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Abstract

The idea of a finite collection of closed sets having “linearly regular
intersection” at a point is crucial in variational analysis. This central
theoretical condition also has striking algorithmic consequences: in the
case of two sets, one of which satisfies a further regularity condition
(convexity or smoothness for example), we prove that von Neumann’s
method of “alternating projections” converges locally to a point in the
intersection, at a linear rate associated with a modulus of regularity.
As a consequence, in the case of several arbitrary closed sets having
linearly regular intersection at some point, the method of “averaged
projections” converges locally at a linear rate to a point in the inter-
section. Inexact versions of both algorithms also converge linearly.
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1 Introduction

An important theme in computational mathematics is the relationship be-
tween “conditioning” of a problem instance and speed of convergence of iter-
ative solution algorithms on that instance. A classical example is the method
of conjugate gradients for a positive definite system of linear equations: the
relative condition number of the associated matrix gives a bound on the lin-
ear convergence rate. More generally, Renegar [41–43] showed that the rate
of convergence of interior-point methods for conic convex programming can
be bounded in terms of the “distance to ill-posedness” of the program.

In studying the convergence of iterative algorithms for nonconvex min-
imization problems or nonmonotone variational inequalities, we must con-
tent ourselves with a local theory. A suitable analogue of the distance to
ill-posedness is then the notion of “metric regularity”, fundamental in vari-
ational analysis. Loosely speaking, a constraint system, such as a system of
inequalities, for example, is metrically regular when, locally, we can bound
the distance from a trial solution to an exact solution by a constant multiple
of the error in the equation generated by the trial solution. The constant
needed is called the “regularity modulus”, and its reciprocal has a natural
interpretation as a distance to ill-posedness for the equation [19]. While
not appropriate as a universal condition on general variational systems [23],
metric regularity is often a reasonable assumption for constraint systems.

This philosophy suggests understanding the speed of convergence of algo-
rithms for solving constraint systems in terms of the regularity modulus at a
solution. Recent literature focuses in particular on the proximal point algo-
rithm (see for example [1,13,27,37]). After the initial version [30] of this arti-
cle, an independent but related, proximal-type development was announced
in [2]. A unified approach to the relationship between metric regularity and
the linear convergence of a family of conceptual algorithms appears in [28].

We here study a very basic algorithm for a very basic problem. We
consider the problem of finding a point in the intersection of several closed
sets, using the method of averaged projections: at each step, we project the
current iterate onto each set, and average the results to obtain the next
iterate. Global convergence of this method for convex sets was proved in
1969 in [3]. Here we show, in complete generality, that this method converges
locally to a point in the intersection of the sets, at a linear rate governed by an
associated regularity modulus. Our linear convergence proof is elementary:
although we use the idea of the normal cone, we apply only the definition,
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and we discuss metric regularity only to illuminate the rate of convergence.
Finding a point in the intersection of several sets is a problem of fun-

damental computational significance. In the case of closed halfspaces, for
example, the problem is equivalent to linear programming. We mention
some nonconvex examples below.

Our approach to the convergence of the method of averaged projections
is standard [5,38,39]: we identify the method with von Neumann’s alternat-
ing projections algorithm [49] on two closed sets (one of which is a linear
subspace) in a suitable product space. A nice development of the classical
method of alternating projections in the convex case may be found in [15].
The convergence of the method for two intersecting closed convex sets was
proved in [8], and linear convergence under a regular intersection assumption
was proved in [5], strengthening a classical result of [26]. Our algorithmic con-
tribution is to show that, assuming linear regularity, local linear convergence
does not depend on convexity of both sets, but rather on a good geometric
property (such as convexity, smoothness, or more generally, “amenability ”
or “prox-regularity”) of just one of the two.

One consequence of our convergence proof is an algorithmic demonstra-
tion for the “exact extremal principle” of [32] (see also [34, Theorem 2.8]).
This result, a unifying theme in [34], asserts that if several sets have linearly
regular intersection at a point, then that point is not “locally extremal”:
that is, translating the sets by sufficiently small vectors cannot render the
intersection empty locally. To prove this result, we simply apply the method
of averaged projections, starting from the point of regular intersection. In
a further section, we show that inexact versions of the method of averaged
projections, closer to practical implementations, also converge linearly.

The method of averaged projections is a conceptual algorithm that might
appear hard to implement on concrete nonconvex problems. However, the
projection problem for some nonconvex sets is relatively easy. A good exam-
ple is the set of matrices of some fixed rank: given a singular value decompo-
sition of a matrix, projecting it onto this set is immediate. Furthermore, non-
convex alternating projection algorithms and analogous heuristics are quite
popular in practice, in areas such as inverse eigenvalue problems [10,11], pole
placement [35,51], information theory [48], low-order control design [24,25,36]
and image processing [7, 50]. Previous convergence results on nonconvex al-
ternating projection algorithms have been uncommon, and have either fo-
cussed on a very special case (see for example [10, 31]), or have been much
weaker than for the convex case [14, 48]. For more discussion, see [31].
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Our results primarily concern R-linear convergence: we show that our se-
quences of iterates converge, with error bounded by a geometric sequence. In
a final section, we employ a completely different approach to show that the
method of averaged projections, for prox-regular sets with regular intersec-
tion, has a Q-linear convergence property: each iteration guarantees a fixed
rate of improvement. In a final section, we illustrate these theoretical results
with an elementary numerical example coming from signal processing.

Our interest here is not in the development of practical numerical meth-
ods. Notwithstanding linear convergence proofs, basic alternating and aver-
aged projection schemes may be slow in practice. Rather we aim to study the
interplay between a simple, popular, fundamental algorithm and a variety of
central ideas from variational analysis. Whether such an approach can help
in the design and analysis of more practical algorithms remains to be seen.

2 Notation and definitions

We fix some notation and definitions. Our underlying setting throughout
this work is a Euclidean space E with corresponding closed unit ball B. For
any point x ∈ E and radius ρ > 0 , we write Bρ(x) for the set x + ρB.

Consider first two sets F, G ⊂ E. A point x̄ ∈ F∩G is locally extremal [34]
for this pair of sets if there exists a constant ρ > 0 and a sequence of vectors
zr → 0 in E such that (F + zr)∩G∩Bρ(x̄) = ∅ for all r = 1, 2, . . .. In other
words, restricting to a neighborhood of x̄ and then translating the sets by
arbitrarily small distances can render their intersection empty. Clearly x̄ is
not locally extremal if and only if

0 ∈ int
(
((F − x̄) ∩ ρB)− ((G− x̄) ∩ ρB)

)
for all ρ > 0.

For recognition purposes, it is easier to study a weaker property than local
extremality. We say that two sets F,G ⊂ E have linearly regular intersection
at the point x̄ ∈ F ∩ G if there exist constants α, δ > 0 such that for all
points x ∈ F ∩Bδ(x̄) and z ∈ G ∩Bδ(x̄), and all ρ ∈ (0, δ], we have

αρB ⊂ ((F − x) ∩ ρB)− ((G− z) ∩ ρB).

(In [29] this property is called “strong regularity”.) By considering the case
x = z = x̄, we see that linear regularity implies that x̄ is not locally extremal.
This “primal” definition of linear regularity is often not the most convenient
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way to handle linear regularity, either conceptually or theoretically. By con-
trast, a “dual” approach, using normal cones, is very helpful.

Given a set F ⊂ E, we define the distance function and (multivalued)
projection for F by

dF (x) = d(x, F ) = inf{‖z − x‖ : z ∈ F}
PF (x) = argmin{‖z − x‖ : z ∈ F}.

The normal cone to a closed set F ⊂ E at a point x̄ ∈ F is

NF (x̄) =
{

lim
i

ti(xi − zi) : ti ≥ 0, xi → x̄, zi ∈ PF (xi)
}

.

The centrality of this idea in variational analysis is described at length
in [12, 34, 44]). This construction dates back to [32]: see [44, Chapter 6
Commentary] for a discussion of the equivalence between this definition and
that of [44, p. 199]. Notice two properties in particular. First,

(2.1) z ∈ PF (x) ⇒ x− z ∈ NF (z).

