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Abstract

There are many methods for identifying the shape and location of scatterers from far field
data. We take the view that the connections between algorithms are more illuminating than
their differences, particularly with regard to the Linear Sampling Method [7], the Point Source
Method [26] and the MUSIC algorithm [11]. Using the first two techniques we show that, for
a scatterer with Dirichlet boundary conditions, there is a nontrivial incident field that does
not generate a scattered field. This incident field, written as an expansion of eigenfunctions of
the far field operator, is used in the MUSIC algorithm to image the shape and location of the
obstacle as those points z where the incident field is orthogonal to the far field pattern due to
a point source located at z. This has two intriguing applications, one for inverse scattering and
the other for signal design. Numerical examples demonstrate these ideas.

1 Introduction

The inverse scattering literature abounds with methods to determine the shape of scatterers from
far field data. Of principal concern here are the MUSIC algorithm [11], the Linear Sampling Method
[7], the Point Source Method [26] and the connections between these methods. The connection be-
tween the MUSIC algorithm and Kirsch’s Factorization Method [17] has been detailed by Cheney
[5] and Kirsch [18] for scattering from point-like inhomogeneities. More recent studies [1, 16, 12, 13]
approach an application of the MUSIC algorithm to scatterers of some specified size, relative to
the wavelength, and are based on the finite-dimensional multi-static response matrix for point-like
scatterers. Our results complement those of Hazard and Ramdani [15], although they were con-
cerned with the mathematical justification of the decomposition of time-reversal operator (DORT)
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method [27]. The DORT method also relies on the asymptotic behavior of the time-reversal opera-
tor as the scatterers become small. Our goal here is to provide an analysis in the continuum of the
inverse problem of determing geometric information about scatterers of arbitrary size and shape
that are illuminated by fields of arbitrary frequency.

Our central result, Theorem 3.1, is built upon the Linear Sampling Method of Colton and Kirsch
[7] and shows that, on the boundary of a scatterer with Dirichlet boundary conditions, there is
a nontrivial incident field that has arbitrarily small far field pattern. With the help of the Point
Source Method of Potthast [26] we show in Corollary 3.2 that such an incident field does not
generate a scattered field. Theorem 3.5 combines these results as the foundation for a MUSIC
algorithm [11] for determining the shape and location of an obstacle. The technique indicates
intriguing possibilities for the construction of nonscattering fields that might be used to shield
obstacles from interrogating waves.

To our knowledge the analysis presented here shows for the first time the feasibility of the MUSIC
algorithm for determining the shape and location of Dirichlet obstacles without dependence on the
size of the obstacle or the frequency of the incident field. The next section introduces our notation
and the background for our main theoretical results presented in Section 3. Practical implementa-
tions of a MUSIC-type algorithm are discussed in Section 4. We illustrate the effectiveness of the
algorithm with two examples presented in Section 5.

2 Scattering Background

We consider acoustic scattering of small-amplitude, monochromatic, time-harmonic waves from one
or more impenetrable, sound-soft obstacles embedded in an isotropic homogeneous medium. The
obstacles are identified by the domain Ω ⊂ Rm, m = 2 or 3. The domain Ω is assumed to be
bounded with a simply connected exterior and C2 boundary ∂Ω and the unit outward normal ν.
The governing equation is the Helmholtz equation:

(1)
(
4+ k2

)
v(x) = 0, x ∈ Ωo ⊂ Rm,

where 4 denotes the Laplacian, k ≥ 0 is the wavenumber, Ωo := Rm\Ω and the closure of the open
exterior is denoted by the complement of Ω, that is Ωc. The surface of the obstacle is assumed to
be perfectly absorbing or sound-soft. This is modeled with Dirichlet boundary conditions: v = f
on ∂Ω where, f is continuous on ∂Ω.

2.1 General Incident Fields

Let

(2) v = vi + vs
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where the total field v : Ωc → C solves (1) on Ωo with boundary data

(3) v(x) := 0 for x ∈ ∂Ω.

The incident field vi : Rm → C solves (1) on Rm. The scattered field vs : Ωc → C solves (1) on
Ωo with boundary data

(4) vs(x) = −vi(x) for x ∈ ∂Ω

and

(5) r
m−1

2

( ∂
∂r
− ik

)
vs(x)→ 0, r = |x| → ∞,

uniformly in all directions.

By Green’s formula we can express the scattered field on Ωo by the boundary integral

(6) vs(x) =

∫
∂Ω

{
∂Φ(x, y)

∂ν(y)
vs(y)− Φ(x, y)

∂vs

∂ν
(y)

}
ds(y),

where x ∈ Ωo and Φ(x, y) is the outgoing free-space fundamental solution to (1), also referred to
as Green’s function. As |x| → ∞ one can see that the scattered field has the behavior

(7) vs(x) =
eik|x|

|x|
(m−1)

2

{
v∞(x̂) +O

(
1

|x|

)}
, |x| → ∞,

where the function v∞ is the far field pattern on the unit sphere S := {x̂ ∈ Rm | |x̂| = 1} given by

(8) v∞(x̂) = β

∫
∂Ω

(
∂e−ikx̂·y

∂ν
(y)vs(y)− e−ikx̂·y ∂v

s

∂ν
(y)

)
ds(y)

for x̂ ∈ S with

(9) β =

{
ei
π
4√

8πk
, m = 2

1
4π m = 3

, k > 0.

We define next the Herglotz wave operator H : L2(S)→ H1
loc(Rm) by

(10) (Hg)(x) :=

∫
S
e−ikη̂·xg(−η̂)ds(η̂), x ∈ Rm.

The corresponding Herglotz wave function is denoted vg(x) := (Hg)(x). Here H1 denotes the
Sobolev space of order 1. The signs in our definition are not standard, but they are chosen to
assure consistency between the directions of incident waves and measurement points on the far
field sphere. The physical interpretation of the signs is more apparent in a limited aperture setting
[20].
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Lemma 2.1 (Herglotz wave functions) Herglotz wave functions vg(x) := (Hg)(x) with g ∈ L2

are dense with respect to the H1(Ω)-norm in the space of solutions to the Helmholtz equation.

