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Abstract

We report on progress in algorithms for iterative phase retrieval. The theory of convex optimisation
is used to develop and to gain insight into counterparts for the nonconvex problem of phase retrieval. We
propose a relaxation of averaged alternating reflectors and determine the fixed point set of the related
operator in the convex case. A numerical study supports our theoretical observations and demonstrates
the effectiveness of the algorithm compared to the current state of the art.

1 Introduction

The phase retrieval problem is a classical inverse problem in optics that has received renewed interest in
applications to nonperiodic scatterers and macromolecules. In a typical x-ray crystallography experiment,
for example, a crystalline specimen is illuminated with a monochromatic x ray and the resulting diffraction
pattern is recorded. In the far field of the crystal, that is, in the region of validity of the Fraunhofer
approximation, the complex amplitude of the diffracted x rays is equal to the (scaled) Fourier transform of the
electron density distribution of the specimen. The problem is that only the intensity of the diffracted field can
be measured. The missing phase information is critical for determining the electron density. In some cases,
such as x ray crystallography of “small” (relative to the source wavelength) periodic molecules, it is possible
to determine the electron density by what are referred to as direct methods [12]. For large macromolecules
and nonperiodic structures, however, one must rely on numerical techniques for reconstructing the missing
phase. So called iterative transform methods pioneered by Gerchberg and Saxton [11], and Fienup [10]
are well established generic iterative techniques for recovering the phase in a variety of settings. Recent
developments in imaging [9, 13, 14, 19–22], have placed a premium on improving the efficiency and stability
of these types of algorithms. This is the principal motivation of our work. For a derivation of the phase
problem from first principles, the reader is referred to [15] and references therein. For a review of the phase
problem in crystallography see [16].

In this work we derive a stable and fast new strategy for phase retrieval, what we call Relaxed Averaged
Alternating Reflection (RAAR), that falls under the category of iterative transform methods [15]. The
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motivation for the RAAR algorithm comes from recent work in which another new algorithm, the Hybrid
Projection Reflection algorithm (HPR), was presented [4]. The HPR algorithm was originally conceived as
a single parameter relaxation of the well known Douglas-Rachford algorithm applied to phase retrieval. The
HPR algorithm can also be viewed a special case of the three parameter difference map recently proposed
by Elser [7].

There are two fundamental and distinct issues that accompany these algorithms. The first is the incor-
poration of a priori information into the constraint structure of the algorithms. The second is the choice
of algorithm parameter values. Regarding the first issue, it is difficult to overestimate the effect of the
constraints on the mathematical properties and performance of the algorithms. There have been several
studies on the choice of constraints in applications to crystallography [8,17,18]. This issue is complicated by
the algorithmic formulation that is conventional in the optics community, where physical rational serve as
the principal motivation and guide for algorithm design. We use a simple example to illustrate how seem-
ingly minor changes in the physical domain constraints can lead to algorithms that appear very different
when written in the conventional optical format. This has caused some confusion in the literature which we
hope to clarify through an examination of the abstract algorithmic structures behind the leading techniques.
The choice of parameters also has a dramatic impact on the mathematical properties of the algorithms and
hence performance. Physical insight often provides the best (and only) basis for choosing values for the
algorithm parameters, but this is not always available or reliable. In the case of the HPR algorithm, our
numerical experiments have not provided an empirical basis upon which to make recommendations. A more
mathematically rigorous approach also appears to be difficult and has been found in only a few very special
cases. For instance, in the convex setting the convergence properties of the HPR algorithm are known for
the unrelaxed case [5]. For the relaxed HPR algorithm and the more general difference map a complete
and mathematically rigorous analysis has yet to be found. To circumvent the analytical barriers facing the
difference map and the HPR algorithm, we introduce the RAAR algorithm, which is conceptually simple,
analytically tractable and easy to implement; moreover, it outperforms the current state of the art. While
the RAAR algorithm coincides with the HPR algorithm in a limiting case, it does not fall in the class of
algorithms covered by Elser’s difference map framework.

A precise statement of the leading algorithms is given in Section 2 In this same section we provide a
terse outline of the mathematical justification for the RAAR algorithm. In Section 3 we demonstrate the
effectiveness of the algorithm and make practical recommendations for implementation.