Secondly, the normal cone is a “closed” multifunction: for any sequence of
points xr → x̄ in F , any limit of a sequence of normals yr ∈ NF (xr) must
lie in NF (x̄). Indeed, the normal cone is the smallest cone satisfying the two
properties. A noteworthy equivalence is NF (x) = {0} ⇐⇒ x ∈ int F .

Normal cones provide an elegant alternative approach to defining linear
regularity. A family of closed sets F1, F2, . . . Fm ⊂ E has linearly regular
intersection at a point x̄ ∈ ∩iFi, when the only solution to the system

m∑
i=1

yi = 0, with yi ∈ NFi
(x̄) (i = 1, 2, . . . , m)

is yi = 0 for i = 1, 2, . . . , m (cf. the “exact extremal principle” of [34, Theorem
2.8]). In the case m = 2, this condition can be written

(2.2) NF1(x̄) ∩ −NF2(x̄) = {0},
and it is equivalent to our previous definition (see [29, Corollary 2], for ex-
ample). We also note that this condition appears throughout variational-
analytic theory. For example, it guarantees the crucial inclusion (see [33,
Theorem 1] and also [44, Theorem 6.42])

NF1∩...∩Fm(x̄) ⊂ NF1(x̄) + · · ·+ NFm(x̄).

5



For convex F1 and F2, condition (2.2) asserts the nonexistence of a separating
hyperplane. More generally, linear regularity was introduced in [33] as the
“generalized nonseparation property”. The notion of a “linear regular” family
of convex sets [6] is also related, though the definition we use here is local.

We will find it helpful to quantify the notion of linear regularity (cf. [29]).
A straightforward compactness argument shows the following result.

Proposition 2.3 (quantifying linear regularity) A collection of closed
sets F1, F2, . . . , Fm ⊂ E have linearly regular intersection at a point x̄ ∈ ∩Fi

if and only if there exists a constant k > 0 such that the following condition
holds:

(2.4) yi ∈ NFi
(x̄) (i = 1, 2, . . . , m) ⇒

√∑
i

‖yi‖2 ≤ k
∥∥∥

∑
i

yi

∥∥∥.

We define the condition modulus cond(F1, F2, . . . , Fm|x̄) to be the infimum
of all constants k > 0 such that property (2.4) holds. Since ‖ · ‖2 is convex,
we notice that vectors y1, y2, . . . , ym ∈ E always satisfy the inequality

(2.5)
∑

i

‖yi‖2 ≥ 1

m

∥∥∥
∑

i

yi

∥∥∥
2

,

which yields

(2.6) cond(F1, F2, . . . , Fm|x̄) ≥ 1√
m

,

except in the special case when NFi
(x̄) = {0} (or equivalently x̄ ∈ int Fi) for

all i = 1, 2, . . . , m; in this case the condition modulus is zero.
One goal of this paper is to show that, far from being of purely analytic

significance, linear regularity has central algorithmic consequences, specifi-
cally for the method of averaged projections for finding a point in the in-
tersection ∩iFi. Given any initial point x0 ∈ E, the algorithm proceeds
iteratively as follows:

zi
n ∈ PFi

(xn) (i = 1, 2, . . . , m)

xn+1 =
1

m
(z1

n + z2
n + · · ·+ zm

n ).

Our main result shows, assuming only linear regularity, that providing the
initial point x0 is sufficiently near x̄, any sequence x1, x2, x3, . . . generated
by the method of averaged projections converges linearly to a point in the
intersection ∩iFi, at a rate governed by the condition modulus.
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3 Linear and metric regularity

The notion of linear regularity is well-known to be closely related to another
central idea in variational analysis: “metric regularity”. A concise summary
of the relationships between a variety of regular intersection properties and
metric regularity appears in [29]. We summarize the relevant ideas here.

Consider a set-valued mapping Φ: E →→ Y, where Y is a second Euclidean
space. The inverse mapping Φ−1 : Y →→ E is defined by x ∈ Φ−1(y) ⇔ y ∈
Φ(x), for x ∈ E and y ∈ Y. For vectors x̄ ∈ E and ȳ ∈ Φ(x̄), we say Φ
is metrically regular at x̄ for ȳ if there exists a constant κ > 0 such that all
pairs (x, y) ∈ E×Y sufficiently near (x̄, ȳ) satisfy the inequality

d(x, Φ−1(y)) ≤ κd(y, Φ(x)).

The infimum of all such constants κ is called the modulus of metric regularity
of Φ at x̄ for ȳ, denoted reg Φ(x̄|ȳ). See [44, Chapter 9G] for a discussion.

Intuitively, metric regularity gives a local linear bound for the distance
to a solution of the constraint system y ∈ Φ(x) (where the vector y is given
and we seek the unknown vector x), in terms of the the distance from y to
the set Φ(x). The modulus is a measure of the sensitivity or “conditioning”
of the constraint system y ∈ Φ(x). To take one simple example, if Φ is a
single-valued linear map, the modulus of regularity is the reciprocal of its
smallest singular value. In general, variational analysis provides a powerful
calculus for computing the regularity modulus. In particular, we have the
following formula (see [33, Theorem 8] and [44, Theorem 9.43]):

(3.1)
1

reg Φ(x̄|ȳ)
= min

{
d(0, D∗Φ(x̄|ȳ)(w)) : w ∈ Y, ‖w‖ = 1

}
,

where D∗ denotes the “coderivative”.
We now study these ideas for a particular mapping, highlighting the con-

nections between metric and linear regularity. As in the previous section,
consider closed sets F1, F2, . . . , Fm ⊂ E and a point x̄ ∈ ∩iFi. We endow the
space Em with the inner product

〈
(x1, x2, . . . , xm), (y1, y2, . . . , ym)

〉
=

∑
i

〈xi, yi〉,

and define set-valued mapping Φ: E →→ Em by

Φ(x) = (F1 − x)× (F2 − x)× · · · × (Fm − x).
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Then the inverse mapping is given by Φ−1(y) = ∩i(Fi − yi), for y ∈ Em, and
finding a point in the intersection ∩iFi is equivalent to finding a solution of
the constraint system 0 ∈ Φ(x). By definition, the mapping Φ is metrically
regular at x̄ for 0 if and only if there is a constant κ > 0 such that the
following strong metric inequality holds:

(3.2) d
(
x,

⋂
i

(Fi−zi)
)
≤ κ

√∑
i

d2(x, Fi − zi) for all (x, z) near (x̄, 0).

Furthermore, the regularity modulus reg Φ(x̄|0) is just the infimum of those
constants κ > 0 such that inequality (3.2) holds.

To compute the coderivative D∗Φ(x̄|0), we decompose the mapping Φ
as Ψ − A, where, for points x ∈ E, we define Ψ(x) = F1 × F2 × · · · × Fm

and Ax = (x, x, . . . , x). The calculus rule [44, 10.43] yields D∗Φ(x̄|0) =
D∗Ψ(x̄|Ax̄)− A∗. Then, by definition,

v ∈ D∗Ψ(x̄|Ax̄)(w) ⇔ (v,−w) ∈ NgphΨ(x̄, Ax̄),

and since gph Ψ = E× F1 × F2 × · · · × Fm, we deduce

D∗Ψ(x̄|Ax̄)(w) =

{ {0} if wi ∈ −NFi
(x̄) ∀i

∅ otherwise

and hence

D∗Φ(x̄|0)(w) =

{ −∑
i wi if wi ∈ −NFi

(x̄) ∀i
∅ otherwise.

From the coderivative formula (3.1) we now obtain

(3.3)
1

reg Φ(x̄|0)
= min

{∥∥∥
∑

i

yi

∥∥∥ :
∑

i

‖yi‖2 = 1, yi ∈ NFi
(x̄)

}
,

where, as usual, we interpret the right-hand side as +∞ if NFi
(x̄) = {0} (or

equivalently x̄ ∈ int Fi) for all i = 1, 2, . . . , m. Thus the regularity modulus
agrees exactly with the condition modulus that we defined in the previous
section: reg Φ(x̄|0) = cond(F1, F2, . . . , Fm|x̄). It is well-known [29] that linear
regularity is equivalent to the strong metric inequality (3.2).

