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Abstract

Analysis of Optical Wavefront Reconstruction
and Deconvolution in Adaptive Optics

by David Russell Luke
Chair of Supervisory Committee:

Professor James V. Burke
Department of Mathematics

It was in the spirit of “reuniting divergent trends by clarifying the common features and
interconnections of many distinct and diverse scientific facts” that Courant and Hilbert
published their book Methods of Mathematical Physics [51]. This thesis is written in the
same spirit and with the same goal. We focus our attention on the problem of wavefront
reconstruction and deconvolution in adaptive optics. This is an ill-posed, non-linear in-
verse problem that touches on the theory of harmonic analysis, variational analysis, signal
processing, nonconvex optimization, regularization, statistics and probability. Numerical
solutions rely on spectral and operator-splitting methods as well as limited memory and
multi-resolution techniques. We introduce novel methods for wavefront reconstruction and
compare our results against common techniques. Previous work on this problem is reviewed
and unified in a non-parametric, analytic framework.
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Chapter 1
INTRODUCTION

“Since the seventeenth century, physical intuition has served as a vital source for
mathematical problems and methods. Recent trends and fashions have, however,
weakened the connection between mathematics and physics... This Tift is un-
questionably a serious threat to science as a whole; the broad stream of scientific
development may split into smaller and smaller rivulets and dry out.”

-R. Courant Methods of Mathematical Physics [51]

The history of science is filled with misfortunes that have been transformed into scientific
triumphs. This thesis is concerned with the analysis of numerical methods for wavefront
reconstruction and deconvolution that contributed to the eventual and remarkable successes
of NASA’s Hubble Space Telescope (HST). Shortly after launch on April 24, 1990, it was
discovered that the primary mirror of the HST suffered from a large spherical aberration
[35]. Several teams of researchers were dispatched to apply a variety of image processing
techniques to the flight data of stellar images in order to identify the aberration and aid in the
design of corrective optics. Burrows [34] and Lyon et al. [118] applied parametric techniques;
Fienup [64] applied gradient-based algorithms; Fienup et al. [70] and Roddier [155] applied
nonparametric projection techniques; Redding et al [148] and Meinel et al [121] applied
ray tracing and diffraction propagation techniques and Barrett and Sandler [16] applied
neural network techniques. The results of all groups were used in conjunction with archival
HST manufacturing records to pinpoint the size and source of the error. It wasn’t until
1993 that corrective optics were installed. In the meantime, researchers continued with
efforts to model the telescope with enough precision to recover unaberrated images through
post-processing. In addition to the gross manufacturing errors, researchers were able to
identify aberrations due to the polish marks on the primary and secondary mirrors. Again,
wavefront reconstruction techniques played an important role in this effort [105]. During this
time much was learned about reconstruction algorithms. An important lesson learned from
the HST is that relatively simple software can aid and in some cases replace complicated and
sensitive optical systems. In 2012 the replacement for the HST, the Next Generation Space
Telescope (NGST), will be folded into the nose of a rocket and launched into geosynchronous
orbit, far beyond the reach of astronauts. Wavefront reconstruction algorithms will play a
central role in maintaining alignment on the NGST [120,163].

In 2012 the replacement for the HST, the Next Generation Space Telescope (NGST),
will be folded into the nose of a rocket and launched into geosynchronous orbit, far beyond
the reach of astronauts. Once in orbit, the NGST will unfold a 10 meter-class segmented



aperture that will have a resolution several times that of the Hubble. Wavefront reconstruc-
tion algorithms will play a central role in maintaining alignment on the NGST [120, 163].
The challenge with such systems rests in compensating for imperfections that can arise due
to, among other things, manufacturing error, launch-related alignment shifts, deployment
errors, and thermal deformations. Adaptive optics systems allow the operator of the in-
strument to change the configuration in order to compensate for unforeseen imperfections.
The simplest example of an adaptive optics control system is the focus on a camera. In
this adaptive optics system the operator moves the lens forward and backward in smaller
and smaller intervals until the system is identified (that is, the object is in focus) and the
data is collected (usually with the push of a button). This simple procedure becomes more
complicated when the camera is orbiting the earth, and the operator has no idea what the
object she is looking at is supposed to look like. The problem can be understood by the
following: you are wearing someone else’s glasses and looking at text written in a foreign
alphabet - what is the prescription of the glasses and what is the true text?

Strategies for the control problem involve both open and closed-loop control. In open-
loop control the system controls are set independent of simultaneous effect on the output.
In closed-loop control the controls depend continuously on the output. Closed-loop adaptive
optics control systems have been proven in land-based astronomy to compensate for atmo-
spheric turbulence [62]. Most control systems employ dedicated wavefront sensors, such
as the Shack-Hartman sensor, to measure the state of the optical system. These sensors
are expensive and as prone to error as the imaging device itself. For space applications
computational approaches to wavefront sensing have been proposed [116,146].

Optical wavefront reconstruction is an inverse problem that arises in many applications
in physics and engineering. Numerical algorithms for solving this problem have been em-
ployed in crystallography, microscopy, optical design and adaptive optics for three decades.
The history of the problem goes back much further. The celebrated algorithm of Gerchberg
and Saxton [73] demonstrated that practical numerical solutions to the two dimensional
problems was possible. Since the introduction of the Gerchberg-Saxton algorithm numerous
variations have been studied [13,29,39,50,58,68,70,74,110,117,125,131,135,145,172,177,198].
The spectacular success of these algorithms on the HST together with techniques for simul-
taneous phase retrieval and deconvolution developed for use with land-based astronomical
observations [37,75,101,115,139,140,144,167,184,186,187] has lead to the development of
software that, in conjunction with simple optical systems, can achieve the same resolution as
complicated, expensive and error-prone optical systems [108,112,114,116,146,147]. These
new computational approaches offer some hope of closing the adaptive optics control loop
for space-based astronomy. Computational wavefront sensing enjoys the advantage that
dedicated wavefront sensors are not required. The hardware requirements for such systems
are relatively simple and have fewer sources for error. Expensive and sensitive hardware is
traded for expensive and sensitive software. Software can be modified and improved con-
tinuously on the ground. Once hardware is put into orbit it is very difficult and expensive
to modify, as the Hubble Space Telescope demonstrated.



1.1 Literature Review

The deconvolution problem involves solving a linear Fredholm integral equation of the first
kind where the kernel of the integral operator is compact. This problem has a long history
in applied mathematics and appears in many different fields and applications [102, 104,
180]. We review the basic numerical theory in Chapter 4. The problem of simultaneous
deconvolution and wavefront reconstruction is equivalent to system identification and image
reconstruction. As such, it shares many features of Kalman filtering [98]. We direct most
of our attention to studying the hardest part and precursor to the simultaneous problem,
wavefront reconstruction.

The problem of wavefront reconstruction is a special case of the more general inverse
problem of phase retrieval. The phase retrieval problem arises in diverse fields such as
microscopy [59, 72,90, 122, 182, 183], holography [67, 176], crystallography [124], neutron
radiography [4], optical design [63], adaptive optics and astronomy. Earlier reviews of the
phase problem can be found in Ref. [91,171]. Ref. [124] is an excellent review of the phase
problem in X-ray crystallography. The physical setting is discussed in some detail in the
following section. The abstract problem is stated as follows: given a : R?> — R, and
b: R2 - R,, find u : R2 — C satisfying |u| = a and |u”| = b. Here R, denotes
the positive orthant, - denotes the Fourier transform, and the modulus is the pointwise
FEuclidean magnitude. Simply stated, the problem is to find the phase of a complex-valued
function given its pointwise amplitude and the pointwise amplitude of its Fourier transform,
hence the name phase retrieval.

Until the 1970’s the problem of phase retrieval was thought to be hopeless for a number
of reasons. In a letter to A. A. Michelson, Lord Rayleigh stated that the continuous phase
retrieval problem in interferometry was in general not possible without a priori information
on the symmetry of the data [174]. In one dimension it was shown that the discrete problem
has a multitude of solutions. Indeed, for a signal that is represented by n terms of the Fourier
series expansion there are as many as 2" ! possible solutions to the problem [2,3]. Wolf was
among the first to suggest that these obstacles might not be insurmountable [196]. Kano
and Wolf [100] followed this claim with a successful analytic reconstruction in a physically
nontrivial setting. Their reconstruction was not numerical in nature but depended, rather,
on the analytic properties of the continuous Fourier transform. Further efforts were made
to broaden the applicability of these results [158]. A the same time Walther and O’Niell
provided some hope for the possibility of meaningful solutions in the discrete case, and in
some relevant cases uniqueness [136,192]. Dialetis and Wolf later pointed out, however,
that the applicability of the theory for the continuous case was limited [56]. Nevertheless,
a number of researchers proposed the addition of constraints to narrow the number of
potential solutions for the one dimensional problem [59,87,90,137,145,182,183,197).

As early as 1972 a practical algorithm was proposed for numerical solutions to the
seemingly more difficult two-dimensional problem. In their famous paper, Gerchberg and
Saxton [73], independent of previous mathematical results for projections onto convex sets,
proposed a simple algorithm for solving phase retrieval problems in two dimensions. In [110]
the algorithm was recognized as a projection algorithm. Projection algorithms in convex
settings have been well understood since the early 1960’s [30,78,82,173,189,200,202,203].



The phase retrieval problem, however, involves nonconvexz sets. For this reason, the con-
vergence properties of the Gerchberg-Saxton algorithm and its variants are not completely
understood.

In the majority of relevant cases the numerical experience demonstrated that projection-
type algorithms converged to correct solutions [65,66]. It was suggested in [31] that this
seeming robustness of numerical methods is due to the factorability (or lack thereof) of
related polynomials. Indeed, the solution to the two dimensional phase retrieval problem
for a discrete signal that can be represented by a finite Fourier series expansion, that is for a
band-limited image, if it exists, is almost always unique up to rotations by 180 degrees, linear
shifts and multiplication by a unit magnitude complex constant. The proof and details of
this result can be found in [85]. While this result is of fundamental importance, it does
not apply to many of the algorithms used for phase retrieval, in particular in the presence
of noise. Thus, while the uniqueness result above remains valid for band-limited signals,
it says nothing about the uniqueness of approzrimate solutions in the event that a true
solution does not exist, that is when the feasible set is empty. In the convex setting, when
the constraint sets onto which the projections are computed do not intersect, convergence of
projection algorithms is an open question [19,20,22,49,78,201]. Much less is known about
the nonconvex setting where many applications lie [39,46,47,88,164].

In 1982 Fienup [68] generalized the Gerchberg-Saxton algorithm and analyzed many of its
properties, showing, in particular, that the directions of the projections in the generalized
Gerchberg-Saxton algorithm are formally similar to directions of steepest descent for a
squared set distance metric. We show in Section 3.2.1 that this connection to directions of
steepest descent is complicated by the fact that the metric is not everywhere differentiable.
In 1985 Barakat and Newsam [14,15] developed an approach similar to the gradient descent
analogy suggested in [68]. They modeled their analysis on the projection theory for convex
sets. A well known fact from convex analysis is that the gradient of the squared distance
to a convex set is equivalent to the direction toward the projection onto the set. To extend
this property to the nonconvex sets, Barakat and Newsam require the projection operators
to be single-valued, however there is no known example of a nonconvex set for which the
projection operator is single-valued !. Indeed, we show that the projections in the case
of phase retrieval are multi-valued. We show precisely how the multi-valuedness of the
projections is related to the nonsmoothness of the squared set distance metric.

In Section 3.3 a smooth error metric is proposed and bounds are derived for the dis-
tance between the gradient of the smooth metric and the directions toward the projections.
While projection methods often work well in practice, fundamental mathematical questions
concerning their convergence remain unresolved. What are often referred to as convergence
results for projection algorithms are statements that the error between iterations will not
increase [73,110]. In general, projection algorithms may not converge to the intersection of
nonconvex sets. See Ref. [110] and Ref. [50] for a discussion.

We present algorithmic approaches to phase retrieval and simultaneous deconvolution/wavefront
reconstruction in a unified analytic framework. For ease of discussion, the problem of wave-

!The issue of nonuniqueness of the projection operator is not to be confused with the uniqueness of the
phase problem. The results of [85] are not effected by the multi-valuedness of the projection operators.



front reconstruction and deconvolution is formulated in the continuum. Results for the
discrete case follow easily from these results. The similarity between iterative transform
algorithms and line search methods applied to a particular error metric has been known
for some time [15,68,73]. A precise analysis of this correspondence, however, has proven
elusive. The source of the difficulty is the nonconvexity of the underlying sets and the non-
smoothness of the error metric. In this work we detail the connection between geometric
and analytic methods for the phase retrieval problem and extend these results to the more
general problem of simultaneous deconvolution and phase retrieval. Chapter 2 details the
mathematical model for diffraction imaging. In the same chapter the abstract optimization
problem associated with wavefront reconstruction is formulated. Chapter 3 is a detailed
study of the phase retrieval problem. We study the geometric and analytic properties of
the distance function which is at the heart of this problem. A perturbation of the distance
function is detailed and the corresponding least squares optimization problem is formulated.
The least squares measure is extended to allow adaptive weighting of the errors between
measurements. In Chapter 4 the problem of simultaneous wavefront reconstruction and
deconvolution is studied. We detail the connection between Tikhonov regularization tech-
niques and optimal filtering for noisy data. In Chapter 5 we outline numerical algorithms
including simple line search, and limited memory techniques with trust regions. Basic con-
vergence results are proven. In the same chapter we detail multi-resolution techniques to
reduce computational intensity. Numerical results are detailed in Chapter 6.



Chapter 2

OPTICAL IMAGING

2.1 The Forward Imaging Model

The physical setting we consider here is that of a monochromatic, time harmonic electro-
magnetic field in a homogeneous, isotropic medium with no charges or currents. This is
depicted as a wave propagating away from some source to the left of the pupil plane in
Fig.(2.1). By Maxwell’s equations, at a given frequency w € R, the spatial components
of the electric and magnetic fields can be represented as the real part of complex-valued
functions U, : R? — C satisfying the Helmholtz equation describing the spatial distribution
of energy in an expanding wave:

(A + kE*n®)U,(z) = 0. (2.1)

Here A denotes the Laplacian, n € R, is the index of refraction of the medium, and
k € Ry is the wave number. The wave number is related to the frequency since w/k is the
speed of light. Another quantity that arises is the wavelength X\ defined as A = 27 /k. For
convenience, let n = 1. In all that follows the fields are assumed to be monochromatic (i.e.
single frequency), thus we drop the w subscript from U,,.

The wave in Fig.(2.1) passes through an optical system consisting of apertures, aberrat-
ing media such as mirrors and crystal structures, and a focusing lens. The focused wave is
imaged onto an array of receptors that measure intensity. The plane in which the recep-
tors lie is referred to as the image plane. The pupil of the optical system is an abstract
designation for intervening media - atmosphere, mirror surfaces, crystal structures, etc. -
through which the electromagnetic wave travels before it is finally refocused and projected
onto the image plane. The entrance pupil is the aperture through which the unaberrated, or
reference wave enters the optical system. The exit pupil is the aperture through which the
aberrated wave exits the optical system. In the mathematical model of the optical system,
the entrance pupil and exit pupil are collapsed into a single plane with all aberrating effects
occurring at what is refered to as the pupil plane. The intensity mapping resulting from a
point source is the point-spread function for the optical system. The electromagnetic field
may be written in phasor notation as U = f expfy/~1 6] where f and 6 are real-valued func-
tions. The phase retrieval problem involves recovering the phase, @, of an electromagnetic
field in the exit pupil from intensity measurements in the image plane when the source is a
point source.

We begin our discussion by building the mathematical model of the optical system and
image formation starting with a brief discussion of the fundamentals of diffraction. Diffrac-
tion theory models the propagation of a field through a small aperture. The resulting model
represents the field on the image plane as an integral operator of the value of the field across



-
/

object plane pupil plane image plane

Figure 2.1: Model optical system

the aperture. This is a mathematical formalization of Huygens’ Principle, i.e.

“light falling on the aperture [A] propagates as if every [surface] element [dS]
emitted a spherical wave the amplitude and phase of which are given by
that of the incident wave [U]” [170].

Boundary conditions at the aperture (Kirchhoff boundary conditions) and at infinity (radia-
tion conditions) yield approximations to the kernel of the integral operator on the aperture.
Two such approximations are derived, the Fresnel kernel and the Fraunhofer kernel. The
Fraunhofer kernel links diffraction theory to the Fourier transform. After deriving this
model, we then develop its consequences for fields resulting from a point source, that is, an
explicit representation of the point-spread function of the optical system is derived.

2.1.1 Rayleigh-Sommerfeld Diffraction

We now give a terse summary of Rayleigh-Sommerfeld diffraction theory. More detailed
developments can be found in [26,76,170]. Let Q be a closed volume in R} whose boundary
is the orientable closed surface S and let 7 denote the unit inward normal to Q. Let U, and
U be twice continuously differentiable scalar fields mapping Q and S. By Green’s Theorem'

- 0Qg—Uégﬂhi/ﬁAU—UAﬁﬁf
S Bn 8n o)
where % denotes the derivative in the direction of the unit inward normal at S. If both U
and U satisfy the Helmholtz equation Eq.(2.1), then

. U oU
_ ~ = — 2.2
SUaﬁ Uaﬁds 0 (2.2)

!Green’s Theorem is usually stated in terms of the unit outward normal. In optics, for the derivation of
Rayleigh-Sommerfeld diffraction the unit inward normal is usually used.



Let Be denote the Euclidean ball of radius e in R® having surface S, and let B (&)
be the Euclidean ball of radius € centered at €. Given £ € int (2), choose € > 0 so that
B (&) C int(2) and set Q = Q\B(£). Consider the Green’s function

Gofasg) = Z2THE-ED

where | - | denotes the standard Euclidean norm. The function Gy is a unit-amplitude
spherical wave centered at £&. On (. the scalar field G satisfies the Helmholtz equation

2 AE (2.3)

(A + k*)Go(a3 &) = 4mé(z — £).
Thus, as in Eq.(2.2),

_/ exp(v—1 klz — &) OU 0 exp(V—1 k|z — §])
S+

= _uy=_

= 0. 2.4
w—& o7 Uon  lw-g 0 (24)

The Integral Theorem of Helmholtz and Kirchhoff [26,170] uses Eq.(2.4) to establish the
identity

_ o =1 [ exp(V-Lklz —¢&])oU 0 exp(V—1 klz — §|)
v© = imo [ e U e
1 [expb THe —€)OU 9 exply/T Kl — &)

S W)y -8 o7 Von  lw-g (25)

as

Thus, the field at any point € can be expressed in terms of the boundary values of the wave
on any orientable closed surface surrounding that point.

Rayleigh-Sommerfeld diffraction theory is derived by considering a specific volume (2
and surface S (see Fig.2.2) together with a particular Green’s function G. Let the surface S
be the arbitrarily large half-sphere composed of the hemisphere E and the disk D contained
in the plane T. The disk ID consists of an annulus A’ with a small opening A. Let ' be an
element of the open half-space determined by the plane T and having empty intersection
with Q. Let T C Q be a screen parallel to T and whose distance from T equals that of &’
to T. The problem is to determine the field U on I under the assumption that the field
propagates only through A.

Consider the field G due to the two mirror point sources, £ € T and &’ :

G(z; x', &) = Go(x; ') — Go(x; €). (2.6)

where Gy is defined in Eq.(2.3) and |z — &'| = | — £ for all z € T. The field G is the
Green’s function for a half-space with Dirichlet boundary conditions, that is it satisfies the
following conditions:

(A+ k)G =4n(6(x — ') —6(x — €)) in
G=0 on T;

|z — & (%—\/—_lk(}’) —0 as |x—& — oo



Figure 2.2: Rayleigh-Sommerfeld diffraction

The field G satisfies the conditions required for substitution into Eq.(2.5) in place of Gg
yielding
1 ou oG
U)=— [ G —U—-==dS. 2.7
) Ar | Ot on 27)
While G is identically zero on the plane T between ' and &, it’s normal derivative is nonzero.
We postulate that the unknown field U satisfies the following conditions:

U=0 on A’ (2.8)
oUu
|z — €| %—\/—TkU —0 as |z—& — o0 (2.9)
Condition Eq.(2.8) states that the screen is a nearly “perfect conductor”; Eq.(2.9) is the
Rayleigh-Sommerfeld radiation condition. In the limit as the radius of the hemisphere E

goes to infinity, Eq.(2.6) and Eq.(2.7) together with the radiation conditions and Eq.(2.8)
yield

1 oG
UE) = o /A v s, (2.10)

Let a map two vectors to the cosine of the angle between them
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If |€ — x| > X on A then

0G  expl/T Kl — ) Ly
I = L
~ 2kV/A exp(\/|;_1_kf|— id) a(n, € —x). (2.11)

Substituting Eq.(2.11) into Eq.(2.10) yields the following mathematical formulation of Huy-
gens’ principle

U(E) ~ /A U(z)h(€; z)dS (2.12)
where

exp(v—L k€ — x|)
VL€ — x|

and, again, A = 27 /k is the wavelength.

h(&;x) = (i, & —x).

At this point it is useful to introduce into the discussion the parazial or small angle ap-
proximation wherein a(7i, (§ —) &~ 1. For this we establish reference coordinates (1, 2, z3)
relative to the plane T centered on the region A. Let the z3-axis be perpendicular to T and
I, with the origin at the center of the region A. Let @ € A. Denote the distance between 1
and A by &3, and let € € I satisfy |(z1 — &1,22 — &2,0)| < &3. Then «(7i, € — ) ~ 1 and the

kernel of the Rayleigh-Sommerfeld diffraction integral is h(z; £) ~ % Using the

binomial expansion, in the region where both |{; — z1| < &3 and |€2 — 2| K &3, yields

|€ — x| ~ & [1 + %(51 —131)? + %(52 — 902)2] : (2.13)

Using this approximation and neglecting the quadratics in the denominator, the kernel h
reduces to the well known Fresnel kernel

i) = SIS o (VO

This kernel exactly satisfies what is known as the parabolic wave equation

o V- : _

(G —z)*+ (&2~ x2)2)> : (2.14)

where A\, is the Laplacian in the &1£o—plane, i.e Ay = —6‘9;2 + —59;2. By substituting Ay into
1 2
Eq.(2.12), we obtain the Fresnel diffraction field

Upre(€) = /A U (@)hire(&; @) dz1 day. (2.16)

This field also satisfies Eq.(2.15).



11

If the aperture is small compared to the image (z1, z2 <K &1, &2, as is the case in diffraction
imaging) one can expand the quadratic in the Fresnel kernel Eq.(2.14) and neglect quadratic
terms in z1 and zo:

(b1 —21)’ + (Lo —22)° = & +E& — 2181 + 1260) + 27 + 75
& — 2@ + mabo).
With this approximation Eq.(2.14) reduces to
o eoWkE) (kL o\ (VIR
hera(€5) = 2L o (V@ 4 ) ) enp (V5

This is known as the Fraunhofer approximation of the Fresnel diffraction field.
The Fraunhofer transform of a field U(x) across an aperture A is given by

(z1& + $252)> . (2.17)

Upra(£) = /A U(@)hpea (& @) doy dos. (2.18)

Close examination of Eq.(2.18) reveals a relationship between the Fraunhofer transform and
the Fourier transform. For u : R* — C, let A denote the Fourier transform defined by?:

u™(€) = /n u(zx) exp(—2m/~1 x - §) dex. (2.19)

Let X, denote the indicator function for the region A:

_J 1 forzeA
Xa(x) :{ 0 forzdA - (2.20)

Assume U € L' N L?[R3,C], then

Urra(€) = /A U (@)hira(é; @)daydry
= C&)[XU" (1,6, &).

Here &; = )\%352- for i = 1,2, [-]*T denotes the Fourier transform with respect to the (z1,z2)

coordinates, and
exp(v—1 k&3) > (\/—_1 k

2 2
\/_—1—)\536)( —— (& +§2)> -

C(e) = .

2.1.2 Diffraction Imaging with a Lens

Based on these integral approximations to the field U on the image plane I we now derive
the associated Green’s function of the optical system with a lens. We begin with a brief
discussion motivating the mathematical model for a thin lens using the paraxial approxi-
mation [26, Ch.4] [76, Chapter 5].

2Note that this definition is valid only for functions in L' NL?. In Section 2.2 we make use of the extension
of this transform to functions on L2, the Fourier-Plancherel transform.



12

thin lens

21/k

Figure 2.3: Lens model

A lens is modeled from a geometric optics perspective. Under this interpretation a
wave propagates along rays orthogonal to its level surface, or in mathematical parlance,
along the characteristics of the Helmholtz equation Eq.(2.1). The phase, 6 of the complex
phasor representation®, of a wave describes the geometric shape of the level surface, and
thus the orientation of the rays along which the wave travels. A lens is a (thin) piece of
glass or some other transparent material with a different index of refraction (depending
on the wave number k£ ) than the surrounding medium. Physically a lens changes the
path [26, Ch.3] of the wave without altering it’s amplitude, that is it changes the geometric
path of propagation. This is modeled as a change in the direction of the rays, or equivalently
a change in the phase 8 of the wave across the lens.

For instance, the direction of propagation of the wave described by the Fresnel kernel
hire (Eq.(2.14)) is parabolic with axis of symmetry along the ¢3 axis*. Suppose we place
a lens shown in Fig.(2.3) at the pupil plane of our model optical system Fig.(2.1) with axis
of symmetry in the z3 direction centered at 1 = o = 0. Suppose further that this lens
is designed to change the direction of propagation of the field in a parabolic fashion across
the aperture A. In the complex phasor representation of the wave, this physical affect is
modeled by the addition of a complex phase term to the on the support of the lens. We
represent such a lens by the function

$(z) = exp (xA(m) f k (z2 + mg)) . (2.21)

where k is the wave number and [ is a scaling that describes the curvature of the lens. All
rays parallel to the axis of symmetry of the lens and passing through the lens will cross the
x3 axis at the point (0,0, 2[/k). Notice that the lens does not change the amplitude of the
wave.

3The phase function § : R* — R, sometimes called the eikonal, satisfies the eikonal equation [26, Ch.3].

“The amplitude of the wave is constant in the z;zs-plane.
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The Fraunhofer approximation Eq.(2.17) to the Fresnel kernel Eq.(2.14) also arises in
model of optical systems with a lens. To see this consider a wavefront of the form hp,. at
the z1x2-plane. The field immediately after the lens is given by multiplying hrr. by the
lens Eq.(2.21). If [ = &3 this multiplication yields the identity ¢phpre = hprqg-

We now detail Kirchhoff’s diffraction theory for the following imaging model, based on
Huygens’ principle Eq.(2.12), with diffraction kernel Ap,. and a lens of the form Eq.(2.21):

Ue) ~ /A U (@) $()hrre(€; )de. (2.22)

The derivation of Eq.(2.12) requires the conditions Eq.(2.8) and Eq.(2.9), where U satisfies
Eq.(2.1). Here we encounter the difficulty that we have not specified any boundary condi-
tions on the region A, without which we cannot obtain an explicit approximation for U at
¢. Kirchhoff’s diffraction theory is based on the conditions Eq.(2.8) and Eq.(2.9) together
with the additional boundary condition

U(x) = Go(z; ') forz’' ¢ Q, andx € A

where Gy is given by Eq.(2.3). Since z’ enters as a parameter on the right hand side, we
write the field U on A satisfying the above equation as

U(z;z') = Go(z; ') for ' ¢ Q, and x € A (2.23)

Similarly, we write U (&) = U(&; ') to indicate that the field U on T is also parameterized by
the location of the point source #'. Conditions Eq.(2.8) and Eq.(2.23) are called Kirchhoff’s
boundary conditions. The function satisfying Eq.(2.1), Eq.(2.8)-(2.9) and Eq.(2.23) is very
special indeed. For most applications, however, it is sufficient to approximate the field U
by the field that would result from a point source at ' in the absence of the screen S, that
is U(;&") = Go(;2") everywhere to the left of the screen ezcept on A’ where U(-;2') = 0.
The justification of such an approximation is beyond the scope of this work. There is a vast
classical literature surrounding this problem. Interested readers are referred to [26, Chapter
11] and references therein.

