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Abstract We investigate the role of error bounds, or metric subregularity, in
the convergence of Picard iterations of nonexpansive maps in Hilbert spaces.
Our main results show, on one hand, that the existence of an error bound is
sufficient for strong convergence and, on the other hand, that an error bound
exists on bounded sets for nonexpansive mappings possessing a fixed point
whenever the space is finite dimensional. In a Hilbert space setting, we show
that a monotonicity property of the distances of the Picard iterations is all that
is needed to guarantee the existence of an error bound. The same monotonicity
assumption turns out also to guarantee that the distance of Picard iterates
to the fixed point set converges to zero. Our results provide a quantitative
characterization of strong convergence as well as new criteria for when strong,
as opposed to just weak, convergence holds.
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1 Introduction

Consider a simple Picard iteration, xk+1 = Txk on a Hilbert spaceH. The self-
mapping T : H → H can represent a variety of sophisticated algorithms for
finding the zeros of an operator, from accelerated first-order splitting methods
to Newton’s method, where step-lengths and dependencies on previous points
are deterministically prescribed. While much of fixed point theory is concerned
with existence of fixed points, we take this for granted and focus instead on
characterizing convergence.

A celebrated theorem of Opial [25] shows that any fixed point iteration of
a nonexpansive, asymptotically regular operator converges weakly to a fixed
point (provided that said operator possesses at least one fixed point). Such
a setting has wide ranging applications including all averaged operators pos-
sessing fixed points. In a general (infinite) dimensional space, the conclusion
of weak convergence in Opial’s theorem cannot be strengthened to strong
convergence without additional structure even in the simplest infinite dimen-
sional setting of `2(N). Counter-examples to strong convergence can be found,
for instance, for a firmly nonexpansive operator in [13] or for an instance of
the alternating projection algorithm in [15]. To ensure strong convergence in
infinite dimensions, it suffices to assume so-called linear [2, 6, 20] or Hölder
regularity properties [8,9] of the underlying operator T – more precisely, met-
ric (Hölder) subregularity of the operator (Id−T ) at fixed points of T for 0
where Id denotes the identity mapping. Moreover, such properties allow one
to deduce convergence rates for the fixed point sequence.

In [22] a program of analysis was proposed for quantifying the convergence
of fixed-point iterations in finite dimensions based on two properties of the
mapping T : pointwise (almost) nonexpansiveness and (gauge) metric subreg-
ularity of T at certain points of interest (fixed points, for instance, but not
exclusively). As was discussed above, when mere convergence is all that one
is after, Opial-type results show that the requirement of metric subregular-
ity can be dropped in the setting in which T is nonexpansive. On the other
hand, in finite dimensions it has been shown that strict monotonicity of a
Picard iteration with respect to the set of fixed points, together with (al-
most) averagedness of the fixed point mapping imply metric subregularity of
T [23, Corollary 3.12]. Other authors have approached this analysis from differ-
ent angles; see for instance [7,10,21,24]. In contrast to these finite dimensional
facts, in infinite dimensions the critical distinction is not between quantitative
convergence estimates versus just convergence, but rather between strong ver-
sus weak convergence; in some cases, the former is associated with faster rates
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of convergence [14]. The question we address in this note is whether metric
subregularity is necessary for strong convergence, both in finite and infinite
dimensional settings.

Continuing along these lines, our first main result, Theorem 31 in Section
3, shows that a general functional subregularity property suffices to deduce
strong convergence of fixed point iterations. The type of subregularity is nei-
ther metric, nor of gauge-type because the associated function quantifying
convergence need not be monotone. While alone this result is not surprising,
it does unify many results in the literature, each concerned with a different
rate of convergence for the same algorithm. The rest of Section 3 refines this
result for averaged mappings which are gauge-metrically subregular at fixed
points and explores the role of error bounds in deducing the rate of conver-
gence of fixed point iterations, Theorem 32. In Section 4, we study converse
implication, namely necessary conditions for the existence of a gauge-type
subregularity property – what we refer to as an implicit error bound. Our sec-
ond main result, Theorem 43 shows that, for self-mappings possessing fixed
points, uniform monotonicity of the distance of Picard iterates to the set of
fixed points, from any starting point on bounded sets, implies existence of an
error bound. The same uniform monotonicity on bounded sets of the distance
of Picard iterates of self-mappings to their fixed points is shown in Proposition
2 to imply that the distance of the iterates to the set of fixed points converges
to zero. In finite dimensions, we show in Theorem 41 that it suffices to assume
that the mapping is nonexpansive and possesses fixed points in order to guar-
antee the existence of error bounds on bounded sets. We begin in Section 2
with preliminary results and definitions.

2 Preliminaries

We limit our attention to self-mappings on a Hilbert space, T : H → H . The
domain of such mappings, denoted dom T is the set of points x where Tx 6= ∅.
The distance of a point x to a set C ⊂ H is denoted dist(x,C) and defined by

dist(x,C) := inf
y∈C
{‖x− y‖}.