8



4 Clarke regularity and refinements

“Clarke regularity” is a basic variation-geometric property of sets, shared in
particular by closed convex sets and smooth manifolds. We next study a
slight refinement, crucial for our development. In the interest of maintaining
as elementary approach as possible, we use the following definition of Clarke
regularity, easy to interpret geometrically in terms of certain angles.

Definition 4.1 (Clarke regularity) A closed set C ⊂ Rn is Clarke regular
at a point x̄ ∈ C if, for all δ > 0, any two points u, z sufficiently near x̄ with
z ∈ C, and any point y ∈ PC(u), satisfy 〈z − x̄, u− y〉 ≤ δ‖z− x̄‖ · ‖u− y‖.

Remark 4.2 This property is equivalent to the standard notion of Clarke
regularity [44, Definition 6.4]. To see this, suppose the property in the def-
inition holds. Consider any unit vector v ∈ NC(x̄), and any unit “tangent
direction” w to C at x̄. By definition, there exists a sequences ur → x̄,
yr ∈ PC(ur), and zr → x̄ with zr ∈ C, such that

vr =
ur − yr

‖ur − yr‖ → v

wr =
zr − x̄

‖zr − x̄‖ → w.

By assumption, given any δ > 0, for all sufficiently large r we have 〈vr, wr〉 ≤
δ, and hence 〈v, w〉 ≤ δ. Thus 〈v, w〉 ≤ 0, so Clarke regularity follows, by [44,
Corollary 6.29]. Conversely, if the property described in the definition fails,
then for some δ > 0 and some sequences ur → x̄, yr ∈ PC(ur), and zr → x̄
with zr ∈ C, we have

〈 ur − yr

‖ur − yr‖ ,
zr − x̄

‖zr − x̄‖
〉
≥ δ for all r.

Then any cluster points v and w of the two sequences of unit vectors defining
the above inner product are respectively an element of NC(x̄) and a tangent
direction to C at x̄, and satisfy 〈v, w〉 > 0, contradicting Clarke regularity.

The property we need for our development is an apparently-slight modi-
fication of Clarke regularity, again easy to interpret geometrically.
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Definition 4.3 (super-regularity) A closed set C ⊂ Rn is super-regular
at a point x̄ ∈ C if, for all δ > 0, any two points u, z sufficiently near x̄ with
z ∈ C, and any point y ∈ PC(u), satisfy 〈z − y, u− y〉 ≤ δ‖z− y‖ · ‖u− y‖.

An equivalent statement involves the normal cone.

Proposition 4.4 (super-regularity and normal angles) A closed set
C ⊂ Rn is super-regular at a point x̄ ∈ C if and only if, for all δ > 0, the
inequality 〈v, z − y〉 ≤ δ‖v‖·‖z−y‖ holds for all points y, z ∈ C sufficiently
near x̄ and all vectors v ∈ NC(y).

Proof Super-regularity follows immediately from the normal cone property
described in the proposition, by property (2.1). Conversely, suppose the
normal cone property fails, so for some δ > 0 and sequences of distinct
points yr, zr ∈ C approaching x̄ and unit normal vectors vr ∈ NC(yr), we
have, for all r = 1, 2, . . .,

〈
vr,

zr − yr

‖zr − yr‖
〉

> δ.

Fix an index r. By definition of the normal cone, there exist sequences
of distinct points uj

r → yr and yj
r ∈ PC(uj

r) such that

lim
j→∞

uj
r − yj

r

‖uj
r − yj

r‖
= vr.

Since limj yj
r = yr, we must have, for all sufficiently large j,

〈 uj
r − yj

r

‖uj
r − yj

r‖
,

zr − yj
r

‖zr − yj
r‖

〉
> δ.

Choose j sufficiently large to ensure both the above inequality and the in-
equality ‖uj

r − yr‖ < 1
r
, and then define points u′r = uj

r and y′r = yj
r .

We now have sequences of points u′r, zr approaching x̄ with zr ∈ C, and
y′r ∈ PC(u′r), and satisfying

〈 u′r − y′r
‖u′r − y′r‖

,
zr − y′r
‖zr − y′r‖

〉
> δ.

Hence C is not super-regular at x̄. 2

Super-regularity is a strictly stronger property than Clarke regularity, as
the following result and example make clear.
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Corollary 4.5 (super-regularity implies Clarke regularity) At any
point in a closed set C ⊂ Rn, super regularity implies Clarke regularity.

Proof Suppose the point in question is x̄. Fix any δ > 0, and set y = x̄
in Proposition 4.4. Then clearly any unit tangent direction d to C at x̄ and
any unit normal vector v ∈ NC(x̄) satisfy 〈v, d〉 ≤ δ. Since δ was arbitrary,
in fact 〈v, d〉 ≤ 0, so Clarke regularity follows by [44, Cor 6.29]. 2

Example 4.6 Consider the following function f : R → (−∞, +∞], taken
from an example in [46]:

f(t) =





2r(t− 2r) (2r ≤ t < 2r+1, r ∈ Z)
0 (t = 0)
+∞ (t < 0).

This function has Clarke-regular epigraph at (0, 0), but an exercise shows it is
not super-regular there. Indeed, a minor refinement of this example (smooth-
ing the set slightly close to the nonsmooth points (2r, 0) and (2r, 4r−1)) shows
that a set can be everywhere Clarke regular, and yet not super-regular.

Super-regularity is a common property: indeed, it is implied by two well-
known properties, that we discuss next. Following [44], we say that a set
C ⊂ Rn is amenable at a point x̄ ∈ C when there exists a neighborhood U
of x̄, a C1 mapping G : U → R`, and a closed convex set D ⊂ R` containing
G(x̄), and satisfying the constraint qualification

(4.7) ND(G(x̄)) ∩ ker(∇G(x̄)∗) = {0},

such that
C ∩ U = {x ∈ U : G(x) ∈ D}.

In particular, if C is defined by C1 equality and inequality constraints and the
Mangasarian-Fromovitz constraint qualification holds, then C is amenable.

Proposition 4.8 (amenable implies super-regular) If a closed set C ⊂
Rn is amenable at a point in C, then it is super-regular there.

Proof Suppose the result fails at some point x̄ ∈ C. Assume as in the
definition of amenability that, in a neighborhood of x̄, the set C is identical
with the inverse image G−1(D), where the C1 map G and the closed convex
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set D satisfy the condition (4.7). Then by definition, for some δ > 0, there
are sequences of points yr, zr ∈ C converging to x̄ and unit normal vectors
vr ∈ NC(yr) satisfying 〈vr, zr − yr〉 > δ‖zr − yr‖ for all r = 1, 2, . . .. Since
the normal cone mapping ND is outer semicontinuous relative to D [44,
Proposition 6.6], it is easy to check the condition

ND(G(yr)) ∩ ker(∇G(yr)
∗) = {0},

for all sufficiently large r, since otherwise we contradict assumption (4.7).
Consequently, using the standard chain rule [44, Exercise 10.26(d)], we de-
duce NC(yr) = ∇G(yr)

∗ND(G(yr)), so there are vectors ur ∈ ND(G(yr))
such that ∇G(yr)

∗ur = vr. The sequence (ur) must be bounded, since oth-
erwise, by taking a subsequence, we could suppose ‖ur‖ → ∞ and ‖ur‖−1ur

approaches some unit vector û, leading to the contradiction

û ∈ ND(G(x̄)) ∩ ker(∇G(x̄)∗) = {0}.

For all sufficiently large r, we now have 〈∇G(yr)
∗ur, zr − yr〉 > δ‖zr−yr‖,

and by convexity of D, since ur ∈ ND(G(yr)), we have 〈ur, G(zr)−G(yr)〉 ≤
0. Adding these two inequalities gives

〈ur, G(zr)−G(yr)−∇G(yr)(zr − yr)〉 < −δ‖zr − yr‖.

But as r → ∞, the left-hand side is o(‖zr − yr‖), since the sequence (ur) is
bounded and G is C1. This contradiction completes the proof. 2

A rather different refinement of Clarke regularity is the notion of “prox-
regularity”. Following [40, Thm 1.3], we call a set C ⊂ E is prox-regular
at a point x̄ ∈ C if the projection mapping PC is single-valued around x̄.
(In this case, clearly C must be locally closed around x̄.) For example, if,
in the definition of an amenable set that we gave earlier, we strengthen our
assumption on the map G to be C2 rather than just C1, the resulting set
must be prox-regular. Without this strengthening, however, notice the set
{(s, t) ∈ R2 : t = |s|3/2} is amenable at the point (0, 0) (and hence super-
regular there), but is not prox-regular there.