Assume next that @’ satisfies |(#}, z},0)| < x4 where x4 = dist(a’, T). Then, as in the
derivation of the Fresnel kernel Eq.(2.14), the field at any point € A can be approximated

by
exI\)/(\i_/\ k$3) exp (\/;Eék ((201 - $,1)2 + (w2 — 50!2)2)) (2.24)

Substituting Eq.(2.24) into Eq.(2.22) with the lens Eq.(2.21) yields

U({;.’L'I) — eXP(ik)\(;ééZ 63))6(5)6(:1:/) %

U(z;z') ~

[ a@ren (s + e -6+ ) x

exp (_2 -l

i (21€3 + &1z, zH€s + Eauy) - (-’E1,£E2)> dz1dzs.
T3

(2.25)
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Here C'(£) = exp ( k(g2 4 52)) and likewise for C/(z'). When the lens law [76, Eq.(5-30)]
is satisfied, i.e. when

1)y +1/8 —1/1 =0, (2.26)
then the rays along which the light wave travels depend only linearly on the coordinates in
the aperture A. The field at 1 is said to be in focus when the lens law is satisﬁed since this
plane (where the receptors lie) coincides with the level surface of the wave®. We consider
only those points (£1,£2,&3) € I and (2}, 24, z5) € I’ for which

2 2

k(& 2+ 6 and o 2+w’2 )
where I and I’ is the planes depicted in Fig.(2.2). Then, as with the Fraunhofer approxi-

mation, the C(-) factors are nearly unity. Thus, when Eq.(2.27) and the lens law Eq.(2.26)
hold,

Ug;z') =~

&3> (2.27)

—exp(ik(zh + &3)) y
AT 3€3

/ Xy (z) exp ( 2 \é_ (€32 + 2361, E33y + 2582) - ($1,$2)> dzidzs.
T3

(2.28)

The field U(&; ') is the field at the image plane of a diffractive optical system with a lens
due to a point source at '. Define the change of variables

T = 6—3.'3 and é =x+&
4
to obtain the following Fourier transform representation

U z') ~ c/ _00 X (x) exp (;\25? (€1,6) - (:1:1,:1:2)> dz1dzs

cXy” (%) (2.29)

and, again, -7 denotes the Fourier transform in the 5152—plane.

— exp(ik(z5+£3))
A2xlEs
The image 1 due to an extended source ¢ in the object plane I’ is given by the super-
position of the optical system’s response to point sources

w(6) = [ U (&) o(@)datis,

If every point in the support of the source in the object plane satisfies |(z}, 75, 0)| < =4, as
we have been assuming all along, then we can approximate the dependence of U (&; ') on =’

where ¢ =

by Uz )= U (&) =U (é — :i:) This approximation implies that the system’s response to

a point source U (&; ') remains invariant under translation of the source in the z/ z’-plane®.

5Note that the lens law depends entirely on the parabolic approximation to the incident wavefront given
by Eq.(2.24).

6Regions in the z’z5-plane over which this approximation are employed are called isoplanatic patches.
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The superposition is thus represented by the two dimensional convolution, denoted ,

P(€) = /R U (é—f:) @(#)dirdis

= Ux¢(§) (2.30)
7\ 2 ’ /N 2
where ¢(&) = (%g) @ (%w) = (%3) e (z').
2.1.3 Incoherent fields

The last piece of physics to be added to the mathematical model is the fact that what is
actually measured in many optical devices is the intensity of an incoherent field. In this
setting, these are statistical properties of waves. In the interest of brevity, our discussion
is terse. Interested readers are referred to [77]. In Eq.(2.1) we have only accounted for
the spatial component of a time harmonic wave. The entire wave is of the form U, (z,t) =
U(z) exp(v~1 wt), (see Eq.(2.1) for fixed frequency w. Define the mutual coherence function,
I, to be the cross correlation of light at  and y

F(.’B, Y, T) = <<Uw(a:a "+ T)’ Uw(ya )» . (2'31)

where U, denotes the complex conjugate and ((-, -)) denotes an infinite time average

_ T/2 _
(U, +7), Tuly,)) = lim — / Us(@,t + 1) (y, t)dt.
T—)OOT 7T/2

The normalized mutual coherence function evaluated at 7 = 0 measures the spatial coherence
of the light. The mutual intensity of the light at & and y is defined by

J(@,y) =T(z,y,0).
The (coincident) intensity is simply the modulus squared of the wave at the point x:
J(@,z) = (Uu(x,),Us(e,)) = [U(z)].

The intensity of the image v in Eq.(2.30) at a point £ is thus given by

~ |2
W2 = U+ (&) (2:32)

Rearranging the integrals yields

(&)

2 a2 - /,4 JE—
- /]1%2/11@2 U(g o -’1A3)U(§ - ’g)‘vb(ﬁ:)@(@)diﬁld@2 dﬂld@Q

However, the resolution of our optical system in the image plane is such that what is observed
is the time averaged quantity

[#(®)

2 2 A J—
= [ ][, 1.6~ 9)o(@pta)dsda dindi 2.33)
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If in addition the resolution of the optical system has a resolution in the image plane that is
coarser than the spatial coherence of the light, then the light is said to be incoherent. The
mutual intensity corresponding to incoherence can be approximated by

J(&,9) = U @) s(& —7) (2.34)

where ¢ is some real constant. For a detailed discussion of this intricate theory see [77,
Section 5.5]. Substituting Eq.(2.34) into Eq.(2.33) yields

~ |2
¢(€)

If the coherence of the light is resolvable, then one must work with the less convenient
representation of Eq.(2.32).

2
zé|U|2*

[#(®)

(2.35)

2.1.4 Rescaling the model

We assume that A3 = 1 (this is equivalent to resizing the aperture). The contribution of the
x4 component to the field U given in Eq.(2.29) is just a scalar multiple. This is normalized
so that the scaling in Eq.(2.35) is unity,

U+ p2(€) = [exP|” * |0l (€) (2.36)

where ¢ = —exp (ik(z + £3)). We represent the field at the exit pupil of the optical system,
that is on the right ”side” of the pupil plane of the imaging system in Fig.(2.1), by the
function v : R2 — C. In Eq.(2.36) this field is known

u=¢Xy and U=u". (2.37)

We show in the next section that the field u is not always of this form.
The normalized mathematical model for the intensity mapping in the focal plane of a
diffracted, incoherent, monochromatic, far-field electromagnetic field Eq.(2.35) becomes

2
[B17(€) = |u"[" * [l (£). (2.38)
The kernel of the convolution |u/\|2 is known as the point-spread function of the idealized
optical system of Fig.(2.1). This kernel characterizes the optical system.

2.1.5 Aberrated Optical Systems

It has been assumed that the optical system is in the far-field (with respect to some source)
of a homogeneous medium, thus the wave at the entrance pupil, that is on the left side
of the pupil plane, is characterized by a constant amplitude plane wave, arg(u_) = 0 and
|u—| = const across the aperture A, where u_ indicates the field at the entrance pupil.
This is often called the reference wave. In most applications, however, the assumption of
homogeneity is not correct for the field at the exit pupil. Inhomogeneities in the media cause
deviations in the true wave from the reference wave. There are two types of deviations from
the reference wave. We refer to deviations in the phase as phase aberrations and deviations
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from the amplitude as the throughput of the optical system. Deviations may occur at any
point along the path of propagation and can be caused by an intervening medium such as
atmosphere, crystal structure, or mirror surface. In geometric optics, the wave is assumed
to travel along rays normal to the wavefront. The phase represents differences in the optical
path length along different rays. The locations of the deviations along the rays are not
important. Accordingly, all deviations are taken to occur at the pupil plane depicted in
Fig.(2.1).

A simple example of a phase aberration is defocus which can be modeled by use of a lens
as in Eq.(2.21). The field due to a defocused generalized pupil function is given by Eq.(2.25)
where the lens law Eq.(2.26) is not satisfied, i.e. 1/20+1/( —1/l =€, 0 < |¢| < 1. It often
happens, however, that the aberration is unknown. Defocus is added to an optical system
to improve signal to noise ratios in the tails of images. Defocus is also used to stabilize
numerical schemes for recovering arg(u) (phase retrieval) and ¢ (deconvolution) from the
image 1.

The throughput of the optical system is affected by the mounts and bolts used to hold
optical mirrors in place as well as the support of the aperture. These objects change the
amplitude of the wave as it propagates through the system and are modeled by the amplitude
of the field w.

The function u accounting for all of the above aberrations is refered to as the generalized
pupil function. The generalized pupil function uniquely characterizes the optical system.
For a perfect, deviation-free normalized optical system (where in particular A{3 = 1) the
generalized pupil function is given by u = ¢X, as in Eq.(2.37). For a field with deviations
from the reference wave w_, i.e. with phase aberration #(z) and throughput A(z) the
generalized pupil function can be represented in complex phasor form by

u[A(@),0(z)] = A(z) expl/~T 0(z)]. (2.39)

The corresponding imaging model for an aberrated optical system is the same as Eq.(2.38).

2.1.6 Notation and Summary

We now establish the notation which will be used throughout the remainder of this work
and summarize the above results with the new notation. Since the third spatial dimension,
z% and 3, only determines relative scalings and magnification factors in the image plane and
the pupil planes, we will only be interested in the behavior of the fields in the z1zs-plane
(respectively the & &-plane). From this point forward the fields are therefore described as
mappings on R%. Rather than defining a new variable for the intensity of the image and
object, we reassign the variables 1 and ¢ to represent rescaled amplitude mappings instead
of complex scalar waves:

[ > 4p: R2 R, and |@? = ¢:RZ >R, .
The imaging model thus takes the form

$2(€) = |u"| * o(€). (2.40)
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2.2 Inverse Problems

In the previous sections we have taken great care to develop the forward model for image
formation. We now turn our attention to the inverse problem. If u is known and ¢ unknown,
Eq.(2.40) is a Fredholm integral equation of the first kind. Recovering ¢ from u and 2
is called, for good reason, deconvolution. The phase retrieval problem arises when the
amplitude of the generalized pupil function u is known, but the phase aberration, 6 in
Eq.(2.39), is unknown. When both the object ¢ and the phase aberrations in u are unknown’
one is faced with the problem of simultaneous deconvolution and phase retrieval. We discuss
the simultaneous problem since deconvolution and phase retrieval are special cases.
Suppose that the amplitude |u| is known and satisfies the equation

A = |ul (2.41)

where A : R? — R, is known. This is often modeled as an indicator function for the
aperture, A = X, . For the purposes of this work it is only necessary to note that A € U,
where U, is a cone of nonnegative functions to be explicitly defined below. According to
the uniqueness results proved in [85], for discrete band-limited images in two dimensions, if
a solution to the phase retrieval problem exists, knowledge about both |u| and |u”| uniquely
characterizes u and thus the optical system, up to a complex constant, linear shifts and
rotations by 180 degrees.

In most cases there is no closed-form analytic solution to the phase retrieval problem.
Notable exceptions were first recognized in [56, 100, 158]. In numerical approaches, the
problem is further constrained by the addition of known phase aberrations to the system.
The corresponding images are called diversity images. The problem is then to find the
unknown phase common to all images given the amplitude constraints. For m =1,..., M
let 6,, : R2 - R denote a known phase aberration added to the system across the aperture.
The corresponding diversity images are denoted by 4, : R2 — R. These images are
approximated by

W = [ Prlu]|” % ¢ (2.42)
where P, is defined by
~ AN
Pralu] = [u exph/1 9m]] . (2.43)

Therefore the mth aberrated point-spread function is |P,,[u]|>. The phase retrieval problem
for M diversity images is formulated as a system of nonlinear equations

A2 |u|2

2 2
¢1 _ ‘Pl[““ *p . (2.44)
Vi [Pull” o

"This is a common situation in land-based astronomical observation where the earth’s atmosphere intro-
duces unknown phase aberrations during observations.
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We indulge in a little notational abstraction that will come in handy later. Define the
convolution operator K, by

Knlule = ¢, (2.45)

where
K lu)lp = |73m[u]|2 * (. (2.46)

In order to easily include the pupil constraint into the system of operator equations above,
define the constant operator

Ko = [Polu]l® (2.47)

where
Po=T (2.48)

for the identity operator Z. Define the the aperture constraint Eq.(2.41) to be ty:
1/)0 = A.

Thus for all @,
lul? = A? — Kolu] = ¢ (2.49)

For the vector v = (v1,...,v,) let v = (v]",...,v"). The phase diversity problem is
formulated as a system of M + 1 operator equations

¥ = Klulp (2.50)

where KC[u] : X = XM and ¢ € XM for ¢ € X, some set to be explicitly defined below.
Here 7 is a vector of images and /C[u] is a linear operator parameterized by the function u

%o Ko
P = : and K= : . (2.51)
M Kum

Dual Representations

The system of equations given by Eq.(2.44) is diagonalized by transforming the equation
to it’s Fourier dual. The Fourier dual to an equation is defined as the Fourier transform
of both sides of the equation. For example, by the convolution theorem any convolution
operator, G, with kernel g € L, is associated with a dual multiplication operator G, with
“kernel” g”, defined by the Fourier dual to the corresponding operator equation:

A
Go=gxp=1 = Go" = (9") (") = 9"

By the convolution theorem, the dual operator to the convolution operator with kernel

|Pm[u]| in Eq.(2.44) is diagonal with Hermitian kernel. A Hermitian function v : R* — C

satisfies v(z) = ¥(—z). Equivalently, v is Hermitian if and only if v" is a real-valued

function.
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Denote the adjoint to the Fourier-Plancherel transform by V. Using the identity v"" =
v(—x) = vVV, it is straight forward to verify that, for any complex-valued scalar functions
v,w € (L' N L?)[R", (],

((v") (wv))/\ = U * W, (2.52)

where * is the correlation operator defined by

vrw(x) = /n vz )w(x + z')dz'. (2.53)
The associate operation to the x operator is denoted by O and is defined by

vOw(x) = /n v(zw(z' — z)dz'. (2.54)

For a listing of relations of these operators see Appendix A.
For m # 0 The Fourier dual to the system of equations Eq.(2.44) is

[Prful?]" = [Pm[ul Pola]|
DY % (Pmlu )

[u])
= (Pufu])” * (Pm[u))”
(u exph/~1 Hm]> * (u exph/—1 ém]> . (2.55)

The Fourier dual of the convolution operator is a multiplication operator denoted by K,
Km[u]/\ = Kp[u]

where

Kpufulg" = [Punlu] * Prafu]| - 0" (2.56)

For m = 0, the Fourier dual of Ky is a constant operator with “kernel” defined by
Ko[ue" = [J[ul2] = u" xuV. (2.57)

The Fourier dual of (2.50) is the diagonalized system of operator equations

Kulp" = [¢?]" (2.58)
with
[v3]" Ky
[?]" = : and K=| : |. (2.59)
[¥3,]" Ku

The diagonalization of the convolution operator is a crucial property for numerical solutions.
Note also that the kernel of K, is Hermitian for all m.
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Using the Fourier dual representation one can also write the point-spread function as a
quadratic in the dual function v, : R2 — C where v,,, € L2[R?,(]

Um = Pm[u]-

The image data is simply the pointwise magnitude of v, convolved against the source ¢:

[om|? * 0 = . (2.60)
The mth operator equation in Eq.(2.44) has the following dual representation
[om|” % @ = r,. (2.61)

By the convolution theorem and equation (2.53), each v, must satisfy
O * Ty = [A2]" (2.62)

It is useful to interpret the functions v,,, above in terms of wave propagation. In geometric
optics v, represents the distribution of ray components, i.e. the directions of propagation,
of the wave u across A through a lens with known aberration exph/—1 6,,]. In studies of
wave propagation in which the Wigner distribution plays a role, the domain of interest is
the product space including the physical domain and the spatial frequency domain. The
wavefront exists in the physical domain and the distribution of rays normal to the wavefront
exists in the spatial frequency domain. This product space is called phase space. For a
general review of this theory see [17,18,194,195].

A Partial Differential Equation Perspective

It is interesting to consider the problem of wavefront reconstruction in the context of partial
differential equations with non-standard data. To see this we separate the aberration free
kernel Eq.(2.28) into “slow” and “fast” components

Ulz; ') ~ expl/1 kzh)U (x; ). (2.63)

Here
~ n_ 1 v—-1k , ,
Uz;z') = = gv) exp{ 2 [(z1 — 21)* + (w2 — 372)2]} : (2.64)

and satisfies the paraxial wave equation on A
[ o VA

g v 7 n_
0oy ok At] U(z,z') = 0. (2.65)

Assume that the kernel with phase aberrations also satisfies Eq.(2.65). The kernel then
satisfies the following partial differential equation with nonstandard data:

TRRCI o
UE)| = %(€), & = constant (2.67)

UxU) = [A%M(8), (2.68)
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where the ¢ subscript indicates that the operator is only with respect to the transverse co-
ordinates. Rather than solving this partial differential equation directly one seeks solutions
to the related optimization problem where the governing Eq.(2.66) provides consistency
conditions that further constrain the problem.

Teague [179] has suggested representing aberrations as phase factors in the scalar wave-
front represented in Eq.(2.24). The wavefront in region A is then given by

U(z) = I(x) explV/-1 6(x)] (2.69)

where I(z) = |U(z)|?. If we take U to be the paraxial approximation to the wave given by
Eq.(2.64), then U satisfies the paraxial wave Eq.(2.65). Substituting Eq.(2.69) into Eq.(2.65)
and taking real and imaginary parts yields the following system of non-linear equations for
the intensity and the phase on the support of U

ol

9, V-1V, (2.70)
00 1 1
2 YV . - 2 72 2
2k1% 5 IO = Z(Vel)? = I*(V40) (2.71)

where, again, V; = (3%1, 8%2) and Ay = V- V.

The common assumption of adaptive optics employed in the phase retrieval problem
is that the intensity is constant across A. Thus I in Eq.(2.71) and Eq.(2.70) is known in
transverse directions. In the plane containing A the normalized intensity I is given by the
indicator function X. Substituting this into Eq.(2.70) implies that 83—;3 is of the form

ol

koo = (@) +da(@)g() (2.72)
T3

for “smooth” functions f and g and the delta distribution 4 for the jump at the boundary
of A (denoted by bdy A). Equating terms in Eq.(2.72) and Eq.(2.70) yields the following
boundary value problem for Poisson’s equation

A = —f on the interior of A
Vi = —gon bdyA. (2.73)

It is possible to obtain direct measurements of %, but this information requires hardware
modifications [79,80]. In the absence of such information the above analysis provides con-
sistency conditions on # that can be used to constrain optimization schemes. In particular,
conservation of energy requires that

/iI d.%‘ld.’EQ =0 (2.74)

A O3

= /AtH dxidzy = 0. (275)
A

By seeking solutions that in some sense satisfy Eq.(2.75), issues about existence and unique-
ness of the boundary value problem Eq.(2.73) are exchanged for questions of existence and
uniqueness to the related optimization problem.
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An Optimization Perspective

In the presence of noise it is likely that an exact solution to the system of equations given by
Eq.(2.44) does not exist®. One therefore seeks the best estimate, ., for a given performance
measure, p . While many different algorithms can be applied to recover the best estimate
uy numerically, it is our view that they all address some type of optimization problem.
The method by which the best estimate is found involves some sort of optimality principle
that depends on the formulation of the underlying optimization problem. Before stating
this optimization problem, some remarks about the spaces in which the operators lie are
necessary.

To establish a well-posed optimization problem the domain must be closed. The Fourier
transform defined by Eq.(2.19) is only valid on L*N L2, which is not closed. This technicality
is avoided by defining the corresponding transform on L?. The Fourier-Plancherel transform
is the unique L? limit of the Fourier transform of elements in L' N L2 [99]. All of the
properties of the standard Fourier transform hold for this extended definition. In addition
to being closed, the space L? has the advantage of being a Hilbert space. In all of the
following, the transforms Py, : L2[R?,C] — L?[R?,C] are defined by

Pmlu] = [u expf/~1 ém]]/\,

where A indicates the Fourier-Plancherel transform. The transform P, is a unitary bounded
linear operator with adjoint denoted by P;, with P, = P,.L.

It will be convenient to represent the fields as mappings into R? rather than C. Define
the transformation R : R? — C by

R(v) = v1 +vV-1 v,

where v = (vi,v2) € R?. The adjoint of R with respect to the real inner product for
v, € C
(v,v") = Re (v'v)

Rew
* —
R*(v) = ( T ) .
The mapping R is a unitary bounded linear operator with R~! = R*. Our discussion
switches frequently between finite dimensional and infinite dimensional settings. Therefore,

it is convenient to think of R as a mapping from L?[R?,R?] to L?[R?,C]. Whenever there
is chance for confusion, square brackets are used to indicate a mapping, e.g.

is given by

Rv] = R(v (")) (2.76)

forv: R2 - R?.
Using this notation, we equivalently write the field at the exit pupil as the function
u: R - R?
u = R"[u].

8The uniqueness results studied in [85] therefore do not apply.
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The imaging equation Eq.(2.42) is equivalently written as

$2(€) | Fnlul* + 0 (). (2.77)
where

Fmlu] = R* [Pr[Rul]] . (2.78)
In general | - | denotes the pointwise magnitude where the finite dimensional 2-norm is

assumed. The modulus, |v|, of a function » : R? — C, is used interchangeably with the
pointwise Euclidean norm |v| of the function v : R? — R? . Unless indicated otherwise, |- ||
denotes the L? operator norm. Since both P,, and R are unitary bounded linear operators,
Fpm also has this property. The adjoint is denoted by F}, with F, = F,.1. For convenience
define

.7:() =7 (279)

where Z is the identity operator.
The general optimization problem is formulated in terms of the functions w and .

M
minimize Y p[¥hm, Km[ulp ] (2.80)
m=0

over u € L*[R?], ¢ € L*[R*,R,].

The data, 1, and A, belongto U,, a set of functions on the unit sphere (i.e. the data
is normalized) for which the Fourier transform is well defined and whose tails tend to zero
sufficiently fast. Alternatively, the optimization problem can be formulated in terms of the
Fourier dual

M

minimize Z p [, Kmlule” | (2.81)
m=0

over u € L2[R?], o" € (L*[R*, R ). (2.82)

Here (L%[R%,R,])" is the Fourier dual to L2[R? , R, ], i.e. the space of Hermitian functions
on R?. The data, %/, also belongs to (U, ). The rest of this work is dedicated to numerical
methods for solving the above optimization problems.

For easy reference, the following is assumed throughout:

Hypothesis 2.2.1 Let u = (u,. ,%;, ) where u,, and u,;, € L?[R? R]. Assume that 1y,
satisfies 1, € Uy for m =0,1,...,M , where Uy 1is the cone of nonnegative functions
given by

U; = {v e L'[R%, RN LAR*, RN LP[R%, R ] such that [v(z)| = 0 as |z| - oo} .

The remainder of this work is devoted to the study of numerical methods for the solution
of the above optimization problem.
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Chapter 3
WAVEFRONT RECONSTRUCTION

The wavefront reconstruction problem or phase retrieval is fundamental to the more
general problem of simultaneous wavefront reconstruction and deconvolution. This chapter
is devoted to a careful study of wavefront reconstruction. Numerical approaches to this
problem are divided into geometric and analytic methods which lead to seemingly different
algorithms. In this chapter we show that the approaches are essentially the same. Fur-
thermore, analytic approaches are well known and have several numerical advantages not
available to standard geometric approaches. These issues are discussed in Chapter 5. The
purpose of this chapter is to precisely characterize the correspondence between projections
of geometrical algorithms and the subdifferential of the squared set distance operator.

3.1 Geometric Approaches

Projection algorithms, such as iterative transform methods, are central to current numerical
techniques for solving the phase retrieval problem [13,29,52,68, 73,110, 125,172,200, 202].
Much is known about projections onto convex sets [21, 30,78, 82,173,189, 203]. However,
the problem of phase retrieval involves projections onto nonconvex sets. It is shown below
that as a consequence of nonconvexity the projections can be multi-valued. This is the
principle obstacle to proving the convergence of projection-type algorithms. For special
classes of nonconvex sets a convergence theory can be provided [43,50]. The nonconvex sets
considered here do not belong to these classes. The geometric analysis of Ref. [50] applies to
the phase retrieval problem although it requires assumptions that are difficult to satisfy. A
convergence theory for generalized projection algorithms is developed in [15], however there
are no known nonconvex sets to which their hypotheses apply. In particular, the hypotheses
required in Proposition 2 of Ref. [15] are not satisfied in the case of phase retrieval. In this
section the theory of nonconvex projections is reviewed.

3.1.1 General Theory

Simply stated, iterative transform methods adjust the phase of the current estimate, u()
or Fr[u")], at iteration v and replace the magnitude with the known pointwise magnitude.
It is straight forward to show that this operation is a projection.

The amplitude data for a one dimensional example is depicted in Fig.(3.1). The functions
satisfying the data belong to sets that are collections of functions that lie on the surface of
the tube-like structures depicted in Fig.(3.2).

Given 9, € L'[R?, R, |NL2[R?, R JNL®[R?, R, ], 1, Z 0 the mathematical description
of these sets is

Qn = {u € L*[R?,R?] | |Fpnlu]| = ¥, a-e.} (3.1)
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Figure 3.1: One dimensional pupil with corresponding image data. Frame (a) is a one
dimensional cross section of the amplitude across the aperture shown in Fig.(6.1.a). Frames
(b)-(d) are cross sections of the corresponding point-spread functions for the aperture in
frame (a) with some unknown phase aberration as well as a known defocus.
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Figure 3.2: Tube constraints. The vertical axis and the axis coming out of the page corre-
spond to the real and imaginary components of the tubes. The horizontal axes correspond
to the horizontal axes of Fig.(3.1). Frame (a) represents the constraint set corresponding to
Fig.(3.1.a). Frames (b)-(d) represent the constraint sets corresponding to Fig.(3.1.b)-(3.1.d).
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Property 3.1.1 The sets Q,, defined by Eq.(3.1) are neither weakly closed nor convez in
L?[R? R?] whenever 1, is not identically zero.

PROOQOF: First, we show that the set Qy is not convex. If u belongs to Qy, then so does
u' = —u . Thus for any non-trivial convex combination of u and w’,

u' = u+ (1 -Nu = 2\ — 1)u,
for XA € (0,1), the function w” does not belong to @ since
lu" ()] = |(2X — 1) |[4pg(x) < y(x) V @ such that 1py(z) > 0 and X € (0,1).

Next we show that () is not weakly closed. Choose u € (Qy and define the sequence
{un} by
Uy (z) = R* (R(u(x)) exp[—2m/—1 n - z])
where n = (n,n).
Clearly u,, € Qy for all n. Set

@ =R*[R[u]"] and @, = R*[R[u,]"].
The transformed sequence {@,} is related to the Fourier transform of R[u] by

N A X
Rlin] = [R(u(x)) exp[-2mv-1 n - 2]]” = R[a](€ + n),
For any u' € L?[R? ,R?] the standard inner product in L? yields

(U, u') = <R[u]ip[—27r\/—_1n-a:],7€[u'])
= [RuIR[W](n).

By the Riemann-Lebesgue Lemma [99, page 297]
[RulR[u]]*(n) -0 as n — oo.

But for all n, ||uy|| = ||u|| # 0.
The same properties also hold for the sets QQ,,, for m = 1,2, ..., M since F,, is a bijective
linear operator. O

The true generalized pupil function must satisfy all the constraints simultaneously, i.e.
it lies in the intersection of the sets Qy N Q1 N --- N Qas, assuming that this intersection is
nonempty. Projection methods are common techniques for finding such intersections in the
convex setting. The Gerchberg-Saxton algorithm, discussed later in this section, is a well
known projection algorithm that has been successfully applied to the nonconvex problem of
phase retrieval. However, due to the nonconvexity of these sets it does not always converge.

We now develop the projection theory for sets of the form Eq.(3.1). Let X be a metric
space with metric p: X — R; and let Q C X. Define the distance of a point z € X to the
set Q by

dist (z; Q) = inf p(z,u). (3.2)
ueQ
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We assume that the metric p is the Euclidean norm in R” and the L?-norm in L?. Suppose
Q C X is closed and define the projection operator, Ilg[v], to be the possibly multi-valued
mapping that sends every point of X to the set of nearest points in Q :

II = i —ul|={2€Q:|v—1u| = inf — . 3.3
qlv] = argmin v —ul| = {2 € Q: Jlv —al| = inf [lv —ull} (3:3)

Proof of the existence of projections in metric spaces is a classical result dating back
to the late 1950’s [142,143]. For a survey and bibliography see Ref. [185]. This theory is
cited in Ref. [50] with specific application to phase retrieval. Since the sets in the phase
retrieval problem are not weakly closed, however, the general theory does not apply [141].
Fortunately, we are able to provide a simple constructive proof of existence while at the
same time providing a precise formulation of the projections. We construct the projection
operator after a brief review of the general theory and its limitations with regard to phase
retrieval. The formulation agrees for the most part with what has heretofore been called
the projection in the literature. While it is elementary, we are not aware of any other proof
of the existence of this specific projection, much less its precise characterization.