We use the convention that the distance to the empty set is +∞. We use the
excess to characterize the distance between sets: for two sets C1 and C2

exc(C1, C2) := sup{dist(x,C2) : x ∈ C1}

This is finite whenever C2 is nonempty and C1 is bounded and nonempty.

Definition 1 Let D be a nonempty subset of H and let T : D → H. We say
that T is

(i) nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ ∀x, y ∈ D;
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(ii) firmly nonexpansive if

‖Tx− Ty‖2 + ‖(Id−T )x− (Id−T )y‖2 ≤ ‖x− y‖2 ∀x, y ∈ D;

(iii) averaged if there exists a constant γ > 0 such that

‖Tx− Ty‖2 + γ‖(Id−T )x− (Id−T )y‖2 ≤ ‖x− y‖2 ∀x, y ∈ D;

(iv) asymptotically regular if

(Id−T )Tnx→ 0 as n→∞ ∀x ∈ D.

Fact 21 (properties of nonexpansive operators) Let D be a nonempty
closed convex set and T : D → D.

(i) If T is averaged and Fix T 6= ∅, then T is asymptotically regular.
(ii) If T is nonexpansive and Fix T 6= ∅, then Fix T is a closed convex set.

Proof i: [1, Theorem 2.1] or [17]. ii: [3, Propositions 4.13 & 4.14].

Definition 2 Let C be a nonempty subset of H and (xn) be a sequence in H.
Then (xn) is Fejér monotone with respect to C if, for all x ∈ C, it holds that

‖xn+1 − x‖ ≤ ‖xn − x‖ ∀n ∈ N.

Fact 22 (properties of Fejér monotone sequences) Let C be a nonempty
closed convex subset of H and suppose (xn)n∈N is Fejér monotone with respect
to C. The following assertions hold.

(i) (dist(xn, C))n∈N is nonincreasing and convergent.
(ii) (xn)n∈N converges strongly to a point in C, say x, if and only if

d(xn, C)→ 0. In this case,

‖xn − x‖ ≤ 2 dist(xn, C) ∀n ∈ N.

Proof i: [3, Proposition 5.4]. ii: [3, Theorem 5.11 & (5.8)].

For the remainder of the note we consider the sequence of Picard iterates
of T , that is, a sequence (xn) with

x0 ∈ H, xn+1 = Txn ∀n ∈ N.

3 Sufficient conditions for strong convergence

We begin this section by showing that, in the setting of Opial’s theorem,
the existence of an error bound is sufficient for strong convergence of Picard
iterates.
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Theorem 31 (strong convergence for nonexpansive maps) Let D be a
nonempty closed convex subset of H and let T : D → D be nonexpansive and
asymptotically regular with Fix T 6= ∅. Suppose that, on each bounded subset
U of D, there exists a function κ : R+ → R+ such that limt↘0 κ(t) = 0 and

dist(x,Fix T ) ≤ κ(‖x− Tx‖) ∀x ∈ U. (1)

Then for any x0 ∈ D the sequence (xn)n∈N defined by xn+1 := Txn for all
n ∈ N converges strongly to a point in Fix T .

Proof Since T is nonexpansive Fix T is closed and convex and, for any z ∈
Fix T , it holds that

‖xn+1 − z‖ ≤ ‖xn − z‖ ∀n ∈ N.

In other words, (xn)n∈N is Fejér monotone with respect to Fix T . By Fact 22i,
the sequence (xn) is bounded and so there is a bounded set U containing (xn).
By assumption, there is a function κ which satisfies (1), hence

dist(xn,Fix T ) ≤ κ(‖xn − xn+1‖).

But since T is asymptotically regular κ(‖xn−xn+1‖)→ 0 and so by Fact 22ii,
we deduce that (xn) is strongly convergent to a point in Fix T .

In particular, the previous theorem applies to any averaged operator with
fixed points for which the error bound in (1) holds.

Corollary 1 (strong convergence for averaged maps) Let D be a
nonempty closed convex subset of H and let T : D → D be averaged with
Fix T 6= ∅. Suppose that, on each bounded subset U of D, there exists a function
κ : R+ → R+ such that limt↘0 κ(t) = 0 and condition (1) is satisfied. For any
x0 ∈ D, define xn+1 := Txn for all n ∈ N. Then (xn) converges strongly to a
point in Fix T .

Proof Since an averaged operator with a fixed point is asymptotically regular
by Fact 21i, the result follows from Theorem 31.

We note that, in order to deduce strong convergence in Theorem 31, it is
not necessary to assume that the function κ is a gauge function. Indeed, only
continuity at the origin is required (rather than on all of R+) and, moreover,
κ need not be strictly increasing. However, in the case where κ is a gauge
function, we have the following refinement.

Definition 3 (gauge function [16, §2]) A function κ : R+ → R+ is said
to be a gauge function if it is continuous, strictly increasing, κ(0) = 0 and
κ(t)→ +∞ as t→ +∞.