Proposition 4.9 (prox-regular implies super-regular) If a closed set
C ⊂ Rn is prox-regular at a point in C, then it is super-regular there.
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Proof If the results fails at x̄ ∈ C, then for some δ > 0, there exist sequences
of points yr, zr ∈ C converging to the point x̄, and a sequence of normal
vectors vr ∈ NC(yr) satisfying the inequality 〈vr, zr − yr〉 > δ‖vr‖ · ‖zr− yr‖.
By [40, Proposition 1.2], there exist constants ε, ρ > 0 such that

〈 ε

2‖vr‖vr, zr − yr

〉
≤ ρ

2
‖zr − yr‖2

for all large r. This gives a contradiction, since ‖zr − yr‖ ≤ δε
ρ

eventually. 2

We digress briefly to discuss relationships between super-regularity and
other notions in the literature. First note the following equivalent definition,
which is an immediate consequence of Proposition 4.4, and which gives an
alternate proof of Proposition 4.9 via “hypomonotonicity” of the truncated
normal cone mapping x 7→ NC(x)∩B for prox-regular sets C [40, Thm 1.3].

Corollary 4.10 (approximate monotonicity) A closed set C ⊂ Rn

is super-regular at a point x̄ ∈ C if and only if, for all δ > 0, the inequality
〈v − w, y − z〉 ≥ − δ‖y − z‖ holds for all points y, z ∈ C sufficiently near
x̄ and all normal vectors v ∈ NC(y) ∩B and w ∈ NC(z) ∩B.

If we replace the normal cone NC in the property described in the result above
by its convex hull, the “Clarke normal cone”, we obtain a stronger property,
called “subsmoothness” in [4]. Similar proofs to those above show that,
like super-regularity, subsmoothness is a consequence of either amenability
or prox-regularity. However, subsmoothness is strictly stronger than super-
regularity. To see this, consider the graph of the function f : R → R defined
by the following properties: f(0) = 0, f(2r) = 4r for all integers r, f is linear
on each interval [2r, 2r+1], and f(t) = f(−t) for all t ∈ R. The graph of f is
super-regular at (0, 0), but is not subsmooth there.

In a certain sense, however, the distinction between subsmoothness and
super-regularity is slight. Suppose the set F is super-regular at every point
in F ∩ U , for some open set U ⊂ Rn. Since super-regularity implies Clarke
regularity, the normal cone and Clarke normal cone coincide throughout F ∩
U , and hence F is also subsmooth throughout F ∩U . In other words, “local”
super regularity coincides with “local” subsmoothness, which in turn, by [4,
Thm 3.16] coincides with the “first order Shapiro property” [45] (also called
“near convexity” in [47]) holding locally.

13



5 Alternating projections with nonconvexity

Having reviewed or developed over the last few sections the key variational-
analytic properties that we need, we now turn to projection algorithms. In
this section we develop our convergence analysis of the method of alternating
projections. The following result is our basic tool, guaranteeing conditions
under which the method of alternating projections converges linearly. For
flexibility, we state it in a rather technical manner. For clarity, we point out
afterward that the two main conditions, (5.3) and (5.4), are guaranteed in
applications via assumptions of linear regularity and super-regularity (or in
particular, amenability or prox-regularity) respectively.

Given any sets F,C ⊂ E, an alternating projection sequence is any se-
quence of points {xj} in E satisfying the condition

(5.1) x2n+1 ∈ PF (x2n) and x2n+2 ∈ PC(x2n+1) (n = 0, 1, 2, . . .),

or the same property with F and C interchanged.

Theorem 5.2 (linear convergence of alternating projections)
Consider the closed sets F,C ⊂ E, and a point x̄ ∈ F . Fix any constant
ε > 0. Suppose for some constant c′ ∈ (0, 1), the following condition holds:

(5.3)
x ∈ F ∩ (x̄ + εB), u ∈ −NF (x) ∩B
y ∈ C ∩ (x̄ + εB), v ∈ NC(y) ∩B

}
⇒ 〈u, v〉 ≤ c′.

Suppose for some constant δ ∈ [0, 1−c′
2

) the following condition holds:

(5.4)
y, z ∈ C ∩ (x̄ + εB)

v ∈ NC(y) ∩B

}
⇒ 〈v, z − y〉 ≤ δ‖z − y‖.

Define a constant c = c′+2δ < 1. Then for any initial point x0 ∈ C satisfying
‖x0− x̄‖ ≤ 1−c

4
ε, any alternating projection sequence {xj} for the sets F and

C must converge with R-linear rate
√

c to a point x̂ ∈ F ∩ C satisfying the
inequality ‖x̂− x0‖ ≤ 1+c

1−c
‖x0 − x̄‖.

Proof Assume property (5.1). By the definition of the projections we have

(5.5) ‖x2n+3 − x2n+2‖ ≤ ‖x2n+2 − x2n+1‖ ≤ ‖x2n+1 − x2n‖.
Clearly we therefore have

(5.6) ‖x2n+2 − x2n‖ ≤ 2‖x2n+1 − x2n‖.

14



We next claim

(5.7)
‖x2n+1 − x̄‖ ≤ ε

2
and

‖x2n+1 − x2n‖ ≤ ε
2

}
⇒ ‖x2n+2 − x2n+1‖ ≤ c‖x2n+1 − x2n‖.

To see this, note that if x2n+2 = x2n+1, the result is trivial, and if x2n+1 = x2n

then x2n+2 = x2n+1 so again the result is trivial. Otherwise, we have

x2n − x2n+1

‖x2n − x2n+1‖ ∈ NF (x2n+1) ∩B

while
x2n+2 − x2n+1

‖x2n+2 − x2n+1‖ ∈ −NC(x2n+2) ∩B.

Furthermore, using inequality (5.5), the left-hand side of the implication (5.7)
ensures

‖x2n+2 − x̄‖ ≤ ‖x2n+2 − x2n+1‖+ ‖x2n+1 − x̄‖
≤ ‖x2n+1 − x2n‖+ ‖x2n+1 − x̄‖ ≤ ε.

Hence, by assumption (5.3) we deduce

〈 x2n − x2n+1

‖x2n − x2n+1‖ ,
x2n+2 − x2n+1

‖x2n+2 − x2n+1‖
〉
≤ c′,

so

〈x2n − x2n+1, x2n+2 − x2n+1〉 ≤ c′‖x2n − x2n+1‖ · ‖x2n+2 − x2n+1‖.
On the other hand, by assumption (5.4) we know

〈x2n − x2n+2, x2n+1 − x2n+2〉 ≤ δ‖x2n − x2n+2‖ · ‖x2n+1 − x2n+2‖
≤ 2δ‖x2n − x2n+1‖ · ‖x2n+2 − x2n+1‖,

using inequality (5.6). Adding this inequality to the previous inequality then
gives the right-hand side of (5.7), as desired.

Now let α = ‖x0 − x̄‖. We will show by induction the inequalities

‖x2n+1 − x̄‖ ≤ 2α
1− cn+1

1− c
<

ε

2
(5.8)

‖x2n+1 − x2n‖ ≤ αcn <
ε

2
(5.9)

‖x2n+2 − x2n+1‖ ≤ αcn+1.(5.10)

15



Consider first the case n = 0. Since x1 ∈ PF (x0) and x̄ ∈ F , we deduce
‖x1 − x0‖ ≤ ‖x̄− x0‖ = α < ε/2, which is inequality (5.9). Furthermore,

‖x1 − x̄‖ ≤ ‖x1 − x0‖+ ‖x0 − x̄‖ ≤ 2α <
ε

2
,

which shows inequality (5.8). Finally, since ‖x1 − x0‖ < ε/2 and ‖x1 − x̄‖ <
ε/2, the implication (5.7) shows

‖x2 − x1‖ ≤ c‖x1 − x0‖ ≤ c‖x̄− x0‖ = cα,

which is inequality (5.10).
For the induction step, suppose inequalities (5.8), (5.9), and (5.10) all

hold for some n. Inequalities (5.5) and (5.10) imply

(5.11) ‖x2n+3 − x2n+2‖ ≤ αcn+1 <
ε

2
.