The following discussion is limited to a general Hilbert space setting, which is the implied
setting for electromagnetic applications.

Definition 3.1.2 Let X denote a general Hilbert space.

(i) A set Q C X is called boundedly compact if QNB is empty or compact for each closed
ball B.

(ii) A set Q C X is called approximatively compact if for any u € Q each minimizing
sequence (v,) C Q has a subsequence converging to an element of Q.

(iii) A set Q C X is said to be proximinal if every point of X has at least one projection
onto Q.

Lemma 3.1.3 (Efimov and Stechkin [60]) Let Q be a nonempty subset of X . Fach
of the following implies the next.

(i) Q is boundedly compact;
(ii) Q is approzimatively compact;
(iii) Q is proximinal;

(iv) Q is closed.

Property 3.1.4 The sets Q; defined by Eq.(3.1) for i =0,..., M are boundedly compact.
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PROOF: This follows from the fact that the unit ball B is weakly compact in any LP space,
for 1 <p< oo. O

Lemma 3.1.3 and Property 3.1.4 are cited as proof of the existence of projections onto
sets of the form Q. Since the sets are not weakly closed, however, the existence of a
minimizing sequence in the definition of approximatively compact sets is an open question.
We do not attempt to address this issue here.

We are interested in computing the projection onto sets of the form

Q] = {u € L*)[R*,R?] | |u|=bae.}, (3.4)

where b € L2[R%, R, ] with b Z 0. We show that the projection of u € L2[R?,R?] onto Q[b]
is precisely the set
IMu; b = {m|u;b, 0] | # measurable }

where the functions 7[u;b,8] : R2 — R? are given by

u

b(x) "(zg| for u(xz) #0
b(x)R* exply/—1 6(x)] for u(x) =0

wu; b, 0] (x) = { ; (3.5)

for # : R2 — R Lebesgue measurable. Indeed, the proof shows that the set II[u;b] is
precisely the set of all functions in Q[b] that attain the pointwise distance of u(x) to b(x)S
a.e. on R?.

Theorem 3.1.5 For every b € L2[R2, R, ] and u, v € L?[R?,R?], we have

v € I[u;b] <= |v(z) —u(x)| = dist (u(x); b(x)S) a.e., (3.6)
Hop[u] = Iu;bl, and .
dist (w; Qb)) = |/uf - bl (3.8)

PROOF: We first show Eq.(3.6). Let u € L2[R?,R?] and b € L?[R?, R, ] be given. Observe
that if w[u; b, 0] € II[u;b], then 7|u;b, 8] € Q[b] and

n[u;b,0](x) € arg min [u(z) —w| Vz € R2.
web(x)S

That is, the function n[u;b, 0] attains the pointwise distance of u(x) to the set b(x)S on
R?. Conversely, suppose that v € L?[R?,R?] attains the pointwise distance of u(z) to the
set b(x)S on R?. Then by [159, Corollary 1.9.e] there exists a complex measurable function
a: R? — C such that |a(z)| = 1 for all z € R? and R[v] = a|v|. Define the measurable
function § : R2 — R by 6 = cos™!(Re(a)) where we take the principle branch of cos™!.

Then a = exply/~1 0]. Consequently

[u(z)]

o(@) = { b(z) ey , u(@) #0
b(@)R* [explyL 6(@)]] , u() =0
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which implies that v € II[u;b]. Therefore Eq.(3.6) holds.

We now show that TI[u;b] C Ilgp[u]. Choose w[u;b,0] € I[u;b] for some Lebesgue
measurable § : R2 — R, and let v € Qb with v ¢ II[u;b]. Clearly, w[u;b,0] € Q[b].
Moreover, since v ¢ Tl[u;b] there must exist a set of positive measure Y C R? on which v
does not attain the pointwise distance of u(z) to b(x)S, that is,

[u(z) —w[u;b,0](z)] = min |u(z) - wl
web(z)S
< |u(z) —v(z)|, Ve eY.
Therefore,
|u — 7[u; b, 0]|> = min _|u(z) — w|? de
R2 web(x)S

. 2 2
< /R min_|u(z) — wl?dz + /Y|u(w)—v(a:)| d

Q\Y'web(z)S

< [ Jul@) - v@)de
RQ

= Jlu—w|?

where the strict inequality follows from the fact that the set Y has positive measure and
v ¢ TI[u; b]. Hence [u; b, 0] € Tlgpy [ul.

Conversely, if v € gy [u], then, in particular v € Q[b]. If v ¢ II[u;b], then, as above,
there is a set of positive measure on which v does not attain the pointwise distance to
the set b(x)S which implies the contradiction ||u — 7[u;b,0]|| < ||u — v|| for any function
m[u; b, 0] € II[u;b]. Thus we have established Eq.(3.7).

We now show Eq.(3.8). Choose 7[u;b, 0] from Tlgp[u]. Then

dist*(u; Qb)) = |[lu — w[u;b, 6]

= [1ule) - rlusbOl@)* de
2
= [ |(ut@) —b(w))%xsuppm)(m) Iz
+ / | b(2)R* [explv/1 0(@)]]|” (1 — Xsupp (u) (@) d

- / | (@) — (&) P Xsupp () (@) + [6()]° (1~ Xsupp ) (@) d
= ] = B

As an elementary consequence of Theorem 3.1.5 we are also able to characterize the
projection onto the sets Q, defined in Eq.(3.1). In order to define Ilg,,, we must first
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define transforms of multi-valued mappings. The definitions employed here are stated in
terms of measure spaces in anticipation of Section 3.2.5. Here and throughout multi-valued
mappings are indicated with a double arrow =. Let (2,.4, u) be a measure space with the
general o-algebra A and measure y. Let f be a function of Q into R, v.e. f = (f1,.-., fn),
fi: Q> R, fori=1,...,n. The integral [ fdy is defined by the vector

( [ | fndu> | (3.9)

When the measure space is a Lebesgue measure space this will be denoted by (Q, M, ur)
where M is the Lebesgue o-algebra and ur, is Lebesgue measure [99]. The o-algebra of
Borel sets is denoted by B.

Let F': Q = R". Denote by S(F) the set of u-integrable functions f : & — R™ that
satisfy f(z) € F(z) a.e. in Q (z € Q). We call the set S(F) integrable selections of F'.

Definition 3.1.6 (Integrals of multi-valued functions) The set

{[1au1ses) |

is the integral of the multi-valued mapping F : @ = R" and is denoted by [ Fdu or [ F.
For b € L'[R%, R, ] N L?[R?, R, ], by Theorem 3.1.5

g [u] = S (b(-)Is(u("))) (3.10)
where the projection ITyg : R? = R? onto the sphere of radius b, bS is defined by

bﬁ forv #£0

. A1
bS forv=0 (3.11)

Mys(v) = {
The Fp-transform of Tlgy [u] is thus the Fp-transform of all v € Tlgy[u] and is written
Fom [Mgpe)[u]]-
Corollary 3.1.7 Let the set Q, be defined as in Eq.(3.1) and let the operators Ilg, and
Fm be as defined in Eq.(3.3) and Eq.(2.43), respectively. Then

Mg, [u] = F, [Mopp,,) [ Fm[ul]] (3.12)
and

dist (u; Q) = || |Fom [u]] — Y|
for all u € L?[R?, R?].

PROOF: Since the operator F,, is unitary and surjective, we have

Jnf vl = inf [l — Faull
= inf || Fp[u] — vl
vEQ[Ym ]
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Therefore,
w’ € argmin|lu — wl|
we

—
Fm[w'] € Moy, [Fm[u]]
—

w' € Fr, Mo, [Fmlull] ,

since F;, = F.1.
Finally, since F,, is unitary, we obtain from Theorem 3.1.5 that

dist (u; Q) = llw— F, [7[Fm[ul; ¢om, 0] |
= |Fm [u] — 7 [Fmlul; . 0]
11 Fm [u]] = ]|
for any 7[Fp, [u]; b, 0] € gy, [Fmlu]]- O

3.1.2 Projection Algorithms

A general framework for projection algorithms can be found in Ref. [21] which considers
sequences of weighted relaxed projections of the form

4+ (Z .G [ NI + oW1g, ]) [u®)]. (3.13)

(v)

Here 7 is the identity mapping, «y,’ is a relaxation parameter usually in the interval
[0,2], and the weights 'yﬁ,'{ ) are non-negative scalars summing to one. General results for
these types of algorithms apply only to convex sets. In the convex setting the inclusion
in Alg.(3.13) is an equality since projections onto convex sets are single-valued. In the
nonconvex setting this is not the case.

The Gerchberg-Saxton algorithm [73] and its variants can be viewed as an instance of
Alg.(3.13). To see this, define the set of active indices at iteration v by

IW={jeco,..., M|+ >0}

Index m is active at iteration v if 'y( s 0, i.e. if m e J® . Suppose J*) consists of

the single element {v mod (M + 1)} for v > 0 . In this case the weights '77(,'{ ) are given
by

(V)_{l if meJ®, ie if m=v mod (M +1) m=0.1 M

m 1 0 otherwise

This is an instance of what is called a cyclic projection algorithm [21]. Projections onto
the sets Q,, are calculated one at a time in a sequential manner. Thus M + 1 iterations
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of this cyclic algorithm are the same as one iteration of the following sequential projection
algorithm, known in the optics community as the iterative transform algorithm:

M
u+) ¢ (H (o) + aﬁzm@m]) ). (3.14)

m=0

The Gerchberg-Saxton algorithm [73] is obtained by setting M =1 and « = 1. Variants
of this algorithm [117,125] involve increasing the number of diversity images, i.e. M > 1,
and adjusting the relaxation parameters a%) . Convergence results often cited for the
Gerchberg-Saxton algorithm refer to the observation that the set distance error, defined as
the sum of the distances of an iterate u(”) to two constraint sets, Qy and Q, will not
increase as the iteration proceeds [68,73,110]. For M > 1, this may not be the case. That
is, the set distance error can increase. In all cases, the algorithm may fail to converge due to
the nonconvexity of the sets Q, (see Levi and Stark [110] for an example of this behavior).

In our analysis it is convenient to use the change of variables

A W) = ) ) (3.15)
to rewrite Alg.(3.13) as
Wt ¢ (22 A00G0) ) (3.16)

where for all v the operators G*) : L2 — L? are given by

M
g = 3" g (3.17)
m=0
where
g% = Y (T —Tig,,) . (3.18)

In Alg.(3.16) the non-negative weights ﬂfﬁ ) do not necessarily sum to 1, and the parameters
M) are to be interpreted as a step length. This formulation of the projection algorithm is
shown in Section 3.2 to be equivalent to a steepest descent algorithm for a weighted squared
distance function. To our knowledge, the multi-valued nature of the projections has not been
adequately addressed in the numerical theory for the phase retrieval problem. Insufficient
attention to this detail can result in unstable numerical calculations. This is discussed in
Chapter 6. Several authors have proposed extensions to projection algorithms to overcome
stagnation [68,177]. These methods are a valuable topic for further study, however in order
to illustrate the comparison between geometric methods and analytic methods studied in
the following sections we restrict our attention to simple projection algorithms of the form
Alg.(3.13) and Alg.(3.14)

3.1.83 Traps, holes, and monotonic decrease

We finish this discussion of geometric approaches with an illustration of what can go wrong

with projection algorithms. We also establish conditions that weights 7§,’f) and relaxation
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(v)

parameters a,,” must satisfy to ensure decrease of the set distance error in Alg(3.13) for

the case of two sets. The purpose of this discussion is to illustrate the fact that, for the

geometric approach, prescriptions for optimal parameters are difficult and cumbersome.
Let Ti('/) =(1- az(u))l + az(u)l'[&,). Note that the fixed point of Ti('/) is the same as that

of Ht(QZ- ) Letting T® =TT ... T{) we rewrite (3.14) compactly as
wt) e T ), (3.19)

A point u that is a fixed point of the algorithm, but not in Qy is called a trap. Here u
is a fixed point of the algorithm, but not of the individual operators T;. This is illustrated
in the following example.

Example 3.1.8 A simple example of a trap (see figure 3.3 below) can be shown by consid-
ering a hole in the union of the sets Q1, Qu, and Qg in the shape of a triangle. Suppose
these nonconvex sets have some non-trivial intersection far away from the hole shown in
figure (3.3). For starting points near the interior of the hole the unrelazed, intermittent
singular implementation of Alg. (3.18) converges to a cycle of projections rotating between
the sides of the triangle. The unrelazed, evenly averaged (A\;j = 1/3 V i) version of Alg.(3.13)
converges to a point on the interior of the triangle (in this example the point (1/4,1/4)).
For this ezample we define the set distance error p[-,Qg] : X — R as the sum of set distance
measures,

M
plu, Q] = > dist (u, Q) (3.20)
i=1

where Qy = ﬂf‘il(@i. The point on the triangle that locally minimizes the sum of set
distances is the point (0,0), for a minimum value of 1/+/2. In the case shown in figure
(8.3) both algorithms diverge from the locally optimal point causing the set distance error to
increase. Note, however, that if Alg.(3.14) were started so that the cycle ended at the point
(0,0) then the cyclic algorithm would converge to the correct local minimum. Alg. (3.13),
on the other hand converges to the local minimum of the squared set distance error defined

by
M

Plu, Q] = > d*(u,Q). (3.21)

=1

This error is the squared Euclidean norm, whereas the set distance error is the L' norm.

While in the case of several nonconvex sets the set distance error can increase, Levi and
Stark [110] show that when M = 2 the sum of set distance measures of successive iterates of
algorithm (3.14) will not increase as long as the relaxation parameter agu) remains within
certain bounds. Viewed in the context of the generalized algorithm (3.13) similar results

can be shown to be related to the angle ¢,,) between the sets relative to the iterate ul).

Definition 3.1.9 Let ; and (Q» be closed, non-empty subsets of a Hilbert space X. Let
the projections onto the respective sets be denoted by 7 and me. Consider any point u € X.
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Figure 3.3: Frames (a)-(b) show the behavior of the sequential algorithm in a triangular
trap. Frames (c)-(d) show the behavior of the averaged projections algorithm in the same
triangular trap. The sum distance error shown in (b) and (d) for the respective algorithms
is the performance measure given by equation (3.20).
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Let v; = Ilg, [u] — u for ¢ = 1,2. Define the angle ¢, between Q; and @ relative to u by

(v1,v2)

, 0<¢p < (3.22)
o1 ]ll|vz]|

cos(¢u) =

The next theorem gives very conservative ranges for the relaxation parameters a1, as which
ensure set distance reduction between iterates u() and w(®*1) of the general algorithm
(3.13) whenever cos(¢,,)) > 0.

Theorem 3.1.10 Let @@; and ® be closed, non-empty subsets of a Hilbert space X with
intersection @y = @Q; (| @, possibly empty. Denote the projections onto the sets @ and
@, by IIg, and Ilg, respectively. Let the set distance error p[-,Qy] : X — R be given by

plu, Qo] = dist (u,Q)” + dist (u, Q)

where dist (u,Q;) is given by (3.2). Suppose the set angle relative to the iterate ()
defined by (3.22) satisfies cos(¢,,)) > 0; then for all weights /\z(-u) € [0,1], 7 = 1,2 satisfying
)\gy) + /\g/) = 1, iterates of algorithm (3.13) satisfy

plul ™, Qo] < plu), Qo] (3.23)

for values of the relaxation parameters a(¥) satisfying

0 <o < 1//\(”) Vol €0,2,  for /\(”) € [3/4,1] (3.24)
) v) 1
0 < o’ < 1/)\ , 0<ay’ < 20 for)\ €[1/2,3/4] (3.25)
0< o <1, o< < i 1A(,,)) for A € [1/4,1/2] (3.26)
A2
0 <ol <1, velP e,  for A eo,1/4]. (3.27)

PROOF: It suffices to show that for any u € X[R",C] satisfying cos(¢,) > 0 and any «;
satisfying (3.24)-(3.25) that
p[T[u], Q] < plu, Q]

where T = M\ T + AoT5 for T; = (1 — ;)] + o;1lg,. By the definition of the projection

plT[u), Qo] = Mg [Tu]] — T[u]||* + Mg, [Tu] — T[u]|?

Ty, [u] — T'[wl]||® + [T, [w] — Tu]|?

= [I(1 = a1 M) (Mg, [u] — u) — agdo(Tlg, [u] — u)|
HI(1 — a2ro) (Mg, [u] — w) — a1 A1 (g, [u] — w)||?

Let v; = m;f —u, ¢t =1,2. Then

plT[u],Q] < [[(1 —a1d1)vr — agdova||? + ||(1 — aad)ve — agAjvr||?
= [(1 — 041)\1 ||’l)1||2 — 2(1 — 0[1/\1)042)@R6{<’U1,’U2)} + 042)\ ||’l)2|| :|
+ [(1 = a2h2)?[|vall® — 2(1 — apAg) s AiRe{(v1, v2) } + A ||v1|?]

IN
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vl ep Relwies) I cos(¢y,) and

o1 ]] [lo1][?

Suppose ||v1]| > 0. Let T = |
p[Tu], Q] — plu, Qo] 1—a1A1)? = 2(1 — ag ) agdoT cos(dy) + a3 A3T?] ||og ||?
1 — ao)2)’T? — 2(1 — agdo)ar AT cos(dy) + AT ||os|?
T T

Thus p[T[u], Qo] — plu, Q] < 0 holds whenever
051)\1(051)\1 — 1) + ag>\2(a2)\2 - 1)F2 S FCOS(QZSu)(Oq)\l + 052)\2 - 2041)\1(12)\2) (328)

Suppose that cos(¢,) > 0. By definition I' > 0, thus the condition (3.28) is clearly
satisfied whenever

(a1>\1 + agAg — 20[1)\10[2)\2) > 0 (329)
ando; < 1/Xi=1,2. (3.30)

There are 4 cases to consider.

1. A\ € [3/4,1]: condition (3.30) is satisfied for all ap € [0,2] and for all oy € [0,1/A1]
(recall, A2 = 1— ;). Condition (3.29) is satisfied whenever ay < ﬁ which is true
for all oz € [0,2].

2. A\ € [1/2,3/4]: condition (3.30) is satisfied for all @y € [0,1/A1] and as € [0,1/(1 —
A1)]. Condition (3.29), however, is satisfied whenever ag < ﬁ, thus the range in
(3.25).

The cases when A\; € [1/4,1/2] and A\; € [0,1/4] are treated similarly with the roles of a;
and as reversed.

The only case left to examine is ||v1|| = 0. If we also have ||vs|| = 0 then the statement
of the proof is trivial. Assume then that ||vg|| > 0. Repeating the above argument with the
relaxation parameters and weights reversed yields the same result.

O

Remarks: With the exception of the assumption that ||v1]| > 0, condition (3.28) is
entirely general and may be used to formulate more refined criteria for achieving set distance
reduction than the conservative estimates given in the statement of the proof. Also, the
case when cos(¢,) > 0 is not as rare as it might seem. If |ve|| = 0, i.e. u € Qu, then
cos(¢y) = 0. This is satisfied when the algorithm simply projects back and forth between
the sets. Notice that the value 1 is always in the range of the values that the relaxation
parameters may take, thus, as would be expected, simple unrelaxed alternating projections
between two sets will never result in an increase in set distance error as long as the initial
guess belongs to one of the sets.
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3.2 Nonsmooth Analysis

Convergence results for projection methods applied to the phase retrieval problem are not
possible in general due to the nonconvexity of the constraint sets. In this section we show
that the nonconvexity of the constraint sets is related to the nonsmoothness of the square of
the set distance error dist (u; Q) defined in Eq.(3.2). This is fundamentally different from
the convex setting in a Hilbert space where the squared distance function is smooth. The
nonsmoothness of the squared distance function in the nonconvex setting is a consequence
of the multi-valuedness of the projection operator. In this section some insight into this
relationship is given.

3.2.1 Least Squares

Consider the weighted squared set distance error for the phase retrieval problem given by
the mapping E : L?[R? R?] = R, ,

o~ fm
Elu] =) lest u; Q) (3.31)

where B, >0 for m=0,...,M and by Corollary 3.1.7

dist2(u; Qp) = inf |lu—wl|? = ||| Fnlu]| — o, |°- (3.32)
weQm

For this least squares objective the optimization problem Pr.(2.80) becomes

minimize E[u] (3.33)
over u € L*[R?,R?].

In general the optimal value for this problem is non-zero, and so classical techniques for
solving the problem numerically are based on satisfying a first-order necessary condition
for optimality. For smooth functions this condition simply states that the gradient takes
the value zero at any local solution to the optimization problem. However, the functions
dist 2(u; Q,,) are not differentiable. The easiest way to see this is to consider the one
dimensional function a(z) = ||z| — b|?> where b > 0. This function is not differentiable
at z = 0 (indeed, it is not even subdifferentiably regular at x=0 [154, Def. 7.25]). It is
precisely at these points that the finite dimensional projection operator Ilyg is multi-valued.
Similarly, the functions dist %2(u;Q,,) are not differentiable at functions u for which there
exists a set 1 C supp (¢,,) of positive measure on which © = 0. A common technique to
avoid division by zero is to add a small positive quantity to the denominator of any suspect
rational expression. This device is used in [71] to avoid devision by zero in the representation
of the derivative of the modulus function. However, this is not a principled approach to
the need for approximating the modulus function and its derivatives locally. In the next
section we study an alternative approximation to the modulus function itself that posesses
excellent global approximation properties.
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In the nonsmooth setting the usual first-order optimality condition is replaced by a
first-order variational principle of the form

0 € 8E[u,]. (3.34)

where @ denotes a subdifferential operator such as those studied in [44,45,92,94,126,129].
By Theorem 9.2 of [129], in the Hilbert space setting, the subdifferential of E is the same
regardless of the choice of the subdifferential operator studied in the references given above.
In this section we develop the tools necessary to prove the following property

Property 3.2.1 Let ¢, : R2 = R, and u : R? — R? satisfy Hypothesis 2.2.1; let
Mg, : L2 = Q, be defined by Eq.(3.3). Then

0 (dist*(u; Q) = 2¢l* (T — Mg, ) [u] (3.35)
and o
OE[u] C > cl*Grmlu] (3.36)
m=0

where Gy, is defined by Eq.(3.18) and cl* denotes the weak-star closure.

Remark 3.2.2 We should note that in a Hilbert-space setting cl* = w—cl where w— cl
denotes the weak closure.

3.2.2 Finite dimensional nonsmooth analysis

We introduce the theory of nonsmooth analysis in stages, building up from the finite di-
mensional setting. We will build the theory using the elemental pieces of the squared set
distance error E to fix our ideas. The crux of the problem is the pointwise modulus function

k(u) = |ul (3.37)

or rather, as it turns out, the negative of the modulus function. By Theorem 3.1.5, the
squared set distance error dist ?(u; Q[b]) of functions u to sets Q[b] defined by Eq.(3.4) is
given by the pointwise distance defined by Eq.(3.8). In L? this has the following integral
representation in terms of the square of the pointwise residual 7 : R? x R, — R

dist 2(w: Qb)) = / r2(u(@); b(z))dz. (3.38)
R2

where

r(u;b) = k(u) — b. (3.39)
Similarly, define h : L?[R?,R?] - R by

hlu; b = /R —r(u(@)) be)dz (3.40)

then
dist 2(u; Qb)) = [|u]2 + 1B]2 + 2h[us b. (3.41)



41

When the arguments of the functions are themselves functions, this is denoted as usual with
square brackets.

While dist ?(u; Q[b]) is not smooth, it is straightforward to show that it is Lipschitz
continuous on bounded subsets of L?[R?,R?]. A function f : X — R is locally Lipschitz
near x if there exists a neighborhood U(z) C X of = such that

1f(z) = fW)I < Kllz =yl VzyeU)

for some K > 0. For any set U C X over which f is finite-valued, f is said to be locally
Lipschitz on U if it is locally Lipschitz near all z € U. The function is said to be (globally)
Lipschitz on U if

[f(z) = fl < Klz —yl| Va,yeU

Property 3.2.3 If b € L?[R?,R,], then the mapping dist?(-;Q[b]) : L% [R%,R?] — R, is
finite-valued and Lipschitz on any bounded subset U C L?[R?, R?] with Lipschitz constant

K =2M +2|bl»

where M = sup ||u|-
ucU

PROOF: Let U be an L?-bounded subset of L? with bound M. We work with the integral
representation for the distance function given in Eq.(3.41). Let u, w € L?[R?,R?] be such
that w,u +w € U. Then

|dist2( + w; Q[b]) — dist ? (u; Qb)) |

< [llw + wl® = [|ul] +2/ b(e) |[|u(z) + w(@)| - [u(z)|]| dz
R2

< (e + wl] + JJuef) (e + w]| — [lu]])] +2/]R2 b(z)|w(z)| dz
< 2M||w|| + 2]|b]|[| |-

The last inequality makes use of Holder’s Inequality. O

Remark 3.2.4 Lipschitz continuity of the squared set distance error E is a straightforward
consequence of Property 3.2.3 and Parseval’s relation.

We now introduce some basic definitions from nonsmooth analysis. In our discussion we
allow mappings to have infinite values, thus it is convenient to define the extended reals,
i.e. RU{oo}, by R. The effective domain of f : R* — R, denoted dom f C R, is the set
on which f is finite. To avoid certain pathological mappings the discussion is restricted to
proper, i.e. not everywhere infinite, lower semi-continuous (l.s.c.) functions. A function
f:X =R is lower semi-continuous at a point u € X if

liminff(u') > f(u).

u' —u
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Upper semi-continuity is similar to the above definition but with the “inf” replaced by a
“sup” and the inequality reversed. A function is continuous if it is both lower and upper

semi-continuous.

Definition 3.2.5 (Subderivatives [154]) For a function f : R™ — R and a point T €
R™ with f(w) finite,

(i) the subderivative function df (@) : R™ — R is defined by

ey i+ L@ W) — f(@)
df (w)(w) = llril\llléf . ;

w—w

(73) the regular subderivative function d} (@) : R™ = R s defined by

d/:f(ﬂ) (w) = }1\1‘1(1) limsup | inf flutTw) — f(u)

u—u wEB(waJ) T
f

7N\O0

In the above definition it is not assumed that f is continuous, thus the notion of f-attentive

convergence, denoted by —f):
u®) rE u) 57 with f(u®) = f@).

Definition 3.2.6 (Subgradients - finite dimensions [154]) Consider a function f : R™ —
R and a point w € R™ with f(w) finite. For v € R™ one has

(i) v is a regular subgradient of f at u if
f(u) > f(@) + (v, u—7a) + of|[u —7l)).

We call the set of reqular subgradients v the regular subdifferential of f at w and
denote this set by Of (u).

(i) v is a proximal subgradient of a function f : R* — R at @ € dom f if there exist
o >0 and § > 0 such that

Fw) > f@) + (v, u—1) %am —a?  when lu—u <5 (3.42)

(iii) v is a (general) subgradient of f at @ if there are sequences ul¥) 7) a and v €

5f(u(”)) with v®) — v. We call the set of (general) subgradients v the (general)
subdifferential of f at @ denoted by Of (u).
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(iv) v is a horizon, or singular, subgradient of f at @ if (i) holds with the exception that
rather than v¥) — v one has Xv(™) — v for some sequence \*) \, 0. We call the
set of horizon subgradients v the horizon subdifferential of f at u and denote this set

by 0% f(u).

(v) v is a Clarke subgradient of f at u if f is l.s.c. on a neighborhood of u and v satisfies
(v, w) < c/l\f(ﬂ)(w) for all weR™.

We call the set of Clarke subgradients v the Clarke subdifferential of f at w and denote
this set by Of (u).

(vi) v is a Clarke horizon subgradient of f at @, written v € d * f(@) , if f is l.s.c. on a
neighborhood of u and v satisfies

(v, w) <0 forall we dom(/i\f(ﬂ).

We call the set of Clarke horizon subgradients v the Clarke horizon subdifferential of
f at @ and denote this set by 8 (7).