Proof. This is Theorem 2.3 of [10]. See also [9, Theorem 2.3]. �

By Lemma 2.1 and the Trace Theorems for elliptic equations [23], we can construct the density

gz such that vgz(x) ≈ Φ(x, z) and
∂vgz
∂ν (x) ≈ ∂Φ(x,z)

∂ν on ∂Ω arbitrarily closely for z ∈ Ωo with respect

to the H1/2- and H−1/2-norms respectively. By (6) and (8), for z ∈ Ωo we have

vs(z) =

∫
∂Ω

{
∂Φ(z, y)

∂ν(y)
vs(y)− Φ(z, y)

∂vs

∂ν
(y)

}
ds(y),

≈
∫
∂Ω

{
∂vgz(y)

∂ν(y)
vs(y)− vgz(y)

∂vs

∂ν
(y)

}
ds(y),

=

∫
S

∫
∂Ω

{
∂eik(−x̂)·y

∂ν(y)
vs(y)− eik(−x̂)·y ∂v

s

∂ν
(y)

}
ds(y)gz(−x̂)ds(x̂)

=
1

β

∫
S
v∞(x̂)gz(−x̂)ds(x̂).(11)

Note that the boundary of the scatterer is no longer involved in the expression for the scattered
field. Moreover, the above approximation does not depend on the boundary condition. At each
point z ∈ Ωo, by the correct choice of the density gz, we can, in principle, reconstruct the scattered
field. In the case of obstacles with Dirichlet boundary conditions, knowing the scattered field
allows one to determine the shape and location of the scatterer as the zeros of the total field, or by
constructing an indicator function for the scatterer via the eigenfunction expansion theorem [21].
The problem, however, is that the accuracy of this reconstruction depends on finding a density
g that approximates the fundamental solution on the boundary of the scatterer, which we don’t
know! The Point Source Method is concerned mainly with strategies for constructing the density
g (see, for example, [24, 25, 26, 20] ). Note also that the density g must contain information about
the evanescent fields in vs since none of this information is present in the far field pattern v∞.

2.2 Plane Wave Scattering

There are two ways to view the last integral in (11) that distinguish many numerical methods in
inverse scattering. By the first interpretation the last integral in (11) is an integral operator with
the far field pattern v∞ as a kernel. By the second interpretation, the kernel of the operator is the
density g and the operator acts on the far field data v∞. These two different approaches are best
illustrated by considering the case of scattering from incident plane waves

(12) ui(x; η̂) := eik(η̂)·x

where the incident field is parameterized by the direction of propagation η̂ ∈ S. The corresponding
scattered field and far field patterns are denoted us(x; η̂) and u∞(x̂, η̂).

4



When the scattering is from an incident plane wave with direction η̂, we define the far field
operator F : L2(S)→ L2(S)

(13) Ff(x̂) :=

∫
S
u∞(x̂, η̂)f(η̂) ds(η̂).

This operator corresponds to the view of (11) as an integral operator with the data u∞ as the
kernel. In this case (11) becomes

(14) us(z; η̂) ≈ 1

β

∫
S
u∞(x̂, η̂)gz(−x̂)ds(x̂) =

1

β

∫
S
u∞(−η̂,−x̂)gz(−x̂)ds(x̂)

where the last equality follows from the reciprocity relation

(15) u∞(x̂, η̂) = u∞(−η̂,−x̂).

The fact that (Fgz)(−η̂) ≈ βus(z, η̂) is a coincidence of having selected the correct function gz to
operate on.

By the second interpretation the last integral in (11) is an integral operator with the density gz
as a kernel: Agz : L2(S)→ X(z)

(16) Agzf(z) :=
1

β

∫
S
gz(x̂)f(x̂) ds(x̂).

Here we have left the image space X ambiguous because the dependence of the kernel of Agz on the
points z is not specified. Acting on the far field pattern corresponding to an incident plane wave
with direction η̂, the operator Agz can be seen to be a backpropagation operator that propagates
the far field back to the scattered field at z ∈ Ωo. We will occupy ourselves mostly with the latter
interpretation, but our principal tool will be the far field operator of the first interpretation.

Lemma 2.2 (far field operator) The far field operator F : L2(S) → L2(S) is compact. F is
injective with dense range if an only if there does not exist a Dirichlet eigenfunction for Ω which
is a Herglotz wave function.

Proof. Compactness follows from the fact that the kernel is continuous. For the remainder of the
statement see [8, Corollary 3.18]. �

The far field operator has a useful factorization in terms of a Herglotz wave function and the
mapping of radiating solutions to the Helmholtz equation from the boundary data to the far field
pattern, denoted by B.

Lemma 2.3 (B) Assume that k2 is not an eigenvalue of −4 in Ω. The mapping of ra-
diating solutions to the Helmholtz equation from the boundary data to the far field pattern,
B : H1/2(∂Ω) → L2(S) , is a compact, injective bounded linear operator with dense range and
range(B) = range((F∗F)1/4) where F∗ denotes the adjoint of the far field operator. Moreover, the
far field pattern of the outgoing fundamental solution to the Helmholtz equation, Φ∞(·; z), is in the
range of B if and only if z ∈ Ω.
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Proof. See [17, Theorem 3.6] and [17, Theorem 3.7]. See also [4]. �

For any incident wave vi restricted to ∂Ω we have −Bvi = v∞ and in particular incident fields that
can be written as superpositions of plane waves, vi = Hg, yield the desired factorization

(17) −BHg = Fg.

We slightly abuse the notation since, by our definitions of H and vi we need to include a Trace
operator restricting them to the boundary ∂Ω. This should be clear from the context.

3 Nonscattering Fields

The next theorem, modeled after the Linear Sampling Method of [4], shows that there is a nontrivial
density ĝ that converges to the nullspace of the far field operator.