In what follows, the n-fold composition of a function ϕ : R→ R is denoted

ϕn := ϕ ◦ . . . ϕ ◦ ϕ︸ ︷︷ ︸
n times

.
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Theorem 32 (error-bound estimate for convergence rate) Let D be a
nonempty closed convex subset of H and let T : D → D be averaged with
Fix T 6= ∅. Suppose that, on each bounded subset U of D, there exists a gauge
function κ : R+ → R+ such that condition (1) is satisfied and

lim
n→∞

ϕn(t) = 0 ∀t ≥ 0 where ϕ(t) :=
√
t2 − γκ−1(t)2. (2)

For any x0 ∈ D, define xn+1 := Txn for all n ∈ N. Then xn → x∗ ∈ Fix T
and

‖xn − x∗‖ ≤ 2ϕn (dist(x0,Fix T ))→ 0 as n→∞. (3)

In other words, (xn) converges strongly to x∗ with rate no worse than the rate
at which ϕn (dist(x0,Fix T ))↘ 0.

Proof For convenience, denote dn := dist(xn,Fix T ) for all n ∈ N. As T is
averaged, in particular T is also nonexpansive and hence (xn) is Fejér mono-
tone with respect to Fix T . By Fact 22i, the sequence (xn) with x0 ∈ D is
bounded and so we may let U denote a bounded subset of D containing (xn).
By assumption, there is a gauge function κ which satisfies (1) and, moreover,
its inverse κ−1 is also a gauge function with

κ−1 (dist(x,Fix T )) ≤ ‖x− Tx‖ ∀x ∈ U.

Since T is averaged, it holds that

d2n+1 + γ‖xn − xn+1‖2 ≤ ‖xn+1 − PFix Txn‖2 + γ‖xn − xn+1‖2 ≤ d2n.

Combining the last two inequalities gives d2n+1 ≤ d2n− γ
[
κ−1(dn)

]2
, or equiv-

alently, dn+1 ≤ ϕ(dn) for all n ∈ N. Applying Fact 22ii, there exists a point
x∗ ∈ Fix T such that

1

2
‖xn − x∗‖ ≤ dn ≤ ϕn(d0)→ 0,

where the limit tends to zero by assumption (2). This completes the proof.

Remark 1 We discuss some important special cases of Theorem 32.

(i) (linear regularity). The setting in which κ is linear (i.e., κ(t) = Kt for
some K > 0) corresponds to bounded linear regularity of T as discussed
in [6, 20]. In this case, κ−1(t) = t/K and so

ϕ(t) =

√
t2 − γ t2

K2
= t

√
1− γ

K2
=⇒ ϕn(t) = t

(√
1− γ

K2

)n
.

Theorem 32 implies R-linear convergence with rate no worse than c :=√
1− γ

K2 < 1 which recovers the single operator specialization of [6].
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(ii) (Hölder regularity). The case in which κ is a “Hölder-type function”
(i.e., κ(t) = Ktτ for constants K > 0 and τ ∈ (0, 1)) corresponds to
bounded Hölder regularity of T as was discussed in [8]. In this case,
κ−1(t) = τ

√
t/K and so

ϕ(t) =

√
t2 − γ

K
2
τ

t
2
τ = t

√
1− γ

K
2
τ

tα,

where α := 2/τ − 2 = 2(1− τ)/τ > 0. By [9, §4] this yields

ϕn(t) ≤
(
t−α + αn

γ

K2/τ

)−α
= O(n−1/α) = O

(
n−

τ
2(1−τ)

)
.

Theorem 32 then implies convergence with order O
(
n−

τ
2(1−τ)

)
which

recovers [8, Proposition 3.1].

As the following example shows, at least in principle, Theorem 32 opens
the possibility of characterizing different convergence rates by choosing U ap-
propriately.

Example 33 (convergence rate by regions of a fixed point) Consider
the alternating projection operator T := PAPB for the two convex subsets A
and B of R2 given by

A := {(x1, x2) ∈ R2 : x2 = 0}, B := epi(f) where f(t) =

{
t if t ≥ 0,

t2 if t < 0.

In this setting, we have Fix T = A ∩ B = {0}. The alternating projection
sequence given by xn+1 := Txn always converges to 0. However, the rate which
it does so depends on the starting point x0 ∈ R2. We consider two cases:

(i) Let U1 := R+ × R. Then the linear error bound condition is satisfied on
U1 and (xn) converges linearly.

(ii) Let U2 := R− × R. Then there is a Hölder-type gauge function κ such
that the error bound condition with gauge κ is satisfied on U2 and (xn)
converges sublinearly.

4 Existence of implicit error bounds

We now prove a kind of converse to Theorem 31. The next results show that
nonexpansiveness alone is enough to guarantee the existence of an error bound.
This is remarkable since, without asymptotic regularity, the fixed point itera-
tion need not even converge. The next lemma will be referred to frequently in
our development.
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Lemma 1 Let T : H ⇒ H satisfy Fix T 6= ∅. Let U ⊂ H with U ∩ Fix T 6= ∅.
Define the set-valued map S : R+ ⇒ H by

S(t) := {y ∈ H : dist(y, Ty) ≤ t} (4)

and define the function κ : R+ → R+ ∪ {+∞} by

κ(t) := sup
y∈S(t)∩U

{dist(y,Fix T )}. (5)

The following assertions hold.