2 Phase Retrieval and Iterative Transform Algorithms

2.1 Phase retrieval

Returning to the crystallography example, we consider the problem of recovering the electron density of
a crystal, denoted by u∗, from the diffraction pattern it produces upon illumination by a monochromatic
x ray source. In this setting it is natural to include some a priori assumptions, namely that u∗ is a real-
valued, nonnegative function supported on some prescribed bounded set D, that is L 3 u∗ : ZN → R+

with supp(u∗) ⊂ D ⊂ ZN . Here L is a Hilbert space of square integrable functions, ZN is the domain – in
this case the physical domain – corresponding to discrete (i.e. sampled) waves, R+ is the positive reals and
supp(u∗) is the support of u∗. Writing this in terms of constraints, we have u∗ ∈ S+ ⊂ L, where S+ is the set
of nonnegative functions in L with support on D. In many crystallographic settings the nonegativity of u∗
is less important than the support. It is common, therefore, to require only that the functions be supported
on D. In this case, we denote the corresponding constraint set by S. The sets S and S+ are referred to
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as the physical domain constraints. The other constraint we consider comes from the data, m, which we
presume consists of noisy magnitude measurements in the far field, thus m is proportional to the modulus of
the Fourier transform of u∗. We therefore refer to the domain of the image data m as the Fourier domain.
In terms of constraint sets, we write that u∗ ∈ M where M =

{
v ∈ L | |Fv| = m

}
and Fv denotes the

discrete Fourier transform of v. We shall refer to the set M as the Fourier, or image domain constraint.
Note that S+ is a convex set, while M is nonconvex. It is the nonconvexity of the magnitude constraint that
does not allow us to transfer classical convergence results for the most common algorithms to the case of
phase retrieval. For further discussion see [3].

2.2 Iterative Transform Algorithms

We formulate the problem of phase retrieval as a feasibility problem:

find u ∈ S+ ∩M. (1)

Iterative transform techniques are built upon combining projections onto the sets S+ and M in some fashion.
While they are seldom written as fixed-point algorithms, iterative transform algorithms can usually be put
into the form un+1 = T un where T is a generic operator in which the projections and averaging operations are
embedded (see [3,4]). For added control and flexibility, one often includes a relaxation strategy parameterised
by β. We write the relaxed operator with generic, single parameter relaxation strategy V (there can be
infinitely many such strategies) as V(T , β). In order effectively to exploit relaxations for improved algorithm
performance it is necessary to understand the mathematical properties of the operator V(T , β) – first and
foremost of these is the characterisation of the set of fixed points, Fix V(T , β). We return to this issue at
the end of this section.

The operators we study are built upon projectors and reflectors. Denote by PC an arbitrary but fixed
selection, or projector, from the possibly multi-valued projection onto a subset C of L. Closely related is the
corresponding reflector with respect to C

RC = 2PC − I,
where I is the identity operator. By definition, for every u ∈ L, PC(u) is the midpoint between u and RC(u).
Specialising to our application, the projector, PMu, of a signal u ∈ L onto the Fourier magnitude constraint
set M is given by

PM(u) = F−1(v̂0), where v̂0(ξ) =

m(ξ)
Fu(ξ)

|Fu(ξ)|
, if Fu(ξ) 6= 0;

m(ξ), otherwise .
(2)

Here, F−1 is the discrete inverse Fourier transform and v̂0 a selection from the multi-valued Fourier domain
projection. For further discussion of this projector see Luke et al [15, Corollary 4.3] and [6]. We return to
the issue of multivaluedness of the magnitude projection in Section 3. The projection of a signal u ∈ L onto
S+ is single-valued (since S+ is convex), and is given by

(∀x ∈ ZN )
(
PS+

(u)
)
(x) =

{
max{0, u(x)}, if x ∈ D;

0, otherwise.
(3)

One of the best known iterative transform algorithms is Fienup’s Hybrid Input-Output algorithm (HIO)
[10]. We use this as our benchmark for performance. In the present setting, HIO is given as

(∀x ∈ ZN ) un+1(x) =

{(
PM(un)

)
(x), if x ∈ D and

(
PM(un)

)
(x) ≥ 0;

un(x)− βn
(
PM(un)

)
(x), otherwise.