Theorem 3.1 (normalized Linear Sampling) Let Ω be a domain with smooth boundary and
assume that k2 is not a Dirichlet eigenvalue for −4 on Ω. If z ∈ Ω then for every ε > 0 there
exists a solution gz to

(18a) ‖Fgz(·) + Φ∞(·; z)‖L2(S) < ε

such that

(18b) lim
z→∂Ω

‖F ĝz‖L2(S) = 0 and lim
z→∂Ω

∥∥∥∥∥Hĝz − fz
‖gz‖L2(S)

∥∥∥∥∥
H1/2(∂Ω)

= 0.

where

(18c) ĝz :=
gz

‖gz‖L2(S)

and fz solves Bfz(·) = −Φ∞(·; z).

Proof. Our proof is modeled after that of [6, Theorem 2.2]. Since −Φ∞(·; z) ∈ range(B), by Lemma
2.3 there is a solution fz to

(19) Bfz(·) = Φ∞(·; z).

By Lemma 2.1 and the Trace Theorem [23], since k2 is not a Dirichlet eigenvalue for the negative
Laplacian on Ω, the Herglotz wave operator is injective with dense range in H1/2(∂Ω). Hence for
any ε′ > 0 there is a solution gz ∈ L2(S) to

(20) ‖Hgz − fz‖H1/2(∂Ω) ≤ ε
′

and hence

(21)

∥∥∥∥∥Hĝz − fz
‖gz‖L2(S)

∥∥∥∥∥
H1/2(∂Ω)

≤ ε′

‖gz‖L2(S)
.
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Then by the continuity of B and the factorization (17) we have∥∥∥∥∥BHĝz − B fz
‖gz‖L2(S)

∥∥∥∥∥
H1/2(∂Ω)

=

∥∥∥∥∥−F ĝz(·) +
Φ∞(·; z)
‖gz‖L2(S)

∥∥∥∥∥ ≤ ε

‖gz‖L2(S)
(22)

where ε′ is small enough that Cε′ < ε for the constant C depending on B. Now as z → ∂Ω we have
fz(x)→ −Φ(x, z) for x ∈ ∂Ω, hence ‖fz‖H1/2(∂Ω) →∞ as z → ∂Ω. Since fz is approximated byHgz
it then follows that ‖Hgz‖H1/2(∂Ω) →∞ as z → Ω. Note also that ‖Hgz‖H1/2(∂Ω) ≤ ‖Hgz‖H1(Ω), so
by the Cauchy-Schwarz inequality we have ‖gz‖L2(S) →∞ as z → ∂Ω. In light of (22) this yields

lim
z→∂Ω

∥∥∥∥∥−F ĝz(·) +
Φ∞(·; z)
‖gz‖L2(S)

∥∥∥∥∥ = lim
z→∂Ω

‖F ĝz‖ = 0

while by (21) we have

lim
z→∂Ω

∥∥∥∥∥Hĝz − fz
‖gz‖L2(S)

∥∥∥∥∥
H1/2(∂Ω)

= 0.

This competes the proof. �

Note that we make no statement about the behavior of fz/‖gz‖L2(S) as z → ∂Ω, hence it is
unclear from (18b) what the behavior of Hgz is in the limit as z → ∂Ω. It is an open problem to
characterize the rate at which ‖gz‖ → ∞ and ‖fz‖ → ∞.

Since the far field pattern is zero if and only if there is no scattered field, the above theorem
implies that the incident Herglotz wave function Hĝz does not scatter in the limit as z → ∂Ω. That
is,

Corollary 3.2 (nonscattering incident fields) Let ĝz given by (18c) satisfy (18b) for gz sat-
isfying (18a). Then the scattered field, vsĝz , corresponding to the incident Herglotz wave function

viĝz = Hĝz has the behavior

lim
z

Ω→∂Ω

vsĝz(x) = 0 for x ∈ Ωo while lim
x

Ωo→∂Ω

lim
z

Ω→∂Ω

viĝz(x) = 0.

Here
Ω→ indicates that the limit is taken by points from within Ω.

Our proof relies on the backpropagation interpretation of (11) that is central to the Point Source
Method.

Lemma 3.3 (Backpropagation) Assume that k2 is not a Dirichlet eigenvalue of −4 on Ω and
let x ∈ Ωo. Given any δ′ > 0, there exists an ε′ > 0 such that for all px ∈ L2(S) satisfying

(23)
∥∥∥Φ(·, x)−Hpx(·)

∥∥∥
H1/2(∂Ω)

< ε′
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one has

(24)
∣∣∣us(x, η̂)− (Apxu∞)(x, η̂)

∣∣∣ < δ′

where Apx is defined by (16).

Proof. This is a special case of [26, Theorem 5.1.2]. See also [20, Theorem 1]. �

Proof of Corollary 3.2 To show the first limit we construct a backpropagation operator Apx to
approximate vsĝz . For δ′ > 0 and x ∈ Ωo, by Lemma 3.3 there is an ε′ > 0 such that px ∈ L2(S)
satisfying (23) also satisfies (24). The existence of such a px follows from the denseness of the
Herglotz wave operator. Next denote

(25) v∞ĝz := F ĝz

where ĝz is the density in Theorem 3.1. By [8, Lemma 3.16] the scattered field corresponding to
v∞ĝz is

(26) vsĝz(x) =

∫
S
us(x;−η̂)ĝz(−η̂) ds(η̂),

hence by equation (16), (26) and the Cauchy-Schwarz inequality∣∣∣vsĝz(x)− (Apxv∞ĝz )(x)
∣∣∣

=

∣∣∣∣∫
S
us(x;−η̂)ĝz(−η̂) ds(η̂)− 1

β

∫
S
px(ŷ)

(∫
S
u∞(ŷ;−η̂)ĝz(−η̂) ds(η̂)

)
ds(ŷ)

∣∣∣∣
=

∣∣∣∣∫
S
ĝz(−η̂)

(
us(x;−η̂)− 1

β

∫
S
px(ŷ)u∞(ŷ;−η̂) ds(ŷ)

)
ds(η̂)

∣∣∣∣
< Cδ′‖ĝz‖L2(S) = Cδ′(27)

where C is the surface area of the unit sphere. For x and δ′ fixed Apx is bounded and linear,
independent of ĝz, thus, since lim

z
Ω→∂Ω
‖v∞ĝz ‖L2(S) = 0, it follows that lim

z
Ω→∂Ω
|Apxv∞ĝz (x)| = 0.