Remark 3.2.7 If f is Lipschitz continuous, then Of is upper semicontinuous (usc), that
is, has closed graph [154, Proposition 8.7].

Remark 3.2.8 A remark on subdifferential notation for the composition of functions is in
order since this will frequently arise in the sequel. If g : X — R is given as the composition
of two functions f : Y - R and h: X =Y, i.e. g(x) = (foh)(z) = f(h(z)), then we write

dg(z) = O(f o h)(x).

On the other hand, we write
of (h(z))
to denote the subdifferential of f evaluated at h(z).

A Lipschitz function f : R — R is said to be (subdifferentially) reqular at u € dom f
with of (u) # 0 if R
of () = of (w).
The class of subdifferentially regular functions includes, among others, all strictly differen-

tiable functions and all convex functions [154]. The subdifferential definitions are illustrated
with the following important example.

Example 3.2.9 Let k(u) = |u| as defined in Eq.(3.37) and let b € (0,00). Since the
function br(u) is convez it is subdifferentially regular for all w. It has 0*°(bk(u)) = {0} for

all u and ! o
0 (bk(w)) = b0 (k(w)) = { b fw#0

B ifu=0 (3:43)
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where bB s the ball of radius b.
In contrast, the function —bk(u) defined by Eq.(3.37) for b € (0,00) is not regular at 0.
Nevertheless it has 0 (—bk(w)) = 0 for all w and

9 (—bs(m)) = b0 (—k(m)) = { _ZS% Z; i 8 (3.44)

where bS is the surface of the sphere of radius b. The Clarke subdifferential of —bk(u) is the
convez hull of the generalized subdifferential and the Clarke horizon subdifferential is zero:

0 (—br(u)) = con 9 (—bk(u)), 0™ (—br(u)) = con 0 (—br(u)) = 0.

PROOF: This is a modification of Exercise 8.27 of [154]. For completeness, this is proven
here.

The function « is globally Lipschitz, convex and proper with dom x = R", so by Corollary
8.11 and Proposition 8.12 of [154] bk((u)) is regular with 0*°(bk(u)) = {0} for all u and

d(bk(0)) ={v | |ulb > (v, u) Yu}=">B.

For all u # 0 the modulus function is differentiable in the usual sense, and so d(bk(u)) =
{V(bs(u))} = bray-

On the other hand, by Property 8.5 of [154], v € 8 (—bk(0)) if an only if there is a
smooth g < —bk with Vg(0) = v. Suppose there exists such a g, then g(0) = 0 and on some
neighborhood A of 0,

g(tw) = Vyg(tw) - Tw > —|7bw|

for all 0 < |t| < |7| such that 7 € N. But this contradicts the definition of g.

Calculation of the generalized gradient follows from the definition: v € d(—bs(u)) if
there is a sequence u*) — @ and v*) € 9 (—br(u™)) with v(*) — v. If @ # 0 then the
function is differentiable inn the usual sense and all the definitions coincide. If @ = 0 then
the only » for which

liminf_b|u(y)| — (o), ul)

u) >g |[u()]|
u(")#O

>0

is v satisfying |v| = b. Finally, the local boundedness of 9(—bk) implies that 0 (—bk(w)) =
{0} by the definition of horizon subgradients.
The second statement of the lemma is a consequence of Theorem 8.49 of [154]. a

The above example immediately yields the following correspondence between finite di-
mensional projections Il;g and the subdifferential 9(—bk(u)).

Property 3.2.10 Let IIyg(u) be the projection defined in Eq.(3.11). For u € R?, b€ R,
and r? : R? - R, defined in Eq.(3.39)

O(—br(u)) = s(u), (3.45)
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and _
O(=br(u)) = con (Tys(u)), (3.46)
and
or(u;b) = 2(I — Tig(w)), (3.47)
where I is the finite dimensional identity operator. Moreover,
Or?(u;b) = con (I — Iyg(u)). (3.48)

PROOQOF: This follows directly from the definitions of subgradients and Example 3.2.9. O

As with the finite dimensional projection IIg, and the infinite dimensional projection
Mgy : L?[R?,R?] = L?[R?*,R?] defined in Eq.(3.7), there is a relation between the finite
dimensional subdifferential dr?(u(x); b(x)) (z fixed) and the “subdifferential” of the square
distance function, d(dist?(u;Q[b])). In infinite dimensions there are many definitions for
subdifferentials which are designed with some more exotic spaces in mind. Fortunately, in
the setting of phase retrieval many of the different subdifferentials are equivalent. Thus we
can choose the simplest object to work with for proving the desired results. Our goal in
what follows is to introduce the definitions and theorems necessary to prove a general result
relating the subdifferentials of an integrand to the subdifferential of the associated integral
operator.

3.2.83 Integrals of multi-valued functions

We begin by reviewing some fundamental properties of integrals of multi-valued mappings
defined in Def. 3.1.6. Integrals of multi-valued mappings received a great deal of atten-
tion during the 1960’s and early 70’s in the economics literature. The literature is vast.
The principle sources which we draw upon are the works of Aumann [8-10], Richter [150],
Schmeidler [161,162]. An introductory review and bibliography can be found in Hilden-
brand [89].

Many of the properties we develop are limited to non-atomic measure spaces. A subset
U of Q is called an atom in the measure space (2,4, u), where A denotes a general
o—algebra, if 4(U) > 0 and if V C U implies that either u(V) = p(U) or u(V) = 0. A
measure space (2, A4, u) or the measure p on (2,.4) is called non-atomic if (22, A, p) has
no atoms. The following lemma is elementary and stated without proof. For a discussion
see [89].

Lemma 3.2.11 (Non-atomic measures on separable metric spaces ) A
measure |1 on a separable metric space X is non-atomic if and only if p(x) =0
for every x € X,

Lebesgue measure, for example, is non-atomic.

The key property of integrals of multi-valued mappings is that they are convex. The
following theorem on convexity is fundamental to subsequent results on the correspondence
between pointwise multi-valued mappings and integrals of multi-valued mappings on a mea-
sure space.
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Theorem 3.2.12 (Liapunov’s Theorem [111]) Let u; (i = 1,2,...) be non-atomic mea-
sures on (2, A). Then the set

{(1(E),...,un(E)) e R* |[E € A}

is a closed and convex subset in R".

The following result is an elegant application of Liapunov’s Theorem to integrals of
multi-valued functions defined by Eq.(3.9).

Theorem 3.2.13 (Richter [150]) Let F : Q = R" be a multi-valued mapping of the
non-atomic measure space (§2,A, p) into R*. Then the integral

/ Fdu

PROOF: An English translation of this simple proof can be found in [89]. The proof is
repeated here for completeness. Let ¢, ¢o € [F and 0 < A < 1. Let S(F) denote the
collection of measurable selections from F. There are integrable functions fi, fo € S(F)
such that ¢; = [ f;. From Liapunov’s Theorem 3.2.12 the set

{(/Efldu,/Efzdu> € R IEEA}

is convex. Since (0,0) and (¢1, $2) belong to this set, there exists a set E such that

(Ar, Ay) = ( [E fudp, /E f2du>-

Define the function f € S(F) by f(z) = fi(z) if x € E and f(z) = fo(z) if z ¢ E. Then
Jf =X+ (1= N m

15 a convex set in R"

Corollary 3.2.14 (Schmeidler [161]) Let (2,.A, P) be a non-atomic probability measure
space and let S C R™. Let F(z) =S for every z € Q. Then

/FdP:conS.

Let A denote a general o-algebra on 2. Let B" denote the Borel sets of R” and let (A®
B™) be the product o-algebra generated by A and B™ [99, Chapter 11]. The multifunction
F: Q=R" is said to be A-measurable if for all open sets V the set

{z |VNF(z)#0} € A
The multifunction F is said to be (A ® B™)-measurable if

gph (F) = {(z,v) |ve F(z)} € (AQ B").
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For example, if A is the set of Lebesgue measurable set on R™, M™. and F is usc, that is
F has closed graph, then F' is (M™ ® B")-measurable.
We say that F' is integrably bounded if there is a p-integrable a : € — R’} such that

(loal;- - [on]) < (=)

for all pairs (z,v) € (2, R*) satisfying v € F(z). The multifunction F is said to be L2-
bounded if there is a function a(z) € L?[Q, A, u] such that

|v| <a(z) Vv € F(z), ae.

A multifunction F' is closed if F(x) is closed for each z.
To fix these ideas, let b € L[R?, R, ] N L%[R%, R, ] be a nonnegative Borel measurable

function satisfying
/ b(z)dx = 1.

Then b is a density function and characterizes the probability measure P on the space
(R?, M?) where and M? is the Lebesgue o-algebra on R? (Theorem 12.1 of [97]). The pro-
jections discussed in Section 3.1 can be interpreted as multifunctions on this measure space.
Consider the multifunction F : R2 = R? on the probability measure space (R?, M2, P)

F(z) =S (3.49)

where S is the unit sphere in R*. Then S(F) corresponds to g [0] where S(F) is the
collection of P-measurable selections on (R?, M?, P) and Tl [0] is given by Eq.(3.7). The
multifunction F is closed because it is the pointwise mapping to the unit sphere and P-
bounded with bound 1.

Let L2 (R*, M", P) denote the Hilbert space of functions mapping R" to R™ with inner
product on the probability measure (R", M™, P) given by

F9p = | (@) g@)e)de (3.50)

where (-,-) denotes the usual finite dimensional vector inner product and b: R* — R, isa
density function characterizing the probability measure P.

Proposition 3.2.15 Let F : R* = R™ be closed, convez-valued and L%-bounded on
L2 (R*, M™, i) where u is a complete, non-atomic measure whose set of measurable sets is
M™. Then the set of measurable selections S(F) is weakly compact in L2, (R*, M™, u).

PROOF: This is a generalization of Exercise 5.14 of [45]. By [53, Theorem 1, pg. 58] we need
only show that S(F') is weakly sequentially compact. Consider any sequence {f;} C S(F).
We must show that {f;} has a weakly convergent subsequence with limit f, € S(F'). Since
the sequence is L2-bounded, reflexivity and Alaoglu’s Theorem [199, Theorem 1, pg 126]
imply that there exists a weakly convergent subsequence whose limit belongs to the weak
closure of S(F). Since S(F') is convex by the pointwise convexity of F', the strong and weak
closures of S(F') coincide. Hence the result follows if S(F) is strongly closed. Since strong
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convergence implies the existence of a subsequence that is almost everywhere pointwise con-
vergent [159, Theorem 3.12], and F'(z) is pointwise closed, we have that S(F) is strongly
closed. O

The next theorem, due to Hildenbrand [89], is a restatement of Theorems 3 and 4 of
Aumann [8] for multifunctions on the non-atomic measure space (2, A, u).

Theorem 3.2.16 (Theorem 4 and Proposition 7 of [89]) Let F' denote a multifunc-
tion from the non-atomic measure space (2, A, u) to R that is (A ® B")-measurable and

integrably bounded. Then
/F :/con F.

Moreover, if F is closed and integrably bounded (not necessarily (A® B™)-measurable), then
[ F is compact.

Proposition 3.2.17 Let v € S(con F) where F : R2 =3 R? is a nonempty, closed, (M? ®
B?)-measurable, L%-bounded multifunction on L3(R?, M2, P) for the probability measure P
defined by the density b: R? — Ry as in Eq.(3.50). Then there exists a sequence {f;} of
measurable selections of F' which converges weakly to v.

PROOF: This is a modification of Exercise 5.17 of [45]. Consider the box I, = [-n,n] X

[-n,n] for n = 1,2,3,.... Suppose each box I,, is partitioned into n? intervals of width
1/n. Set
k
ty=——n for k=0,1,...,2n2,
n

and for each ¢t € [—n,n| define

mn:max{tz : tggt,kzo,...,m?} and @n:min{tz: tZZt,kzO,...,2n2}.

Note that 0 < max{t — (¢),,, (t) —t} <1/n whenever ¢ € [-1,n]. By Theorem 3.2.16 there

exists a selection f, € F on (R?, B2, P) corresponding to the partition of the box I,, such
that

Fol@)b(@)da = / o(@)b(x)de
R2 R2

with
134 tn n e
/J+1 / k+1 fu(x)b(z)dz = /Hl / k+1 v(z)b(x)de, n=1,23,...; j,k=0,..., Im2.
& t ¢ tn

We show that the sequence f,, converges weakly to v.
Let g € C*°[R?,R?] and X}y be the indicator of the box M = [a, 8] X [y,7]. Given ¢ > 0
we will show that there exists n’ such that

‘(gXMa fn —’U)l S €
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for all n > n/, i.e. (gXm, fn —v) — 0. Let n; be such that M C I,,, for all n > n;. Choose
n > n1. Integration by parts yields

(gXm, fn—v) =

(9(167 n), /" /ﬂ[fn(s,t) _U(S,t)]b(s,t)dsdt> (3.51)
/v (gy By), / / [fn(s,t) —v(s,t)]b(s,t)ds dt) dy (3.52)
/ﬂ <9w @,1); / / [fu(s,t) — v(s,1)]b(s, t)dsdt) dx (3.53)

+/Y / (gwy z,y), f/ /;[fn(s,t) —v(s,t)]b(s,t)dsdt) dedy — (3.54)

Note that each of these terms contains an expression of the form

// (fn(s,t) —v(s,t))b(s,t)ds dt /(n)/ (fn(s,t) —v(s,t))b(s,t)dsdt

n

B
+ /_” (fnls,t) —v(s,t))b(s, t)ds dt

+/ / (fn(s,t) —v(s,t))b(s,t)dsdt

)n B
+ / [ (Fuls,t) — (s, £))b(s, t)ds dt,
), 1@,

(3.55)
where
[%,7] x [&,B] C [v,n] x [a, B] C [-n,n] x [-n,n].
In addition, for any box of the form [¢/, 3] x [y, 7], we have the bound

n
/ / (fn(s,t) —v(s,t)b(s,t)dsdt
Y o

! !

< / / | fr(s,t) —v(s,t)|b(s,t)ds dt

//2|ast|bstdsdt
al

= 2/]1%2 |a'(w)|X[O¢',ﬁ’]><[’7’,n’}(w)b(w)dm

< 2lall [ X grotyn(@)bie)de

IN

= 2|4 b(x)dex.
[, [¥ ']
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Next note that the Lebesgue measure of each of the sets [(7),,,7] x [&, 8], [¥, (%) ] x [&, 3],

_ —Tn

[@”,ﬁ] X [&, (&) |, and [(%) @n] X [(ﬁ)n,ﬁ] appearing in (3.55) is bounded by

—Tn —Tn ?

" max{(n — ), (8~ )}

which can be made arbitrarily small. By [159, Exercise 12, page 33], for every € > 0 there
is a §(€) > 0 such

/ b(x)de <€ whenever M(E) < §(€),
E

where M(E) is the Lebesgue measure of the set E. Therefore, given € > 0, we can choose
n so that + max{(n —7), (8 — @)} < §(¢). By combining this with Eq.(3.55), we obtain the
bound

-
/n/ (Fu(5,1) — v(s, £))b(s, )ds dt| < 8]la]| VE. (3.56)
¥ Ja

If we set

I' = max{|g(s, )|, lgy(s, )], |92(s, )], |gay(s,?)] = (5,%) € [, B] X [y, n]}
the bounds Eq.(3.56) yield the following bound for the sum of the 4 integrands Eq.(3.51)-
(3.54):

g, fu— ) STIL+ (=) + (8= ) + (1= 7)(8 - )] [8]lallVE]

Given any ¢ there exists an € such that the left hand side is less than ¢, moreover, for this
€ there is an n/ such that

1
—max{(n—7),(8-a)} <) Vn>n'
Therefore, for all n > n' we have

(g, fn —0)| < e,

which is what we set out to show. Since functions of the form gXj;, where g € C°[R?,R?]
and M C R? is a box, are dense in L?(R?, M2, P) we have that the sequence f,, converges
weakly to v. O

3.2.4 Application to wavefront reconstruction
We now apply the above results to the negative modulus function —k(u).

Property 3.2.18 Let b e L'[R?, R, | N L2[R2, R, ] be a density function for the probability
measure P on (R%, M?). and let u € L?[R?,R?]. The negative modulus function —r(u(zx))
has the following properties.
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/ 9 (—k(0)) b(x)d = / _TI5(0)b(z)dz = con S,

where S is the unit sphere.
(ii) S (9(—r(u(")))) is weakly compact in L3(R?, M2, P).

(ii)
/ O(—r(u(@)))b(e)dz = / —con (Ts(u(x))) b(z)dz,

and [ O(—k(u(zx)))b(z)dz is a compact subset of R?.

(iv) On L?[R%,R?]
S (b()0(—r(u())) C —cl"Tgpy [u]
where Q[b] is defined by Eq.(3.4) and gy [u] by Eq.(3.5).

PROOF: (i) This is an application of Corollary 3.2.14.

(i) At each x, d(—k(u(zx))) is closed and convex-valued. In addition, by Example 3.2.9
every element of the set 0(—r(u(z))) has magnitude less than or equal to 1 and so the
multifunction d(—x(u(-))) is L?-bounded in (R?, M2, P). Hence by Proposition 3.2.15
S (9(—~r(u(x)))) is weakly compact in L3(R?, M?, P).

(iii) We wish to apply Theorem 3.2.16, so we must show that the multifunction

F(z) = [0(—r) o u](z) = 0(—k(u(z)))

is P-integrably bounded and (M? ® B?)-measurable. By Example 3.2.9, the multifunction
F: R? = R? is P-integrably bounded with bound equal to 1. By Remark 3.2.7 the mul-
tifunction O(—«) has closed graph and is therefore (M? ® B?)-measurable. By hypothesis,
the function u is a Lebesgue measurable mapping from (R?, M?) into (R?, M?). Thus,
by [89, Proposition 1.b, pg 59] the composite multifunction ' defined above is (M? ® B?)-
measurable. Therefore Theorem 3.2.16 applies to give the result.

(iv) By Proposition 3.2.17 every v(-) € S (b(-)0(—£(u(-)))) is the weak limit of a sequence
of functions in S (b(-)0(—r(u(-)))), since con (d(—k(u(-)))) = (—r(u(-))) (see Example
3.2.9). Ifv € S (b(-)9(—~(u(-)))) , then by Theorem 3.1.5 and Property 3.2.10 —v € gy [u].
Hence

S (b(-)0(=r(u()))) C —Tgp)[u]

from which the result follows. O
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3.2.5 Infinite dimensional nonsmooth analysis

The next step is to relate the subdifferential of the integral of nonsmooth integrands to the
integral of the subdifferential of nonsmooth integrands. This requires infinite dimensional
nonsmooth analysis, for which several definitions are needed. For a complete discussion of
the objects below see Ref. [44,45,92,94,126,129] and the references therein.

Definition 3.2.19 (Normal cones) Let Q2 be a nonempty subset of the Banach space X.
Denote the dual to X by X*. Let u € clQ2, and ¢ > 0 :

(i) the e-normal cone at u € Q, denoted J/\ffz[u], is the set of Fréchet e-normals to 2:

N§] = { u, € X* limsupM <e€p; (3.57)
Py ]
(#i) the normal cone to 2 at u is defined by
No[u] = limsupN§[u]; (3.58)
vg)u €0

(#ii) if X is a real Hilbert space, and Q is proziminal (Def. 3.1.2), then for any u € X,
the Proximal Normal cone to ) at @, denoted N [u], are the vectors v such that there
ezists a T > 0 with

uellg [ﬂ + T’l)],

where Il is defined by Eq.(3.3).

Definition 3.2.20 (Subgradients - infinite dimensions) For any Banach
space X and f: X = R,

(i) u, € X* is an analytic Fréchet e-subgradient of f at uw if

fiming == u=m) o (3.59)

u— |lu — @] -

We call the set of analytic Fréchet e-subgradients u, the analytic Fréchet e-subdifferential
of f at w and denote this set by O f[u)] .

(ii) for X a Hilbert space and f l.s.c., u, € X is called a proximal subgradient of f at
u € dom f if
(s, —1) € Ny ([, f [7)].

We call the set of prozimal subgradients u, the proximal subdifferential of f at w and
denote this set by Op f[u] .
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(iii) u. € X* is a (general) subgradient of f at u € dom f if
(tey—1) € N[, £ 12} (3.60)

We call the set of (general) subgradients u, the (general) subdifferential of f at w and
denote this set by Of[a] .

(1v) u. € X* is a horizon or singular subgradient of f at w € dom f, written u, € 0% f[u],
the singular subdifferential of f at w, if

(u*,O) € Nepif[ﬂaf[ﬂ]]; (3'61)

We call the set of singular subgradients u, the singular subdifferential of f at w and
denote this set by 0% f[q] .

(v) usx € X* is a Dini-subgradient of f atw € dom f if
(ug,v) < df[@][v] + €|lv]| Vv € X (3.62)

where df[u](v) is the subderivative defined in Def.3.2.5(i). We call the set of Dini-
subgradients u, the Dini- subdifferential of f at w and denote this set by 0, f[u]. When
e = 0 we write 0~ f[u] instead of 0y f[u]);

(vi) for f ls.c. around w € dom f, u, € X* is a sequential A-subgradient of f at T if
there are sequences e®) N O, ul®) i) u and qu') € Be_f[u(”)] with usku) qi*) Uy where

“S denotes weak-star convergence. We call the set of sequential A-subgradients u, the
sequential A- subdifferential of f at @ and denote this set by 09 f[u].

(vii) for f Ls.c. aroundw € dom f, the A-subdifferential of f atw € dom f, written 04 f[ul,
s defined as the topological limit

O0aflu] = Limsup 0 f[u]. (3.63)
ui)ﬁ, el0
Even though Def.3.2.5(ii) is stated in finite dimensional settings, the definition is the same
in infinite dimensions where convergence of sequences v — w is in norm.

Another subdifferential that is useful is the Clarke generalized subdifferential. This is
defined below for Lipschitz mappings.

Definition 3.2.21 For f : X — R Lipschitz around u € X, a real Banach space, the
Clarke generalized subdifferential of f at w, written 0f[u], satisfies

(us, v) < f[u)v] VveX (3.64)

where the generalized directional derivative is given by

foalv] = iiglﬁsz%f[u + tq;] — f[u] (3.65)
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Theorems 3.2.24-3.2.25 and the following lemmas establish useful characterizations of
subdifferentials.

Lemma 3.2.22 (Theorem 1 of [106] and Proposition 1 of [95]) For any
f: X—=R lLs.c nearm, _
Of[u] = lim sup O f [u]. (3.66)

uba, €10

The analytic Fréchet zero-subdifferential for 1.s.c. mappings f : X — R, is equivalent to
a closely related analog to the finite dimensional regular subgradient called the Fréchet
subdifferential:

O0f[u] = Of[u].
It follows from Eq.(3.66) that Of[u] C 0f[u]. If f is Ls.c. near @ and 8f[u] = df[u] then f
is said to be (subdifferentially) regular [129]. The class of subdifferentially regular functions
includes, among others, all strictly differentiable functions and convex functions. It was
shown in Example 3.2.9 that the negative modulus function is not regular at u = 0.

Lemma 3.2.23 (Mordukhovich and Shao [127]) Let X be a Banach space and let f :
X — R be Lipschitz continuous around u. Then 0% f[u] = {0}.

The next Theorem, due to Mordukhovich and Shao [129] is stated on Asplund spaces
[128]. For our purposes, it is sufficient to note that a Hilbert space is an Asplund space.

Theorem 3.2.24 (Theorem 8.11 of [129]) Let X be an Asplund space and let f: X —
R be Lipschitz continuous around u. Then

Of[a] = cl*con Of[a). (3.67)

Theorem 3.2.25 (Theorem 9.2 of [129]) Let X be a Hilbert space. Suppose f: X — R
is Lipschitz continuous around @, then the sets 0f[u] and 09 f[u] are weakly closed, and

Of[u] = 93 f[u] = Oaf[ul. (3.68)

Theorem 3.2.25 is narrower than the statement of Theorem 9.2 of [129], however it is all we
need for our purposes. It should also be noted that when f is strictly differentiable then
0f[u] coincides with the Fréchet derivative.

We are now ready to establish the connection between the projection Ilgy, defined by
Eq.(3.3) and the subdifferential of h : L2[R%2,R?] — R defined by Eq.(3.40) for b € U,
defined in Hypothesis 2.2.1. Property 3.2.29 is a special case of Theorem 3.2.30, which is
proved at the end of this section. Rather than simply applying Theorem 3.2.30, we provide
another proof that motivates perturbation methods reviewed in Section 3.3.

Before proceeding we state without proof few necessary lemmas.

Lemma 3.2.26 (Lemma 1 of [93]) Consider the measure space (2,A,p) where yi is a
complete o-finite positive measure. For f : Q x R™ - R ls.c. inu € R™, and AQ B™-
measurable in (w,u), then the graph of the multi-valued map T' : Q@ — R™ x R™ defined
by

P(w)] @ — {(v,u) |v €0 flw,u)}
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belongs to AQ B(R™ x R™) where 0;, denotes the Dini-subdifferential with respect to u, and
B(R™ x R™) is the collection of Borel subsets of R™ x R™.

Lemma 3.2.27 (Aumann [9], Theorem 2) Let F' be a multi-valued mapping of a mea-
sure space (Q, A, p) into R™ such that the graph of F belongs to AQ B™. Then there exists
a measurable function f: Q — R™ such that f(x) € F(x), a.e. in Q.

Aumann’s theorem is actually stated in terms of any general separable metric space X rather
than just R™. For proof of this limited case see [89].

Lemma 3.2.28 ( [54,89]) Let (2,.A,u) be a complete measure space, X a complete sepa-
rable metric space, F a multi-valued mapping from Q to X with measurable (analytic) graph,
and v a measurable function of X into R. Then the function sup v(F(-)) of Q into R,

wrsup{v(z) |z € F(w)},
is measurable, and the relation F° of Q into X defined by
w {z € F(w) |v(z) =sup v(F(w)) }
has a measurable (analytic) graph.

We are now ready to state the main result of this chapter.

Property 3.2.29 Let b € U, be as defined in Hypothesis 2.2.1, u € L*[R? ,R?], Mgy -
L? = Q[b] be as defined by Eq.(3.3) for Q[b] defined by Eq.(3.4), and h : L?[R?,R?] - R
be as defined by Eq.(3.40). Then

8 (hu;8]) = S (b(-)0 (—r(u()))) = " (~ g [u]) (3.69)

PROOF: Due to part (iv) of Property 3.2.18 we need only show the following two inclusions
cl*(~Mgpu]) C Ohlu;b] (3.70)

C S (0()a(—r(u("))- (3.71)

We begin with inclusion (3.70).

From the proof of Property 3.2.3 it is easily seen that the mapping A is globally Lipschitz
continuous with Lipschitz constant K = ||b||, hence Oh[u;b] is weakly closed. Therefore, if
—Tlgpp [u] C Ohlu;b] then cl*(—Ilgy [u]) C Oh[u;b]. We now show that

Let v € —Ilgp[u] and for all € > 0 define

'&6 = ’U;XSupp (u) + G'U(]. - Xsupp (u,))

Then, by Theorem 3.1.5,

[u — || = €|lv(l — Xsupp )|l < €llbll;
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and k(w) is differentiable at w = @(x) for every x € supp (b) with
v(z) = —Vi(t(x))b(x) Ve>0.
For every w € L?[R? ,R?] and z € supp (b), we have

r(t(z) + tw(z)) — K(ac(z))

t

= (Vk(te(z)), w(z)), (3.72)

and, since « is Lipschitz with Lipschitz constant 1,

Kt () + tw(z)) — k(U (z))
t

‘ < |w(xz)| Ve supp(b).

Therefore, by the Lebesgue Dominated Convergence Theorem, the function A[-; b] is Gateaux
differentiable at @, with Gateaux derivative —Vk[t|b = v. Hence, since k[:| is Lipschitz
continuous, we have

dhfic ] = [ (-l @)ble), w(z))ds = (v, 0),
which implies that
v € 0 h[ugb] Ve>0.

Taking the limit as € | 0, we find that
v € Jah[u;b] = Ohlu;b).

Therefore, —Tlgp [u] C Oh[u;b].