We also have, using inequalities (5.11), (5.10), and (5.8)

‖x2n+3 − x̄‖ ≤ ‖x2n+3 − x2n+2‖+ ‖x2n+2 − x2n+1‖+ ‖x2n+1 − x̄‖
≤ αcn+1 + αcn+1 + 2α

1− cn+1

1− c
,

so

(5.12) ‖x2n+3 − x̄‖ ≤ 2α
1− cn+2

1− c
<

ε

2
.

Now implication (5.7) with n replaced by n + 1 implies ‖x2n+4 − x2n+3‖ ≤
c‖x2n+3 − x2n+2‖, and using inequality (5.11) we deduce

(5.13) ‖x2n+4 − x2n+3‖ ≤ αcn+2.

Since inequalities (5.12), (5.11), and (5.13) are exactly inequalities (5.8),
(5.9), and (5.10) with n replaced by n + 1, the induction step is complete
and our claim follows.

We can now easily check that the sequence (xk) is Cauchy and therefore
converges. To see this, note for any integer n = 0, 1, 2, . . . and any integer
k > 2n, we have

‖xk − x2n‖ ≤
k−1∑
j=2n

‖xj+1 − xj‖

≤ α(cn + cn+1 + cn+1 + cn+2 + cn+2 + · · · )
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so

‖xk − x2n‖ ≤ αcn 1 + c

1− c
,

and a similar argument shows

(5.14) ‖xk+1 − x2n+1‖ ≤ 2αcn+1

1− c
.

Hence xk converges to some point x̂ ∈ E, and for all n = 0, 1, 2, . . . we have

(5.15) ‖x̂− x2n‖ ≤ αcn 1 + c

1− c
and ‖x̂− x2n+1‖ ≤ 2αcn+1

1− c
.

We deduce that the limit x̂ lies in the intersection F ∩ C and satisfies the
inequality ‖x̂− x0‖ ≤ α1+c

1−c
, and furthermore that the inequality

‖x̂− xr‖ ≤ α(
√

c)r 1 + c

1− c

holds for all r = 0, 1, 2, . . ., so the convergence is R-linear with rate
√

c. 2

We can now prove our key result. To apply Theorem 5.2 to alternating
projections between a closed and a super-regular set, we make use of the key
geometric property of super-regular sets (Proposition 4.4).

Theorem 5.16 (alternating projections with a super-regular set)
Consider closed sets F,C ⊂ E and a point x̄ ∈ F ∩ C. Suppose C is super-
regular at x̄ (as holds, for example, if it is amenable or prox-regular there).
Suppose furthermore that F and C have linearly regular intersection at x̄:
that is, NF (x̄) ∩ −NC(x̄) = {0}, or equivalently, the constant

(5.17) c̄ = max
{
〈u, v〉 : u ∈ NF (x̄) ∩B, v ∈ −NC(x̄) ∩B

}

is strictly less than one. Fix any constant c ∈ (c̄, 1). Then any alternating
projection sequence with initial point sufficiently near x̄ must converge to a
point in F ∩ C with R-linear rate

√
c.

Proof Let us show first the equivalence between c̄ < 1 and linear regularity.
The compactness of the intersections between normal cones and the unit
ball guarantees the existence of u and v achieving the maximum in (5.17).
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Observe then that 〈u, v〉 ≤ ‖u‖ ‖v‖ ≤ 1. The cases of equality in the Cauchy-
Schwarz inequality permits to write

c̄ = 1 ⇐⇒ u and v are colinear ⇐⇒ NF (x̄) ∩ −NC(x̄) 6= {0},

which corresponds to the desired equivalence.
Denote the alternating sequence {xj}. We can suppose x0 ∈ C. Fix any

constant c′ ∈ (c̄, c) and define δ = c−c′
2

. To apply Theorem 5.2, we just need
to check the existence of a constant ε > 0 such that conditions (5.3) and (5.4)
hold. Condition (5.4) holds for all sufficiently small ε > 0, by Proposition 4.4.
On the other hand, if condition (5.3) fails for all sufficiently small ε > 0, then
there exist sequences of points xr → x̄ in the set F and yr → x̄ in the set C,
and sequences of vectors ur ∈ −NF (xr) ∩B and vr ∈ NC(yr) ∩B, satisfying
〈ur, vr〉 > c′. After taking subsequences, we can suppose ur approaches some
vector u ∈ −NF (x̄) ∩ B and vr approaches some vector v ∈ NC(x̄) ∩ B, and
then 〈u, v〉 ≥ c′ > c̄, contradicting the definition of the constant c̄. 2

Corollary 5.18 (improved convergence rate) With the assumptions of
Theorem 5.16, suppose the set F is also super-regular at x̄. Then the alter-
nating projection sequence converges with R-linear rate c.

Proof Inequality (5.7), and its analog when the roles of F and C are
interchanged, together show ‖xk+1 − xk‖ ≤ c‖xk − xk−1‖ for all sufficiently
large k, and the result then follows easily, using an argument analogous to
that at the end of the proof of Theorem 5.2. 2

In the light of our discussion in the previous section, the linear regularity
assumption of Theorem 5.16 is equivalent to the metric regularity at x̄ for 0
of the set-valued mapping Ψ: E →→ E2 defined by Ψ(x) = (F − x)× (C − x),
for x ∈ E. Using equation (3.3), the regularity modulus is determined by

1

reg Ψ(x̄|0)
= min

{
‖u + v‖ : u ∈ NF (x̄), v ∈ NC(x̄), ‖u‖2 + ‖v‖2 = 1

}
,

and a short calculation then shows

(5.19) reg Ψ(x̄|0) =
1√

1− c̄
.
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The closer the constant c̄ is to one, the larger the regularity modulus. We
have shown that c̄ also controls the speed of linear convergence for the method
of alternating projections applied to the sets F and C.

Inevitably, Theorem 5.16 concerns local convergence: it relies on finding
an initial point x0 sufficiently close to a point of linearly regular intersection.
How might we find such a point? One natural context in which to pose this
question is that of sensitivity analysis. Suppose we already know a point of
linearly regular intersection of two closed sets, but now want to find a point in
the intersection of two slight translations of these sets. The following result
shows that, starting from the original point of intersection, the method of
alternating projections will converge linearly to the new intersection.

Theorem 5.20 (perturbed intersection) Given any closed sets F,C ⊂
E and any point x̄ ∈ F ∩ C, suppose the assumptions of Theorem 5.16 hold.
Then for any sufficiently small vector d ∈ E, any alternating projection
sequence for the sets d+F and C, with the initial point x̄, must converge with
R-linear rate

√
c to a point in the set (d+F )∩C ∩Bρ(x̄), where ρ = 1+c

1−c
‖d‖.

Proof As in the proof of Theorem 5.16, if we fix any constant c′ ∈ (c̄, c)
and define δ = c−c′

2
, then there exists a constant ε > 0 such that conditions

(5.3) and (5.4) hold. Suppose the vector d satisfies

‖d‖ ≤ (1− c)ε

8
<

ε

2
.

Since

y ∈ (C − d) ∩ (x̄ +
ε

2
B) and v ∈ NC−d(y)

⇒ y + d ∈ C ∩ (x̄ + εB) and v ∈ NC(y + d),

we deduce from condition (5.3) the implication

x ∈ F ∩ (x̄ + ε
2
B), u ∈ −NF (x) ∩B

y ∈ (C − d) ∩ (x̄ + ε
2
B), v ∈ NC−d(y) ∩B

}
⇒ 〈u, v〉 ≤ c′.

Furthermore, using condition (5.4) we deduce the implication

y, z ∈ (C − d) ∩ (x̄ +
ε

2
B) and v ∈ NC−d(y) ∩B

⇒ y + d, z + d ∈ C ∩ (x̄ + εB) and v ∈ NC(y + d) ∩B,

⇒ 〈v, z − y〉 ≤ δ‖z − y‖.
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We now apply Theorem 5.2 with the set C replaced by C − d and ε replaced
by ε

2
. We deduce that any alternating projection sequence for the sets F and

C− d, starting at the point x0 = x̄− d ∈ C− d, converges with R-linear rate√
c to a point x̂ ∈ F∩(C−d) satisfying the inequality ‖x̂−x0‖ ≤ 1+c

1−c
‖x0−x̄‖.