Hence by (27) and the triangle inequality,

(28) lim
z

Ω→∂Ω

∣∣∣vsĝz(x)− (Apxv∞ĝz )(x)
∣∣∣ = lim

z
Ω→∂Ω

|vsĝz(x)| < Cδ′

for arbitrary δ′ > 0 which completes the proof to the first statement.

To see the corresponding incident field behavior, note that the total field viĝz + vsĝz is continuous
and since Ω has Dirichlet boundary conditions

(viĝz + vsĝz)(x) = 0 for x ∈ ∂Ω.
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Thus, given any ε′′ > 0 there is a ρ > 0 such that for all z ∈ Ω and x ∈ Ωo with dist (x,Ω) < ρ, we
have

|viĝz(x) + vsĝz(x)| < ε′′

2
.

Now, since for each x ∈ Ωo there is a ĝz such that lim
z

Ω→∂Ω
|vsĝz(x)| = 0, we have by the triangle

inequality, |viĝz(x)| < ε′′ for arbitrary ε′′ > 0 and x near enough to ∂Ω. This completes the proof.
�

Remark 3.4 By Theorem 3.1, the fact that lim
x

Ωo→∂Ω
lim

z
Ω→∂Ω

viĝz(x) = 0 implies that the gradient

of this field is the sole contribution to the H1/2-norm on ∂Ω. Also note that we have made no
assumptions about the frequency or the size of the scatterers, other than to assume that the
wavenumber is not a Dirichlet eigenvalue for the scatterer. �

Following [15] we interpret the integral operator on the right hand side of (14) as a time-reversal
operator for the multistatic data of an antenna array arranged on the aperture S emitting time-
harmonic fields. A transducer located at rη̂ for r � 1 emits a spherically spreading field Φ(rη̂, x)
which, in the region of the scatterer Ω is approximately the plane wave ui(x,−η̂). The resulting
scattered field is measured in the far field at the antenna element located at rx̂. The recorded
data u∞(x̂,−η̂) is reversed, or backpropagated, in order to reconstruct the scattered field around
the obstacle. This multistatic data array is thus the discrete realization of the far field operator
F . The connection between the MUSIC algorithm and Kirsch’s factorization method for scattering
from an inhomogeneous medium has been detailed in [5, 18]. We will have more to say about the
discrete operator in Section 4.2 where we investigate the spatial resolution as a function of the far
field sampling frequency and the number of incident fields.

Denote the singular system of F by (σn, ξn, ψn) where

(29) Fξn = σnψn, and F∗ψn = σnξn

with singular values |σn| > |σm| for m > n, left and right singular functions ψn and ξn respectively.
Then, by (14), for the correct gz we have

F∗us(z, ·) ≈ ΨΣΞ∗gz.

where Ψ and Ξ are the singular operators corresponding to ψn and ξn respectively and Σ is a
diagonal operator with the the singular values σn on the diagonal.

By Lemma 2.2, F has at most a countable number of discrete eigenvalues with zero as the only
possible cluster point. In fact, zero is an eigenvalue if and only if k2 is an eigenvalue of the negative
Laplacian on the interior of Ω with corresponding eigenfunction a Herglotz wave function. Such k,
if they exist, form a discrete set [23]. Thus, the null space of F is almost always trivial, though the
eigenvalues decay exponentially by the analyticity of the kernel of F .
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The MUSIC algorithm is based on the observation that the set of Green’s functions

(30) Φ∞(η̂; z) := lim
r→∞

Φ(rη̂, z) = βeik(−η̂)·z

for z near ∂Ω and all η̂ ∈ S, are nearly orthogonal to the noise subspace of F . We discuss what we
mean by the noise subspace in more detail in the next section. In precise terms we have

Theorem 3.5 (MUSIC) Let Ω be a domain with smooth boundary and assume that k2 is not a
Dirichlet eigenvalue for the negative Laplacian on Ω. Let (σn, ξn, ψn), n ∈ N, be the singular system
for the far field operator F with |σn| ≤ |σm| for n > m. Given any γ > 0 there is a vector a ∈ l2
with ‖a‖2 = 1 and ρ > 0 such that for any x ∈ Ωo satisfying dist (x,Ω) < ρ we have

(31)
∞∑
n=1

∣∣an〈ξn,Φ∞(·;x)〉L2(S)

∣∣ < γ.

Proof. Let gz and ĝz satisfy (18a)–(18b). By Corollary 3.2, there are δ > 0 and ρ > 0 such that

(32) |viĝz(x)| < γ whenever dist (z, ∂Ω) < δ (z ∈ Ω) and dist (x,Ω) < ρ (x ∈ Ωo).

The density ĝz can be written as a linear combination of the singular functions ξn [8, Theorem 4.8]:

(33) ĝz =
∞∑
n=1

ânξn where ân =
1

σn
(Ĝz, ψn) and Ĝz := F ĝz.

This and (32) yields

(34)

∣∣∣∣∣∑
n

ân
〈
ξn, u

i(x,−·)
〉∣∣∣∣∣ < γ for dist (x,Ω) < ρ.

Next, we construct a new density g̃z from ĝz by rotating the coefficients ân in the complex plane
in such a way that the sum corresponding to (34) is of the magnitudes of the individual terms.
Define

(35) g̃z =
N∑
n=1

ãnξn where ãn := eiθn |ân| for θn := − arg(
〈
ξn, u

i(x,−·)
〉
).

For this density ‖F g̃z‖ = ‖F ĝz‖ → 0 as z
Ω→ ∂Ω and ‖g̃z‖ = ‖ĝz‖ ≤ 1, so by the same argument as

in the proof of Corollary 3.2, the corresponding scattered and incident fields have the behavior

lim
z

Ω→∂Ω

vsg̃z(x) = 0 for x ∈ Ωo and lim
x

Ωo→∂Ω

lim
z

Ω→∂Ω

vig̃z(x) = 0.