Our proof of inclusion (3.71) is modeled after the proof of Theorem 5.18 of Clarke [45].
Since Oh[u;b] C Ohlu;b] it suffices to show that dh[u;b] C S (b(-)8(—r(u()))) . By [154,
Theorem 9.13], since « is globally Lipschitz, for all w the mapping 9(—x(u)) is bounded,
nonempty and compact, and one has

lip(—k(u)) =1< 0

where lip (—x(u)) is the Lipschitz modulus of (—k(u)) at u ( [154, Def. 9.1]). Thus, by
Proposition 3.2.15 the set

{v e L?[R*,R?] |v(x) € O(—k ) a.e.}

is convex and weakly compact in L?[R?, R?]. Since P is a probability measure we also have
lip h[u; b] < ||b|| for all w. From Theorem 3.2.24 we have that Oh[u; b] is weakly closed, thus
Oh[u;b] is weakly compact. By [45, Proposition 1.5.c, pg.73] we can use support functions
to establish (3.71). That is, we must show that, for any w € L?[R?,R?], we have

h°[w; b[w] < max {(w, v)p |v(z) € f(u(x)) a.e.}
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where (-, -)p is the inner product with respect to the measure P. Let {u;} be a sequence in
L?[R? | R?] converging strongly to u and {7;} be a sequence in R, converging to 0 such that

hlu; + 7, w; b] — hlu;; b]

hlusblfw] = lim -
— lim —f‘&(uz‘(‘”)+Tz‘w(w))+H(ui($))b(w)dm_
1—00 JR2 T;

Since k is P-integrably bounded and globally Lipschitz, we may apply the following analogue
to Fatou’s Lemma [161] [89, Lemma 3, pg. 69] to obtain the bound

Ko ['U,; b] [w] < /R2 lim sup_ﬁ(ui(m) + T’Lw(m)) + K’(ui (iB)) b(iE)d

i—00 Ti

T

IN

/Rz (—r)°(u(z)) (w(x))b(z)dz.

By Lemmas 3.2.27-3.2.28 and the fact that Oh[u;b] is compact-valued, there exists a mea-
surable selection v(-) € d(—k(u(-))) such that

(v(z), w(z)) = (—k)° (u(z))(w(x)).
Then
/RZ(—/ﬁ)o(u(m))(w(w))b(m)dm = (v, w)p

which establishes inclusion (3.71). This completes the proof. O

We finish this subsection with a generalization of Theorem 3.2.29. Theorem 3.2.30
establishes the equivalence of the infinite dimensional subdifferential objects in the setting
relevant to phase retrieval, and establishes their relation to the finite dimensional Clarke
subdifferential.

Theorem 3.2.30 Let u € L?[R?,R?], let f : R? = R be globally Lipschitz continuous, and
let f(u(x)) be an L?-bounded function of ® on the probability space (R?, M?, P) where P
is a complete, non-atomic probability measure with density b: R2 — R, , and M? denotes
the Lebesque measurable sets on R?. Define the integral functional J : L?[R? R?] - R by

Ju] = - [ (u(z))b(z)de.

Then
0J[u] = 03J[u] = d4J[u] C {v € L*[R*,R?] ] |v(z) € 0f(u a.e.}

PROOF: The first two equalities follow from Theorem 3.2.25. For the last 1nclus1on, since
0J[u] C 0J[u] it suffices to show the following:

0Ju] C {ve L’R* R |'v ) € 0f(u(x)) a.e.}. (3.73)
The proof follows exactly the proof of inclusion (3.71) with J = h and (—k) = f. O
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Conjecture 3.2.1 For the same setting as Theorem 3.2.30 the last inclusion holds with
equality, that is

0J[u] = 05 J[u] = 94Ju] = {v € L*[R*,R?] ] |v(z) € 3f (u(x)) ae.}.

Moreover, this implies _
oJu] = dJ[u].

SKETCH OF PROOF: The idea for this proof is modeled after the proof of Theorem 3
of [93]. Since 84J[u] C dJ[u] all that needs to be shown is the following:

{v e L?[R?, ]RQHv ) € 0f (u(z)) ae.}

C {v = w-limwv;, v; € L2[R2,R2] |v; € Of (u(x)) a.e.} (3.74)

12— 00

C 85 JTu). (3.75)

Inclusion (3.74) follows immediately from Proposition 3.2.17 since for f Lipschitz, 0f (u(z)) =
con Of (u(xz)) (see Theorem 8.49 of [154]).

For inclusion (3.75) suppose that v € L?[R*,R?], v(z) € Of(u(z)) a.e. Let Q;(x)
denote the set of all (v, w) € R? x R? satisfying |w —u(z)| < 1/4, |f(w) — f(u(z))| < 1/7,
v —v(z)| < 1/j and v € 0~ f(w). For almost every & and for every j > 0 the set
Q; is nonempty. By Lemma 3.2.26 Q; belongs to M? ® B(R? x R?), and, since P is a
complete measure, Lemma 3.2.27 implies the existence of a measurable selection of Q;
that is a pair (v;(), u;() such that [u;(2) — u(@)| < 1/j, |f(u;(2)) — f(u(@)| < 1/j,
lvj(x) —v(x)| < 1/j, and v;(x) € 0~ f(uj(x)) a.e. Therefore, the sequence of measurable
selections {u;} converges strongly to u and {v;}, converges weakly to v.

Since f is globally Lipschitz, so is J and for any w € L3(R?, M2, P)

dTfu()][w()] = limintZ 20 FTwO] = J(ul)]

7N\0 T
Now, by Fatou’s Lemma,
(v;(), w())p < dJfu()][w()] (3.76)
thus v; € 0~ J[u;] and by the definition of the sequential A-subdifferential v € 0% J[u]. B
Theorem 3.2.25 09 J[u] is weakly closed the result should follow. O

3.2.6 Subdifferential Calculus

We now proceed to fundamental calculus results for subdifferentials in Section 3.2.5. We
are interested in characterizing the subdifferential of sums and compositions of nonsmooth
functions for application to the set distance error defined in Eq.(3.31). In general the calculus
of subdifferentials is “fuzzy” in the sense that the subdifferential of sums is contained, but
not equal to, the sum of subdifferentials. However, for subdifferentially regular mappings
these “fuzzy” relations become equality.

Results in this direction are established under the following compactness condition.



59

Definition 3.2.31 A closed set 2 C X is said to be normally compact around u €  if
there exist positive numbers vy, 0, and a compact subset Y of X such that

N(u;Q) C K,(Y) = {u* eX*

Vil < max |{(us, 9)| } Vu € By(u) NQ, (3.77)
y

where Bs (@) is the d-ball around @. A function f : X — R is normally compact around
u € dom f if its epigraph is normally compact around (u, f(u)).

The next lemma establishes that Lipschitz functions are normally compact.

Lemma 3.2.32 For general Banach spaces X, if f : X — R is Lipschitz around a point
u € dom f then epif is normally compact.

PROOQOF: This is a consequence of a series of results which establish that, for general Banach
spaces X, if Q@ C X is epi-Lipschitzian around @ in the sense of Rockafellar [153], then Q is
compactly epi-Lipschitzian around u [27] in the sense of Borwein and Strojwas [28], which
in turn implies that € is normally compact around @ [113]. Since f is Lipschitz around @
then epi f is epi-Lipschitzian around w. O

To fix these ideas, note that since h[w; b] defined by Eq.(3.40) is globally Lipschitz for all
b € L2, then epih is closed and epi-Lipschitzian around (@, h[w; b]). Hence epi h is normally
compact.

The next theorem due to Mordukhovich and Shao [129] contains the general sum rules for
the subdifferential constructions of Def.3.2.20(ii). Again, Mordukhovich and Shao construct
a general subdifferential calculus on Asplund spaces which include Hilbert spaces.

Theorem 3.2.33 (Theorem 4.1 of Mordukhovich and Shao [129]) Let X be

an Asplund space, let fi : X = R, i = 1,2,...,n be l.s.c. around @, and let all but
possibly one of these functions be normally compact around u. Suppose also that the following
qualification condition holds:

n
[uis € 0°fi[T), i =1,...,0 | > up=0] => g, =+ = tp, = 0. (3.78)
=1

Then one has the inclusions
O(fi+ -+ fo)[u] C 0fi[u] +--- + dfulul, (3.79)

OF(f1+ -+ fa)@] C 0® frla] + - - - + 0™ fula], (3.80)

Moreover, if all f; are subdifferentially regular at w, then the sum fi +---+ fp is
also subdifferentially reqular at this point and equality holds in Eq.(3.79).

Corollary 3.2.34 (Corollary 4.3 of Mordukhovich and Shao [129]) Let X be an As-
plund space and let all but possibly one of the functions f; be Lipschitz continuous around
u. Then:
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(i) Eq.(3.79) holds. Moreover, if all but possibly one of the f; are strictly differentiable
around u then inclusion becomes an equality ;

(ii) Eq.(3.80) holds with equality.

Corollary 3.2.34 can be immediately applied to the squared distance function
dist ?(u, Q[b]) defined by Eq.(3.2) for b € U, defined in Hypothesis 2.2.1. From the rep-
resentation Eq.(3.41) it is clear that dist?(u, Q[b]) is the sum of the strictly differentiable
function g[u] = ||u||? + ||b||?> and the nonsmooth Lipschitz continuous function 2h[w;b]. By
Corollary 3.2.34
d(dist 2(u, Q[b])) = 2u + O(2h[w; b)).

From Example 3.2.9 and Property 3.2.29 we also have that d(c h[u; b]) = ¢ Oh[u;b] for scalars
¢ > 0 thus

d(dist *(u, Qb)) =2 (u + c1* (g [u])) (3.81)

The next theorem is a specialization of Theorem 6.7 of Mordukhovich and Shao [129]
which establishes the Chain rule for subdifferential calculus.

Theorem 3.2.35 (Chain Rule) LetX and Y be Asplund spaces, let G : X — Y be strictly
differentiable at w with G'(u) invertible, and let f : Y — R be Ls.c. around v = G(u). Then

0(f o G)(@) = (G'(m))"0f (v) (3.82)

and

0% (f o G)(@) = (G'(@))* 0 f (V). (3.83)
PROOF OF PROPERTY 3.2.1: Specializing to the distance function dist (u, Q,,), for Q,,
defined by Eq.(3.1), Corollary 3.1.7 yields

dist2(u, Q) = dist2(Fpnlu), Qm])
= (1 Fmlu]ll® + l1tbml? + 2h[Fm [u]; ).

By Property 3.2.29, Corollary 3.2.34 and Theorem 3.2.35

O Fm[ull” + l1dmll” + 2h[Fa[ulshm]) = 2u+ 27 [cl* (~Tlgpy,, ) [Fm[ul])]

2u +2¢l* (F, [Tlg, [Fm[u]]])

2u + 21" (—Ig,, [u])

= 2c"(Z -1y, ) [u] (3.84)

thus proving Eq.(3.35) of Property 3.2.1. Theorem 3.2.33 and Eq.(3.35) yield
Eq.(3.36). O
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3.3 Optimization of Smooth Perturbations

The remainder of this chapter is dedicated to characterizing a smooth approximation of the
squared set distance error. Our numerical methods are based on smooth objectives. This
allows us to provide a convergence theory that is easily derived from standard results in the
optimization literature. By relating the smooth approximations to the projection operators
we are able to provide an interpretation of iterative transform methods in the context of the
analytic methods studied in this section. One obvious solution to the problem of nonsmooth
objectives is simply to square the data and the modulus. The modulus squared is a smooth
function. For this reason, analytic techniques tend to favor objectives based on the modulus
squared. See Ref. [57] for a very careful treatment of analytic techniques for the modulus
squared. In our experiments, however, objectives based on the modulus squared, while
robust, suffer from very slow rates of convergence compared to the nonsmooth or nearly
nonsmooth objectives studied Section 3.2. An intuitive explanation for this is that the
modulus squared smoothes out curvature information in the objective [96,109]. Another
explanation is that the singular values of the operator |Fp,[u]|*> are much more spread out
compared to those of the operator |F,[u]|; that is, the squared modulus system is more
ill-conditioned than the modulus system. This results in slower convergence of methods
based on linearizations of the operator | Fp,[u]|>. See Ref. [11,83] for a discussion. While it
is difficult to work with, we have found that the modulus function outperforms the modulus
squared function as an objective in optimization techniques. The principal goal of this
work is to develop tools for taking advantage of these “good” aspects of the modulus, while
avoiding instabilities.

Two analytic approaches are considered. The first is a direct application of smoothing
methods to E which we refer to as perturbed least squares; the second is an extended
least squares approach that allows us to adaptively correct for the relative variability in the
diversity measurements, ¥p,.

3.3.1 Perturbed Least Squares

In order to avoid difficulties associated with nondifferentiability we now consider smooth
objectives that are perturbations to the least squares objective functional E. The smooth
least squares objective function we consider in this section is based on a smooth perturbation
of the modulus function x(u) = |u| of the form

(u) [ul (3.85)
T (up ) |
This smoothing of the modulus function enjoys three key properties
ke(0) =0, |k(u) —ke(u)| <e, and |Vke(u)| <3 Vu. (3.86)

That is, k. satisfies the following three properties: it is integrable for integrable u with
supp (k¢[u]) = supp (u), it converges uniformly to s in €, and it has a uniformly bounded
gradient. We therefore expect k. to be numerically stable. The corresponding perturbed
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squared set distance error is denoted E. : L?[R?,R?] — R, and is given by
2

M 2
Eful= ) %m Fmlull_ 75~ ¥m (3.87)
m=0 = || (IFmlul? + €)

where 0 < e < 1. Consistent with our observations about k¢, Property 3.3.1 establishes

that E,[u] is a continuous function of e for fixed u. Thus we expect this perturbed objective

to be numerically stable. Indeed, we have found this perturbation to perform well in practice.
Define the integral functional J[-;b,¢] : L2[R?,R?] - R by

Jlusb,d = /R P (u(@); (), ) de (3.88)

where

r(u;be) = ————— —b. (3.89)

Equivalently, define h[-;b, ¢] : L?[R?,R?] - R by

u\xr 2
hlu; b, €] E/Rz_(|u(:c‘)|g l|62)1/2b(m)dm. (3.90)

then
2

Jlu;b, €] = + [|b]|? + 2h[u; b]. (3.91)

Ju?
(|ul? + )/

For w, and vy, satisfying Hyp.2.2.1 and for all €, J[u; %, €] is finite-valued. Our focus is
on the analytic properties of J. Accordingly we rewrite FE. in composition form as

Blul=Y %’” (T[54, 0 Fin) [ud]. (3.92)

Property 3.3.1 Let u € L?[R?,R?], and b € U, defined in Hyp.2.2.1. The integral func-
tional J{u;b, €] defined by Eq.(3.88) is continuous with respect to .

PROOF: Let u € L?[R?,R?], b € U, . From Eq.(3.88)-(3.39)

lim J[u; b, €] = lim [ 7%(u(x);b(z), €)de.
e—0 e—0 Jr2

Since u and b satisfy Hyp.2.2.1, by Holder’s Inequality for all e,
|r*(u(@);b(), )| < [u(@)® + 2b()|u(z)| + b*(2) € L".

For fixed z, u(z) € R?, b(xz) € R;, and r(-;-,€) is continuous in e. Thus by Lebesgue’s
Dominated Convergence Theorem J[u;b, €] is a continuous function of ¢ with

lim J[u; b, €] = J[u, b;0].
€—0
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a

Continuity of E. with respect to ¢ is a consequence of Property 3.3.1 and the fact that
the transforms F,,, are unitary linear operators. We show in Section 3.3.3 that J[u;b, €],
hence E, is Fréchet differentiable with globally Lipschitz continuous derivative. This greatly
facilitates the design and analysis of algorithms for the optimization problems discussed here.

The objective FE, is nonconvex in u, so convergence to a global minimum cannot be
guaranteed. Nevertheless, convergence of line search methods to a local extremum are easily
derived from standard results in the optimization literature. This is the topic of Chapter 5

3.5.2 Extended Least Squares

The projection algorithm Alg.(3.13) allows the user to choose the relaxation parameters
a%) and weightings 75,5 ) at each iteration v. This begs the question as to what the optimal

choice of these parameters might be. Under the change of variables Eq.(3.15) one is similarly

confronted with the issue of optimally selecting the step-lengths A*) and weights ﬁﬁ,’{ ). Step-

lengths are discussed in Section 5.1. In this section we consider an approach to optimal

weight selection. This requires an extension of Pr.(3.33) to accommodate variable weights.
Following the work of Bell et al [23], define the objective

M
Lelu, B] = ) ~n(2fm) + B (J[Fon[u]; pn, €] + Grnlu]) (3.93)
m=0
where B = (0,...,0m) . This objective corresponds to the negative log likelihood measure

for normally distributed data errors. The weight 3, is the variance of the data set ,,. The
functional G,,[u] is a regularization term. For the purposes of illustrating the connection
between projection methods and line search methods, the regularization that is used is
simply a nonnegative constant Gy,[u] = ¢, > 0. Each data set can be matched exactly
using nonparametric techniques such as projection methods. The constant reflects prior
belief about the reliability of the M data sets relative to one another. Given the data v,,,
the estimates for the true value of the vector of parameters u € L?[R?,R?] and the vector
of variances 8 € ]Rﬂ\_/f are obtained as the solution to the problem

minimize  L[u, B] (3.94)
over uELQ[R2,]R2], 0<p

A Benders decomposition is applied to solve for the optimal vector of weights, 8,, in
terms of u.

Lemma 3.3.2 Let L. : L*[R? R?] x ]RfJrl — R be defined by Eq.(3.93) and let u €
L[R2, R?). Let

B[] = (Boulul, ., Burelu]) (3.95)
where

Brwlte] = (J[Fm[ul; by €] +cm) T form=0,..., M. (3.96)
If ¢y > 0 then L¢|u, B,[u]] < L|u, B3] for all B > 0.
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PROOF: This is an infinite dimensional version of Lemma 1 of Bell et al [23]. Their proof
also holds in this setting. m|

Substituting 8, [u] for B into Eq.(3.93) yields

M
Lu,B,] = Z [—In(2m) + In(Bms + cm) +1].

m=0

Dropping the constants yields the reduced objective

M
Re[u] = > In(J[Fm[ul; ¥, €] + cm)- (3.97)
m=0

The corresponding optimization problem is

minimize R.[u] (3.98)
over u € L*[R? R?].

The analytic properties of the reduced extended least squares objective R|[u| depend on
those of the underlying integral operator J. The next section is concerned with establishing
the analytic properties of the integral functional J and extending these to the perturbed
set distance error FE, and the extended least squares objected R..

3.3.8 Classical Analysis

In this section we establish that the perturbed least squares error E is Fréchet differentiable
and calculate its derivative.

Before examining the analytic properties of FE, some facts of classical derivatives are
developed. In the following, the set X; denotes a real Hilbert space. The space of bounded
linear mappings from X; to Xy is denoted by £(X;,Xs).

Definition 3.3.3 Let F : X; — Xy. For u € Xy, the Gateaux derivative of F' at u, if it
exists, is an element DF (u) € L{X1,Xo} satisfying

F(u+tw) — F(u)
t

lim

tN\0

—DF(u)(w)|| =0 VweZX]. (3.99)

2

where DF (u)(w) denotes the action of DF (u) on the element w.
If the above limit is uniform with respect to w on bounded subsets of X1, then F is said
to be Fréchet differentiable, with the Fréchet derivative F'(u). Equivalently, F'(u) satisfies

|F(u+w) = F(u) = F'(u)(w)ll,
[[wll2—50 [[wlly

—0. (3.100)

The Fréchet and Gateaux derivatives obey the classical sum rule of scalar calculus. The
composition of Fréchet differentiable functions is Fréchet differentiable and obeys the Chain
Rule. Given F : X; —» X9 and G : Xy — X3, suppose that F' is Fréchet differentiable at
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u € Xj and G is Fréchet differentiable at F(z) € Xo. The composition G o F : X; — X3 is
Fréchet differentiable at u and is given by

(G o F)'[u] = G'[F[u]] F'[u],

where G'[F[u]]F'[u] € L(X;,X3) is the composition of F'[u] with G'[F[u]].

As in Section 3.2.5 the discussion is restricted to proper ls.c. functions. From the
definition, a Fréchet differentiable function is continuous. This need not be true for a
Gateaux differentiable function. Moreover, continuity of the Gateaux derivative is not a
sufficient condition for a mapping to be Fréchet differentiable. These points are illustrated
in the following examples.

Example 3.3.4

(a) The function f(z) = (z + €)~Y/2 is analytic as a function on Ry. In one dimension
the Fréchet and Gateauz derivatives coincide with the classical derivative, thus f(x)
is infinitely Fréchet differentiable on R, .

(b) (Ez.11.20 of [45]) Let f : R? — R be defined by

f(:c,y)z{ g Fezs

The Giteauz derivative at the origin is Df(0,0) = 0, though this function is not
continuous there.

(c) The modulus-squared is analytic as a function on R*: for x € R* | f(z) = |z|? =
|2 . This is twice continuously Fréchet differentiable with higher-order derivatives
identically equal to zero.

(d) Let
h(z) = (go f)(z) = (|z|* + €)%,
where g(y) = (y + €)% fory € Ry and f(x) = |z|*> for £ € R*. This is the
composition of two analytic functions, thus is itself analytic.

For proper, lower semi-continuous scalar functions f : X — R, the Mean Value Theorem
can be stated as follows. Suppose f is Gateaux differentiable on an open neighborhood
U C X. Then for every u,v € U, there is a point w =tu+ (1 —¢)v, 0 <t <1, such that

f(v) = f(u) = Df(w)(v —u).

The proof follows from application of the Mean Value Theorem to the function 6 :[0,1] —
R, 6(t) = f(u+ t(v — u). The same result holds if f is Fréchet differentiable with the
Fréchet derivative replacing the Gateaux derivative in the mean value expression. Suppose
further that the mapping f'(-) : U — X is itself Fréchet differentiable on U with the Fréchet
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derivative at v € U denoted by D?f(u) € L(X,X) . Again, by the Mean Value Theorem,
for all u,v € U, there is a point w=tu+ (1 —t)v, 0<t <1, such that

f'(v) = f'(w) = f"(w) (v — ),

where f"(w)(v —u) denotes the action of f(w) : X — X on v — u. Thus, for each u € T,
f admits a local second-order Taylor expansion with remainder, i.e there exists a ball B(e)
of radius e such that for all |[v — u|| < € the following holds:

Fo) = )+ F()(w =) + 3 ") (w = v,0 — u),

where w = tu+ (1—t)v and f"(w)(v —u,v—u) denotes the action of f"(w)(v—u): X > R
on v-—u.
The above results are extended to integral functionals of the form

Tl = [ (o ule))da,
setR™
where v € L?>(R*,R™) and f : R* x R™ — R.
Theorem 3.3.5 Let f: R x R™ — R satisfy:
1. f(-,u(")) is integrable on R* for all u(-) € L?[R*,R™];

2. for all x € R*, f(z,u) is Gateauz differentiable with respect to u as a function on
R® x R™ with Gateaux derivative denoted by

Dy f(z,u);

3. There exists a K such that for all x, D,f(z,-) is globally Lipschitz on R™ with
Lipschitz constant K.

Define the integral functional J : L2[R*, R™] — R by
Jul = [ fo,u() da.
Rn

Then J[u] is Fréchet differentiable as a function on L?[R™,R™] with Fréchet derivative
Tiultwl = [ Dufe,u(e)w(e))ds, (3101
R’I’L

Moreover, the Fréchet derivative J' is Lipschitz continuous on L*[R™, R™] with constant K.
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PROOF:
Ju +w] = Ju] - o Duf(z,u(z))(w(z))dz
< /n |f (=, u(z) + w(z)) — f(z,u(z)) — Duf(z, u(z))(w(z))| dz.
For fixed x

|/ (z,u(z) + w(z)) - f(z,u(z)) - Duf(z,u(z))(w(z))]
1
S/O |Duf (2, u(z) + Tw(z))(w(z)) — Duf(z,u(z))(w(z))| dr

1
< [ 1Duf@.u(a) + ru(@)) - Duf(au@))] (o)) dr.
0
Since D, f is globally Lipschitz continuous with constant K, for all v and =
|Duf (2, u(z) + Tw(z)) — Duf(z,u(z))| < K7|w(z)|,
thus

1 1

/IDuf($,U(w)+Tw($))(w(iv))—Duf(w,U(w))(w(w))\dT < /KTIw(m)IQdT
0 0
K

= Slw@P,

hence

‘J[u + w| — J[u] — o Dy f(z,u(z))(w(z))dx

K
< / B\ w(e)2dz
o 2

K
= .
Consequently, J is Fréchet differentiable with J'[u][w] given by Eq.(3.101).
Since L? is a Hilbert space, the kernel of the integral operator J'[u] is equal to Dy, f (-, u(-))-
Thus if Dy, f(z,u(z)) is globally Lipschitz with respect to u with constant K for all z then
J'[u] is globally Lipschitz with constant K. 0

Remark 3.3.6 Conditions 2 and 8 in Theorem 3.3.5 imply that, for all x € R"*, the in-
tegrand f(z,u) is Fréchet differentiable with respect to u as a function on R® x R™. It is
not true in general that Gateaux differentiability implies Fréchet differentiability. See [45,
Ez.1.11.20] for a counter example. Moreover, it is not true in general that a Fréchet differ-
entiable function has a globally Lipschitz continuous Fréchet derivative. We state Theorem
3.8.5 in terms of Gateauz differentiable functions instead of Fréchet differentiable func-
tions because it is often easier to show Gateauz differentiability than it is to show Fréchet
differentiability.
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Remark 3.3.7 Since L2[R",R™] is a Hilbert space, the derivative of J[u] also belongs to
L?[R*,R™]. We denote this mapping by VJ[u].

To apply the above results to E, it remains to be shown that the squared residual
72(u; b, €) defined by Eq.(3.89) is Gateaux differentiable and globally Lipschitz with respect
to u for all z. Gateaux differentiability of 72(u;b,€) with respect to u for € > 0 follows
from elementary vector calculus. In fact, 72(u;b, €) is analytic. The derivative is denoted
by Dr?(u;b,¢) € L(R?,R) and defined by

Dr?(u; b, €)(w) = 2r(u; b, €) Dr(u; b, €) (3.102)

where
lu|? + 2¢2 T
(uft + &)

The next lemma shows that Dyr?(u;b, €) is globally Lipschitz continuous.

Dyr(u;b,e) = (3.103)

Lemma 3.3.8 The derivative Dyr? for r defined by Eq.(3.39) is globally Lipschitz contin-
uous on R% with global Lipschitz constant

12
K =16+ —|b|. (3.104)
€
PROOQF: The setting here is finite dimensional. The finite dimensional norm is assumed to
be the 2-norm and is denoted by | - |. From Eq.(3.102)-(3.103), for u,v € R? ,

D2(uibe) = oML +20) (b

(luf? + )"
_ R L R B bu _ 2 bu .
uP e T (a2 T (uf o+ @ (uf +

(3.105)

We proceed by calculating the Lipschitz constant for each of the terms in Eq.(3.105). Each

of these terms takes the form
luPu

(luf* +€2)e’
The Lipschitz constant is obtained by bounding terms of the form

|ulPu |v[Pv

(lu? + )7 (v + )

(3.106)

Add and subtract —22% to obtain

(lv]2+€2)
ulPu |v|Po
‘(Iul2 +e2)t (ju]2+e)e
|uf? |v|? lv|P
- ‘((\uP + e (o +e2>q> Ut P ey Y
[ulP(Jv]? + €3)7 — |v[P(jul* + €)1 |v?
“ (P + ol + ey | Py ®

(3.107)
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Unfortunately this general form must be analyzed case by case. We examine 3 different
cases.

Case 1, p=2, q=1:

wru ol uP(of + &) = foP(u +) P
WPrd pEre| = | (QuPreop+ed EREE
2 2
2 |u]” — |v]
+lu—v
(P + e 2(of £ | 0
where we have used the inequality
u
- I < .
(wis | <! (3.108)
Without loss of generality assume that |v| < |u|. Then
lul? — |v|? < 2Ju| [v —u| for |v| < |ul. (3.109)
Using this, inequality (3.108) and
1 1
— < = 3.110
[v]? + €2 — €2 ( )
yields the bound
R |v|?v 2|ule
— +1)|v—ul
wEre P+ = \(uf+ @)k + )
< 3lv—ul (3.111)

Case 2, p=2, q=2:
As in Case 1, assume without loss of generality that |v| < |u|. Then the inequalities (3.108)-
(3.110) yield

ufu oo
(e i
e L
(uP?+ P (Jol? + )2 (0P +e)?
_ [ (w0 =)o = Juf?) o

2|v—u\

u
(Jul? + €2)?(Jv[? + €2)? ‘ (lvf?> + €?)
2\u|2 |u| lv|2 + ¢ ) 1

) ) |’U - u|

(|lu|? + €2)?(|v|? + €2

2 \u| |v]? 6) 1
—2 + = | |v—uyl
5

(|lul]2 + €2)(Jv]2 + €2) €2

<o —ul. (3.112)
6
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Case 3, p=0, q=n/2:

u v
(Jul + )2 (jof2 + )"/
(l,U|2 4+ 62)n/2 . (|u|2 4+ 62)n/2
(ul? + )72 (jof? + )2 “‘ (o v ey
(\'u|2 + 62)n/2 — (|u|2 + 62)n/2
(2 + )" (o2 4 2)"/?