The theorem statement then follows by translation. 2

Lack of convexity notwithstanding, more structure sometimes implies that
the method of alternating projections converges Q-linearly, rather than just
R-linearly, on a neighborhood of point of linearly regular intersection of two
closed sets. One example is the case of two manifolds [31].

6 Inexact alternating projections

Our basic tool, the method of alternating projections for a super-regular set
C and an arbitrary closed set F , is a conceptual algorithm that may be chal-
lenging to realize in practice. We might reasonably consider the case of exact
projection on the super-regular set C: for example, in the next section, for
the method of averaged projections, C is a subspace and computing projec-
tions is trivial. However, projecting onto the set F may be much harder, so
a more realistic analysis allows relaxed projections.

We sketch one approach. Given two iterates x2n−1 ∈ F and x2n ∈ C, a
necessary condition for the new iterate x2n+1 to be an exact projection on F ,
that is x2n+1 ∈ PF (x2n), is

‖x2n+1 − x2n‖ ≤ ‖x2n − x2n−1‖ and x2n − x2n+1 ∈ NF (x2n+1).

In the following result we assume only that we choose the iterate x2n+1 to
satisfy a relaxed version of this condition, where we replace the second part
by the assumption that the distance

dNF (x2n+1)

( x2n − x2n+1

‖x2n − x2n+1‖
)

from the normal cone at the iterate to the normalized direction of the last
step is sufficiently small.

Theorem 6.1 (inexact alternating projections) With the assumptions
of Theorem 5.16, fix any constant γ <

√
1− c2, and consider the following
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inexact alternating projection iteration. Given any initial points x0 ∈ C and
x1 ∈ F , for n = 1, 2, 3, . . . suppose x2n ∈ PC(x2n−1) and x2n+1 ∈ F satisfies

‖x2n+1 − x2n‖ ≤ ‖x2n − x2n−1‖ and dNF (x2n+1)

( x2n − x2n+1

‖x2n − x2n+1‖
)
≤ γ.

Then, providing x0 and x1 are sufficiently close to x̄, the iterates converge to
a point in F ∩ C with R-linear rate

√
c
√

1− γ2 + γ
√

1− c2 < 1.

Sketch proof. Once again as in the proof of Theorem 5.16, we fix any
constant c′ ∈ (c̄, c) and define δ = c−c′

2
, so there exists a constant ε > 0 such

that conditions (5.3) and (5.4) hold. Define a vector

z =
x2n − x2n+1

‖x2n − x2n+1‖ .

By assumption, there exists a vector w ∈ NF (x2n+1) satisfying ‖w− z‖ ≤ γ.
Easy manipulation then shows that the unit vector ŵ = ‖w‖−1w satisfies
〈ŵ, z〉 ≥

√
1− γ2. As in the proof of Theorem 5.2, assuming inductively

that x2n+1 is sufficiently close to both x̄ and x2n, since ŵ ∈ NF (x2n+1), and

u =
x2n+2 − x2n+1

‖x2n+2 − x2n+1‖ ∈ −NC(x2n+2) ∩B,

we deduce 〈ŵ, u〉 ≤ c′.
We now see that, on the unit sphere, the arc distance between the unit

vectors ŵ and z is no more than arccos(
√

1− γ2), whereas the arc distance
between ŵ and the unit vector u is at least arccos c′. Hence by the triangle
inequality, the arc distance between z and u is at least

arccos c′ − arccos(
√

1− γ2),

so

〈z, u〉 ≤ cos
(

arccos c′ − arccos(
√

1− γ2)
)

= c′
√

1− γ2 + γ
√

1− c′2.

Some elementary calculus shows that the quantity on the right-hand side is
strictly less than one. Again as in the proof of Theorem 5.2, this inequality
shows, providing x0 is sufficiently close to x̄, the inequality

‖x2n+2 − x2n+1‖ ≤
(
c
√

1− γ2 + γ
√

1− c2
)
‖x2n+1 − x2n‖,
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and in conjunction with the inequality ‖x2n+1 − x2n‖ ≤ ‖x2n − x2n−1‖, this
suffices to complete the proof by induction. 2

7 Local convergence for averaged projections

We return to the problem of finding a point in the intersection of several
closed sets via averaged projections. Given sets F1, F2, . . . , Fm ⊂ E, an
averaged projection sequence is any sequence of points {xj} in E satisfying

xj+1 ∈ 1

m

m∑
i=1

PFi
(xj) (j = 0, 1, 2, . . .).

We apply our previous results to the method of averaged projections via the
well-known reformulation of the algorithm as alternating projections on a
product space. This leads to the main result of this section, Theorem 7.3,
which shows linear convergence in a neighborhood of any point of linearly
regular intersection, at a rate governed by the associated regularity modulus.

We begin with a characterization of linearly regular intersection, relating
the condition modulus with a generalized notion of angle for several sets.
Such notions, for collections of convex sets, have also been studied recently
in the context of projection algorithms in [16,17].

Proposition 7.1 (variational characterization of linear regularity)
Closed sets F1, F2, . . . , Fm ⊂ E have linearly regular intersection at a point
x̄ ∈ ∩iFi if and only if the optimal value c̄ of the optimization problem

maximize
∑

i

〈ui, vi〉

subject to
∑

i

‖ui‖2 ≤ 1

∑
i

‖vi‖2 ≤ 1

∑
i

ui = 0

ui ∈ E, vi ∈ NFi
(x̄) (i = 1, 2, . . . , m)
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is strictly less than one. Indeed, we have

(7.2) c̄2 =





0 (x̄ ∈ ∩iint Fi)

1− 1

m · cond2(F1, F2, . . . , Fm|x̄)
(otherwise).

Proof When x̄ ∈ ∩iint Fi, the result follows by definition. Henceforth, we
therefore rule out that case.

For any vectors ui, vi ∈ E (i = 1, 2, . . . , m), by Lagrangian duality and
differentiation we obtain

max
ui

{ ∑
i

〈ui, vi〉 :
∑

i

‖ui‖2 ≤ 1,
∑

i

ui = 0
}

= min
λ∈R+, z∈E

max
ui

{ ∑
i

〈ui, vi〉+
λ

2

(
1−

∑
i

‖ui‖2
)

+ 〈z, ∑i ui〉
}

= min
λ∈R+, z∈E

{λ

2
+

∑
i

max
ui

{
〈ui, vi + z〉 − λ

2
‖ui‖2

}}

= min
λ>0, z∈E

{λ

2
+

1

2λ

∑
i

‖vi + z‖2
}

= min
z∈E

√∑
i

‖vi + z‖2

=

√√√√
m∑

i=1

∥∥∥vi − 1

m

∑
j

vj

∥∥∥
2

=

√∑
i

‖vi‖2 − 1

m

∥∥∥
∑

i

vi

∥∥∥
2

.

Consequently, c̄2 is the optimal value of the optimization problem

maximize
∑

i

‖vi‖2 − 1

m

∥∥∥
∑

i

vi

∥∥∥
2

subject to
∑

i

‖vi‖2 ≤ 1

vi ∈ NFi
(x̄) (i = 1, 2, . . . ,m).

By homogeneity, the optimal solution must occur when the inequality con-
straint is active, so we obtain an equivalent problem by replacing that con-
straint by the corresponding equation. By equation (3.3) and the definition
of the condition modulus, the optimal value of this new problem is

1− 1

m · cond2(F1, F2, . . . , Fm|x̄)

23



as required. 2

Theorem 7.3 (linear convergence of averaged projections) Suppose
closed sets F1, F2, . . . , Fm ⊂ E have linearly regular intersection at a point x̄ ∈
∩iFi. Define a constant c̄ ∈ [0, 1) by equation (7.2), and fix any constant c ∈
(c̄, 1). Then any averaged projection sequence with initial point sufficiently
near x̄ converges to a point in the intersection ∩iFi, with R-linear rate c (and
if each set Fi is super-regular at x̄, or in particular, prox-regular or amenable
there, then the convergence rate is c2). Furthermore, for any sufficiently small
perturbations di ∈ E for i = 1, 2, . . . , m, any averaged projection sequence for
the sets di + Fi with the initial point x̄ converges linearly to a nearby point
in the intersection, with R-linear rate c.