(i) The set S(t) is a nonempty subset of dom T for all t ≥ 0 and satisfies

∅ 6= Fix T = S(0) ⊂ S(s) ⊂ S(t) ∀t ≥ s ≥ 0.

(ii) The function κ is nonnegative, nondecreasing, κ(0) = 0 and satisfies

dist(x,Fix T ) ≤ κ(‖x− Tx‖) ∀x ∈ U. (6)

If any of the following hold, then κ is bounded:
(a) there is a bounded set V with S(t) ∩ U ⊂ V for all t;
(b) the function dist(·,Fix T ) is bounded on U .

Proof i: This is immediate from the definition (4).
ii: Since U ∩ Fix T 6= ∅, by i it follows that S(t) ∩ U 6= ∅ for all t ≥ 0 and

∅ 6= (S(0) ∩ U) ⊂ (S(s) ∩ U) ⊂ (S(t) ∩ U) ∀ 0 ≤ s ≤ t.

Thus κ is nondecreasing and κ(0) = 0. For any x ∈ U ∩ dom T we have
x ∈ S(‖x− Tx‖) ∩ U , and hence (6) holds. That κ is bounded if the function
dist(·,Fix T ) is bounded on U is clear. To show that κ is bounded if there is a
bounded subset V with S(t) ∩ U ⊂ V for all t ≥ 0, fix a point z0 ∈ Fix T and
let M > 0 be such that ‖u‖ < M for all u ∈ S(t) ∩ U for all t ≥ 0. Then, we
have

κ(t) := sup
y∈S(t)∩U

{dist(y,Fix T )} ≤ sup
y∈S(t)∩U

{‖y − z0‖} < M + ‖z0‖ ∀t ≥ 0.

That is, κ is bounded and the proof is complete.

Theorem 41 (error bounds in finite dimensions) Let H be a finite di-
mensional Hilbert space. Suppose that T : H → H is nonexpansive with
Fix T 6= ∅. Then, for each bounded set U containing a fixed point of T , the non-
decreasing function κ : R+ → R+ defined by (5) is bounded, right-continuous
at t = 0 with κ(0) = 0 and satisfies

dist(x,Fix T ) ≤ κ(‖x− Tx‖) ∀x ∈ U.
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Proof The function κ defined by (5) is nonnegative, nondecreasing, bounded,
κ(0) = 0 and satisfies (6) by Lemma 1ii. It remains only to show that the
function κ is right continuous at zero. By way of contradiction, suppose there
exists a sequence tn ↘ 0 with limn→∞ κ(tn) = α > 0. Since κ is nondecreasing,
there exists a sequence (yn) such that

yn ∈ S(tn) ∩ U and
α

2
≤ dist(yn,Fix T ) ∀n ∈ N.

As (yn) is contained in the bounded set U , it possesses a convergent subse-
quence ynk → y for some y ∈ H. From the definition of S(tn), it holds that

‖(Id−T )ynk‖ = ‖ynk − Tynk‖ ≤ tnk → 0.

As T is continuous, it follows that y ∈ Fix T . Since Fix T is nonempty closed
convex, dist(·,Fix T ) is continuous and hence

α

2
≤ dist(ynk ,Fix T )→ dist(y,Fix T ) = 0,

which contradicts the assumption on α and the proof is complete.

Note that the proof Theorem 41 is not valid in infinite dimensions, since
in this case the bounded sequence (yn) need only contain a weakly convergent
subsequence and the dist(·,Fix T ) need not be weakly (sequentially) continu-
ous.

Remark 2 (Infinite dimensional counterexamples) In general, the assumption
of finite dimensionality of H in Theorem 41 cannot be dropped. Indeed, if
H is infinite dimensional, then a concrete counterexample is provided by any
averaged operator with a fixed point, T , for which there is a starting point,
x0 ∈ H, such that the sequence (Tnx0)∞n=0 converges weakly but not strongly.
The explicit constructions of such an examples can be found, for instance,
in [13] and in [15].

In order to shift our discussion to the infinite dimensional setting, we first
make the following observation.

Lemma 2 Let H be a Hilbert space, and let T : H → H be averaged with
Fix T 6= ∅. For each Picard iteration (xn) generated by T from a starting point
x0 ∈ H, let us define d0 := dist(x0,Fix T ) and d := limn→∞ dist(xn,Fix T ).
Then there exists a continuous and nondecreasing function µ : [d, d0]→ [d, d0]
satisfying µ(t) < t for all t ∈ (d, d0] such that

dist(xn+1,Fix T ) = µ(dist(xn,Fix T )) ∀n ∈ N. (7)

Proof Let us denote dn := dist(xn,Fix T ) for all n ∈ N. We first claim that
there exists a sequence (cn) ⊂ [0, 1), dependent on x0, such that

dn+1 = cndn ∀n ∈ N. (8)
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For any N ∈ N, if xN+1 ∈ Fix T , then one can take cn = 0 for all n > N .
Suppose, then, that xn+1 /∈ Fix T , hence xn /∈ Fix T and xn 6= xn+1. In
particular, ‖xn − xn+1‖ > 0. Since T is averaged (Definition 1iii), there is a
constant γ > 0 such that

d2n+1 ≤ d2n − γ‖xn − xn+1‖2. (9)

Consequently, we have 0 < dn+1 < dn and it follows that

cn :=
dn+1

dn
∈ (0, 1) (10)

is well-defined and satisfies (8).
We next define the piecewise linear function, µ, on [d, d0] such that

µ(d) := d, µ(dn) := cndn ∀n ∈ N. (11)

and, on each interval of the form [dn+1, dn], the value of µ is given by a linear
interpolation of its values defined by (11).

