)
= ∂ (h(u; b)) . (3.16)

Thus, in particular, h(·; b) is everywhere subdifferentiably regular.

Proof. Note that the equivalences in Eq.(3.16) are scale invariant in the sense that if they are shown to
be true for a given function b, then they must be true with b replaced by αb for any choice of α > 0 since

α∂(h(u; b)) = ∂(h(u;αb)), αS(b(· )∂̄(−|u(· )| )) = S(αb(· )∂̄(−|u(· )| )),

and

α cl∗ (−ΠQ(b)(u)) = cl∗ (−ΠQ(αb)(u)).

Since b is non-negative and integrable, we may therefore assume with no loss in generality that b is a
probability density function for some probability measure P (dx) = b(x)dx.

If Eq.(3.16) holds, then the subdifferential regularity of h(·; b) follows immediately from Proposition 3.11(i)
and Eq.(3.12). By Lemma 3.18 and part (iii) of Proposition 3.11,

∂h(u; b) ⊂ S
(
b(· )∂(−|u(· )| )

)
⊂ cl∗

(
−ΠQ(b)(u)

)
.

Since ∂h(u; b) ⊂ ∂h(u; b), the result follows once it is shown that

cl∗
(
−ΠQ(b)(u)

)
⊂ ∂h(u; b). (3.17)

By Proposition 3.2 the mapping h is globally Lipschitz continuous with Lipschitz constant K = ‖b‖, and
by Remark 3.13 ∂h(u; b) is weakly closed. Therefore, if −ΠQ(b)(u) ⊂ ∂h(u; b) then cl∗

(
−ΠQ(b)(u)

)
⊂ ∂h(u; b).

We now show that −ΠQ(b)(u) ⊂ ∂h(u; b).

Let v ∈ −ΠQ(b)(u) and for all ε > 0 define ũε := uXsupp (u) + εv(1 − Xsupp (u)). Then, by [16, Theorem
4.1],

‖u− ũε‖ = ε‖v(1−Xsupp (u))‖ ≤ ε‖b‖,
16



and | · | is differentiable at ũε(x) for every x ∈ supp (b) with

v(x) = −∇|ũε(x)|b(x) ∀ ε > 0.

For every w ∈ L2[R2,R2] and x ∈ supp (b), we have

|ũε(x) + tw(x)| − |ũε(x)|
t

→ (∇|ũε(x)|, w(x)),

and, since | · | is Lipschitz with Lipschitz constant 1,∣∣∣∣ |ũε(x) + tw(x)| − |ũε(x)|
t

∣∣∣∣ ≤ |w(x)| ∀x ∈ supp (b).

Therefore, by the Lebesgue Dominated Convergence Theorem, the function h(·; b) is Gâteaux differentiable
at ũε with Gâteaux derivative −∇|ũε|b = v. Hence, since | · | is Lipschitz continuous the lim inf in Definition
3.3(ii) is attained as a limit yielding dh(ũε; b)(w) = 〈v, w〉. Consequently

v ∈ ∂−h(ũε; b) ∀ ε > 0.

Taking the limit as ε ↓ 0, we find that v ∈ ∂h(u; b). Therefore, −ΠQ(b)(u) ⊂ ∂h(u; b).

The proof of Theorem 3.1 now follows easily from the calculus of subdifferentials.

Proof of Theorem 3.1: [16, Corollary 4.3] gives the representation

dist 2(u,Qm) = dist 2(Fm(u),Q(ψm))

= ‖Fm(u)‖2 + ‖ψm‖2 + 2h[Fm(u);ψm].

By applying [18, Theorem 6.7] together with Proposition 3.19 and [16, Corollary 4.3], we obtain

∂ dist 2(Fm(u),Q(ψm)) = 2∂

((
1

2
‖ · ‖2 + h(·;ψm)

)
◦ Fm

)
(u)

= 2F∗m [Fm(u) + cl∗ (−ΠQm
(Fm(u)))]

= 2cl∗ (I −ΠQm
(u)).