(4)
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There have been several attempts to identify the HIO algorithm with a broader class of relaxation strategies
that can be written as fixed point iterations, that is, in the form un+1 = V(T , βn)un.. Bauschke, Combettes
and Luke [3] proved that, when only a support constraint, as opposed to support and nonegativity, is
applied in the physical domain, then the HIO algorithm with β = 1 corresponds to the classical Douglas-
Rachford algorithm for which convergence results in the convex setting are well known. In a subsequent
article Bauschke Combettes and Luke [4] proved that, for physical domain support constraints only, the HIO
algorithm corresponds to a particular relaxation of the Douglas-Rachford algorithm, that is

(∀x ∈ ZN ) un+1(x) =

{(
PM(un)

)
(x), if x ∈ D

un(x)− βn
(
PM(un)

)
(x), otherwise,

(5)

is equivalent to
un+1 = 1

2

(
RS(RM + (βn − 1)PM) + I + (1− βn)PM

)
(un). (6)

Independent of these results, Elser [7] demonstrated the correspondence between the HIO algorithm with
only support constraints in the physical domain and the difference map,

un+1 = (I + β (PS ((1− γ2)PM − γ2I) + PM ((1− γ1)PS − γ1I))) (un), (7)

for the case where γ1 = −1 and γ2 = 1/β. It has been incorrectly assumed, however, that the correspondence
between the difference map and the HIO algorithm carries over to the case of support and nonnegativity
constraints – that is, upon replacing PS in (7) with PS+

, one obtains the HIO algorithm for nonnegativity
constraints. Instead, this simple substitution of the constraints in the difference map with γ1 = −1 and
γ2 = 1/β,

un+1 =

(
I + β

(
PS+

(
(1− 1

β
)PM −

1

β
I

)
+ PM

(
2PS+

+ I
)))

(un), (8)

yields the Hybrid Projection Reflection (HPR) algorithm proposed by Bauschke, Combettes and Luke in [4]:

un+1 = 1
2

(
RS+

(RM + (βn − 1)PM) + I + (1− βn)PM

)
(un). (9)

In [4, Proposition 2] it is shown that (9) is equivalent to

(∀x ∈ ZN ) un+1(x) =


(
PM(un)

)
(x), if x ∈ D and(

RM(un)
)
(x) ≥ (1− βn)

(
PM(un)

)
(x);

un(x)− βn
(
PM(un)

)
(x), otherwise.

(10)

It is easy to see by comparing (10) with (4) that these are fundamentally different algorithms. Moreover, a
reformulation of (4) in terms of a fixed point iteration does not appear to be possible due to the nonlinearity
of the PS+

operator [4].

Algorithmic prescriptions of the form (4), (5) and (10) are favoured in the optics community. It is thus
important to take great care when changing the constraint structure in the algorithms. As we have seen,
while the form of prescriptions of projection algorithms in terms of fixed point iterations un+1 = V(T , βn)un
does not depend on the underlying constraints, this is not the case for prescriptions of the form (4), (5) and
(10). This continues to cause some confusion in the optics literature where it is often assumed that simple
changes in the constraint sets for the fixed point prescriptions carries over in a straightforward manner to
prescriptions of the form (4), (5) and (10). When written as fixed point iterations, the effect of changing
the constraint structure is seen in the mathematical properties of the operator rather than the form of the
algorithm. To see how to translate the fixed point algorithm (9) to the equivalent algorithm of the form
(10), the reader should consult the proof of [4, Proposition 2]. In our development of the RAAR algorithm
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below, we show the analogous analysis in order to translate the fixed point algorithm into the more physically
intuitive format.

Performance measures of the above algorithms are notoriously difficult to assess. The principle criteria
we use are speed, quality of solutions and stability. Since each of the algorithms involve the same basic
operations at each iteration, the speed of one algorithm relative to another boils down to iteration counts to
convergence. But since, as we explain below, in practical settings these problems have no solution (that is,
they are infeasible), convergence is based on an error metric that is a rough indicator of image quality. To our
knowledge there is no reliable objective metric for image quality. Ultimately, the quality comparison between
algorithms is based on what looks good to the user. Nevertheless, the error metric we use is motivated by
the convergence theory for fixed point algorithms and is somewhat different than the conventional root-
mean-squared error metric used in the optics literature. Stability, however, can be objectively determined,
and this clearly distinguishes the algorithms. By stability we mean that the algorithm reliably approaches a
neighbourhood of a solution and remains there. A common and vexing problem for the HIO algorithm is that,
if allowed to run too long, iterates will wander away from the neighbourhood of a solution, and the images
will worsen. To circumvent this, practitioners have applied a variety of ad hoc recipes for applying the HIO
algorithm, amounting to doing n steps of HIO, switching to another algorithm for m steps, switching back
to HIO for another r steps, and stopping after running s steps of perhaps another algorithm. This problem
of “wandering” of the iterates, as we will explain below, is not unique to the HIO algorithm, and is rather
a result of the nonconvexity of the constraints. For most optics applications, HIO, HPR and the difference
map will all suffer from wandering, but preliminary numerical results indicate that the HPR algorithm is a
promising alternative. Experiments on simulated data indicate that, once in the neighbourhood of a solution,
the HPR iterates stay in that neighbourhood [4]. Moreover, by both the error metric and the subjective “eye-
ball norm”, the images delivered by the HPR algorithm are superior to those of the HIO algorithm [4]. A
drawback to the HPR algorithm is that, while it consistently delivers higher quality solutions than HIO, the
path that the HPR algorithm takes to a solution can involve an intermediate stage in which the iterates are
further from a solution, measured both the the error metric and the eye-ball norm, than iterates of the HIO
algorithm at the same stage of the iteration. In other words, the HIO algorithm reaches a neighbourhood of
a solution to the feasibility problem (1) in fewer iterations than HPR, but future HIO iterates will diverge
from this neighbourhood; furthermore, the HPR iterates appear eventually to find a tighter neighbourhood
of a solution than HIO iterates.