As in (32), given any γ > 0 there are δ > 0 and ρ > 0 such that
∣∣∑

n ãn
〈
ξn(·), ui(x,−·)

〉∣∣ < γ
whenever dist (z, ∂Ω) < δ (z ∈ Ω) and dist (x,Ω) < ρ (x ∈ Ωo). But by our construction of ãn
the summands are all non-negative real numbers, that is

(36)
∑
n

∣∣ãn 〈ξn(·), ui(x,−·)
〉∣∣ < γ for dist (x,Ω) < ρ.
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Finally, recalling that ui(x,−η̂) = 1
βΦ∞(η̂;x), after normalization of the coefficients ãn the result

(31) follows. �

Remark 3.6 Inequality (34) alone could be used for imaging with the MUSIC methodology, how-
ever the contrast of the resulting images is not strong enough for adequate results. In other words,
x need not be very close to Ω in order to satisfy (34), and the resulting image does not have a
sharp cutoff near the boundary.

4 Practical Implementation

4.1 The MUSIC Algorithm

Theorem 3.1 only states that there exists a density ĝz that can be used to construct nonscattering
incident fields, it does not, however, suggest how one might calculate such a density. Arens [3] has
shown that for a sound soft scatterer as we have here a regularization strategy such as Tikhonov
regularization or spectral cutoff gives rise to a density with the desired properties. In other words,
if at a point z ∈ Ω we solve (18a) using Tikhonov or spectral cutoff regularization then the cor-
responding density ĝα,z can be used to construct an incident field satisfying Corollary 3.2 in the
limit as the regularization parameter α→ 0. There are two reasons why this is impractical: firstly,
we don’t know where the scatterer lies, and secondly we don’t know about the behavior of ĝz for
points z ∈ Ωo. Note, however, that the location of point z in the computation of the density ĝz is
arbitrary, so long as it is not in the exterior of Ω. This suggests that the orthogonality of ĝz with
the fundamental solution far fields Φ∞(·;x) expressed in (31) is a phenomenon more intimately
tied to the spectrum of the far field operator F than to the particular density ĝz. Indeed, as (18b)
shows, the desired density is in the “noise space” of F . Denote the noise subspace of F by Nγ
corresponding to the span of the singular functions ξn with singular values |σn| < γ for n > Nγ .
In the numerical experiments detailed below we take ĝ to be simply a linear combination of the
elements ξn ∈ Nγ for a large enough cutoff.

In the conventional MUSIC application one usually works with the MUSIC γ-pseudospectrum
defined by

(37) P(x) :=
1∑

n>Nγ

∣∣an〈ξn(·),Φ∞(·;x)〉L2(S)

∣∣ ≥ 1

γ
.

This is what is usually imaged as a function of x. Note that for x ∈ Ωo, we have P(x) → ∞ as
x→ ∂Ω, yielding the image of the support of the obstacle as the points where P(x) is large.

Our focus thus far has been on finding the location and shape of the scatterer, but the fact that
the constructed incident field is arbitrarily small at the boundary of the scatterer opens the door to
the construction of fields that avoid certain obstacles that one might like to protect, while targeting
others. In other words, the constructed incident field viĝz effectively does not scatter. In order to
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illustrate this point, in our numerical experiments, instead of the usual MUSIC implementation,
we show the inverse of the γ-pseudospectrum.

4.2 Resolution Analysis

The analysis above is in the continuum. In any practical application one will sample the far field
at a finite number of discrete points x̂i for a finite number of incident fields with direction η̂j ;
that is, the far field operator F given by (13) is replaced with the discrete multistatic response
matrix F ∈ CM×N . In this section we apply sampling criteria derived from the physical optics
approximation in order to estimate how many incident fields and far field measurements one needs
in order to achieve a specified spatial resolution. Other approaches are presented in [2, 16].

The criteria we develop are based on the physical optics approximation which is valid for very
large wavenumbers k. The technique discussed above is not dependent on the wavenumber. Indeed,
it works especially well at small wavenumbers in the resonance region for the scatterer, that is where
the wavelength is on the order of the scatterer. Our estimates for sampling rates are overestimates
in the sense that the spatial resolution predicted from a particular sampling rate in the far field is
not as fine as what is actually achieved. The analysis of this section thus provides lower bounds on
the predicted spatial resolution from a given sampling rate.

To begin, we recall the physical optics, or Kirchhoff approximation. Our treatment is standard
(see [8, 19] ) with the exception that our derivation also holds in R2. For very large wavenumbers,
that is, very small wavelengths relative to the curvature of the obstacle, the face upon which the
incident field impinges is nearly planar. As such, we can then approximate the normal derivative of
the scattered field by the normal derivative of the incident field. Define Ω+ to be the illuminated
side of the scattering domain Ω+ := {x ∈ ∂Ω | 〈ν(x), η̂〉 < 0} . The shadow of the scattering domain,
Ω−, is defined as Ω− := ∂Ω\Ω+. The physical optics approximation for the scattered field is written

(38)
∂us(x, η̂)

∂ν(x)
≈

{
∂ui(x,η̂)
∂ν(x) , x ∈ Ω+

−∂ui(x,η̂)
∂ν(x) , x ∈ Ω−

, k � 0.

This leads to the physically intuitive approximation that the normal derivative of the total field is
twice the normal derivative of the incident field on the illuminated side and zero on the shadow of
the scatterer.

Together with the representation for the scattered field [8, Theorem 3.12]

(39) us(x, η̂) = −
∫
∂Ω

Φ(x, y)
∂u(y, η̂)

∂ν(y)
ds(y)

for x ∈ Ωo, the Kirchhoff approximation yields

(40) us(x, η̂) ≈ −2

∫
∂Ω+

Φ(x, y)
∂

∂ν(y)
ui(y, η̂) ds(y),
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and

(41) u∞(x̂, η̂) ≈ −2β

∫
∂Ω+

e−iky·x̂
∂

∂ν(y)
ui(y, η̂) ds(y) = −2ikβ

∫
∂Ω+

eiky·(η̂−x̂)η̂ · ν(y) ds(y).