Hence the subdifferential regularity of all the functions involved in conjunction with [18, Theorem 4.1] yields
the result.

4. Concluding remarks. We conclude with a generalization of Theorem 3.19. Theorem 4.2 establishes
the equivalence of the infinite-dimensional subdifferential objects in the setting relevant to phase retrieval,
and establishes their relation to the finite-dimensional Clarke subdifferential. The result, and its proof,
closely parallels that given in [6, Theorem 3.5.18].

Lemma 4.1 (Interchange of subdifferentiation and integration: II).
Let the hypotheses of Lemma 3.18 hold. Then

S(b(· )∂f(u(· ))) ⊂ ∂J(u). (4.1)
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Proof. Let z ∈ S(b(· )∂f(u(· ))). Since ∂f(u(· )) is closed-valued and measurable, there exists v ∈
S(∂f(u(· ))) for which z = bv. We show that z ∈ ∂J(u). For this purpose, let C be a countably dense

subset of gph ∂̂f . Observe that

∂f(u) =

{
lim
j→∞

vj
∣∣ {(uj , vj)} ⊂ C, uj → u

}
.

Let {(uk, vk)} be an enumeration of C. Then for each x ∈ Rn and each integer i ∈ {1, 2, . . . }, define ki(x)
be the first integer k for which

|uk − u(x)| ≤ 1

i
and |vk − v(x)| ≤ 1

i
.

For each i = 1, 2, . . . , define ui : Rn → Rm and vi : Rn → Rm by

ui(x) = uki(x) and vi(x) = vki(x).

We claim that the functions ui and vi are measurable with

vi(x) ∈ ∂̂f(ui(x)) a.e. (4.2)

for i = 1, 2, . . . . Indeed, the range of both ui and vi is contained in the set C and so is countable. Moreover,
for a given integer k, {

x
∣∣ (ui(x), vi(x)) = (uk, vk)

}
=

k−1⋂
j=1

{
x

∣∣∣∣max{|uj − u(x)|, |vj − v(x)|} > 1

i

}
∩
{
x

∣∣∣∣max{|uk − u(x)|, |vk − v(x)|} ≤ 1

i

}
,

where each of the sets on the left hand side is measurable.

Next observe that for all w ∈ H, we have from Fatou’s lemma that

dJ(ui)(w) = lim inf
τ↘0

J(ui + τw)− J(ui)

τ
≥
∫
R2

df(ui(x))(w(x))b(x)dx ≥
〈
bvi , w

〉
,

where the last inequality follows from (4.2). Hence bvi ∈ ∂̂J(ui) for i = 1, 2, . . . . Finally, since ui → u and
vi → v by construction, we have bv ∈ ∂J(u).

Theorem 4.2 (Interchange of subdifferentiation and integration). Let the hypotheses of Lemma 3.18
hold with n = m = 2. Then, for all u ∈ H = L2[R2,R2],

∂J(u) = cl∗ S(b(· )∂f(· )) = S(b(· )∂f(· )) = ∂J(u).

In particular, this implies that J is everywhere subdifferentially regular.

Proof. By Proposition 3.10 we have

S(b(· )∂f(u(· ))) ⊂ cl∗ S(b(· )∂f(u(· ))).

Since the set ∂J(u) is weakly closed, Lemma 4.1 implies that

cl∗ S(b(· )∂f(u(· ))) ⊂ ∂J(u).

18



Combining these facts with Lemma 3.18 yields,

∂J(u) ⊂ S(b(· )∂f(u(· )))
⊂ cl∗ S(b(· )∂f(u(· )))
⊂ ∂J(u)

⊂ ∂J(u),

which proves the result.

The restriction in Theorem 4.2 to the case n = m = 2 follows from the use of this hypothesis in Proposition
3.10. However, we believe that it is possible to extend this proposition to the general case which would allow
us to remove the restriction n = m = 2 from Theorem 4.2.
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