HPR has some modest analytical advantages as well. Detailed convergence results have been obtained
in [5] for the unrelaxed HPR algorithm (β = 1) in a convex setting. In contrast to this, there are no
convergence results available for the HIO algorithm applied to support and nonnegativity constraints – for
any value of β – since no convex analogue to (4) has been found. At this time, however, there are no
mathematically rigorous results proving convergence for the relaxed HPR algorithm (β 6= 1) or suggesting
how to choose the relaxation parameter β to improve performance. Even less is known about the difference
map which includes HPR as a special case.

We focus on the intermediate stage of these algorithms where HIO appears to outperform HPR. The
algorithm we propose next achieves improved performance at the intermediate stage and the superior stabil-
ity/quality of the HPR algorithm at later iterations through an analytically motivated relaxation strategy.
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2.3 Relaxed Averaged Alternating Reflections (RAAR)

The new algorithm we propose is given by the following: given any u0 ∈ L , generate the sequence
u0, u1, u2, . . . by

un+1 = V (T∗, βn)un (11)

where
V (T∗, β) = βT∗ + (1− β)PM and T∗ = 1

2 (RS+
RM + I). (12)

To underscore the connection of this algorithm with the Averaged Alternating Reflection (AAR) algorithm
studied in [5], we refer to (11) as the relaxed averaged alternating reflection (RAAR) algorithm. For β = 1
the RAAR, HPR, AAR, and the difference map (γ1 = −1 and γ2 = 1/β) algorithms are equivalent. For
β 6= 1 the RAAR algorithm is fundamentally different than HPR; moreover, it cannot be derived as a special
case of the difference map (8). The recursion (11) can be written analogously to (4) and (10). To see this, we
proceed as in Proposition 2 of [4]. Given an arbitrary signal v ∈ L, let v+ = max{v, 0} and v− = min{v, 0}
be its positive and negative parts, respectively. Then (11) can be rewritten as

un+1 =
(
−XDc · βn(2PM − I)− [XD · βn(2PM − I)]

−
+ PM

)
(un). (13)

There are 3 cases to consider: (i) If x ∈ D and (RMun)(x) ≥ 0, then (13) yields un+1 = PM ; (ii) if x ∈ D and
(RMun)(x) < 0, then (13) becomes un+1(x) =

(
((1− 2βn)PM + βnI) (un)

)
(x); (iii) if t /∈ D, then (13) can

also be written as un+1(x) =
(

((1− 2βn)PM + βnI) (un)
)
(x). Altogether this yields the following algorithm

(∀x ∈ ZN ) un+1(x) =


(
PM(un)

)
(x), if x ∈ D and

(
RM(un)

)
(x) ≥ 0;

βnun(x)− (1− 2βn)
(
PM(un)

)
(x), otherwise.

(14)

We summarise the above discussion in the following proposition.

Proposition 2.1. Algorithm (14) is equivalent to the recursion (11).

The update rule in algorithm (14) depends on the pointwise sign of the reflector
(
RM(un)

)
(x) whereas

the update rule for Fienup’s HIO algorithm (4) depends on the pointwise sign of the projector
(
PM(un)

)
(x).

The difference between the RAAR update rule and that for HPR (10) is much starker. Also note that the
“otherwise” action is simply a relaxation of the conditional action in the HIO algorithm; this is, again, very
different than the HPR algorithm.