Similarly, on the shadow region we have

(42) u∞(x̂,−η̂) ≈ 2β

∫
∂Ω−

e−iy·x̂
∂

∂ν(y)
ui(y,−η̂) ds(y) = 2ikβ

∫
∂Ω−

e−iky·(η̂+x̂)η̂ · ν(y) ds(y).

The Divergence Theorem together with (41)-(42) yields

u∞(x̂, η̂) + u∞(−x̂,−η̂) ≈ −2ikβ

∫
∂Ω
eiky·(η̂−x̂)η̂ · ν(y)ds(y) +R(x̂, η̂)

= 2βk2(1− η̂ · x̂)

∫
Ω
eikz·(η̂−x̂) dz +R(x̂, η̂)

= 2(2π)m/2βk2(1− η̂ · x̂)X̂Ω(k(x̂− η̂)) +R(x̂, η̂)(43)

where X̂Ω is the Fourier transform on Rm(m = 2 or 3) of the indicator function of the obstacle and

(44) R(x̂, η̂) = 4ikIm(β)

∫
∂Ω−

eiky·(η̂−x̂)η̂ · ν(y)ds(y)

In most discussions of the physical optics approximation (see, for example, [19]) the setting is R3

and here the remainder term does not appear since by (9) Im(β) = Im(1/(4π)) = 0. In R2, however,
β is complex-valued which gives rise to the unusual remainder term in the calculations above.

The connection to the Fourier transform above allows us to estimate the sampling requirements
for the scatterer via the Whittaker-Shannon Sampling Theorem. Our data, the far field pattern,
is in the so-called Fourier or frequency domain of the scatterer. This data lies on circles in the
Fourier domain of the scatterer centered at the point −kη̂ where η̂ is the direction of the incident
field. This is depicted in Figure 1.

For our purposes it is not necessary to carry out a detailed sampling calculation for the geometry
shown in Figure 1 – an estimate based on sampling on a rectangular grid suffices. Our discussion
of the sampling theory is terse; interested readers are referred to [14] for more details. We consider
a cubic lattice of samples of some smooth function ϕ on Rm defined by

(45) ϕs := comb
( x

∆x

)
ϕ(x)

where ∆x is distance between the samples and comb (x) is the m-dimensional “comb” function

comb (x) :=
∞∑

|n|=−∞

δ(x− n)

for n a multi-index depending on the dimension m = 2 or 3. By the Convolution Theorem, the
Fourier spectrum of the sampled function is

ϕ̂s(ξ) = (∆x)m comb (∆xξ) ∗ ϕ̂(ξ)

13



Figure 1: Sampling in the Fourier domain of the scatterer Ω corresponding to the geometry of the
far field pattern in R2. The far field data is depicted here with wavenumber k = 3 at four incident
fields with directions η̂ = (−1, 0), (0,−1), (1, 0) and (0, 1). For each fixed η̂ the far field samples are
depicted here as being a continuum on a full aperture S.
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where ξ is the Fourier dual variable to x and ∗ denotes convolution. It can be shown [14, Eq.(2–53)]
that the sampled Fourier spectrum has the explicit representation

(46) ϕ̂s(ξ) =
∞∑

|n|=−∞

ϕ̂
(
ξ − n

∆x

)
where, again, n is a multi-index. If we assume that ϕ is bandlimited, then ϕ̂ has compact support.
Suppose ϕ̂ is supported on the cube R. If the sample spacing 1/∆x is large enough that for all
ξ ∈ R

ϕ̂
(
ξ − n

∆x

)
= ϕ̂s (ξ)

then by (46) the sampled Fourier spectrum is just a periodic extension of the true Fourier spectrum,
hence we can reconstruct ϕ exactly from the spectrum of the sampled function. If r is the length of
the smallest cube that supports the spectrum of ϕ then the sampled spectrum will exactly represent
the true spectrum as long as

∆x ≤ 1

2r
.

When equality holds, the sampling is said to be at the Nyquist frequency. At the Nyquist frequency,
we have the Whittaker-Shannon Sampling Theorem

(47) ϕ(x) =
∞∑

|n|=−∞

ϕ
( n

2r

)
sinc

(
2r
(
x− n

2r

))
where sinc is the m−dimensional sinc function.

Let us suppose that the smallest feature of our scatterer is 1/M of the size of the illuminating
wavelength. By the Whittaker-Shannon Sampling Theorem, a sampling rate of at least 1/(2M)
in the physical domain represents a highest frequency component of M in each direction and thus
2M sample points on a Cartesian grid along each dimension in the Fourier domain. In Figure
1 we see that the “frequency domain” is covered by circles of radius k centered at −kη̂. The
gaps in the frequency domain are determined by the smallest sampling rate with respect to either
the direction of incidence η̂ or the far field samples x̂. Suppose that the far field is sampled at
infinitesimal intervals and the directions of incidence are sampled at N points evenly distributed
on [−π, π]. The largest gap in the frequency domain for this sampling geometry is bounded above
by 2πk

√
2/N . In order to achieve the same resolution as could be achieved by sampling on the

Cartesian grid, N must be chosen so that

(48)
2π
√

2

N
≤ 1

M

This yields a conservative lower bound on the sampling frequency N of the far field pattern and
incident field directions needed to achieve a desired spatial resolution 1/M relative to the wavelength
of the illuminating field. Since this analysis is based on the physical optics approximation, we
expect these sampling requirements in the far field to be greater than what will actually be needed
to resolve the scatterers. This is illustrated in the Section 5.
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5 Examples

5.1 An infinite cylinder

As a first example we consider scattering from an infinite cylinder over which the field satisfies
homogeneous Dirichlet conditions. While this example is didactic it has the advantage that the
fields have explicit formulations. Taking advantage of radial symmetry, we parameterize directions
on the unit sphere S by the angles α, where αi is the direction of the incident field and α0 is the
observation point on the far field sphere. The incident and scattered fields can be represented in
series of Bessel and Hankel functions, respectively. Let b be the cylinder radius, Jn and H+

n denote
Bessel and Hankel functions of the first kind, respectively; then

(49) u∞(α0, αi) = −
∞∑

n=−∞

Jn(kb)

H+
n (kb)

ein(αi−α0).