To complete the proof, we check that µ is nondecreasing on [d, d0]. By the
construction of µ, the sequence (µ(dn)) in nonincreasing as n→∞. It suffices
to check that µ is nondecreasing on each (nontrivial) interval [dn+1, dn]. Indeed,
let dn+1 ≤ t1 < t2 ≤ dn, then

µ(t1) = µ (dn+1) +
t1 − dn+1

dn − dn+1
(µ (dn)− µ (dn+1))

≤ µ (dn+1) +
t2 − dn+1

dn − dn+1
(µ (dn)− µ (dn+1)) = µ(t2).

Proposition 42 Let H be a Hilbert space and consider an operator
T : H → H with Fix T 6= ∅. Let (xn)n∈N be a Picard sequence such that
dist(xn,Fix T )→ 0. Then the function κ defined by (5) with U := (xn)n∈N is
nonnegative, nondecreasing, bounded, κ(0) = 0 and satisfies

dist(xn,Fix T ) ≤ κ(‖xn − Txn‖) ∀n ∈ N. (12)

In addition, if T is averaged, then the sequence (xn)n∈N converges strongly to
some point x in Fix T and the function κ is right continuous at 0.

Proof Note that, since dist(xn,Fix T )→ 0, supy∈U{dist(y,Fix T )} <∞ where
U = (xn)n∈N. That κ defined by (5) with U := (xn)n∈N is nonnegative, non-
decreasing, bounded, κ(0) = 0 and satisfies (6) then follows immediately from
Lemma 1ii. But in this case (6) is just (12).

If T is averaged, then (xn) is Fejér monotone with respect to Fix T which is
nonempty closed and convex. Since dist(xn,Fix T )→ 0, Fact 22ii implies that
(xn) is strongly convergent to some point x in Fix T . Continuity from the right
of κ at 0 follows a pattern similar to the proof of Theorem 41. Let tn ↘ 0 as
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n → ∞. If limn→∞ κ(tn) = α > 0, where κ(tn) := supS(tn)∩U{dist(·,Fix T )}
for U = (xn)n∈N, then, since xn → x ∈ Fix T , and T is continuous, for all tn
there must be an nk ≥ n such that ‖xnk − Txnk‖ ≤ tn and dist(xnk ,Fix T ) ≥
α/2. But the assumption dist(xn,Fix T )→ 0 also applies to this subsequence,
which leads to a contradiction.

It is clear from the above observation that, in order to obtain a meaningful
error bound, a suitable function κ needs to be found for all possible start-
ing points on a bounded set containing fixed points of T . Nevertheless, the
sequence (cn) given by Lemma 2 does characterize strong convergence of the
corresponding iteration (xn). More specifically, we have the following.

Proposition 1 (equivalences) Let H be a Hilbert space, let T : H → H be
averaged with Fix T 6= ∅ and let (xn) be a Picard iteration generated by T with
initial point x0 ∈ H. The following statements are equivalent.

(i) (xn) converges strongly to a point x in H.
(ii) (xn) converges strongly to a point x in Fix T .

(iii) (dist(xn,Fix T )) converges to zero.
(iv) There exists a nondecreasing function µ : [0, d0] → [0, d0] satisfying

µ(t) < t for all t ∈ [0, d0] such that (7) holds and µn (dist(x0,Fix T ))→
0 as n→∞.

Proof i ⇐⇒ ii: Suppose that xn → x. Then, since T is continuous, applying
Fact 21i yields

‖x− Tx‖ = lim
n→∞

‖xn − Txn‖ = 0.

The reverse implication is trivial.
ii⇐⇒ iii: Since T is averaged, in particular, it holds, for all z ∈ Fix T , that

‖xn+1 − z‖ ≤ ‖xn − z‖ ∀n ∈ N.

That is, (xn) is Fejér monotone with respect to Fix T . The equivalence follows
from Fact 22ii.

iii⇐⇒ iv: Note that

dist(xn,Fix T ) = µn (dist(x0,Fix T )) ∀n ∈ N.

Lemma 2 yields the existence of a nondecreasing µ : [d, d0]→ [d, d0] satisfying
µ(t) < t for all t ∈ [0, d0] such that (7) holds where d := limn→∞ dist(xn,Fix T ).
So if µn (dist(x0,Fix T ))→ 0 as n→∞, then d = 0 and iii holds. On the other
hand, if iii holds, then d = 0 and µn (dist(x0,Fix T ))→ 0 as n→∞.

Remark 3 The function µ in Proposition 1iv characterizes the convergence
rate of (xn).