2.4 Convex analysis

To gain some insight into the behaviour of the algorithm above, we study the behaviour of the convex
analogue to V (T∗, β). Let A and B be two closed convex subsets of L. Replace S+ and M by A and B
respectively. Let E ⊂ A denote the set of points in A nearest to B, and let F ⊂ B denote the set of points in
B nearest to A. The gap vector between A and B, denoted by g ∈ L, is defined by g = Pcl(B−A)

(0). Loosely

interpreted, this is a vector pointing from E to F with ‖g‖ measuring the smallest distance between A and
B. For instance, if A ∩ B 6= Ø then g = 0. For a more precise treatment see [1, 2]. The convex counterpart
to (12), the central operator in the RAAR algorithm, is defined by

V (T∗, β) = βT∗ + (1− β)PB, 0 < β < 1 where T∗ = 1
2 (RARB + I). (15)
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When discussing convergence of projection-type algorithms, one must take care to distinguish between
consistent and inconsistent feasibility problems. In the current convex setting, consistent problems satisfy
A ∩ B 6= Ø; when A ∩ B = Ø the problem is said to be inconsistent. Inconsistent problems are common in
applications where the a priori information represented by the constraint sets is highly idealised, particularly
in the presence of noise. Bauschke, Combettes and Luke [5] show that the properties of the AAR algorithm
(that is, RAAR with β = 1) for consistent problems are very different from inconsistent problems. The
reason for this is that the operator T∗ does not have a fixed point if A ∩ B = Ø. For 0 < β < 1 the convex
instance of the RAAR algorithm avoids these complications by transferring questions of consistency of the
constraints to the existence of nearest points. In other words, the RAAR operator enjoys the advantage that
Fix V (T∗, β) is independent of whether or not the associated feasibility problem is consistent. This is the
content of the following theorem.

Theorem 2.2. Let 0 < β < 1. Then

Fix V (T∗, β) = F − β

1− β
g (16)

where g is the gap vector between A and B and F ⊂ B is the set of points in B nearest to A. Moreover, for
every u ∈ Fix V (T∗, β), we have the following:

(i) u = PBu−
β

1− β
g; (ii) PBu− PARBu = g; (iii) PBu ∈ F and PAPBu ∈ E. (17)

Proof. To prove the result we must show (a) that F − βg/(1− β) ⊂ Fix V (T∗, β) and (b), conversely, that

Fix V (T∗, β) ⊂ F − βg/(1− β). The first statement (a) is proved analogously to the proof of equation (18)
of [5]. In the interest of brevity, we leave this as an exercise.

We show that Fix (βT∗ + (1 − β)PB) ⊂ F − β
1−β g. To see this, pick any u ∈ Fix (βT∗ + (1 − β)PB). Let

f = PBu and y = u− f . Recall that

PA(2f − u) = PA(2PBu− u) = PARBu. (18)

This, together with the identity [5, Proposition 3.3(i)]

(∀u ∈ L) u− T∗u = PBu− PARBu (19)

yields
PA(2f − u) = f + T∗u− u. (20)

For our choice of u we have βT∗u+ (1− β)PBu = u, which yields

T∗u− u =
1− β
β

(u− PBu). (21)

Then (20) and (21) give

PA(2f − u) = f +
1− β
β

(u− f) = f +
1− β
β

y. (22)

Now, for any a ∈ A, since A is nonempty, closed and convex, we have

〈a− PA(2f − u), (2f − u)− PA(2f − u)〉 ≤ 0, (23)
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and hence.

0 ≥
〈
a−

(
f +

1− β
β

y

)
, (2f − u)−

(
f +

1− β
β

y

)〉
=

〈
a−

(
f +

1− β
β

y

)
, − y − 1− β

β
y

〉
=

1

β
〈−a+ f, y〉+

(1− β)

(β)2
‖y‖2. (24)

Here we have used (23), (22) and the fact that y = u − f . On the other hand, for any b ∈ B, since B is a
nonempty closed convex set and f = PBu, we have

〈b− PBu, u− f〉 ≤ 0, (25)

which yields
〈b− f, y〉 = 〈b− f, u− f〉 ≤ 0. (26)

Together, (24) and (26) yield

〈b− a, y〉 ≤ −1− β
β
‖y‖2 ≤ 0. (27)

Now take a sequence a0, a1, a2, . . . in A and a sequence b0, b1, b2, . . . in B such that gn = bn − an → g. Then

(∀n ∈ N) 〈gn, y〉 ≤ −
1− β
β
‖y‖2 ≤ 0. (28)

Taking the limit and using the Cauchy-Schwarz inequality yields

‖y‖ ≤ β

1− β
‖g‖. (29)