<

The last expression uses inequalities (3.108) and (3.110). By the Mean Value Theorem there
exists a w € [|v|, |u|] such that

(Jo2 + €)™ = (ju? + )™ = nw (w* + )" (o] - [u])

and so

n/2—1 "U

IN

‘(|’U|2+€2)n/2 - (|u|2+62)n/2‘ nw (w? + €) — u|
< n(w’+ e)(nfl)/Q |lv — u.
This yields

nlv —u| (w? + 6)(n_1)/2
([ufz + )=D72(jp[2 + e2)n/2

(J0]2 + )" = (juf2 + €2)"”
(lul? + 62)(71—1)/2 (lvf2 + 62)n/2

< ﬁ|'v —ul.
en
Finally,
1
d = Y 5| < By~ ul. (3.113)
(lul>+e)™" (v +€)" €

Cases 1-3 yield the following global bound which completes the proof

|Dr2(u; b,€) — Dr?(v; b, e)| < (16 + E|b|) lu — v|.
€

The constant K given by in Eq.(3.104) is the pointwise Lipschitz constant for the
Gateaux derivative of the functional r?(u(z);b(x),€). If b € L then for all

‘Dur2(u(m); b(x),€) — Dyr?(v(z); b(z), e)| < (16 + %Hb”oo) lu(z) —v(x)|. (3.114)
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We can therefore apply Theorem 3.3.5 to the integral operator J defined by Eq.(3.88) for
€ > 0 to obtain the Fréchet derivative

J'[u; b, e|[w] = /R (Dur(u(@); ble), o), w(z)) do

where (-, -) denotes the standard finite dimensional inner product. Equations (3.39), (3.102)
and (3.103) yield the gradient of J at u

VJ[U'b 6]:2 ﬁ—b Mu (3.115)
o (Jul? + €)'/ (Jul2+ )32 '

By Lemma 3.3.8, Eq.(3.114), and Theorem 3.3.5, VJ[u; b, €] is globally Lipschitz continuous
with global Lipschitz constant

12
Kyy = (16 + ?“b”m) . (3.116)

The preceding results extend immediately to the perturbed squared set distance error
E u] defined by Eq.(3.92). Since F,[u] defined by Eq.(2.43) and Eq.(2.48) is a linear
operator on L? it is Fréchet differentiable there with Fréchet derivative given by

Frlullw] = Fnlw].

For u and 1, satisfying Hypothesis 2.2.1, Theorem 3.3.5 together with the Chain Rule for
Fréchet differentiable functions and Eq.(3.115) yields

(JT5 %o €] 0 Frulua])' [w] = J'[Fon[u]; o, €][Fra [l [w]
= <VJ[fm[u];¢m76]afm[w]>

_ . Fnlull? + 267 .
- < l I g oy ]] >
(3.117)
form=0,...,M. Thus
V (Tl 0 Fnlu]) = 27° [r[fm[u];w ATl + 27 Fm[u]]. (3.118)
" (| Fmlu 4 )Y
Extending this to E.[u] we have
o~ B
s €[w] = Z 5 (T3, € 0 Fin)' [u] w). (3.119)
where, by Eq.(3.119) and (3.118),
M
VEJu] =) 7"‘ (15 %ms €] © Fin) []. (3.120)

m=0
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By Parseval’s relation, Eq.(3.116) and the triangle inequality, the global Lipschitz constant

Kyg, for VE[u] is
M
6
Ko, = Z 8, <8+ ||¢7€n||oo> _
m=0

Similarly, the extended least squares objective R [u] defined by Eq.(3.97) is Fréchet
differentiable with derivative given by

Rilullw] = Y (J[Fm(ul; ¥, €l +cm) ™" (J[5 9, €] © Fin)' [u] [w0]. (3-121)

m=0

For V (J[;%,,,€] o Fm) [u] given by Eq.(3.118), Eq.(3.117) and Eq.(3.96) yield

VR[u] Z (5 %ms €] © Fin) [u] + €)™V (I[58ms €] © Fia) [1]

M

- 2Z,3m*[u].7::n [r[fm[u];¢m,6] | P [u]]? + 262
m=0

(Fnlul? + 2y ]]

(3.122)

Together with the fact that In(z + ¢,) has a derivative bounded by 1/¢p, on Ry, Eq.(3.116)
yields the global Lipschitz constant Ky g, for VR,

Cm €

M
1 12

m=0

The next property establishes the principle relationship between V E, and the operator
G given by Eq.(3.17).

Property 3.3.9 Let the functions u and v, satisfy Hypothesis 2.2.1. At each u with
Elu] < 6, there exists an € > 0 such that

IVE[u] — v| < C§/2, (3.123)
for all v € Glu] where

M
G= Y fn(T-Tg,)
m=0

and

C= fz B2 (14 v2Bi?) . (3.124)

PROOF: The theorem follows from careful splitting of the norm and repeated application
of Lebesgue’s Dominated Convergence Theorem. Define

G = supp (Fp[ul]), m=0,1,...
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Denote the complements of these sets by @m. Denote the norm over the domain Q C R? by
I-lle=1- Aal

where X is the indicator function for  defined by Eq.(2.20). Let v, € Ig,, [u], m =
0,1,2,..., and let v = Z%[:O Bm(u — vy,). Then

IVEMl -] < S|P

m=0
M

= Z B || Fm [1 [Fin[ul; o, €] VT [Fm[u]; ¥om, €] Fm[u]] — (u — vm)||

= Z B (|7 [Fim[u]s om, €] V7 [Fm[u]; o, €] Fin[u] — Fn[u — vg]|

B0 Ul ]~ Bt~ 00|

= Z m”r[]: [u Y, € ]V"‘[fm[u];@bmae]fm[u]_Fm[u_'vm]HGm

+ﬁm||-7:m[vm]||@m

Now, by the definition of Q,, Eq.(3.1), |Fm[vm]| = ¥m. Also, on Gy, [u] we have Fp,[vm] =

7 m‘?/)m which yields the inequality

IVEc[u] —v| <
> B lIr [Fonlt]s Yo, €] V7 [Fo[ul; o, €] | Fonla]] = (1Fimlua]| = %om) 5,

m=0
+ﬁm||"/)m||@m . (3'125)

Note that this bound is achieved for any vy, € g, [u], m =0,1,2,...
Now, by assumption E < §. This yields the following bound on the rightmost term of
Eq.(3.125):

Yo Bllgmly <8

—  Blpalz <0
—  nlz <20
n B
M
= YM Bululs, <2072 B2 (3.126)

m=0

For the remaining terms of Eq.(3.125) consider any a € L?[R?,R,], and b € U,
satisfying |la — b||> < 0 . Let

G=supp(a) and Gc={z|a(z)>e}.
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The remaining norms in Eq.(3.125) take the form

a? a’ + 2ae?
H(ﬁ”)ﬁ“’)

(1,64

G

<

(a2 + €2)?

Consider the first norm on the right hand side of Eq.(3.127):

ae4

(a2 + 62)2

Cl64

(a2 + 62)2

6164

(a2 + 62)2

B(L) B(L)

€

)

where I[B(\/ig) is the ball of radius —-. The argument of the norm over the interior of B(

€
is bounded by ﬁ < ¢ thus

<
S

Cl64

@+, SV

B(L)

The norm over the complement I’é(%) cannot be bounded by e without an additional

assumption that @ has compact support. However since ¢ € L? the norm can be made
arbitrarily small, i.e given € there is an ¢y > 0 such that

4
% S €I Ve Z €0-
(a? + €2) B(Z)
Thus
' ac* <Vme+€ Ve>e (3.128)
(a2 4 €2)*|| — = '

Next consider the rightmost norm of Eq.(3.127). Rearranging terms yields

a’ + 2a¢e> _ a 14 €2
(a2-|— 62)3/2 - (a2 +e2)1/2 a2+e )’
From this it is clear that for all ¢ and ¢

2 3 2 2 2
2
0< 9 @ e <<1+67> <.

a?+e T (g24 2)¥2 7 a?+e) —
Define
3 2
a’ + 2ae
R
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For all (o, €) we have 0 < g(a, €) < 1. Indeed, for all (o, €)

O{2 62 2
g(a,e) S max 1—m, (1+m) —1

. €2 €2 202 + 3¢
= max
a2 +e€?’ a?+4+ e\ a?+e?
2

o? + €2’

5

On the interval a € [/€,00) we have < € and

2_|_ 2 S €+€2
g(a,e) <be VYV a€ [Ve ).

Thus, given ¢’ > 0, there is an € > 0 such that

2
H( @+ “3/2) bl < 5elbl| < €. (3.129)
%) G,
On @6 N G from the above we have that
a® + 2ae
H( 2 3/2) b < Ilg, g -
a + € ) &.NG

Since ||la — b||? < 6,
1Bllg, g < llallg, ng + 87

The norm on the right converges pointwise to zero since, for fixed a,
lim ||a||= = lim ||laX= =0.
lim [lallg, . = lim lad, |

Thus we can apply Lebesgue’s Dominated Convergence Theorem to guarantee the existence
of an € > 0 such that for all € € [0, €]

1Bllg;, g < 877 (3.130)

Without applying additional constraints on a the bound of Eq.(3.130) cannot be made
tighter.

Letting € = §'/2 in Eq.(3.128)-(3.129) and substituting the bounds Eq.(3.126)-(3.130)
into Eq.(3.125) completes the proof. O

Suppose E[u] < 6, then from Eq.(3.123) we have

IVEu]l]” = 2VEu], v) + ||v[|* < C*3
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for every v € G[u]. Therefore, if ||[VE([u]||? + |[v||? > C26, then the direction —v is
necessarily a direction of descent for E [u] for every v € G[u]. In particular, if a line search

algorithm
uW D — () _ )\(")VEe[u(”)]

produces a sequence with E.(u(*)) — 0, then the corresponding projection algorithm
w ) ¢ (I_ )\(V)g('/)) [u®)]

behaves similarly. That is, the qualitative convergence behavior of the projection algo-
rithm can be studied by examining the convergence properties of the corresponding line
search algorithm for the perturbed objective. However, in the presence of noise, where
the global solution to Pr.(3.33) is greater than zero, the behavior of the algorithms near
the solution could differ significantly since the bound Eq.(3.123) does not guarantee that
dist (VE([u], G[u]) — 0.

The principle obstacle to a bound of the form Eq.(3.123) that depends only on € and
not on the value of E[u] is the possibility that the estimate u has a domain of positive
measure over which w is near zero but the data is non-zero. This problem is consistent with
the fact that VE, is a smooth approximation of the multi-valued projection operator. In
the numerical literature for wavefront reconstruction, this difficulty is often circumvented
by either implicitly or explicitly assuming that none of the estimates u have this property.
If one is willing to make this assumption, then a bound of the form Eq.(3.123) that depends
only on ¢ is possible.

We begin by showing in the case of one diversity image just how tight the bound is
on the distance between the perturbed objective and the projection without imposing any
restrictions on the estimate u. The bound Eq.(3.131) is unique to the case of one diversity
image. While the bound is nonzero in general, the key point is that this bound is independent
of the squared set distance error.

Property 3.3.10 Let b € U defined in Hyp.2.2.1. Consider h[-;b, €| defined by Eq.(3.90).
Given any u € L?[R?, R?],

6111)1(') dist (Vh[u;b, €], Oh[u;b]) = E111)1(') dist (Vhlu;b, €], cl* (—TIgy [u]))
160l pay (3.131)

where G is given by
G = supp (u).

PROOF: This is a consequence of Properties 3.3.9 and 3.2.29. On G°, the complement of
G, for all v, € Oh[u;b]
0 < [Joxllge

Denote the zero selection from cl*(—Tlgy ) by

u(e)
— —{ (@) for“("”)fg (3.132)

vi(®) = 0 for u(x)
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This selection satisfies
[Ts]lge =0

And so the selection v, minimizes the inequality corresponding to Eq.(3.126). The remain-
ing inequalities, namely Eq.(3.129) and Eq.(3.130) are independent of the choice of the
selection, thus w, is the closest element of Oh[u;b] to Vh[u;b, €]. Inequality (3.129) can be
made arbitrarily small on G, = {z | |u(z)| > /e}. The only obstacle to tighter bounds is
Eq.(3.130) which yields, in this case,

inf [ Vhlusb,d — Bl = [Blbdye - (3.133)

a

The bound can be interpreted as the measure of the boundary of the support of u for
the measure P corresponding to the density b(x). Thus, for the perturbation to agree with
the subdifferential, the boundary of the support of u must have zero measure in the space
(R?, M, P).

The correspondence between the direction of steepest descent for line search algorithms
applied to Pr.(3.33) and the directions toward the projections is often taken for granted in
the phase retrieval literature because it is implicitly or explicitly assumed that the iterates
belong to the set W defined below:

W= ) Vn (3.134)
m=0
where
Vi = {v | |Fn[v]| # 0 a.e. on supp (¥n,) } . (3.135)

The next corollary establishes the fact that for every u € W the projection operator is
single-valued and the gradient V E, converges pointwise to the operator G.

Corollary 3.3.11 Let the hypotheses of Thm. 3.3.9 hold and let w € V # 0, then G[u] is
single-valued. Suppose further that for each m = 0,1,2,... there is a 1y € L?[R?, R, ] such
that y
e
| Flu]]
Then given any & > 0 there exists an € > 0 such that

IVEc[u] = G[u] || < 4.

PROOF: The single-valuedness G[u] follows directly from the definition of the projections.
To prove the next statement of the corollary, note that the only terms on the right-hand
side of Eq.(3.125) that could not be made arbitrarily small were the terms with bounds
Eq.(3.126) and Eq.(3.130). With the assumptions of the corollary these bounds are much
tighter. Indeed, since the support of 1, is contained in the support of F,,;[u] the bound in
Eq.(3.126) is zero since

T
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For the bound Eq.(3.130), define

As usual denote the complement of this set by @m,e. Since there exists a b, € L? [R? R, ]

such that 1y, = i }.mTu” a.e. then

lomli, oe, = |[pmiFnlull]

Jén]

Grm,e NGy,

IA

@m,e NGm ||fm [U] ||@m,e MG

As in the proof of the bound Eq.(3.130), we have that
lim | Fufulll,ne,, = lim | Fnul s, g | =0

Thus by Lebesgue’s Dominated Convergence Theorem, given any § > 0 there exists an €
such that

Ibmlls,, g, <°
|

For m > 1 the assumptions of Corollary 3.3.11 are extremely strong. While each of the
sets W,,, is dense in L2[R%, R?], this is not true for the intersection. Indeed, it is common
that W = (), as in the case of noisy data. Supposing W # (), for u € W we define the
“gradient” of the unperturbed set distance error by

VE[u] = lim VE[u].
e—0

Together with Lebesgue’s Dominated Convergence Theorem [99, pg.133], the above corollary
implies that for u € W # ()
VE[u] = Glu] a.e.

Note that V E[u] is not the gradient in the Fréchet sense. In Ref. [15] the authors impose
assumptions that allow them to prove that this object is the gradient in the Fréchet sense.
We noted above, however, that in most practical situations W = (3, thus the applicability of
any such assumptions is negligible. Applying this theory to algorithms is also problematic.
Supposing that W # (), then one must find an initial point ug € W. Once an initial
admissible point is found, one must guarantee that all subsequent iterates remain in W as
well. Algorithms that do not take this into account suffer from numerical instabilities. This
issue is discussed in Chapter 6.
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Chapter 4
PHASE DIVERSITY

The analysis of the wavefront reconstruction problem in the previous chapter is essential
for understanding the more general problem of simultaneous wavefront reconstruction and
deconvolution. In this problem the object ¢ is not a delta function, but rather an extended
source

R0\
K[ F1[u]]? * ¢ 0
Klulp = ; - (1)
: "
K[ Fum[ul]® * ¢ M
where k[-] = | - |, the pointwise modulus. This problem is clearly ill-posed. In general, for

any linear equation where the linear operator as well as the input are unknown, infinitely
many solutions are possible. Indeed, suppose the pair (£, @) satisfies

Lo = 2. (4.2)
Then for any pair (L, p,) satisfying
Loy = —(Lup + Lopy)

the pair (L. + £, + ¢.) also satisfies Eq.(4.2). In practice, computational wavefront
reconstruction/deconvolution algorithms are only intended for systems that are very nearly
identified [116,146], i.e. the operator K is known to within a small error. In this context, the
wavefront reconstruction/deconvolution problem can be viewed as one of finding an optimal
filter for recovering the object ¢ from the image data 12 where -2 indicates element-wise
exponentiation of the vector .

For fixed u, Eq.(2.44) is a system of Fredholm integral equations of the first kind.
In physical terms, the convolution operator K, smoothes the object ¢, i.e. high fre-
quency components, corners and edges are smoothed by integration. For example, let
¢ = Xjp,118in(27€ - ). The corresponding image is given by

[, 7 = )Xy sin(ene - )iy = *(a).

For each x the Riemann-Lebesgue Lemma states that ¢ (x) — 0 as || — oo. The re-
verse process of computing ¢ from the image 12 can therefore be expected to amplify high
frequency components of ¢. In particular, naive inversion of the convolution operator am-
plifies noise in the object reconstruction. All practical methods for image processing must
provide for the separation of noise from the object, or in other words filtering the image.
Ill-conditioning and the compactness of the integral operator K are closely related. In most
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applications, the convolution operator K, defined by Eq.(2.46) is compact, or practically
compact in the sense that its singular values decay to zero, thus inverting the normal equa-
tions for solving the least squares problem formulated below is numerically unstable.
Another source of ill-conditioning in least squares solutions to Eq.(4.1) is the form of
the performance measure itself. The problem of simultaneous wavefront reconstruction and
deconvolution does not admit an easy formulation in terms of  rather than 2. For the phase
retrieval problem the objective corresponding to the squared set distance error Eq.(3.31) is

Bful= 3 oy v A (43)
m=0

At first sight, this would seem to be an advantage since this objective is trivially Fréchet
differentiable. Indeed, x[u]? = |u|? has Fréchet derivative

[s[u])' (w) = 2(u(-), w()).

We show in Chapter 6, however, that performance of algorithms with the nonsmooth ob-
jective is far superior to performance with the smooth objective. An intuitive explanation,
for this is that the modulus squared smoothes out curvature information in the objec-
tive [96, 109]. This is depicted in Figure (4.1). In addition, the singular values of the
gradient of the squared-modulus kernel are more spread out. This can be seen by studying
the linearized problem

(6[Fm[ul]) (w() = 2(Fn[u](), () = —(6[Fm[u]*() — ¥ ()- (4.4)

For the phase retrieval problem the values of F,,[u] vary continuously by several orders of
magnitude. The linearized problem is thus highly ill-conditioned. This problem is at the
heart of higher-order methods for solving the phase retrieval problem. In contrast, it was
shown in the previous chapter that selections v € J(—«[u]) have pointwise unit magnitude.
The linearized equation

(v(-),w()) = —(K[u] —b). (4.5)

is perfectly conditioned. We expect, therefore, methods based on smooth approximations to
& such as those studied in Section 3.3 of Chapter 3 to perform better than those based on 2.
This agrees with our observations, detailed in Chapter 6 as well as those of other researchers
for similar type problems [11,83]. While it is difficult to overcome the problem of the
inefficient objective, ill-conditioning and ill-posedness is readily addressed by regularization

strategies.

4.1 Least Squares Regularization

Consider the least squares performance measure for the system of operator equations given
by Eq.(2.44):

M
minimize Z %n | K [u] — prnHZ (4.6)
m=0

over u € L?[R?,R?], p € L’[R?, ]
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(a) Modulus kernel

1 -05 0

, (b) Contours of modulus kernel

Figure 4.1: Comparison of modulus kernel to modulus-squared kernel. The contours are at
the same levels for each figure and show that squared-modulus objective has less structure
near zero than the modulus objective
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where K,[u] is defined by Eq.(2.46). Since the kernel of the integral operator KCp,[u] is
Fréchet differentiable it is not necessary to consider any perturbations of the form studied
in the previous chapter. Tikhonov’s method involves incorporating a priori assumptions
about the size and smoothness of the solution. This is done simply by adding a penalty
term to the objective

minimize ||K[u]g0—1,b'2||2 —|—042||7'<,0—<;S||2 (4.7)
over u € L*[R*,R?], ¢ € L*[R*, ).

An alternative formulation is the following

2
Ko[u] ¥3
minimize e over u € L[R2, R?], o € L2[R%,R).  (4.8)
K [u] Y
aT 0]

The simplest example of regularization operators is 7 = Z, the identity operator. For in-
vertible 7 # 7 the general regularization problem is easily transformed into a regularization
problem with the identity as the regularization term. Let

]Conl
. ~ 2

K= , P =97 and ¢=¢.

/CMT_l

If ¢, is a solution to Pr.(4.7) then ¢, = T ¢, is a solution to the following standard-form
regularized least squares problem

~ ~.9112 ~
minimize HlC[u]c,Z) y 2H +o?| T3 — §|I? (4.9)
over u € L’[R*,R?], ¢ € L*[R*, ).

The system of equations (2.44) is linear in ¢ and nonlinear in w. This structure allows one
to split the corresponding optimization problem using a Benders decomposition [24]. Ben-
ders decompositions are common techniques for splitting large-scale optimization problems
such as Eq.(4.8) into smaller problems which can be solved independently of one another in
sequence. The least squares performance measure admits a particularly simple way to split
the problem. This was first recognized by Gonsalves [75] and later generalized by Paxman
et al [139]. Benders decomposition involves first obtaining ¢, by optimizing over ¢ for fixed
u. Next one solves for the optimal » holding ¢, fixed. The process is repeated until the
iterates exceed some tolerance. If null (KC[u]) Nnull (7)) = {0} for fixed w then the Tikhonov
solution for the object ¢, is the unique closed form solution to the optimization problem
over .. This is formally given as the solution to the corresponding normal equations

-2
o, = K, ( ’/;S ) with K, = (KK + 277)7! (K, T7) (4.10)
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where K:gl denotes the Tikhonov regularized inverse and K = (K5, -- -, K3y) is the transpose
of the vector of operators adjoint to Kp,.

For convolution operators, there is a very simple and efficient diagonalization process via
the Fourier transform, thus one should choose a regularization 7 which shares this property.
Denote the Fourier transform of the regularization operator 7 by T. By Parseval’s relation
and the fact that the transforms F,, defined by Eq.(2.43) and Eq.(2.48) are bijective unitary
linear operators, the optimal solution of Pr.(4.7) is equivalent to the optimal value of the
Fourier dual problem

minimize || K[ulp® — [¢%]"| + || T" — ¢"|? (4.11)
over u € L’[R*,R?], ¢" € L*[R*, ]

where K is defined by Eq.(2.59). The alternative formulation yields

A 2
Ko[u] [¥3]
P : A : 22 W21 A 22
minimize : " — : over u € L°[R*,R"], ¢" € L*[R*, R].
Kulu] [W3,]"
ol o

(4.12)
As above, if null (KC[u]) Nnull (7)) = {0} then null (K[u]) Nnull(T") = {0} for fixed w and
the Tikhonov solution for the transformed object ¢, is unique. The regularized solution is
formally given as the solution to the corresponding normal equations

21A
b = K, < W;A] ) with Kb = (KK +21T*T)"! (K7, T%) (4.13)
where K ﬁ denotes the Fourier transform of the Tikhonov regularized inverse.

The dimensionality of the original simultaneous wavefront reconstruction and deconvo-
lution problem is reduced by substituting the Tikhonov solution for the optimal object ¢,
directly into the objective in Pr.(4.12). This is a nonlinear optimization problem in u alone.

4.2 A Statistical Perspective: the Wiener filter

The performance measure in the general optimization problem Pr.(2.81) assumes a partic-
ular underlying stochastic model which, in turn, depends on the mechanical image forma-
tion system. Chapter 2 describes the physics of the image formation process of an ideal
continuous diffraction limited incoherent imaging system. In this section we consider the
probabilistic nature of image observation and the correspondence of the optimal regularized
least squares estimator with optimal filters for a noisy observation system.

In the discussion of the image formation process in Chapter 2, two steps are conspicu-
ously absent in the electromagnetic wave’s journey from its source to our eyes. These are
image observation and noise corruption. The latter of the two processes is not by choice,
and much effort is dedicated to eradicating its effects. The image observation model de-
scribes the interaction of the electro-optical system with the electromagnetic field as well as
other “random” factors which are modeled as noise. The electro-optical system consists of
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imaging arrays and circuitry that translates photons into images on a computer screen that
make sense to us and that we can store for future reference. The mathematical analog of this
process is the discretization of the continuous imaging model of Eq.(4.1). Since the objective
is Fréchet differentiable, the discretization does not effect the analytic limits of derivatives
calculated in any direction. Thus we are free to choose any convenient discretization, or in
this case, we are free to accept the discretization imposed by the image observation process.
Numerical considerations of the discretization are discussed in detail in Chapter 5.

The electro-optical observation system consists of arrays of charge-coupled devices (CCD’s)
arranged in an evenly spaced Cartesian grid in the image plane of the ideal optical system
depicted in Fig.(2.1). The grid elements in two dimensions are called pizels. From Eq.(2.43)
the image 12, for m > 1 is the modulus of the Fourier transform of the aberrated wavefront.
Thus each of the pixels in the image array is a sample of the continuous Fourier transform,
or, alternatively, the coefficient of the discrete Fourier series representation of the aberrated
wavefront Plu] expl/~1 0,,]. We therefore discretize the problem by the Fourier series ex-
pansion. As discussed in Chapter 6 the evenly spaced arrays allows us to take advantage of
the Fast Fourier Transform (FFT).