(i) When µ is majorized by a linear function with slope c ∈ [0, 1) on some
interval [0, τ) where τ > 0, that is,

µ (dist(xn,Fix T )) ≤ cdist(xn,Fix T ) ∀n sufficiently large
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– equivalently, the sequence (cn) defined in (8) satisfies c := supn∈N cn <
1 – then we have a linearly monotone sequence as defined in [23] and
R-linear convergence as detailed in [3, Theorem 5.12].

(ii) When µn(dist(x0,Fix T )) tends to zero slower or faster than a linear rate,
the sequence (xn) is said to converge sublinearly or superlinearly, respec-
tively. An example of sublinear convergence corresponding to µ(t) =

t√
t2+1

for all t ∈ [0,dist(x0,Fix T )] is detailed in Example 45 below.

In order to deduce a uniform version of the previous results, a property
which holds uniformly on U is needed.

Theorem 43 (sufficient condition for an error bound) Let H be a
Hilbert space, let T : H → H with Fix T 6= ∅, let U be a bounded subset of H
containing a fixed point of T . Suppose that there exists a function c : [0,∞)→
[0, 1] which is upper semi-continuous on (0, exc(U,Fix T )] and satisfies c(t) < 1
for all t in this interval such that

dist(Tx,Fix T ) ≤ c (dist(x,Fix T )) dist(x,Fix T ) ∀x ∈ U. (13)

Then the nonnegative, nondecreasing function κ : R+ → R+ defined by (5) is
bounded, right-continuous at t = 0 and satisfies

dist(x,Fix T ) ≤ κ(‖x− Tx‖) ∀x ∈ U.

Proof The function κ defined by (5) is nonnegative, nondecreasing, bounded
(because U is bounded), κ(0) = 0 and satisfies (6) by Lemma 1ii. It remains
only to show that the function κ is right continuous at zero. By way of contra-
diction, suppose there exists a sequence tn ↘ 0 with limn→∞ κ(tn) ≥ 2α > 0.
Since the function c is upper semi-continuous (by assumption) and takes val-
ues strictly less than 1 on the compact set [α, exc(U,Fix T )], there exists a
maximizer tα of c on this interval. Denote the corresponding maximal value
by cα, then it holds

cα = max{c(t) : α ≤ t ≤ exc(U,Fix T )} = c(tα) < 1. (14)

In particular, (1− cα)α > 0. We choose a number ε satisfying

0 < ε < (1− cα)α. (15)

Since tn ↘ 0, there is an index N ∈ N such that tN < ε. Since κ(tn) is
nonincreasing as n increases and limn→∞ κ(tn) ≥ 2α > 0, it holds κ(tN ) ≥ 2α.
Recall that κ(tN ) is the supremum of the function dist(·,Fix T ) over the set
U ∩S(tN ) with S(tN ) defined by (4). Then there exists a point x ∈ U ∩S(tN )
such that dist(x,Fix T ) + α ≥ κ(tN ). Since κ(tN ) ≥ 2α, this implies

dist(x,Fix T ) ≥ α. (16)

Also, since x ∈ U ∩ S(tN ) and tN < ε, it holds x ∈ U ∩ S(ε) by Lemma 1i. In
particular,

‖x− Tx‖ ≤ ε. (17)
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Now by (17), the triangle inequality, (13), (14) and (16), successively, we have

ε ≥ ‖x− Tx‖
≥ dist(x,Fix T )− dist(Tx,Fix T )

≥ dist(x,Fix T )− c(dist(x,Fix T )) dist(x,Fix T )

= (1− c(dist(x,Fix T ))) dist(x,Fix T )

≥ (1− cα) dist(x,Fix T )

≥ (1− cα)α.

This contradicts (15) and hence it must holds α = 0 and the proof is complete.

Example 44 (arbitrarily slow convergence) There are two things to note
about the theorem above, both hinging on the choice of the subset U . The first
point is that it is possible to choose U such that no c satisfying the require-
ments of the theorem exists. We demonstrate this when U is simply a ball.
Such a phenomenon shows that uniform linear error bounds are not always
possible. The second point, however, is that when an iteration converges it is
always possible to choose a set U such that a function c exists satisfying the
requirements of Theorem 43, but the resulting error bound may not always be
informative. We also show an example of this below.

To put the above results in context, consider the method of alternating
projections for finding the intersection of two closed subspaces of a Hilbert
space, call them A and B. The alternating projections fixed point mapping is
T := PAPB with Fix TAB = A ∩ B. Von Neumann showed that the iterates
of the method of alternating projections converges strongly to the projection
of the starting point onto the intersection [26]. In the mid 1950’s a rate was
established in terms of what is known as the Friedrich’s angle [12]1 between
the sets defined as the number in [0, π2 ] whose cosine is given by

c(A,B) := sup

{
| 〈a, b〉 |

∣∣∣∣ a ∈ A ∩ (A ∩B)⊥, ‖a‖ ≤ 1,
b ∈ B ∩ (A ∩B)⊥, ‖b‖ ≤ 1.