It is easy to verify that the singular system {ψn, ξn, σn} is, in this case, given by

ψn(α0) =
1√
2π
e±inα0 , ξn(αi) =

eiφn√
2π
e±inαi ,

σn =

∣∣∣∣ Jn(kb)

Hj(kb)

∣∣∣∣(50)

where φn = Arg [Jn(kb)/Hn(kb)] and the plus sign gives one of the two singular vectors and the
minus sign the second for each singular value σn.

For the density

g =
∞∑
n

anξn(η̂)

we construct the incident Herglotz wave function
(51)

vig(x) :=

∫
S
g(−η̂)ui(x,−η̂) ds(η̂) =

∞∑
n

anvn(x) where vn(x) =

∫
S
ξn(−η̂)ui(x,−η̂) ds(η̂).

By (29), the corresponding far field is given by

(52) v∞g (x̂) :=

∫
S
g(−η̂)u∞(x̂,−η̂) ds(η̂) =

∞∑
n

an(Fξn)(x̂) =
∞∑
n

anσnψn(x̂).

For this simple geometry, the incident and scattered fields have explicit formulations. The
scattered field corresponding to vig has the representation

(53) vsg =
∑
n

anσnv
s
n(x) where vsn(x) =

∫
S
ξn(−η̂)us(x,−η̂)ds(η̂)
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and us is the scattered field corresponding to an incident plane wave. In cylindrical polar coordi-
nates, x = (r, θ), this simplifies to

vin(r, θ) =
√

2πinJn(kr)e±inθ,(54)

vsn(r, θ) =
√

2πeiφninH+
n (kr)e±inθ.(55)

For details see [22].

For a Dirichlet obstacle, the total field is zero on the boundary, and, by Theorem 3.5, the incident
field constructed from the finite collection of singular functions from Nγ to N is approximately zero:

lim
r→b

N∑
n=Nγ

∣∣∣∣Jn(kr)− Jn(kb)

Hn(kb)
Hn(kr)

∣∣∣∣2

≈ lim
r→b

N∑
n=Nγ

|Jn(kr)|2 ≈ 0(56)

with N > Nγ and Nγ such that σn < γ, ∀n > Nγ .

We present a plot of the singular values σn = |Jn(kb)/Hn(kb)| using unit wavelength (k = 2π)
and cylinder radius b = 35λ = 35 in the top of figure 5.1. It is clear from this figure that the
cutoff Nγ ≈ [kb] ≈ 220 where [x] indicates the nearest integer approximation of x. In the bottom
of the figure we show plots of the sums on the left and right-hand sides of (56) for the cases where
Nγ = [kb] and Nγ = [kb] + 4 and N = Nγ + 20. The boundary of the cylinder is identified by
where the incident field amplitude falls below a chosen cutoff. If this cutoff is chosen to be .02,
then one would estimate the radius of the cylinder to be about 35 for the case Nγ = 35, while one
would estimate the radius to be 36 for the case Nγ = 39. We obtained similar results for other
choices of the cylinder radius b. We observed in our experiments that the sharpness of the zero of
the constructed incident field at the boundary depends on the cut-off Nγ . The closer Nγ is to the
optimal cut-off, kb, the higher the contrast.

5.2 Two ellipses

Our second example is of two ellipses in R2 shown in Figure 3. We use potential theoretic techniques
to calculate the far field pattern for an incident plane wave. We introduce the acoustic single- and
double-layer operators given respectively by

(Sϕ)(x) := 2

∫
∂Ω
ϕ(y)Φ(x, y) ds(y), x ∈ ∂Ω

(Kϕ)(x) := 2

∫
∂Ω
ϕ(y)

∂Φ(x, y)

∂ν(y)
ds(y), x ∈ ∂Ω,(57)

where Φ is the two-dimensional outgoing free-space fundamental solution to the Helmholtz equation,
a zeroth-order Hankel function of the first kind. It can be shown [8] that, if the potential ϕ satisfies
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Figure 2: (Top) Plot of the singular values σn = |Jn(kb)/Hn(kb)| with k = 1 for a cylinder having
radius b = 35. (Bottom) Plots of the l.h.s. of (56) and the r.h.s. of this equation for Nγ = 35 and
for N = Nγ + 20 and for b = 35. Also shown is a plot of the r.h.s. of this equation for the case
where Nγ = 39.

the integral equation

(58) (I +K − iS)ϕ(·; η̂) = −ui(·; η̂),

then the scattered and far fields are given by

us(x, η̂) =

∫
∂Ω

(
∂Φ(x, y)

∂ν(y)
− iΦ(x, y)

)
ϕ(y; η̂) ds(y), x ∈ Ωo(59a)

u∞(x̂; η̂) = β

∫
∂Ω

(
∂e−iκx̂·y

∂ν(y)
− ie−iκx̂·y

)
ϕ(y; η̂) ds(y), x̂ ∈ S.(59b)

We do not use a sophisticated quadrature rule to resolve the point source on the boundary. This
introduces a numerical error of about 10% which has the advantage of introducing noise into our
calculations, albeit systematic noise.

For x ∈ R2 fixed, we calculate the non-scattering incident field vig shown in Figures 4–6 as

(60) vig(x) =
N∑

n=Nγ

|vin(x)|
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where vin is given by (51). The corresponding scattered field is vsg =
∑N

n=Nγ
σnv

s
n(x) for vsn given

by (53) with us is given by (59a).