Proof In the product space Em with the inner product

〈(u1, u2, . . . , um), (v1, v2, . . . , vm)〉 =
∑

i

〈ui, vi〉,

we consider the closed set F =
∏

i Fi and the subspace L = {Ax : x ∈ E},
where the linear map A : E → Em is defined by Ax = (x, x, . . . , x). Notice
Ax̄ ∈ F ∩ L, and it is easy to check NF (Ax̄) =

∏
i NFi

(x̄) and

L⊥ =
{

(u1, u2, . . . , um) :
∑

i

ui = 0
}

.

Hence F1, F2, . . . , Fm have linearly regular intersection at x̄ if and only if F
and L have linearly regular intersection at the point Ax̄. This latter property
is equivalent to the constant c̄ in Theorem 5.16 (with C = L) being strictly
less than one. But that constant agrees exactly with that defined by equation
(7.2), so we show next that we can apply Theorem 5.16 and Theorem 5.20.

To see this note that, for any point x ∈ E, we have the equivalence

(z1, z2, . . . , zm) ∈ PF (Ax) ⇔ zi ∈ PFi
(x) (i = 1, 2, . . . , m).

Furthermore a quick calculation shows, for any z1, z2, . . . , zm ∈ E,

PL(z1, z2, . . . , zm) =
1

m
(z1 + z2 + · · ·+ zm).

Hence in fact the method of averaged projections for the sets F1, F2, . . . , Fm,
starting at an initial point x0, is essentially identical with the method of
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alternating projections for the sets F and L, starting at the initial point Ax0.
If x0, x1, x2, . . . is a possible sequence of iterates for the former method, then a
possible sequence of even iterates for the latter method is Ax0, Ax1, Ax2, . . ..
For x0 sufficiently close to x̄, this latter sequence must converge to a point
Ax̂ ∈ F ∩ L with R-linear rate c, by Theorem 5.16 and its corollary. Thus
the sequence x0, x1, x2, . . . converges to x̂ ∈ ∩iFi at the same linear rate.
When each of the sets Fi is super-regular at x̄, it is easy to check that the
Cartesian product F is super-regular at Ax̄, so the rate is c2. The last part
of the theorem follows from Theorem 5.20. 2

Applying Theorem 6.1 to the product-space formulation of averaged projec-
tions shows in a similar fashion that an inexact variant of the method of
averaged projections will also converge linearly.

Remark 7.4 (linear regularity and local extremality) In the language
of [34], that we have proved algorithmically that if closed sets have linearly
regular intersection at a point, then that point is not “locally extremal”.

Remark 7.5 (alternating versus averaged projections) For a feasibil-
ity problem for two super-regular sets F1 and F2, assume that linear regularity
holds at x̄ ∈ F1 ∩F2 and set κ = cond(F1, F2|x̄). Theorem 7.3 gives a bound
on the rate of convergence of the method of averaged projections as

rav ≤ 1− 1

2κ2
.

Notice that each iteration involves two projections: one onto each of the sets
F1 and F2. On the other hand, Corollary 5.18 and (5.19) give a bound on
the rate of convergence of the method of alternating projections as

ralt ≤ 1− 1

κ2
,

and each iteration involves just one projection. Thus we note that our bound
on the rate of alternating projections ralt is always better than the bound on
the rate of averaged projections rav. From the perspective of this analysis,
averaged projections seems to have no advantage over alternating projections,
although our proof of linear convergence for alternating projections needs a
super-regularity assumption not necessary in the case of averaged projections.
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8 Prox-regularity and averaged projections

If we assume that the sets F1, F2, . . . , Fm are prox-regular, then we can refine
our understanding of local convergence for the method of averaged projec-
tions using a completely different approach, explored in this section.

Proposition 8.1 Around any point x̄ at which the set F ⊂ E is prox-regular,
the squared distance to F is continuously differentiable, and its gradient
∇d2

F = 2(I − PF ) has Lipschitz constant 2.

Proof This result corresponds essentially to [40, Prop 3.1], which yields
the smoothness of d2

F together with the gradient formula. This proof of
this proposition also shows that for any sufficiently small δ > 0, all points
x1, x2 ∈ E near x̄ satisfy the inequality

〈x1 − x2, PF (x1)− PF (x2)〉 ≥ (1− δ)‖PF (x1)− PF (x2)‖2

(see “Claim” in [40, p. 5239]). Consequently we have

‖(I − PF )(x1)− (I − PF )(x2)‖2 − ‖x1 − x2‖2

= ‖(x1 − x2)− (PF (x1)− PF (x2))‖2 − ‖x1 − x2‖2

= −2〈x1 − x2, PF (x1)− PF (x2)〉+ ‖PF (x1)− PF (x2)‖2

≤ (2δ − 1)‖PF (x1)− PF (x2)‖2 ≤ 0,

provided we choose δ ≤ 1/2. 2

As before, consider sets F1, F2, . . . , Fm ⊂ E and a point x̄ ∈ ∩iFi, but
now let us suppose moreover that each set Fi is prox-regular at x̄. Define a
function f : E → R by

(8.2) f =
1

2m

m∑
i=1

d2
Fi

.

This function is half the mean-squared-distance from the point x to the set
system {Fi}. According to the preceding result, f is continuously differen-
tiable around x̄, and its gradient

(8.3) ∇f =
1

m

m∑
i=1

(I − PFi
) = I − 1

m

m∑
i=1

PFi
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is Lipschitz continuous with constant 1 on a neighborhood of x̄. The method
of averaged projections constructs the new iterate x+ ∈ E from the old iterate
x ∈ E via the update

(8.4) x+ =
1

m

m∑
i=1

PFi
(x) = x−∇f(x),

so we can interpret it as the method of steepest descent with a step size of
one when the sets Fi are all prox-regular. To understand its convergence, we
return to our linear regularity assumption.

The condition modulus controls the behavior of normal vectors not just
at the point x̄ but also at nearby points.

Proposition 8.5 (local effect of condition modulus) Consider closed
sets F1, F2, . . . , Fm ⊂ E having linearly regular intersection at a point x̄ ∈
∩Fi, and any constant k > cond(F1, F2, . . . , Fm|x̄). Then for any points
xi ∈ Fi sufficiently near x̄, any vectors yi ∈ NFi

(xi) (for i = 1, 2, . . . , m)
satisfy the inequality √∑

i

‖yi‖2 ≤ k
∥∥∥

∑
i

yi

∥∥∥.

Proof If the result fails, then we can find sequences of points xr
i → x̄ in Fi

and sequences of vectors yr
i ∈ NFi

(xr
i ) (for i = 1, 2, . . . , m) satisfying

√∑
i

‖yr
i ‖2 > k

∥∥∥
∑

i

yr
i

∥∥∥

for all r = 1, 2, . . .. Define new vectors

ur
i =

1√∑
j ‖yr

j‖2
yr

i ∈ NFi
(xr

i )

for each index j = 1, 2, . . . , m and r. Notice
∑

i ‖ur
i‖2 = 1 and ‖∑

i u
r
i‖ < 1

k
.

For each i = 1, 2, . . . , the sequence u1
i , u

2
i , . . . is bounded, so after taking

subsequences we can suppose it converges to some vector ui ∈ E, and since
the normal cone NFi

is closed as a set-valued mapping from Fi to E, we

deduce ui ∈ NFi
(x̄). But then we have

∑
i ‖ui‖2 = 1 and ‖∑

i ui

∥∥∥ ≤ 1
k
,

contradicting the definition of the modulus cond(F1, F2, . . . , Fm|x̄). 2
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The size of the gradient of the mean-squared-distance function f , defined
by equation (8.2), is closely related to the value of the function near a point
of linearly regular intersection. To be precise, we have the following result.

Proposition 8.6 (gradient of mean-squared-distance) Consider prox-
regular sets F1, F2, . . . , Fm ⊂ E having linearly regular intersection at a point
x̄ ∈ ∩Fi, and any constant k > cond(F1, F2, . . . , Fm|x̄). Then on a neighbor-
hood of x̄, the mean-squared-distance function

f =
1

2m

m∑
i=1

d2
Fi

satisfies the inequalities

(8.7)
1

2
‖∇f‖2 ≤ f ≤ k2m

2
‖∇f‖2.