Conversely, u− (βT∗u+ (1− β)PBu) = β (f − PA(2f − u)) + (1− β)y = 0 gives

‖y‖ =
β

1− β

∥∥∥f − PA(2f − u)
∥∥∥ ≥ β

1− β
‖g‖. (30)

Hence ‖y‖ = β
1−β ‖g‖ and, taking the limit in (28), y = − β

1−β g, which confirms (i). From (18) and (22) with

y = − β
1−β g it follows that f − PARBu = g which proves (ii) and, by definition, implies that PBu = f ∈ F

and PAPBu ∈ E. This yields (iii) and proves (16). �

In words, regardless of whether or not A∩B is empty, as long as there are points in B that are nearest to A,
then the RAAR operator V (T∗, β) has a set of fixed points, and these are precisely the points in B nearest
to A, translated by the scaled gap vector. This is the starting point for the convex heuristics behind the
RAAR algorithm. Statements about convergence and more detailed behaviour of the algorithm are beyond
the scope of this work.

We conclude the mathematical analysis with some observations that motivate the relaxation strategy we
implement in Section 3. We wish to use the parameter β to control the step size between successive iterates
and, as much as possible, to steer the iterates. Far away from the solution, it is easy to see the damping
effect of the parameter 0 < β < 1, which derives from the form of the relaxation (12) as simply a convex
combination of the operator T∗ and the projector onto the data PM – the smaller the relaxation parameter β,
the closer to the data we require the iterates to stay. It was noted in [4] that, regardless of the relaxation, the
HPR algorithm (10) takes significantly longer than the HIO algorithm (4) to reach a suitable neighbourhood
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of the solution, although, once near a solution, HPR delivers consistently better images with greater stability
and reliability than HIO. We show in the next section that the dampening effect of the relaxation in the
RAAR algorithm is just what is needed to control the initial behaviour of the HPR algorithm.

For the behaviour of the algorithm near the solution, we rely on the convex analysis. By (16), the
relaxation parameter β effects the fixed points of the operator through the gap vector. If the feasibility
problem is consistent, that is, A∩B 6= Ø, then the gap vector g = 0. In this case, is it not clear what effect,
if any, β will have on convergence. On the other hand, if the problem is inconsistent, that is, A ∩ B = Ø,
and g 6= 0, then, by (16), the set of nearest points F can be translated arbitrarily far away in the direction
g by letting β approach 1 from below. We use this to gain some control on the step size between successive
iterates and the directions of the steps.

Proposition 2.3. Let un ∈ L satisfy ‖un − uβn‖ < δ where uβn ∈ Fix V (T∗, βn) and V (T∗, βn) is the RAAR
relaxation strategy defined by (15) with 0 < βn < 1. Define un+1 = V (T∗, βn+1)un for any 0 < βn+1 < 1.
Then ∥∥∥∥un+1 −

(
fβn
− βn+1

1− βn
g

)∥∥∥∥ < δ, where fβn
= PBuβn

∈ F. (31)

Proof. For any u ∈ L, by (19) and (15), we have V (T∗, βn+1)u− V (T∗, βn)u = (βn+1 − βn) (PA − I)RBu,
which, together with (17)(i), yields

uβn
− V (T∗, βn+1)uβn

=
βn+1 − βn

1− βn
g, or V (T∗, βn+1)uβn = fβn −

βn+1

1− βn
g. (32)

Since V (T∗, βn+1), being a convex combination of nonexpansive operators, is itself nonexpansive, the result
follows from (32). �

While the HPR algorithm gives quite stable solutions eventually, the above theory suggests that this stability
can be improved in a controlled fashion. Consider the fixed point iteration as a descent algorithm minimising
some error metric (in fact, minimising the gap distance) where −g is the direction of descent. By (31) and
the first equation in (32),

un+1 ≈ V (T∗, βn+1)uβn = uβn −
βn+1 − βn

1− βn
g,

thus one can use βn+1 to affect steps in the direction −g ranging, in the limit, from length −βn/(1− βn) to
1 as βn+1 varies from 0 to 1 respectively. The difference un+1 − un for the unrelaxed algorithm (β = 1) was
shown in [5] to converge to the negative gap vector −g in the inconsistent case. The effect of the relaxation
is primarily to dampen the iteration in the neighbourhood of a solution in the case of inconsistent problems.
To see the advantage of this, consider the nonconvex case and suppose that the problem is inconsistent (that
is, the gap vector g 6= 0). The only case of the HPR algorithm for which we can say anything is the case
β = 1, which is the same as the unrelaxed RAAR (or AAR) algorithm, so we restrict the discussion to the
RAAR and AAR algorithms. The convex analysis of the AAR algorithm shows that, even though the gap is
attained, the iterates un continue to move in the direction −g without end. In the nonconvex setting, even
if the true gap is attained, the continued progress of the iterates in the direction −g could push the iterates
away from the domain of attraction of the local solution and into a different domain of attraction. Thus the
projections of the iterates, or the shadows might never converge. This “wandering” of the iterates near an
apparent local solution has been observed both with the HIO and HPR algorithms, though it is much less
severe and destabilising with HPR than it is with HIO. The relaxations in the RAAR algorithm can be used
to either dampen the iterates near a local solution to slow drifting out of a domain of attraction, or to halt
the wandering of the iterates altogether by holding the relaxation parameter at a fixed value less than 1.
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3 Numerical Implementation