}
(18)

It is straightforward to see that c(A,B) ≤ 1. Moreover, c(A,B) < 1 if and
only if A + B is closed [2, Lemma 4.10]. In this case, a bound on the rate of
convergence in terms of the Friedrichs angle follows from the fact that [19]

‖Tn − PA∩B‖ = c(A,B)2n−1 ∀n ∈ N. (19)

In the context of Theorem 43, if A+B is closed, then the function c : [0,∞)→
[0, 1] can be simply chosen to be the cosine of the Friedrichs angle [5, Theo-
rem 3.16].

1 Though it is called the Friedrichs angle, the notion goes back at least to Jordan [18,
Eq.60, pp.122-130].
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If A + B is not closed, then it was shown in [4] ( i.e., c(A,B) = 1) that
convergence can be arbitrarily slow in the sense that for any nonincreasing
sequence λn → 0 with λ0 < 1, there is a starting point xλ such that

‖Tnxλ − PA∩Bxλ‖ ≥ λn ∀n ∈ N

In the context of Theorem 43, if A + B is not closed, then no function c :
[0,∞) → [0, 1] satisfying Theorem 43 exists as soon as the bounded set U
contains dilate of the sphere S := {x ∈ H : ‖x‖ = 1}. To see this, suppose on
the contrary, that there exists a function c satisfying Theorem 43. In particular,
we have that c(t) < 1 (t > 0). Then for any x ∈ S ⊆ U we have

‖Tx− PA∩Bx‖ = dist(Tx,Fix T ) ≤ c(dist(x,Fix T )) dist(x,Fix T )

= c(dist(x,Fix T ))‖x− PA∩Bx‖
≤ c(dist(x,Fix T ))‖x‖.

Dividing both sides of the inequality by ‖x‖, taking the supremum over S, and
substituting (19) gives

1 ≤ sup
x∈S

c(dist(x,Fix T )),

which contradicts the assumption that c(t) < 1 (as c satisfies Theorem 43). The
choice of U to be a scaled ball is the natural choice when one is interested in
uniform error bounds. This example shows that even for the simple alternating
projections algorithm, such bounds are not always possible.

To the second point, if for the above example, instead of choosing U to be a
ball, we restrict U to be the iterates xn of the alternating projections sequence
together with their limit x∞ for a fixed x0, then we can construct a function
c satisfying the assumptions of Theorem 43. Indeed, choose c(t) to be a linear
interpolation of the points

c(tn) :=
‖Txn − x∞‖
‖xn − x∞‖

for tn = ‖xn − x∞‖ whenever ‖xn − x∞‖ > 0.

Such a function satisfies the requirements of Theorem 43 and hence guaran-
tees the existence of an error bound. But this is not informative, because the
error bound depends on the iteration itself, and hence the initial guess x0.
Returning to the fact that if A + B is not closed the alternating projections
algorithm exhibits arbitrarily slow convergence, then even though we have an
error bound for a particular instance we cannot say anything about uniform
rates of convergence.

The following example illustrates the role of the function c satisfying con-
dition (13) as in Theorem 43.

Example 45 Consider the alternating projection operator T := PAPB for
the two convex subsets A and B of R2 given by

A := {(x1, x2) ∈ R2 : x2 = 0}, B := {(x1, x2) ∈ R2 : x21 + (x2 − 1)2 ≤ 1}.
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Then we have Fix T = A ∩ B = {0} and the only set U of interest is U = A.

For each x ∈ U , say x = (t, 0), it holds Tx =
(

t√
t2+1

, 0
)

and consequently

dist(x,Fix T ) = |t|, dist(Tx,Fix T ) =
|t|√
t2 + 1

,

and

‖x− Tx‖ = |t|
(

1− 1√
t2 + 1

)
.

In this setting, we now can directly check the following statements.

(i) The function c defined by

c(t) :=
1√
t2 + 1

, ∀t ∈ R+

satisfies all the assumptions of Theorem 43. It is worth emphasizing that
for each α > 0,

cα := sup{c(t) : t ≥ α} =
1√

α2 + 1
< 1 while sup{c(t) : t ≥ 0} = 1.

(ii) The function ϕ : R+ → R+ defined by

ϕ(t) := t

(
1− 1√

t2 + 1

)
, ∀t ∈ R+,

is a gauge function (see Definition 3) and the desired function, κ, defined
by (5) is the inverse function ϕ−1 which is also a gauge function.

(iii) This development is an extension of µ-monotonicity introduced in [23].
A sequence (xk) on H, is said to be µ-monotone with respect to Ω (∅ 6=
Ω ⊂ H) if there exists a nonnegative function µ : R+ → R+ satisfying
µ(0) = 0 and µ(t1, k1) < µ(t2, k2) when (t1 < t2 and k1 = k2) or
(t1 = t2 6= 0 and k1 > k2) with

(∀k ∈ N) dist(xk+1, Ω) ≤ µ (dist(xk, Ω)) . (20)

In the present example, the sequence (xn) generated by T is µ-monotone
with respect to Fix T , where µ : R+ → R+ is given by

µ(t) :=
t√

t2 + 1
, ∀t ∈ R+.

the sequence is said to be linearly monotone with respect to Ω if (20) is
satisfied for µ(t) = ct for all t ∈ R+ and some constant c ∈ [0, 1).