To illustrate the resolution limits we sample the far field at N = 16, 32, 64, and 128 points
uniformly distributed over S with 16, 32, 64, and 128 incident field directions respectively, also
uniformly distributed over S. The wavenumber is k = 3 and the smaller ellipse has minor axes
radius 0.25. By the resolution analysis of Section 4.2, our smallest physical feature is 1/6 the
illuminating wavelength, which according to (48) suggests that we need to sample the far field at
N ≥ 2π

√
2(6) ≈ 53 points with more than 53 incident directions. This is more than is actually

required, as an examination of the singular values of the far field operator show. In Figure 4 we
show the magnitude of the constructed incident field for N = 32 through 128 with Nγ = N − 12.
This value of Nγ was chosen based on the decay of the singular values shown in the left column of
Figure 4. The singular values decay rapidly after the 7th singular value as predicted by the eventual
exponential decay of the singular values of the far field operator. They flatten out, however, beyond
the 20th singular value because of the error, or noise, in our calculation of the far field pattern. In
other words, the 20th and higher singular vectors of the far field operator appear to be in the noise
subspace. For a sampling rate of 32, we have Nγ = N − 12 = 20 and our constructed incident field
then consists of all available singular vectors in the noise subspace. For higher sampling rates of
64 and 128 there is not a significant difference in resolution when only the last 12 singular vectors
are used.

The case N = 16 shown in Figure 5 illustrates the reduction in resolution that results from
constructing the incident field from singular vectors that are not in the noise subspace of F . In
Figure 5(b) we used the 12 smallest singular vectors to construct the incident field. As Figure 5(a)
shows, most of these are still well within the signal subspace of the far field operator. With only the
last 4 singular vectors we are able to achieve remarkably good results, as demonstrated in Figure
5(c).

To illustrate the relative robustness of the method with respect to the choice of the cutoff Nγ ,
so long as it is above the critical cutoff, in Figure 6 we show the constructed incident field with
Nγ = 25, 78, and 124. The incident fields are not normalized in order to gauge the relative contrast
between the images.

To verify that the constructed scattered field vsg, is indeed small outside the scatterer, we show
in Figure 7 the computed scattered field using (53). The constructed scattered field is O(10−13)
around the scatterer and decays to zero rapidly away from the scatterer. The corresponding incident
field, in contrast, is at least O(10−4) on the exterior of the scatterer. This demonstrates Corollary
3.2.

6 Conclusion

Our main results, Theorem 3.1, Corollary 3.2 and Theorem 3.5, show that there is a density ĝ that
approaches, nontrivially, the null space of the far field operator corresponding to some fixed, smooth
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Figure 3: Sound-soft obstacles to be recovered.

scatterers. A superposition of plane waves weighted by such a density is a nonscattering incident
field for these scatterers. The density can be constructed from the singular functions of the far
field operator and the nonscattering phenomenon understood as the orthogonality of the singular
functions to the far field pattern of a point source with sources located on the boundary of the
scatterer. Since the image of this density acted upon by the far field operator vanishes, we arrive
at the seemingly counterintuitive conclusion that it is the noise subspace of the far field operator
that renders the shape and location of the obstacle, not the signal subspace. Our statement of
Theorem 3.1 also raises unanswered questions about the rate of blow-up of the densities in the
Linear Sampling Method.

The Point Source Method of Potthast [24, 25] rests on the approximation of the scattered field
us by computing the correct density for the construction of a backpropagation operator (16). As
already noted, constructing such a density is a nontrivial task since this requires some knowledge
of the boundary of the scatterer which we assume is unknown. The Linear Sampling Method
approaches the problem of finding the shape and location of the scatterer by looking for points
where the fundamental solution far field pattern is not in the range of the far field operator, but
still, one must solve an ill-posed linear integral equation at each point to be so tested in some
computational domain. One of the disadvantages of the Linear Sampling methodology however is
that, since it is not constructive, it provides very little information about numerical algorithms. Any
numerical implementation will involve some sort of regularization strategy. The actual behavior of
regularized solutions, or indeed any indication that a particular regularization strategy will deliver
the desired behavior, remains open with the exception of the analysis of [3].

Our numerical experiments indicate, however, that particular details about implementing the
Linear Sampling or Point Source Methods are somewhat beside the point: it is not necessary to
create an approximate domain as with the Point Source Method, nor is it necessary to solve many
ill-posed linear integral equations as in the Linear Sampling Method. We need only work with
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(a) (d)

(b) (e)

(c) (f)

Figure 4: (a)-(c) Decay of the singular values of the multi-static response matrix for the far field
sampled at 32 (a), 64 (b), and 128 (c) points for 32, 64 and 128 incident field directions respectively
evenly distributed on S. The far field pattern is calculated by (59b) to only about 10% accuracy
which introduces noise into the experiment reflected in the lower plateau of the singular values.
(d)-(f) The magnitude of the corresponding incident field |vi| calculated by (60) and (51) for the
far field sampled at 32 (d), 64 (e), and 128 (f) points for 32, 64 and 128 incident field directions
respectively evenly distributed on S. The cutoff for each of these examples is Nγ = N − 12 where
N = 32, 64 and 128 respectively.
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(a) (b)

(c)

Figure 5: (a) Decay of the singular values of the multi-static response matrix for the far field
sampled at 16 points for 16 incident field directions evenly distributed on S. (b) The magnitude
of the incident field |vi| calculated by (60) and (51) with cutoff Nγ = 4, N = 16. (c) Incident field
with Nγ = 12 and N = 16.
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(a) (b)

Figure 6: The magnitude of the incident field |vi| calculated by (60) and (51) for the far field
sampled at 128 points with 128 incident field directions evenly distributed on S. For each of these
examples N = 128 with cutoff Nγ = 104 (a), and Nγ = 20 (b).

Figure 7: The magnitude of the scattered field calculated via (53) and (39) for the far field sampled
at 128 points with 128 incident field directions evenly distributed on S. HereN = 128 andNγ = 116.
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incident plane waves and the known singular functions of the far field operator. This remains to
be proved. We believe that the answer lies with a closer examination of the connections between
Linear Sampling and the Factorization Method as detailed in [3]. This is the subject of future
research.

These results have intriguing implications for inverse scattering and signal design. The method
works very much like the Linear Sampling Method for inverse scattering in that the proposed
incident field is constructed from the measured far field data and the scatterer is identified by those
points in the domain where the incident field (and scattered field) are small. For signal design the
method opens the door to the possibility of constructing signals that avoid certain known obstacles
while irradiating others. Our application of the Linear Sampling Method to the MUSIC algorithm
is novel and clarifies the connections between many different inverse scattering approaches.
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