Our goal with the RAAR algorithm is to use dynamic relaxations to shorten the initial “warm-up” phase of
the HPR algorithm and to stabilise the algorithm near a local solution. The algorithm we consider is

un+1 ≈ V (T∗, βn)un. (33)

Before outlining our specific implementation, some remarks are in order about the calculation of T given
by (12). As discussed in [15, Section 5.2] the projection onto the magnitude constraint PM is a numerically
unstable operation due to the multivaluedness of the projection operator. We therefore recommend the
following approximation to PM (see [15, Eq.74]):

PMu ≈ ∇Jεu = I −F−1

((
|Fu|2

(|Fu|2 + ε2)
1/2
−m

)
|Fu|2 + 2ε2

(|Fu|2 + ε2)
3/2
Fu

)
(34)

for 0 < ε� 1 , where

Jε(u) =
1

2

(
‖u‖2 −

∥∥F−1v̂ −m
∥∥2) , where v̂ =

|Fu|2(
|Fu|2 + ε2

)1/2 . (35)

Define

T̃∗ =
1

2

(
RS+

(2∇Jε − I) + I
)
. (36)

Under reasonable assumptions, by the continuity of RS+
and [15, Corollary 5.3] it can be shown that

∇Jε(u) → PM(u) and V (T̃∗, β)u → V (T∗, β)u as ε → 0. For our experiments, we choose ε to be an
order of magnitude larger than machine zero (double precision) relative to the square of the largest data
element, that is, ε = 10−15 max

(
|(Fu)|2

)
.

Using the stable approximation V (T̃∗, β) given by (36), from the initial guess u0 we generate the sequence
u0, u1, u2, . . . by

un+1 = V (T̃∗, βn)un where βn+1 = β0 + (1− β0)
(
1− exp

(
−(n/7)3

))
. (37)

The rule for updating βn is a smooth approximation to a step function from the value β0 to the value 1
centred at iteration n = 7. We compare this algorithm to the HIO (4) and HPR (10) algorithms using the
same stable projection approximation. We study algorithm performance with noisy data. The initial points
u0 are chosen to be the normalised characteristic function of the support constraint shown in Figure 1(c).

The data consists of the support/nonnegativity constraint, shown in Figure 1(c), and Fourier magnitude
data m, shown in Figure 1(b), with additive noise η – a symmetric, randomly generated array with a zero
mean Gaussian distribution. Following the experimental design of [4], the signal-to-noise ratio (SNR) is
20 log10 ‖m‖/‖u‖ = 34 dB.

As in [4], the error metric we use to monitor the algorithms, ES+
, is given by

ES+
(xn) =

∥∥PS+

(
PM(un)

)
− PM(un)

∥∥2∥∥PM(un)
∥∥2 . (38)

Originally suggested by Fienup [10], this error metric is motivated from the observation that one is often
more interested in signals satisfying the object domain constraint S+. It is natural, then, to monitor the
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Figure 1: Original images and corresponding data used for the comparison of the HIO and HPR algorithms. The

centre of (a) is a 38 × 38 pixel section of the standard Lena image, zero-padded to a 128 × 128 matrix. Frame (b)

is the noiseless Fourier magnitude data m corresponding to image (a). The same object domain support constraint

(and initial guess) of size 64 × 64 pixels, shown in (c), is used for each trial.

(a) (b) (c)

squared distance from the signal PM(un) to the set S+, that is,
∥∥PS+

(
PM(un)

)
−PM(un)

∥∥2. The denominator
of (38) is just a normalisation relative to the signal energy. It is important to note that this error metric is
in situ in the sense that one need not know what the true object is. The root mean squared error favoured
in the optics literature, in contrast, is given by

ERMS(un) =

∥∥ |Fun| −m∥∥
‖m‖

. (39)

This monitors the distance of the iterate un to the data rather than the a priori information. A deeper
mathematical motivation for (38) based on fixed point theory can be found in [5].