Proof Consider any point x ∈ E sufficiently near x̄. Equation (8.3) im-
plies ∇f(x) = 1

m

∑
i yi, where yi = x − PFi

(x) ∈ NFi
(PFi

(x)) for each
i = 1, 2, . . . , m. By definition, we have f(x) = 1

2m

∑
i ‖yi‖2. Using inequality

(2.5), we obtain

m2‖∇f(x)‖2 =
∥∥∥

m∑
i=1

yi

∥∥∥
2

≤ m
m∑

i=1

‖yi‖2 = 2m2f(x)

But since x is sufficiently near x̄, so are the projections PFi
(x), so

2mf(x) =
∑

i

‖yi‖2 ≤ k2
∥∥∥

∑
i

yi

∥∥∥
2

= k2m2‖∇f(x)‖2.

by Proposition 8.5. The result now follows. 2

A standard argument now gives the main result of this section.

Theorem 8.8 (Q-linear convergence for averaged projections)
Consider prox-regular sets F1, F2, . . . , Fm ⊂ E having linearly regular inter-
section at a point x̄ ∈ ∩Fi, and any constant k > cond(F1, F2, . . . , Fm|x̄).
Then, for any averaged projection sequence {xj} with initial point x0 suffi-
ciently near x̄, the mean-squared-distance

f =
1

2m

m∑
i=1

d2
Fi
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is reduced by at least a constant factor at each iteration:

f(xj+1) ≤
(
1− 1

k2m

)
f(xj) (j = 0, 1, 2, . . .).

Proof Consider any point x ∈ E near x̄. The function f is continuously
differentiable around the minimizer x̄, so the gradient ∇f(x) must be small,
and hence the new iterate x+ = x −∇f(x) must also be near x̄. Hence, as
we observed after equation (8.3), the gradient ∇f has Lipschitz constant one
on a neighborhood of the line segment [x, x+]. Consequently,

f(x+)− f(x)

=

∫ 1

0

d

dt
f(x− t∇f(x)) dt =

∫ 1

0

〈−∇f(x),∇f(x− t∇f(x))〉 dt

=

∫ 1

0

(
− ‖∇f(x)‖2 + 〈∇f(x),∇f(x)−∇f(x− t∇f(x))〉

)
dt

≤ −‖∇f(x)‖2 +

∫ 1

0

‖∇f(x)‖ · ‖∇f(x)−∇f(x− t∇f(x))‖ dt

≤ −‖∇f(x)‖2 +

∫ 1

0

‖∇f(x)‖2t dt = − 1

2
‖∇f(x)‖2 ≤ − 1

k2m
f(x),

using Proposition 8.6. 2

A simple induction argument now gives an independent proof in the prox-
regular case that the method of averaged projections converges linearly to a
point in the intersection of the given sets. Specifically, the result above shows
that mean-squared-distance f(xk) decreases by at least a constant factor at
each iteration, and Proposition 8.6 shows that the size of the step ‖∇f(xk)‖
also decreases by a constant factor. Hence the sequence (xk) must converge
R-linearly to a point in the intersection.

Comparing this result to Theorem 7.3 (linear convergence of averaged
projections), we see that the predicted rates of linear convergence are the
same. Theorem 7.3 guarantees that the squared distance to the intersection
converges to zero with R-linear rate c2 (for any constant c ∈ (c̄, 1)). The
argument gives no guarantee about improvements in a particular iteration:
it only describes the asymptotic behavior of the iterates. By contrast, the
argument of Theorem 8.8, with the added assumption of prox-regularity,
guarantees the same behavior but with the stronger information that the
mean-squared-distance decreases monotonically to zero with Q-linear rate
c2. In particular, each iteration must decrease the mean-squared-distance.
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9 A Numerical Example

In this final section, we give a numerical illustration showing the linear con-
vergence of alternating and averaged projections algorithms. Some major
problems in signal or image processing come down to reconstructing an ob-
ject from as few linear measurements as possible. Several recovery procedures
from randomly sampled signals have been proved to be effective when com-
bined with sparsity constraints (see for instance the recent developments of
compressed sensing [20], [18]). These optimization problems can be cast as
linear programs. However for extremely large and/or nonlinear problems,
projection methods become attractive alternatives. In the spirit of com-
pressive sampling we use projection algorithms to optimize the compression
matrix. This speculative example is meant simply to illustrate the theory
rather than make any claim on real applications.

We consider the decomposition of images x ∈ Rn as x = Wz where
W ∈ Rn×m (n < m) is a “dictionary” (that is, a redundant collection of
basis vectors). Compressed sensing consists in linearly reducing x to y =
Px = PWz with the help of a compression matrix P ∈ Rd×n (with d ¿ n);
the inverse operation is to recover x (or z) from y. Compressed sensing theory
gives sparsity conditions on z to ensure exact recovery [20], [18]. Reference
[20] in fact proposes a recovery algorithm based on alternating projections
(on two convex sets). In general, we might want to design a specific sensing
matrix P adapted to W , to ease this recovery process. An initial investigation
on this question is [21]; we suggest here another direction, inspired by [9]
and [22], where averaged projections naturally appear.

Candes and Romberg [9] showed that, under orthogonality conditions,
sparse recovery is more efficient when the entries |(PW )ij| are small. One
could thus use the componentwise `∞ norm of PW as a measure of quality
of P . This leads to the following feasibility problem: to find U = PW such
that UU> = I and with the infinity norm constraint ‖U‖∞ ≤ α (for a fixed
tolerance α). The sets corresponding to these constraints are given by

L = {U ∈ Rd×m : U = PW},
M = {U ∈ Rd×m : UU> = I},
C = {U ∈ Rd×m : ‖U‖∞ ≤ α}.

The first set L is a subspace, the second set M is a smooth manifold while the
third C is convex; hence the three are prox-regular. Moreover we can easily
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compute the projections. The projection onto the linear subspace L can be
computed with a pseudo-inverse. The manifold M corresponds to the set of
matrices U whose singular values are all ones; it turns out that naturally the
projection onto M is obtained by computing the singular value decomposition
of U , and setting singular values to 1 (apply for example Theorem 27 of [31]).
Finally the projection onto C comes by shrinking entries of U (specifically, we
operate min{max{uij,−α}, α} for each entry uij). This feasibility problem
can thus be treated by projection algorithms, and hopefully a matrix U ∈
L ∩M ∩ C will correspond to a good compression matrix P .

To illustrate, we generate random entries (normally distributed) of the
dictionary W (size 128× 512, redundancy factor 4) and of an initial iterate
U0 ∈ L. (In practice, since the theory only guarantees local convergence, we
would need a heuristic to find an initial iterate.) We fix α = 0.1 and run
the averaged projection algorithm, thereby computing a sequence of Uk that
appear to be converging, as hoped, to a feasible solution to our problem.
Furthermore the convergence appears linear: Figure 9 shows

log10 f(Uk) with f(U) =
1

6
(d2

L(U) + d2
M(U) + d2

C(U))

for each iteration k. We observe f(Uk+1)/f(Uk) < 0.9627 for all k, suggesting
the expected local Q-linear convergence. Random examples are interesting
for our simple test of averaged projections: the challenging question of check-
ing a priori the linear regularity of the intersection of the three sets is open,
but randomness seems to prevent irregular solutions, providing α is not too
small. So in this situation, we would hope that the algorithm will converge
locally linearly; this is indeed what the numerical results in Figure 9 suggest.
We note furthermore that we tested iterated projections on this problem
(involving three sets, so not explicitly covered by Theorem 5.16). We ob-
served that the method still appears locally linearly convergent in practice,
and again, that the rate is better than for averaged projections.

This example illustrates how the projection algorithm behaves on random
feasibility problems of this type. However the potential benefits of using
optimized compression matrix versus random compression matrix in practice
are still unclear. Further study and more complete testing have to be done
for these questions; this is beyond the scope of this paper.
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Figure 1: Convergence of averaged projection algorithm for designing com-
pression matrix in compressed sensing.
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