Remark 4 Condition (13) can be viewed as the functional extension of the
linear result in [23, Theorem 3.1] where linear monotonicity (part ii of Example
45) was shown to be sufficient for the existence of linear error bounds. Indeed,
(13) is a realization of the notion of µ-monotonicity introduced in [23] in
which the function µ has the form µ(t) := c(t) · t for all t ≥ 0. In particular, if
c(t) := c0 for some constant c0 < 1, Theorem 43 recovers [23, Theorem 3.1].
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Note that in Theorem 43, condition (13) is the only assumption required
to obtained the error bound. An implicit consequence of the condition is that
the distance of Picard iterates to Fix T converges to zero as soon as T has
a fixed point and that the initial point of the iteration is in a set U which
satisfies T (U) ⊂ U .

Proposition 2 (convergence to zero of the distance to fixed points)
Let H be a Hilbert space, let T : H → H with Fix T 6= ∅, and let U be a bounded
subset containing a fixed point of T and T (U) ⊂ U . Suppose that there exists
a function c : [0,∞)→ [0, 1] being upper semi-continuous on (0, exc(U,Fix T )]
and satisfying c(t) < 1 for all t in this interval such that condition (13) is
satisfied. Then every Picard iteration (xn) with x0 ∈ U generated by T satisfies
dist(xn,Fix T )→ 0 as n→∞.

Proof Let us consider an arbitrary iteration (xn) ⊂ U generated by T . Condi-
tion (13) implies that dist(xn,Fix T ) is nonincreasing and bounded from below
by 0. Hence dist(xn,Fix T ) converges to some α ≥ 0. We complete the proof
by showing that α = 0. Again, by way of contradiction, assume that α > 0.
Then by the same argument as the one for obtaining (14), we get

cα := max{c(t) : α ≤ t ≤ exc(U,Fix T )} < 1.

Since α ≤ dist(xn,Fix T ) ≤ exc(U,Fix T ) for all n ∈ N, it holds

c (dist(xn,Fix T )) ≤ cα ∀n ∈ N. (21)

Combining (21) and (13) then yields, for all n ∈ N,

dist(xn+1,Fix T ) ≤ c (dist(xn,Fix T )) dist(xn,Fix T ) ≤ cα dist(xn,Fix T ).
(22)

Inductively,
dist(xn,Fix T ) ≤ cnα dist(x0,Fix T ) ∀n ∈ N. (23)

Letting n→∞ in (23) with noting that cα < 1 yields

0 < α ≤ dist(xn,Fix T ) ≤ cnα dist(x0,Fix T )→ 0. (24)

This is a contradiction and the proof is complete.

In light of Proposition 2, Theorem 43 can be viewed as a uniform version
of Proposition 42.

To conclude, we finally discuss some insights of condition (13) in the aver-
aged operator setting.

Remark 5 Let T : H → H be averaged with Fix T 6= ∅.

(i) Lemma 2 implies that, for each x ∈ H, there exists a number cx < 1 such
that

dist(Tx,Fix T ) ≤ cx dist(x,Fix T ). (25)

Note that, the existence of a function c satisfying condition (13) would
require that the supremum of all such numbers cx taken over each level
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set Lt := {x : dist(x,Fix T ) = t} exists and is less than 1. In this case, c
can be any function which is upper semi-continuous on (0, exc(U,Fix T )]
and satisfies

sup{cx : x ∈ Lt} ≤ c(t) < 1, ∀t > 0. (26)

Note that the function f : H → R+ given by

f(x) :=

{
dist(Tx,Fix T )
dist(x,Fix T ) if x /∈ Fix T,

0 if otherwise
(27)

is continuous at all points x /∈ Fix T as a quotient of two continuous func-
tions dist(·,Fix T ) and dist(T (·),Fix T ) (because T is averaged). Thus,
in particular, if H is finite dimensional and Fix T is bounded, then Lt
is compact and hence, for all t > 0, sup{cx : x ∈ Lt} is trivially less
than one. In other words, for an averaged operator in a finite dimen-
sional space, condition (13) in Theorem 43 is superfluous and only upper
semi-continuity of c need be assumed.

(ii) Condition (13) quantifies the rate of decrease of dist(·,Fix T ) on each
level set Lt. More precisely, if xn ∈ Lt, then the distance to Fix T will
decrease by a factor of at least c(t) in the next iterate xn+1. Furthermore,
a closer look at the proof of Proposition 2 shows that condition (13) can
actually provide an estimate of the rate at which dist(Tnx,Fix T ) → 0
even in infinite dimensional setting.

(iii) On one hand, Theorem 43 can be viewed as an attempt to extend Theo-
rem 41 to infinite dimensional settings. On the other hand, it shows that
an error bound in the form of (6) is a necessary condition for a certain
type of µ-monotonicity (see Example 45 and Remark 4). More precisely,
µ-monotonicity with µ of the form µ(t) = c(t)t for all t ≥ 0 where c
denotes the function in (13).
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