4.2.1 The least squares error metric as a log-likelihood estimator

We recycle the notation used for the continuous analysis for the following discrete analysis.
Denote the vector of integers n = (n1,n2) € I C Z x Z. The inequality n < n’ indicates
n; < n; (i =1,2) Consider the discrete linear observation model with additive noise

Kl Fm[u(n)]]” * p(n) + nm(n) = 7, (n) (4.14)

where * is the discrete convolution operator and F,, is the discrete transform corresponding
to the transform defined in Eq.(2.43) and Eq.(2.48). The index n corresponds to a pixel on
the imaging array. FEach pixel is a CCD that essentially counts individual photons within
the area element. Any miscount of a photon from the intended source is noise in the system.
Miscounts are often caused by heat radiating from the optical device or other nearby objects
(black body radiation). This is known as thermal noise. Thermal noise n(n) is modeled as
independent, identically distributed (iid) zero-mean Gaussian noise with variance o, at
each pixel n [139]. The image %2,(n) is thus a random variable with normal probability
density

K u 2* n)— 2 n 2
PV Flul() 0] = Gy onp [—‘9[ Fnlull 2ol - Vo) ] (4.19

where £[-] denotes the expectation of a random variable. With the iid assumption, the
probability density over the mth image is given by the following product over all pixels
nel

A2, Fmlul,0) = [ [ . _ElelFmlull + oln) 1/)72”(”)_]2] . (4.16)

|
w2037 27,
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The distribution over all diversity images 12, is the product of the densities of the images

M
A%, u,0) = [] dim; @, Fmlul) (4.17)

m=0

The maximum likelihood estimator (MLE) (w4, @s) is the estimate that is most likely to
have produced the measurement. This is found my minimizing the log-likelihood function
given by

Llu,¢] = —ln( (%%, u,9))
= Z Z € [l Fmlu]l 202( n) — ¥m(n + Z —ln 2mo2, (4.18)
m=0 nel m

where N is the cardinality of . Dropping the constant 32 N in(2ro?,) and normal-

izing by the number of pixels yields the discrete analog to the continuous least squares
performance measure given in Pr.(4.6)

M
e . 1 1 2 112
minimize oo mEZO aé’ [”}Cm[u]go - m”F] (4.19)
over ueRY xRN, peRN (4.20)

where ||-||r is the Frobenius norm. The formulation above yields the correspondence between
the variance of the data and the weights 3, in the weighted squared set distance error £
defined by Eq.(3.31):

1
Pm = o2

4.2.2  Some statistical definitions

Before we derive the Wiener filter, we define some elementary statistical functions. Through-
out this discussion the random variables are assumed to be stationary. A random complex-
valued sequence z(n) is said to be strict-sense stationary if the joint density of any partial
sequence {z(l), 1 <1 < k} is the same as that of the shifted sequence {z(I+m), 1 <I < k}
for any vector of integers m and any length k. Denote the complex conjugate of by T
and the autocorrelation matriz, Aln,n’'], by

Aln,n'] = E[z(n)z(n')].
The sequence z(n) is called wide-sense stationary if
E[z(n)] = const

and
Aln,n'] = g(n - n)
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where ¢ is some general function of the vector of integers n. For Gaussian sequences wide-
sense stationarity and strict-sense stationarity are the same and we will simply state that
the sequence is stationary. Define the covariance function of the stationary random sequence
z(n) with mean y by

Ca(n) = E[(z(n) — p)(@(0) — A)] = E[(=z(n +n') — p)(@(n) —B)] Vn, n'.  (421)
Similarly, the autocorrelation function, denoted A(n) is defined by
Az(n) = E[z(n)z(0)] = E[z(n + n)z(n')] Vn, n'. (4.22)

Using the definitions of covariance and autocorrelation functions it can be shown that the
covariance and autocorrelation matrices are Hermitian and positive semidefinite. The cross-
correlation of two jointly stationary random sequences z(n) and y(n') is defined by

Coy(n —n') = E[z(n)y(n')). (4.23)

The spectral density function, S, is defined as the Fourier transform of the covariance func-
tion

Sz(w) = [Co]N(w). (4.24)

The cross-spectral density function is the Fourier transform of the cross-correlation function
_ A
Say(w) = [Cay]” (w).

4.2.8 The Wiener filter

We are now ready to derive the Wiener filter. For stationary Gaussian model, the conditional
mean of ¢ given 12 for fixed u is the best linear estimate of the form

pi(n) = Wx9?(n) (4.25)

where the filter impulse response YWW(n) is determined to minimize the mean square error
of Eq.(4.19). The solution to Pr.(4.19), ¢,, satisfies the orthogonality condition

Ellp(n) — pu ()2 =0 ¥ n,n. (4.26)
Equations (4.25)-(4.26) yield
Elp(n)yp?(n)] = Elpi(n)y?(n')]
E[W x4 (n)y?(n)]

W€ [ (n)y?(n')]
= W Cyopy2(n— n').

By the definition of cross-correlation Eq.(4.23), this can be written simply as

Cop2(n =) = W Cyay2(n —n). (4.27)
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where C,,;,2(n) = (pr% (n),... s Con2, (n)) denotes the cross-correlation between the diver-

sity images 2 and the object ¢, and C¢-2,¢-2 (n) denotes the autocorrelation over all the
diversity images. Together Eq.(4.25) and Eq.(4.27) are called the Wiener filter equations.
Taking the Fourier transform of the far left and right sides of Eq.(4.27) yields

Spp2 (W) = W ()8, 242 (w)

where W is the Fourier transform of W. Thus, W is formally given by
-1
W(w) = 8,2 (w) [5¢.2¢.2(w)] . (4.28)

For the image formation model given by Eq.(4.14), assuming stationary additive noise 7,
uncorrelated with ¢ we have

Syry2(w) = KTKSpp(w) + Spp(w)  and Sy (w) = K7 S, (w) (4.29)

where K is the discrete Hadamard multiplication operator corresponding to K defined by
Eq.(2.59). Thus we arrive at the Fourier-Wiener filter for the imaging model Eq.(4.14)

W(w) = [KTKSyp(w) + Spn(w)] ' KFS(w) (4.30)
where W (w) = (W1,...,Wy) and
Wi = [KY KSpp(w) + Spp(@)] ' BSpp(w).

Comparing Eq.(4.30) with Eq.(4.13) reveals the correspondence of Tikhonov regularization
to construction of the optimal Wiener filter for a linear imaging model with stationary
Gaussian noise. The correspondence provides a method for choosing the regularization
parameter « to satisfy maximum-likelihood criteria [5,6]. If the noise power Sy, goes
to zero, then the Wiener filter becomes the pseudoinverse of the operator K. Since the
convolution operator K tends to smooth the object ¢ this is called the blur of the optical
system. In the absence of blur, that is, when K = I the identity, the Wiener filter is the
optimal noise smoothing filter.

4.3 Regularization via Parameterization

Any numerical method will implicitly or explicitly involve a parameterization or, equiva-
lently, discretization. Since the functionals discussed in the previous chapters are Fréchet
differentiable, the discretization does not effect the analytic limits of the derivatives calcu-
lated in any direction. In Section 4.2 the physics at the image plane lead us to favor a pixel
parameterization. We show in Section 5.3 of Chapter 5 that this parameterization lends
itself easily to a multi-resolution analysis which can be exploited for numerical purposes.
In many applications, however, it is more common for the physics at the pupil plane to
determine the numerical discretization. We discuss these considerations below.

Until recently, optical design has allowed for very efficient discretizations of the apertures
in terms of Zernike polynomials [26,119,175,204]. The polynomials, first derived by their
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namesake, Friz Zernike [204], are a complete basis in L? whose terms are orthogonal on the
circle [25,26]. These polynomials were extended by Mahajan [119] to the annulus. More
recently Swantner [175] has proposed a Gram-Schmidt procedure for constructing complete
bases of polynomials orthogonal on more general regions. The Zernike polynomials enjoy an
additional property that the primary optical aberrations such as piston, tilt, focus, astigma-
tism, coma, clover and spherical aberration, are easily represented by linear combinations of
Zernike polynomials of degree 4 or less [26, pp.525-530]. Thus a wide variety of aberrations
at the pupil can be represented easily by just a few basis functions.

Modern optical devices, however, no longer have apertures with simple geometric con-
figurations (see Fig.(6.1a)). Zernike polynomials are not orthogonal on segmented pupils
and non-circular apertures and they do not represent the optical aberrations common to
complicated apertures as efficiently as they do for circular apertures. Even if only several
hundred Zernikes are needed to characterize a wide variety of aberrations an optical device
is likely to encounter, there is no known “fast Zernike transform.” Projections onto the
truncated series can quickly become computationally intensive. Zernike polynomials have
been proposed as parameterizations for atmospheric turbulence [134], though more recent
research recommends a truncated singular value decomposition (SVD) [186-188]. Both
Zernike polynomials and the SVD are regularization strategies based on physical phenom-
ena at the pupil plane. This is an issue separate from the design of numerical algorithms.
It was shown in the previous section that regularization, or equivalently filtering, is closely
related to the statistical properties of the optical system. It has been noted in [116] that
choronographic observations, for example, have very different noise characteristics than
planetary observations or atmospheric observations. These considerations are best dealt
with entirely through the choice of error metric and have little to do at the outset with
the parameterization. There is no question as to the importance of regularization, however
this is independent of the numerical methodology. Our goal is to develop a methodology
with as wide an applicability as possible. The techniques discussed in Chapter 5 have been
designed with the worst case scenario in mind, that is systems with more than 500,000 vari-
ables. They certainly are not limited to such large problems and are competitive methods
for smaller problems as well.



89

Chapter 5
NUMERICAL METHODS

In this chapter we present two basic numerical approaches for the minimization of the
perturbed least squares objective, E,, and the perturbed extended least squares objective,
R.. The first algorithm is a simple first-order line search method while the second is a trust
region algorithm that incorporates curvature information using limited memory techniques.

5.1 Line Search

Let F : L?[R?,R?] - R be Fréchet differentiable. Given an initial estimate of the solution
u(©® | a descent algorithm for the minimization of F' generates iterates u() by the rule

wH) Z ) 1 \)gp®) (5.1)

where
w® € Du®)] = {w € 2[R, R?] ‘F'[u(”)][w] < 0}

and A\*) is a well chosen step-length parameter.
There are several methods for computing a suitable step length [133]. The criteria we
use is the sufficient decrease condition:

F[u(”) + )\(V)w(l/)] < FW 4 ,7)\('/) <VF(”), w(l/)> (5.2)
where 0 <7 <1 is a fixed parameter and
F) =Fu®]  and VF® =VF[u®).

Theorem 5.1.1 Let F : L?[R?,R%2] — R be Fréchet differentiable and bounded below.
Consider the following algorithm.

Step 0: (Initialization) Choose v € (0,1), n € (0,1), ¢ > 1 and u(® € L2[R?,R?], and set
v=20.

Step 1: (Search Direction) If Diu")] = 0, STOP; otherwise, choose
w®) € DuM]NcB where B is the closed unit ball in L*[R?, R?].

Step 2: (Step Length) Set
A = magimize  ~°
subject to s€N=4{0,1,2,...}
with Flu® + v w] — F¥) < gy <VF(”), w(”)> .
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Step 3: (Update) Set u#t1) = u®) + \Ww®) and v = v + 1. Return to Step 1.
If VF is globally Lipschitz continuous then the sequence {u(")} satisfies

(VF), w) -0,

In particular, if w®) is chosen so that

)= gpw
IVE®)|

for 0 < é<c, then
IVFW)| — 0.

PROOF: The proof is by contradiction. Suppose there is a subsequence K C N such
that supg (VF(”),w(”)> < B < 0. Since F is bounded below, F*) \, F, € R, and so
(F+D) — F)) - 0. By the choice of A%*) in Step 2 we have that

A9 (VO w)) S0
Therefore A¥) E 0 and so, without loss of generality, A <1 for all v € K. Hence,

Ay UVF®) | w®)y < Flu® 4+ A0y ~lyw®)] — FO) (5.3)
for all v € K Let K be the global Lipschitz constant for VF. Then
Flu® 4+ 20~ 1ypy®] = pl) < 30,1 [(va), w®) + K(A(u>7—1||w(u)||)] . (5.4)
Together, Eq.(5.3)-(5.4) yield
0< (1—n)B+ KNIy w®|).
Taking limits over v € K
Ay w0 = KAy w®|) -0

which yields the contradiction 0 < (1 — )8 < 0.
We next show convergence of the norm of the gradient to zero for
¢
=——— _VFW
IVEC]

(¥)

where 0 < ¢ < ¢. This is a direction of descent lying within ¢B. Thus, for this choice of
v)
w 7
(VF®, w®)) = —&|VF®)| - 0.
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5.2 Acceleration Techniques: Limited Memory BFGS with Trust Regions

The line search method discussed in the previous section is a first-order method and cannot
be expect to converge quickly. Indeed, in experiments discussed in Chapter 6 we observe
very poor rates of convergence for this method. In the remainder of this chapter we study
techniques for accelerating convergence and lowering CPU time. These techniques depend
to a large degree on the size of the problem. For problems with a hundred unknowns
and a twice differentiable objective, it is feasible to use Newton’s method to achieve near
quadratic convergence close to a local solution. For large problems, however, this is not
a reasonable strategy. For example, if the objective F[u] for the wavefront reconstruction
problems Pr.(3.33) and Pr.(3.94) is discretized into a pixel basis for a 512 x 512 image,
the number of unknowns is 2'°. The Hessian corresponding to a system of 2!° unknowns,
assuming it exists, is a dense 2'0 x 210 matrix. Explicit representation of this matrix is
not practical. For this reason, many researchers discretize the problem into polynomial
expansions that are truncated to achieve low dimension optimization problems. While this
is sometimes physically justified, it is not always the case that one can find an efficient pa-
rameterization that is consistent with the physics of image observation discussed in Chapter
4. The methodology we study here does not rely on truncated parameterizations to achieve
accelerated convergence of algorithms and efficient use of CPU time.

Limited memory methods provide an efficient way to use approximate Hessian informa-
tion without explicitly forming the matrix. These methods are derived from matrix secant
methods that approximate curvature information of the objective function from preceding
steps and gradients. In this section we derive a compact representation of the Broyden-
Fletcher-Goldfarb (BFGS) matrix secant update and it’s compact representation for limited
memory implementations. Limited memory methods are made robust with the introduction
of trust regions. For a thorough treatment of matrix secant and trust region methods see
Ref. [55].

5.2.1 Maitriz secants and the BFGS update

Denote the discretized unknown functions w by the same variable with the 2 dimensions
stacked into one column vector, i.e u € R" for some integer n. Matrix secant iterates are
generated by

-1
w+D) = ) (M(")) VEF(u®) (5.5)

where M(*) € R™*™ is an approximation to V2F*) satisfying the matrix secant equation:
M® (=) —y®)) = vF@-Y _ yF®), (5.6)

Equation (5.6) is a system of n equations in n? unknowns, thus infinitely many solutions
are possible. Common choices for the secant approximation M) are Broyden’s update,
the symmetric rank one (SR1) update, and the BFGS update. Limited memory techniques
for BFGS matrices are reviewed here, however similar methods for alternative updates are
possible.
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The BFGS update to the true Hessian is given by

M) D) YWy M=) g0) )T pp-1) - 57
e — , VvV = gLy e .
y T sw) s T A1) 50)
where
y®) = VRt _vE®), W) = ) ), (5.8)

The BFGS approximation is symmetric and positive definite as long as s )Ty(” ) > 0 and
M®=1) is symmetric and positive definite. Additionally, the BFGS update has a explicit
recursive formula for the inverse

[M(U)]_l _ V(U_l)T[M(y—l)]—lv(U—l) + Z(V_l)s(”_l)s(‘/_l)T (59)

where
V) = 1= 0y 07T A0 = (@701,

Now consider the recursion

(M@t = (DT |y e-mTy [ M(o,u)] - (V=—m)  y -1y

T

+z(u—m) (V(U—I)T o V(V—m+1)T)S(u—m)s(u—m) (V(u—m—H) o V(U—l))

_|_Z(u—m—|—1) (V(ufl)T o V(ufm—|—2)T)8(ufm—|—1)S(ufm+1)T(V(ufm—|—2) o V(ufl))

+...
INCORCORCON (5.10)
Here m is the number of {y¥), s()} pairs that are stored, i = v—m,...,v—1, and [M©)] -

is a generating matrix specific to the vth iterate. The [M(*)]~! defined by (5.10) is equiv-
alent to the inverse BFGS matrix generated by updating the initial matrix M©*) m times
according to the recursion (5.9). When m = v and the generating matrix M) = M for
all v then the formula (5.10) is identical to (5.9). When the number of updates is zero,
i.e. m = 0, and [M(O”’)}_1 = M(fl = I for all iterates v the recursion (5.7) simply yields
the identity for the Hessian approximation at every iteration. This corresponds to steepest
descent in the sequence defined by (5.5). Limited memory methods occupy a middle ground
between the two cases, m = 0 and m = v, with a generating matrix M(®¥) that changes
at each iteration. Limited memory is a convenient way to make use of curvature informa-
tion for high dimensional problems, however two-step quadratic convergence rates cannot
reasonably be expected for v > m.

The above recursions are helpful for illustration but are not used in practice. Compact
representations of the BFGS approximation provide for efficient implementations of BFGS
matrix secants. Moreover, as with conjugate gradients, the product [M®)]='V f(u()) is
computed without actually forming the matrix [M)]~!. Before proceeding we introduce
some notation.

o SW) = [smm) | 5w-1)] ¢ Rrxm,
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e YV = [y(u—m), L ’y(u—l)] c ]Rnxm;

o STy — L)+ DW L RW) ¢ Rmxm where L), R®), and D) are lower triangular,
upper triangular and diagonal matrices respectively;

e B = DO 4+ RW),
o U =[MyS®) YW e Rrx2m,

o T

[S(u) Mo—ly(u)] c Rnme;

[ s T pr s L)
(v) = 0 2m X 2m .
V=1 o _pw | SETT
[ _(V)_T v AT 3 r—1v (v _(U)_l -(v)
Liwo | B 1(D< VY@ My YO R RV | oo
| _R(U) O

Let M) be the BFGS approximation at the vth iterate with the symmetric positive definite
generating matrix My. Let the v pairs {y(i),s(i)};j:_l1 satisfy s(i)Ty(i) > 0. Byrd et al [36]
show that for n = v in the above definitions,

M®) = My — w0 g (5.11)
and ey
(M) = My — FITWGOIT (5.12)

In (5.12), assuming M Lis given, the only inverse to be computed is that of the v x v upper

triangular matrix E(U). This is easily accomplished with back substitution.

5.2.2 Limited Memory BFGS (L-BFGS)

Limited memory techniques amount to generating at each iteration the BFGS matrix from
the m most recent of the pairs {y(i) , s }ZV:_Ul_m and the generating matrix M O») Typically
m € [5,10]. The choice of M©*) that is often used is M(®*) = ) where T is the identity
matrix and p(*) is some scaling (see [166]). With this generating matrix the only inverse

one need compute in (5.12) is that of the m x m upper triangular matrix R(V). This is easily
accomplished with back substitution. The quasi-Newton iteration then yields

utH =) - L YREY) - TOR) ([T VFE®)). (5.13)
]

The complexity of this operation is O(mn) while the complexity of computing I'*) is O(m3).
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5.2.8 Trust Region L-BFGS

Acceptance of the step to the next iterate depends on the accuracy of the quadratic approx-
imation

Ft) — p0) L wpe)T . o) 4 %SMT M) sw) (5.14)

against the true function value F“t1). A measurement of this accuracy is given by the
ratio of the actual change in the function value between iterates u(*) and u(**1) and the
predicted change,

) actual change() F@) _ pl+l)

S = = . 515
ple) predicted change”)  —VFMT . 50) — 10T M) 50) (5.15)

If the ratio is below some tolerance 7] then the step is restricted. A line search strategy such
as the one given in Theorem 5.1.1 can be employed to find an acceptable step size, however
this often requires several function evaluations. In applications such as nonparametric phase
retrieval, function and gradient evaluations are the most expensive part of each iteration,
thus we consider alternative strategies for finding acceptable steps. We have found in
practice that a single application of a trust region strategy is usually all that is required to
find a step that satisfies Eq.(5.2). A trust region is a ball around the current iterate u(*)
within which the quadratic approximation is reliable.
The trust region subproblem with trust region radius A®) is given by

1
TR(A®)  minimize VF® s 5sTMWs.
s] < AW

The Lagrangian of TR(A®)) yields the following unconstrained, implicit trust region sub-
problem

TR,(LL)(V)) minimize VFu")Ts + %ST (M(”) + w(”)I) s.
seR?

A solution, s,(w™)), to TR'(w")) corresponds to a solution to TR(A®)) with A¥) =
|s+(w™))]|. The larger w*) the smaller the trust region radius A®).

In [33] Burke and Wiegmann derive a compact representation of the inverse of the
matrix w*)T + M®) for solving the trust region subproblem that can be computed with
the same computational complexity as the computation of M®). To see how this is done,
let 70 = w® + u®). Recall that the generating matrix for the vth iterate is given by
MOY) = 1. For T'¥) invertible,

M®) 4 oW =70 _gWr0-1g®)’ (5.16)

If M®) 4w is invertible (i.e. as long as D) is positive definite), the Sherman-Morrison-
Woodbury formula yields
[791 — g r@ 1] Ty [I +0) (+0r0) q,(u)T\I,(u))‘l \I,<u>T]

(5.17)
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where
@ _ g g
1V s T ) W LW — yRY
_ AT
T wR" (Y(V)Ty(V) + (1@ + w®) D(u))

2m X2m
WL ] €R '

(5.18)

The inverse of (5.18) can be computed efficiently using the Cholesky factorization. The
factorization involves the related matrix

- (Y(V)Ty(l/) + (1) +w®) D(u)) W L _ "
WL —  RY 1™ )T 5)

KW 0
(W LW — RV KW]-T Be)

_KWT KO () L) — RENT
0 BW»T

(5.19)

TY®) 4 (4 4 w®)D® and B)

Here K(*) is the lower triangular Cholesky factor of Y
is the lower triangular Cholesky factor satisfying

BV BT = ), g7 5®)

+ (w(u)L(u) _ u(”)ﬁ(y)) (Y(V)TY(V) (W 4 w(u))D(V)) (w(V)L(V) _ N(V)R(U)>T.

It is straight forward to show that K(*) and B®) exist and are nonsingular. The following
lemma is an extension of a proof given by Byrd et al for the computation of T'*) [36].

Lemma 5.2.1 If y(i)Ts(i) >0 forali =v—m,....,v —1 and o™, pu® > 0, then
YOTYy® 4 (u®) 4 YD) and
MOMOF QN0
—(v =N\ T
n (w(”) L) — R >) (y(V)Ty(V) (1 w®) D(u)) (w(u) L) — R >)

are positive definite.

PROOF: By definition, y® " s® > 0 for alli = v —m, ..., v — 1 implies that D®) is positive
definite, hence vy y®) + (™) + ) DW) is also positive definite as long as ), w®) > 0,
and

(wm LV _ ﬂ<u)§<v>> (Y(V)Ty('/) + (W 4 W) D(u)) (w(u) Lv _ M(u)RM)T

is positive semidefinite. Now suppose that for some v

o7 (w@) LV _ M(V)R(”)) (y(u)Ty<u> + (@ 4 w®) D(u)) (w(u) Lv _ M(um(v))TU

=0 (5.20)
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Then E(V)Tv — LTy = 0. Recall that E(V) = D® + R™) thus the only v satisfying (5.20)
isv=0.
O
To avoid notational clutter, we drop the index (v) from the iterates. Solving TR(A),
assuming that the solution lies on the boundary of the trust region, can be recast as solving
the system of equations

(M+wl)s+VF = 0 (5.21)
sl — A% = o. (5.22)

Moré and Sorenson [130] propose an efficient way of solving this system by using Newton’s
method to find the zeros of ¢(w) where

p(w) = % — (5.23)

and s(w) = —(M +wI)~'VF. This form of ¢ was first proposed by Reinsch [149]. Newton’s
iteration for solving ¢(w) = 0 yields

| | )
LU+ _ 0 _ Z((‘: (j))) (5.24)

where

VF'IM + wI|73VF
[ls(w)I®
Burke [32] has derived the formula for the general nth inverse of matrices in Sherman-

Morrison-Woodbury form which yields an explicit formula for [M +wI]~3. Since [M +wI]~!
is used in other computations, it is more efficient to compute

¢'(w) =

(5.25)

(M 4+ wI)™2 = (M +wl)™3(M +wI)™!
with
(M +wl) ?=
1 _ . .
[T+ 9 (T = 9T9) T 0T 47 (T - 9Tw) T T (T — 0T w) T 0T
.
(5.26)

Setting vg = UVIVF, v; = (1T — UTW) 1y, and vy = (7T — UT¥) Ty iteration (5.24)
can be written as

LU — @) _ 2 [\/_5 _ T] (5.27)

where
o =71%|s(w)|]* = v T W, + 2vfv1 +||VF|?> and

§ =1 [VF|" (wI + M)™3VF = 0 + 7 [0 U vy + vl vy] .
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The step calculated by the trust region subproblem is given by
-1
s=—(VF+ Tuv) (5.28)
T

with ||s|| = %. The change in the function predicted by the quadratic model (5.14) is given
by

1 -1
predicted change = [VF]"s + ESTMS = E([VF]T[VF] + vl vy + u;)a). (5.29)

5.2.4 Algorithms and Implementation

A crucial parameter in matrix secant methods is the scaling (). There are many definitions
for the optimal ;) [138]. One such scaling suggested by Shanno and Phua [166] is

w gDy
p = . (5.30)

s(v=1)" g(v-1)
As noted in [33], for the proper scaling the trust region is required only a small fraction of the
time. The scaling has the effect of implicitly imposing a trust region. Since computations
with trust regions are much more expensive than unconstrained L-BFGS, it is reasonable to
default to unconstrained L-BFGS and only invoke the trust region when the objective value
does not behave as predicted. The trust region is invoked only if the ratio p(s*)) given by
Eq.(5.15) falls below a given tolerance, indicating that the quadratic model (5.14) is not
reliable. It has also been noted in [33] that when a step does not give sufficient decrease
in the objective value, or even causes an increase in the objective, it is still worthwhile to
keep that step direction and use it to update the L-BFGS matrix, even though the step is
not taken. This is because bad steps still contain curvature information, albeit information
about curvature in the wrong direction. In our experiments the trust region was rarely
restricted more than once before an acceptable step was found. The strategy of keeping
even bad steps does not promise much savings for this problem, so have not included this

in our implementations.

Algorithm 5.2.2 (Limited Memory BFGS with Trust Regions ) :

Step 0: (Initialization): Choose i >0, ¢ >0, me€ {1,2,...,n}, and u(® € R", and set
v=m=0. Compute VF© FO) and |VFO)|.

Step 1: (L-BFGS step) If m=0 compute u*t1) by some line search algorithm (e.g. the
algorithm in Theorem 5.1.1)); otherwise compute s) = — (M("))_1 VFW) where
MW is the L-BFGS update [36], utD) = u®) 4 s®) FUHD and the predicted
change Eq.(5.14).

Step 2: (Trust Region) If the step s®*) violates the appropriate criteria (e.g.
p(s®) < 7 for p given by Eq.(5.15)) reduce the trust region AW, solve the trust region
subproblem for s%) [33], and compute D) = u) + s FE+D and the predicted
change Eq.(5.1}). Repeat Step 2.
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Step 3: (Update) Compute VF+1) ||VF W), 4y from Eq.(5.8), and s(”)Ty(”). Dis-

card the vector pair {s=™) y#=™1 from storage. If s T y¥) < ¢ set m = max{m—

1,0}, AVFTD = o0, D) = u(”) and M¥+1) = M) (1e shrink the memory and

)T gy () 1 . _
O G — 0, m = minfm + 1),

add the vector pair {s™), y)} to storage, and update M+ [36]. Set v =v +1 and
return to Step 1.

don’t update); otherwise set ,u(”‘H) =

Remark 5.2.3 With a slight modification Alg.5.2.2 can be used as a backtracking line search
algorithm where m =1 and M®) = )T for all v.

Algorithm 5.2.4 (Explicit Trust-Region Updating) Given u"), VF(u®)),
p®), 7, and 0 < Ba < 1.

Step 0: Calculate LW, T®), T®) and T 9W). Let AW = ||s@- V)|,
Step 1: Let s, solve the trust region subproblem TR(A™)) (see algorithm 5.2.5).

Step 2: If the ratio p(sy) < ij set AY) = Ba|ls,|| and return to Step 1.; otherwise set
s®) = 5+ and calculate w1 = u( V) 4+ 54, VF(uD), 4 glv- 1) VF(ulrtD),
YD VE D), and the scalar |VF(u+D)|3

Step 3: Return u*V, s VF(u¥tD), y¥) gk 1)TVF( W), vy (”*I)TVF(U("“)),
and the scalar |V F(u "+1))||2 to the callmg algorithm, and end.

Algorithm 5.2.5 (Trust Region Subproblem)

Step 0: (Initialization) Given matrices T, ¥W), \I/(”)T\I/(”), p), w, and AW, Let
vy = \IJ(”)TVF(U(”)), and let € be the stopping tolerance:

Step 1: Set 7 = w4 u®).

Step 2: Set vy = (r00) — M T FW) -1y,

Step 3: Set vo = (100 — T PO))~1TW)y,

Step 4: Set o = 72||s(w)||? = vT T TPy + 2T v, + | VF(u®)]|2.
Step 5: If |\/o — TA®| < /eAW) || VF(u)|le, goto Step 9.

Step 6: Set d =0+ T[’ulT\I!(V)T\I!(”)vQ + v va].
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Step 7: Setwy =w+ 5 [ﬁ —7-],
Step 8: If wy >0, set w = wy; otherwise, set w = .2w. Return to Step 1.
Step 9: Set sy = _TI(VF(U(")) + \I/(”)vl)

Step 10: Calculate F(u'Y) +s.), the actual change, predicted change via (5.29), and p(s®))
via (5.15). If p(sy) < 7} adjust the trust region AY) and goto Step 0; otherwise, set
(v) —
S = 54+.

Step 11: Return s*) to the calling algorithm and end.

Algorithm 5.2.6 (Implicit Trust-Region Updating) Given u(*), VF(u®),
p, i, and 0 < By

Step 0: Calculate L), T ) gnd T YW Let w = IVE@®)]/2lls¥ V).