We compute the mean value of the error measure ES+ over 100 trials with different realizations of the
noise and the same initial guess.

First, we compare the mean behaviour over 100 iterations of two sets of realizations of the algorithms,
each corresponding to different relaxation strategies, β = 0.75, β = 0.87, β = 0.99 and variable βn governed
by (37) with β0 = 0.75. The average value of the error metric at iteration n, ES+

(xn), is shown in Figure 2.
These are all given in decibels (recall that the decibel value of α > 0 is 10 log10(α)). In Figure 3 we show
typical estimates generated by the respective algorithms at iteration 35, all from the same realization of noise
and the same initial guess. While the RAAR algorithm with β = 0.75 appears to perform well as measured
by ES+

(see Figure 2(a)), it is clear from Figure 3 that the quality of solutions found by the RAAR algorithm
degrades rapidly as the relaxation parameter β becomes small. For values of β near 1.0 the quality of the
iterates generated by the RAAR algorithm does eventually improve, however, as with the HPR algorithm,
it takes many more iterations to achieve this improvement. For static values of β the best performance for
the RAAR algorithm appears to be achieved with a value of β = 0.87. The variable βn trials for the RAAR
algorithm yielded the best overall results, measured both by the error metric, as well as observed picture
quality. In contrast to this, the relaxation parameter does not appear to have any identifiable effect on the
performance of the HIO or HPR algorithms.

4 Concluding Remarks

There are infinitely many relaxation strategies one could implement for iterative transform methods, but
very few of them admit a meaningful mathematical analysis. The standard for phase retrieval algorithms,
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Figure 2: Error metric ES+
(xn) averaged over 100 realizations of noise (SNR=34 dB). For (a)-(c) the relaxation

parameter for the respective algorithms, βn, is fixed. For (d) βn varies from 0.75 to 1.0 according to (37).

(a) (b)

(c) (d)
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Figure 3: Typical images recovered after 35 iterations of the HIO, HPR, and RAAR algorithms for different

relaxation strategies with the same realization of data noise (SNR=34 dB) and the same normalised initial guess.

The variable βn trials were generated according to the rule given by (37).

HIO HPR RAAR

β = 0.75

β = 0.87

β = 0.99

β = 0.75→ 1.0
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Fienup’s HIO algorithm, has been identified in a special case with the promising HPR algorithm, which in
turn, has been identified as a special case of Elser’s difference map. For each of these algorithmic frameworks,
the mathematical properties of the algorithms vary dramatically with the parameter values in a manner
analogous to bifurcations of dynamical systems. A complete mathematical analysis must treat all relevant
intervals of parameter values on a case by case basis. No such analysis is available for the HIO, HPR or
difference map algorithms. To circumvent these difficulties and to improve upon the HPR algorithm, we
propose a simple relaxation, the RAAR algorithm, of a well understood Averaged Averaged Reflection (AAR)
algorithm. The relaxation is a convex combination of the AAR fixed point operator, and the projection onto
the data. This intuitive framework is mathematically tractable and provides an easy strategy for the choice
of relaxation parameter that, moreover, improves algorithm performance. In contrast, it appears that similar
relaxation strategies have little effect on either the HIO or the HPR algorithm. We cannot suggest a rule
by which to select a static value of β – this depends on the data. Nevertheless, based on the results for
the variable βn trials, we can recommend the fairly generic dynamic relaxation strategy of (37) for getting
the best performance from the RAAR algorithm. Here the algorithm is significantly relaxed in the early
iterations, helping the algorithm quickly to find a neighbourhood of the solution while maintaining fidelity
to the data, and then decreasing the relaxation (i.e. increasing βn) in the neighbourhood of the solution to
avoid stagnation at a poor local minimum. To stabilise iterates in the domain of attraction of a solution, a
final fixed value of β close to, but less than, 1, say β = .99999 should be chosen. In a technical point, we
also proposed a smooth perturbation of the magnitude projector (34) to improve the numerical stability of
computing the projection onto magnitude constraints.

This work was supported by a Post-doctoral Fellowship from the Pacific Institute for the Mathematical
Sciences at Simon Fraser University. The author would like to thank Veit Elser for pointing out the connection
between the HPR algorithm and the difference map. Thanks also to the anonymous referees for their helpful
comments. Special thanks to Heinz Bauschke and Patrick Combettes for their careful reading and valuable
comments during the preparation of this work.
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