Step 1: Set 7 = w+ u). Let sy solve the trust region subproblem TR’(w) via (5.28).
Compute F(u®) + s..), the actual change, the predicted change via (5.29), and p(s.)
via (5.15).

Step 2: If the ratio p(s,) < 7 set w = w + Bo(w + ) and return to 1.; otherwise set
s = s, and calculate Y = ) + s, VF(ut)), y@), S(”’l)TVF(u(”H)),
Y(”_l)TVF(u(”+1)), and the scalar |VF(u**1)|3.

Step 3: Return u*tY, s¢), | VF(u+), 40, S(”*I)TVF(U("“)),
Y(”*I)TVF(U(”H)), and the scalar |V F(u+D)||3 to the calling algorithm, and end.

5.3 Multi-resolution Analysis

In this section we discuss a further advantage of the pixel basis to other parameterizations,
that is multi-resolution analysis. These methods are elementary and have been implemented
without discussion in [115]. They have received more attention in a recent article by Ohneda
[135]. For the wavefront reconstruction problem discussed in Chapter 3, multi-resolution
techniques are the natural thing to do and are easily implemented. We motivate these
methods with a discussion of filtering, and show the corresponding interpretation as a
multi-resolution analysis.

Since image noise is often nonsmooth, it shows up as high frequency components of
the Fourier transform of the noisy image. A common technique for separating out noise
is to truncate the Fourier transform of the images. This is sometimes called windowing
the Fourier transform of the image. For the imaging model given by Eq.(2.42), the image
1y, is the magnitude of the Fourier transform of the aberrated generalized pupil function
R[u] expl/~1 0] (see Eq.(2.43)). To filter noise from the wavefront estimate u one simply



100

truncates the observed image to eliminate high frequency components of the estimate u.
Let X, denote the indicator function for the n x n box of pixels centered at zero. For a
discretized image v, centered at zero we have the following system of equations for the
filtered image

X O |Fplull =X @y, m=1,...,M. (5.31)

where ® represents the discrete Hadamard matrix product and F,, (m = 1,..., M) are
the discrete counterparts of the continuous operators defined in Eq. (2.43). Note that the
filtering is mot applied to the physical domain equation (m = 0) given by Eq.(2.41) and
Eq.(2.48). This has to do with the relation between filtering in the Fourier domain and
blurring in the physical domain. This discussed in more detail below.

The multiresolution approach relies on our ability to write the left hand side of Eq.(5.31)
as a localized average of nearby pixels of R[u] exp/~1 ém], that is a low resolution version of
the original function. To do this note that the pointwise modulus of functions in L?[R?, R?]
is equivalent to the pointwise modulus of functions in L2[R?,C]. Thus

|Fm[u]] = [R[Fm[u]]

where R is the isomorphism between L2[R? R?] and L?[R?,C] (Eq.(2.76)). Since the
Hadamard product commutes with the pointwise modulus function we may write the filtered
function on the righthand side of Eq.(5.31) as

X O | Fmlu]| = [ X © R[Fn[u]]]

Recalling Eq.(2.43) for m > 1, by the Discrete Convolution Theorem we have

| X5 @ R[Fp[u]]] = ‘ [Xﬁv % R[u] expl/—1 ém]]A m=1,...,M.

Here A and V indicate the discrete Fourier transform and it’s inverse respectively.
For z € R, the Fourier transform of the window function is the sinc function defined by
. _ sin(mz) A
sinc ($) = T = X[—.’,E’,fi]
where A]_; 7 is the indicator function of the interval centered at zero of length 2z. In n-
dimensions, the Fourier transform of the window function is just the vector of sinc functions
of each of the components separately. For & € R"

sine (o) = (sin(wwl) - sin(ﬁxn)> _

T TTy

For a review of these objects see [76,98]. Convolution against a sinc function, X}/, can be
approximated by a localized discrete linear operator, A,[-], that averages blocks of adjacent
pixels. For the moment we leave the definition of A,,[-] ambiguous - many different averaging
operators are possible. For m > 1 the convolution on the right hand side of Eq.(5.31) can
therefore be approximated by

XY * Rlu] expV/ 6,,] = A [’R[u] expf/-1 ém]] . (5.32)
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This yields the following approximation of Eq.(5.31)
~ A
‘ A [Rlu] explv=T 6] | ‘ N X @tm, m=1,..., M (5.33)

The filtering operation applied to the images v,,, m = 1,..., M cannot be directly
applied the the physical domain constraint represented by the ”image” 9. The analog in
the physical domain is an averaging operation. To see this consider the (discrete) Fourier
dual of Eq.(2.49)

ul® = ¢g.
Now, apply the filter X
Xy © |u|/\ = Xﬁ@’(l)(/)\

Again, by the Discrete Convolution Theorem the Fourier dual of the filtering operation, i.e.
the filtering operation in the physical domain, is given by

XY x |u| = XY * 1.

We approximate the right hand side of the above equation by X  |u| ~ |A; [R[u]]| where
Aj; is the averaging operator discussed above. This yields the approximate physical domain
relation corresponding to filtering in the Fourier domain

|Aa[R[u]]| = &7 * 0. (5.34)

Equations (5.33) and (5.34) constitute a low resolution imaging system. The averaging
operator Aj; blurs information in adjacent pixels of the wavefront estimate w, smoothing
out edges as well as noise. It is not necessary, therefore, to maintain a high pixelization
for the wavefront estimate u since fine detail is lost by averaging. In Eq.(5.33) only the
center 7, pixels of the image are kept in the calculation. Our implementations rely on
the Fast Fourier Transform Algorithm (FFT) to calculate the discrete Fourier transforms.
These require square arrays with dimensions that are powers of 2. Our computations take
advantage of the lower resolution image by using a pixelization of u that is consistent with
the size of the window X;. This dramatically reduces the dimensionality of the optimization
problem and thus computation time. It cannot be expected that the solution to the low
resolution problem will be as good as the high resolution, however, we use the low resolution
solutions as a bootstrap to higher resolution estimates. Ideally, all of the hard work is done
at low resolution and relatively few iterations are necessary to achieve a solution at the
highest resolution. This is indeed what we achieve (see Fig.(6.9)).
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Chapter 6
NUMERICAL RESULTS

6.1 Phase retrieval

This chapter details the results of numerical experiments comparing the average performance
of line search and Limited Memory BFGS (L-BFGS) methods with projection methods of
similar type for noiseless and noisy data for the phase retrieval problem.

The aperture of the pupil consists of seven, meter-class panels shown in Fig.(6.2). This
design is one of several configurations being studied at NASA’s Goddard Space Flight Center
for use on the Next Generation Space Telescope, Hubble’s replacement. To recover the phase
three diversity images are used, two out of focus and one in focus image. From this example
the advantage of choosing a pixel basis over some parameterization (for example, Zernike
polynomials [25,26,119,204]) is apparent. Most obvious is the irregular shape of the pupil
and the phase jumps across the separate panels which make it difficult to find an orthogonal
parameterization [175]. Another advantage of the pixel basis is that it allows for the most
accurate representation of the domain without introducing any regularization implicit in
less precise parameterizations. Results for noisy data are shown in Fig.(6.3). Using a pixel
basis the methods recover artifacts such as Gibbs phenomenon associated with the filtering
of the data. Issues surrounding filtering and regularization of the data are independent of
the numerical method and depend on the types of observations being made [116].

Two projection algorithms are compared to line search and L-BFGS algorithms for
the least squares and extended least squares objectives Eq.(3.87) and Eq.(3.98). The first
projection algorithm is evenly averaged (75,'1’ ) =1 /4 forallv and m = 0,...,3) and unrelaxed
(o, = 1 for all v and m = 0,...,3) (Alg.(3.13)). This algorithm is denoted AP for
Averaged Projections. The second projection algorithm is an unrelaxed implementation
of Alg.(3.14) denoted by SP for Sequential Projections. In this implementation the pupil
domain projection is computed at every second iterate. This is consistent with higher-end
implementations which, with optimal parallelization, would compute the pupil projection
more often because it is less computationally expensive than the image domain projections.
The projection algorithms are compared to line search algorithms for the evenly weighted
least squares measure E, (LS) and the extended least squares reduced objective R, (ELS).
An additional comparison is made to an L-BFGS trust region algorithm applied to the
reduced objective R, (L-BFGS). See Alg.5.2.2 and Remark 5.2.3. The value of the constants
in R, are taken to be ¢, = 1 for m = 0,...,3. For the limited memory implementation, a
memory length of 4 was chosen.

The formulation of the projections in Eq.(3.12) is numerically unstable. There are
several sources of this instability, the most elementary being the possibility of division by
zero. In order to achieve a reasonable comparison of computational complexity to line
search methods applied to E, or R, the projections are calculated naively as prescribed by
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(d)

Figure 6.1: Aperture (a) and noiseless image data (b)-(d) for a segmented pupil on a 512
by 512 grid. The 3 diversity images are the optical system’s response to a point source at
focus, and plus/minus defocus respectively.
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Figure 6.2: Real and imaginary parts, (a) and (b) respectively, of an aberrated wavefront for the
segmented pupil recovered from 3 noiseless diversity point source images on a 512 by 512 grid. The
wavefront phase is unwrapped (c) and compared to the true phase. The wavefront error (d) is in
units of wavelength.
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Figure 6.3: Noisy point-spread function (a) for a segmented pupil on a 512 by 512 grid. The
recovered point-spread function (b) was first filtered with a Fourier window filter before pro-
cessing by the wavefront reconstruction algorithm. Frame (c) shows the true, unaberrated
point-spread function.
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Figure 6.4: The real and imaginary parts, (a) and (b) respectively, of the aberrated wave-
front for the segmented pupil recovered from 3 filtered noisy diversity point source images
on a 512 by 512 grid. The wavefront phase (c) is unwrapped and compared to the true
phase. The wavefront error (d) is in units of wavelength. The ridges in the wavefront error
is due to Gibbs phenomenon associated with the noise filter.
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Figure 6.5: Comparison of algorithms applied to the test problem shown in Fig.(6.1). The
algorithms have different objectives, so we compare the behavior of the squared set distance
error defined by Eq.(3.31) for each.

Eq.(3.5). We observe that about 6% of the projection runs are exited due to divide by zero
errors. A second source of instability arises when Ilg,, [u] is multi-valued. This is easily
remedied by taking a selection 7[u;y,, 6] given by Eq.(3.5). While it is unlikely that an
iterate will be exactly zero, how one interprets machine zero in this context is an important
consideration for numerical stability. In a neighborhood of zero corresponding to machine
precision, the phase and amplitude of the estimated wavefront at a grid point wu(x;) are
not reliable. If at the same point the data ), (x;) is relatively large, then, even though
the projection Ilg,, [u] is single-valued, the error will be amplified. About 6% of our trials
with projection algorithms resulted in little or no progress from the initial guess. Since the
norm of the gradient of a slightly perturbed E in these regions was found to be well away
from zero, we attribute this outcome to the instability due to phase error amplification.
Non-convergence due to divide by zero errors and possible phase error amplification were
discounted from the averages computed in Tbl.(6.1). That is, approximately 12% of the
runs for which the projection algorithm fails are not included in Tbl.(6.1). On the other
hand, all of the runs for the analytic algorithms converge and are included in the table.

The behavior of the squared set distance error for a sample run for each of the algorithms
is illustrated in Fig.(6.5). Each of the algorithms behaves qualitatively the same, as would
be expected. Each spends the majority of time in a flat region where little progress is
made, until a neighborhood of a solution is found and error reduction in all cases is rapid.
In the flat region the gradient and curvature of the objective are very small. This region
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corresponds to what is described in projection methods as a ’tunnel’. The notoriously slow
convergence of projection methods is easily understood in terms of the notoriously slow
convergence of first-order methods. The limited memory implementation does much better
in the flat region, though it too is slowed considerably.

The behavior of the algorithms varies considerably depending on the initialization, hence
the average performance of the algorithms over 30 random initial guesses is tabulated in
Tbl.(6.1). The initial guesses all have unit magnitude in the pupil domain with random
phase uniformly distributed on [0, 27]. In Tbl.(6.1) average cpu times, along with standard
deviations of the experiments, are compared using the LS algorithm as a baseline - the results
for the other algorithms are normalized by the LS performance given at the far left of the
table. The standard deviations reflect the robustness of the algorithm and consistency of
performance. With the exception of the SP algorithm, on average each algorithm requires
the same number of function evaluations per iteration. The limiting calculation for this
application is the Fourier transform which is accomplished with the FFT algorithm. Each
squared set distance error evaluation requires one FFT per diversity image. Each gradient
or projection calculation requires 2 FFTs per diversity image. The SP algorithm requires
at most 3 fewer FFTs per iteration than the line search or AP algorithms since only one
projection is calculated at each iteration. Hence the per iteration cost of the SP algorithm
is .6 times that of the other algorithms. For L-BFGS and LS implementations, when the
trust region is invoked or when backtracking is required to generate the proper step size
additional function evaluations are needed. When the trust region is restricted, usually only
one restriction is necessary when the scaling Eq.(5.30) is used. For backtracking, usually
three backtracking steps are required. The added computational cost for implementing
limited memory methods is not noticeable in cpu time. The average time per iteration
for IL-BFGS methods is 1.047 seconds for a 512 x 512 image using a parallel cluster of
16 processors, compared to 1.017 seconds for line search methods. There is, however, a
considerable difference in the memory requirements depending on how many previous steps
are stored.

The performance of the algorithms on apodized (i.e. filtered) noisy data shown in
Fig.(6.3) is very similar in character to the noiseless experiments. Since the methods use
a pixel basis, all of the algorithms attempt to match the data exactly, including the noise.
Filtering for data analysis is treated as a separate issue from filtering for numerical efficiency
or stability. While it has been noted that other noise models are more appropriate [140],
the noise in these experiments is additive and normally distributed, consistent with the
least squares performance measure. The squared set distance error £ = 0.050 is the outer
edge of the neighborhood of the solution, i.e. the “knee” in the error reduction shown in
Fig.(6.5). Once inside this neighborhood, error reduction is rapid in all cases. With the
exception of the SP algorithm, error reduction flattens out at E = 0.0138. In every trial the
SP algorithm fails to reduce the error below E = 0.02. In practice, however, this difference
between the SP “solution” and that of the other algorithms does not result in noticeable
differences in the eyeball norm for the phase estimate.
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Table 6.1: Relative cpu time of projection and analytic algorithms averaged over 30 random trials.
The baseline is the LS algorithm. Outliers were not included in the totals for algorithms with an

asterisk.
No Noise Noise
E < 20e? E <0.05 E <0.0138
mean | low | high || mean | low | high || mean | low | high
LS 248 99 | 970 161 68 | 483 222 | 159 | 518
AP* 2.29 99 | 1680 2.7 126 | 1765 2.3 162 | 1808
Sp* .96 72 591 1.19 35 746 - - -
ELS .66 74 | 365 7 35 | 258 .84 76 | 304
L-BFGS .29 41 196 44 37 159 A7 72 182

6.2 Multi-resolution Techniques

In Fig.(6.6.a) a series of windowing operations is depicted for three 512 x 512 diversity
images. First, the center 32 x 32 pixels of each diversity image are kept, and the remaining
pixels are set to zero, that is for m = 1,2, 3, we set

¢m = X32 O] '(/)m

The corresponding pupil domain operation is to smooth the pupil by convolution with the
sinc function. This is achieved by setting

o = [X32®¢(/)\]V-

The resulting pupil domain constraint is depicted in Fig.(6.7.b). For m = 1,2,3, the di-
mension reduction of the images @Efn is straight forward. One simply ignores the zero pixels
outside of the window. In the pupil domain the reduction of dimension is achieved by as-
signing single values to blocks of 16 x 16 adjacent pixels. In our implementations the value
that is assigned is the average of the 162 pixels. The corresponding wavefront reconstruction
problem is 1/16 the original problem size. The solution to Problem (3.98) corresponding to
this resolution is depicted in Fig.(6.8).

The next step is to use the solution depicted in Fig.(6.8) as an initial guess for the next
resolution, which in this example is 128 x 128 pixels. To do this, one simply divides the
pixels of the low resolution solution into 16 sub-pixels. the image and pupil domain data
are treated the same as with the 32 x 32 case. The solution to the 128 x 128 problem
is then used as the initial guess for the full resolution problem. In Fig.(6.9) the squared
set distance error versus iteration for a multi resolution implementation of the trust region
L-BFGS algorithm is shown. Notice that the flat regions typical of these problems are
encountered at low resolution. The higher resolution runs are started in a neighborhood
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Figure 6.6: Multi-resolution image data. Three levels of multi-resolution windowing op-
erations are depitced for each diversity image. Frame (a) shows close-ups of each of the
three resolution levels. The center 32 x 32 pixels of each diversity image, together with
the corresponding low-resolution pupil constraint Fig.(6.7.b) are used to generate the ap-
proximate solution shown in Fig.(6.8.a)-(6.8.b). This solution is used to initialize the same
problem with the center 128 x 128 pixels and the correpsonding low-resolution pupil con-
straint (Fig.(6.7c)) as data. The solution to this problem, shown in Fig.(6.8.c)-(6.8.d), is
used to initialize the full resolution problem. The progress of the set distance error versus
iteration of the multi-resolution implementation is shown in Fig.(6.9).



111

(b)

Figure 6.7: Multi-Resolution pupil domain constraints. The lowest resolution pupil con-
straint (a) corresponds to the 32 x 32 image data shown in Fig.(6.6). The medium resolution
pupil constraint (c) corresponds to the 128 x 128 image data.
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Figure 6.8: Aberrated wavefront for the segmented pupil recovered from 3 diversity point
source images on successively finer grids. The real and imaginary parts of the low resolution
wavefront, (a) and (b) respectively, is generated from a truncation of the image data to the
center 32 by 32 pixels. This solution is used as a first guess for the next resolution, 128 by
128. The real and imaginary parts of the 128 by 128 pixel resolution, (c) and (d) respectively,
is used as a first guess for the full resolution problem shown in Fig.(6.2).
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Figure 6.9: Squared set distance error and corresponding norm of the gradient versus itera-
tion for a multi-resolution implementation of the trust region L-BFGS algorithm Alg.5.2.2.
The flat region of the iterations is handled at low resolutions. Only when the estimate is in
the neighborhood of a solution does the algorithm switch to higher resolution calculations.
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of the solution and very few iterations are required for convergence. All of the hard work
is accomplished cheaply at low resolutions. Starting from an initial phase guess of zero, in
Matlab the multi-resolution implementations resulted in a factor of 17 speed up in cpu time
over the full resolution run.

6.3 Smooth Objectives

Figure 6.10 shows the performance of the modulus squared objective Ey compared to
the modulus objective E, at different resolutions. Note that the two algorithms behave
qualitatively the same at low resolutions, Fig.(6.10.a)-(6.10.b), while at higher resolutions,
Fig.(6.10.c)-(6.10.d), the algorithms behave dramatically differently. The slowed conver-
gence at the end of the high-resolution tests for F, is due to the ill-conditioning associated
with the objective. The ill-conditioning is not seen at lower resolutions since the truncation
of the Fourier coefficients involved in generating the lower resolution solution amounts to a
truncation of the small singular-values that lead to ill-conditioning. Reducing the resolution
of the data essentially regularizes the inverse problem through truncation.

6.4 Simultaneous Deconvolution and Wavefront Reconstruction

The ill-conditioning associated with the kernel of the integral operator Eq.(4.3) is a seri-
ous limitation for the simultaneous deconvolution and wavefront reconstruction problem.
However, at low resolutions with moderate wavefront aberrations on the order of one wave-
length, the technique is stable and efficient. Approximately 1000 iterations were required
to reconstruct the image shown in Fig.(6.12) from the data shown in Figure 6.11 shows the
simultaneous reconstruction and deconvolution of a noiseless image of a simulated “spiral
galaxy”.

The method is robust in the presence of noise. Figure 6.13 shows the data from images
corrupted by severe noise. In this example the root mean squared signal to noise ratio for
the defocused images is approximately 2.6. For the in-focus image the root mean squared
signal to noise ratio is approximately 13. The recovered object shown in Fig.(6.14.a) un-
derestimates the peak values of the true image. Our regularization parameter a in the
standard Tikhonov regularized object estimate Eq.(4.10) was chosen to be the average of
the spectral density of the noise given by Eq.(4.24). The value used in our experiments was
Syn(w) = a = 2 for all frequencies w. It is clear from this that such a severe regularization
will result in an underestimate of the peak values of the object. This is the smoothing effect
of the Wiener filter. The recovered wavefront shown in Fig.(6.14.c) differs from the true by
a tilt, that is, a planar phase error shown in Fig(6.14.e).
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Figure 6.10: Comparison of performance of a numerical optimization algorithm for solving
Pr.(2.80) with ¢ = ¢ and the objective Ey defined by Eq.(4.3) versus the objective E,
defined by Eq.(3.87). The behavior of the squared set distance error E is calculated and
plotted for the algorithm with both objectives for comparison. Frames (a)-(d) are at 32 x 32,
64 x 64, 256 x 256, and 512 x 512 resolution respectively.



116

(b)

Figure 6.11: Noiseless image data. Three images of the same object taken at 3 different
focus settings.
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Figure 6.12: Recovered object (a) and wavefront (c) from noiseless data shown in Fig.(6.11).
The true object is shown in frame (b). The true phase (d) is compared to the recovered
phase. The error (e) is in units of wavelength.
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Figure 6.13: Noisy image data. Three images of the same object taken at 3 different focus
settings.
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Figure 6.14: Recovered object (a) and wavefront (c) from noiseless data shown in Fig.(6.13).

The true object is shown in frame (b).

phase. The error (e) is in units of wavelength.

The true phase (d) is compared to the recovered
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Chapter 7

CONCLUSION

In this dissertation we have established a framework for the numerical theory of optical
wavefront reconstruction and deconvolution. We briefly summarize our results in this final
chapter.

7.1 Summary

In Chapter 2 of this thesis we provided a derivation of the optical phase retrieval problem
from first principles. In Chapter 3 we presented a detailed study of the fundamentals of
wavefront reconstruction. Many fundamental questions regarding convergence of projection
algorithms remain. When the intersection of of even convex constraints is empty, conver-
gence is an open question. This is often the case in image processing with noisy data. When
algorithms stagnate it is impossible to tell if the method has found a local solution, or is
stuck in what is often referred to as a tunnel. We noted that extensions to projection al-
gorithms have been proposed to overcome stagnation [68]. These methods seem to be very
robust and efficient in practice [177]. Their success warrants precise mathematical analysis
which has yet to be done. In Section 3.2 of Chapter 3 we reviewed analytic perturbation
approaches to the problem and quantified their relationship to geometric methods. Two
performance measures were considered, their associated optimization problems were formu-
lated in Pr.(3.33) and Pr.(3.98). The first measure is a perturbed weighted least squares
measure. The second is a new approach which we call extended least squares. This objective
allows us to adaptively correct for the relative variability in the diversity measurements, 1,,.
In Chapter 5 we reviewed two numerical methods. The first was a standard line search algo-
rithm for which convergence to first-order necessary conditions for optimality was proven for
the perturbed least squares and extended least squares objectives. The line search method
is accelerated by a limited memory approach which allows us to efficiently approximate
curvature information in large problems. The use of limited memory techniques for phase
retrieval and deconvolution has appeared in recent work [115,186]. The method is made
robust with a novel use of explicit trust regions. The trust region strategy also allows for
precise scaling of the step size, thus avoiding costly function evaluations that are common
to more trial-and-error-type methods such as implicit trust regions and backtracking. The
resulting algorithm was given in Alg.(5.2.2). In Chapter 6 we compared the performance
of the different approaches on noiseless and noisy data. The results indicate that while
certain implementations of iterative transform algorithms can be competitive (see the SP
algorithm), their performance varies more from one example to the next than the algorithms
based on analytic techniques. Other implementations of iterative transform algorithm such
as averaged projections (AP) are clearly not competitive approaches. Limited memory and
trust region techniques reduce the variability of performance without adding significant
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computational cost.

Further cpu speed up is possible with the introduction of multi-resolution techniques as
discussed in [115,135]. These are similar to windowing techniques used for noise filtering.
In tests with Matlab we have achieved 17 fold speed up in time to convergence with the use
of these techniques. With optimal parallelization and multi-resolution techniques we expect
that the per iteration cpu time for a cluster of 16 PC’s with three 512 x 512 diversity images
could be brought down, conservatively, to a tenth of a second.

7.2 Extensions and Future Work

The extended least squares approach presented in Section 3.3.2 of Chapter 3 has great poten-
tial for future research. In our implementations we chose the simplest possible regularizing
functional in Eq.(3.93), that is G,,[u] = const. Even this simple choice had a dramatic
effect on the performance of the algorithms. This opens the door to a search for an optimal
Gm[u]. There are two different ways to interpret G, [u], the first and perhaps most natural
is statistical, the second is purely algorithmic. Under the statistical interpretation, G, [u]
is viewed as the variance or spatial correlation of the data sets. The method is very general
and applies to a wide variety of observations and statistical models. Under the algorithmic
interpretation, G,,[u] is a regularizing term in a penalty function and can be used to tackle
the problem of algorithm stagnation in the middle iterations (see Fig.(6.5)). The adaptive
weighting strategy allows one to include several different metrics in the same objective, one
that is more effective for the middle regions and one that is more effective near a local
solution.

Other directions for research include partial function evaluation algorithms similar to
the sequential projection algorithms discussed in Section 3.1 of Chapter 3. The trust region
methodology reviewed in Chapter 5 is a first step to stably implementing this strategy.
Regularization techniques are also central to numerical methods for solving the more general
problem of simultaneous wavefront reconstruction and deconvolution. The theory developed
here is intended as a starting point for numerical solutions to both the phase retrieval
problem and the more general phase diversity problem.
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CONVOLUTION AND AUTOCORRELATION PROPERTIES

Define the correlation operator, %, by

frg(x) = - f(@)g(x + z')dz'.

Define the conjugate correlation operator, O, by

fOg(x) = - f(@)g(z' —z)da'.

(A1)

(A.2)

Denote the complex conjugate of a function f : R* — C by f. The inner product is defined

as (f,9) = [z f( x)dz.

Property A.0.1 For f, g, and h: R" — C
(a) frg=1[f"g"]"=f" =
(b) fOg=[f"g"]Y = f* g™
(c) fOg=g*f;
(d) fOg=(fxg)""
(¢) (f*g,h)=(hxg,f);
(f) (fOg,h) = (fOR,7);

(g) if bV is real-valued then (fOg,h) = (hxg, f);

(k) {f * g,h) = (g, f xh). In particular, the adjoint of the

convolution operator L with

convolution kernel f is the autocorrelation operator with autocorrelation kernel f, i.e.

if Lg=f+g then L*g = f xg.

DETAIL:
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f/\/\ *g(:z:) — /Rn fA/\(il?I)g(:I: —m')da:'
= f(—z")g(x — z')dz’
Rn
= | f(y)g(z + y)dy

where y = —x. By the Convolution Theorem,

f/\/\*g — [f/\/\/\ *g/\]v
= Y'Y

(b) (Same as above).
(c)
fOg(z) = f( Ng(a’ — z)da’

= /. fly+z)g(y)dy, (y=2z'—x)

= gx*f(z).

(fxg™ = (g™
[(f/\/\/\ . g/\)V]/\/\
— (f/\/\/\)/\ >kg/\/\

= frg™
(e)
(fOg,h) = / [ g(x +y)d ]E(m)dw
= / [R 9(x +y)d ]f('y)dy
— (hxg, 7).

(f) This is a consequence of property (3) and (5).
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drany = [ | 1wty - 2] ife)ie
= [ ][ #@laty ~ )iz sy
Now
WER = hiz) = [h]=)
= @)
= (=)
= o
Thus

| i@ -2z = [ h-a)gly - o)

(fxg. ) = ((f+9)", ")
= (fg", 1)
_ <g/\, f_/\h/\>
= ()
= <g, [7VhA]V>
= (g, fxh).

a

Remark: The condition hY € R for property (A.l.g) is also known as the Hermetian
property of h. This is the continuous analog of the Hermetian property for matrices.

Remark: The x and O operators can be efficiently calculated in O(N log N) operations
with three FFT’s each since, by the convolution theorem,

frg=1f"-g"1"
fOg =[f"-g"1"
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