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Abstract

We outline two methods for obstacle reconstruction from multifrequency far-field scattering data, the first built
upon the point source method proposed by Potthast for solving inverse scattering problems with single frequency
data in the resonance region, and the second based on filtered backprojection techniques using the physical optics
approximation for high frequency scattering. Our implementation using the point source method can be viewed
as a generalized filtered backprojection algorithm, the key to which is the construction of the filter used in the
backprojection operator. Numerical examples illustrate that the critical factor for reconstructions in multifrequency
settings is the frequency dependence of the filter.
© 2004 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, many innovative algorithms have appeared for inverse scattering applications in the
resonance region. Of particular interest here are algorithms that share the feature of splitting the original
ill-posed non-linear inverse problem into an ill-posed linear inverse problem, and a well-posed non-linear
problem. These algorithms were designed primarily with single, low-frequency applications in mind.
Good examples can be found in the pioneering work of Colton and Nk Kirsch and Kres$10],

Colton and KirscH4], and Potthasfl18]. In the present work, we study one of the above methods in
the context of a classical high-frequency technique that employs the physical optics approximation. In
this short space, it is impossible to do justice to all of the above techniques, so we limit our scope to
the point source method proposed by Potthia8}. The multifrequency aspect of our investigation is
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not specific to the point source method, however, it serves to underscore the power of this essentially
non-linear technigue in comparison with much simpler and coarse filtered backprojection based on the
physical optics approximation.

We begin with a brief orientation to forward scattering. Inverse scattering, including the point source
method and physical optics approximations, is treate8aation 3 Our discussion of the point source
method focuses mainly on the approximation of the scattered field. For more detail on the theory and
implementation, interested readers are referrd@9®0]. Numerical results are presented3action 4

2. Forward scattering

This discussion is limited to scattering of small-amplitude, monochromatic, time-harmonic waves from
an impenetrable, sound-soft obstacle embedded in an isotropic homogeneous medium. The obstacle |
identified by its supporf2 ¢ R™, m = 2 or 3. Throughout this work, unless otherwise stateds
assumed to be a bounded domain with conne€fe(wice continuously differentiable) boundady2
and the unit outward normal The governing equation for this setting is the Helmholtz equation:

(A+Kk*v(x) =0, xe£°cR", (1)

whereA denotes the Laplaciar,> 0 is thefrequencyor wavenumbeand2¢ := R\ 2. Our analysis

is built upon the principle of superposition of single, fixed frequencies. To limit notational clutter, we
therefore omit any explicit dependency on the wavenumstmerd simply denote solutions tq. (1)as
complex-valued scalar mappings £2° — C. If there is any chance for confusion, we denote the wave

v atx parameterized by the wavenumheasv(x, k) and consider this a mapping on the product space
v: £2° x R, — C. The surface of the obstacle is assumed to be perfectly absorbing or sound-soft. This
is modeled with Dirichlet boundary conditions= f on a2 wherefis continuous orms2.

Consider aincidentfield v' : R” — C that, for fixedk, is anentire solutiorto the Helmholtz equation
onR™, that isv' satisfiesEq. (1)onR”. Thescattering problenis to find thetotal fieldv : £2° — C that
satisfiesEq. (1)on £2° andv = v' + vSwith f = 0 for the boundary condition, and where: 2°¢ — C
is thescattered fieldsatisfyingEq. (1)on £2° and theSommerfeld radiation condition

0
=72 (5 _ ix) B > 0, r= x| > oo, @)

uniformly in all directions. The scattering problem has a unique solybspnAt large distances from
the obstacle?, the scattered field® is characterized by thiar-field patternv> : S — C on the set of
directionsS := {x € R™||x| = 1}. We denote the direction of a vectore R™ by x := x/|x|.

For fixedx > 0 letv® € C2(22° N C(£2°) satisfyEgs. (1) and (2vith Dirichlet boundary conditions.
Denote the free-space fundamental solutioBdo(1)by @ : R”™ x R™ — C (see Egs. (2.1) and (3.60) in
[5]). Thenv® satisfies Green’s formula (Eq. (2.5)[B1), also known as the Integral Theorem of Kirchhoff
and Helmholtz, fox € £°andx > 0 Letv be the corresponding solution to the scattering problem for a
sound-soft scatterer (i.e.= 0 onds2) with entire incident wave'. Thenv(x) = v'(x) + v3(x), x € £2°,

x > 0, and Green'’s formula applied t§, together with the application of Green’s Theorem applied to
v' and®, yield the following formalization of Huygens’ principle (Theorem 3.125%):

vi(x) = —/ w() &(x,z)ds(z), xe 25 3)
a 0(z)
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The corresponding far-field pattern is given by:

v°(}) = -8 f aU—(Z)e—i“?‘Z ds(z), xe€eS, (4)
an (z2)
whereg is given by (Egs. (2.13) and (3.64) [8]):
g-i(t/4) 1
B= for m=2 and B=-— for m=3. (5)
8ri Vb

Note that in two dimensiongj is a function ofx, unlike the three-dimensional setting. Tfa-field
mappingTy, : 132, — v™ maps the scattered field restricted to any compact subsey c £2°
containing open subsets to the far-fieRd. This is a continuous mapping. We reserve special notation
for incidentplane waveslenoted by:

u'(x, n) = @i x e R™, neSs. (6)

Here,7 € S, indicates thalirection of incidence

3. Inversescattering

Let I C S denote an open set of directions ®nHere, " models the aperture on which our sensors
lie. In our numerical experiments, this is a symmetric interval of the unit sphere centered with respect to
the direction of the incident field. The far-field® due to an incident plane wave with directigre S is
measured at points € I". Define the operataH, : L2(—I) — L®(R™) by:

(Heg)(x) = / V(=9 ds(§), xeR", geLl*-D). (7)
r

Itis shown in Lemma 2.1 ifiL5] that the operatoH, is injective with dense range for almost everyrhe
corresponding family of functions parameterizedsgnd mappindR™ to C, izg = (H,g)(-), consists

of entire solutions to the Helmholtz equation. Note that the fundimonly defined on-I" where—I"

is the mirror image of the interval' on the unit spherey € I' & —y € —I". When the aperture is

the entire spherd; = S, then we denote the corresponding function, also known as the Herglotz wave
function (5], p. 55), byh,. In contrast to the densityfor limited apertures, the far-field due to scattering
from an incident plane wave™ is defined onl" with any incident wave directiof). The region—I"

defines avirtual aperture corresponding to the physical apertiren which the sensors lie. Looking
ahead to filtered backprojection, the virtual aperture in the case of scattering is analogous to the actual
measurement array in X-ray transmission tomography. For example, in classical parallel scanning X-ray
tomography, a source with direction emitted from the poinf) € I' has a corresponding receiver
located at the pointy € —T.

3.1. The point source method
The next theorem establishes the central principle behind the point source method. Here, the duality of

incident point sources and incident plane waves is used to construct a backprojection operator mapping
the far-field due to an incident plane wave to the corresponding scattered field at an arbitrazyrpbiat
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near field. In fact, we constructfamily of backprojection operators with kerrgd}, z, «) parameterized

by the locationy € R™ and wavenumber € R, of the field to be reconstructed. To make clear the source
of the dependence aandx we write the family of backprojection operators as mappings on the product
spaced, : L?(I' x Ry) — L?R" x R,):

g(_j\)’ Z, K)
p(x)

for B(x) given byEq. (5) The construction of such a backprojection operator relies on the approximation
of the fundamental solutio® at frequency due to a point source at the poinby the function:

(A (2, ) = fr G610 ds(5), ¥ e LAT x R.), ®

i:lg(xv <, K) = (i{Kg(_j)’ <, K))(X) - / ein(*ff)g(_j‘)’ <, K) dS(j\/), (9)
r

for x e R™, g(-, z, k) € L?(—I). Surely we cannot hope to approximakeeverywhergbut it can be
shown that if we choose the densidysuch thatﬁg approximatesp on theC? boundary of a bounded,
connected domaife, satisfying2 C £2,, thenA, with kernelg operating on:* (3, #) will approximate
the scattered field®(z, 7). Theorem Iis a restatement of Theorem 2.1[i5], which includes the limited
aperture setting; the original idea in the full aperture setting is due to Potthast and can be {a820h
As usual, the explicit dependence of the operators and functiongsairopped for notational ease since
K is fixed.

Theorem 1 (Backprojection).Let 2, ¢ R™ be a bounded domaifthe domain of approximatigrwith
connected €boundary such thaf2 c £2,. For the fixed wavenumbar > 0, assume thak? is not a
Dirichlet eigenvalue of the negative Laplacian on the interiosQf Denote the fundamental solution to
Eq. (1)with singularity atz € R™\£2, by &(-, 2), and let the functiork, (-, z) : R” — C be defined by
Eq. (9) Given anys > 0, there exists am > 0 such thatfor all g(-, z) € L?(—1I) satisfying:

1B, 2) — B (-, Dllcany < & (10)
we have
uS(z, 1) — (Au™)(z, D) < 8, (11)

where d and U are the scattered field and far-field pattern due to an incident plane wave with direction
n € Sand A, is defined byeq. (8)

Proof of Theorem 1. By the injectivity and denseness of the range of the opetdtmn 92, (Lemma
2.1in[15]), there exists a functioh, satisfyingEq. (10) Letv : R™ — C be a solution to the scattering
problem ons2 with incident fieldv’ = Eg(', z). Then bothv' and® solveEq. (1)on the interior of§2,.
By the continuity of® andv' on £2,, given anys’, there is are such thaEg. (10)implies:

D, 2) = Vlle, < 8. and hence [|®(-, 2) — iy, Dllcwn) < - (12)
Onaf, v° = —fzg andw3(-, z) = —®(-, z) wherew® is the scattered field due to an incident point source.

Thus, since the far-field mappin@;e, from v° to v™° is a continuous mapping, there exist® auch that,
given anys, ||ws(-, z) — v¥||cee) < 8 implies:

lw* (=1, 2) —v*(=7,2)| <8, V-7HeS. (13)
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By Lemma 3.16 ir{5]:
V(= 2) = / WS (=R, —5) g(—3, 2) ds(3), (14)
A

whereu™ is the far-field pattern due to scattering of an incident plane wave. M&ws related tas® via
the mixed reciprocity relatioril1]:
w®(—7,2) = pusz. ), NES, zeR"\Q,. (15)

This, together with the standard reciprocity relatiGh(y, 7) = u*(—7, —y) (see Theorem 3.13 ii5]),
yields the result:

Wz, ) — / G, 80D 5| < s,
. 8

|

For an incident plane wave of fixed directignthe point source method involves approximating the
scattered field® at every point zn the computational domain using the backprojection opetdtowith
densityg(-, 2). By Theorem 1the approximatiotitq. (11)depends on the constructiongif, z) at every
zto satisfyEq. (10) There are many possibilities for calculatiggepending on the size of the parameter
€ and the choice of the domain of approximati@p. The approximating domain need not—indert
not—be the same for every poiat Neither will the condition2 c $2, be satisfied for every domain
of approximation since the precise location and size of the olseist not known. InSection 3.2we
derive rough estimates fgrbased on high-frequency physical optics approximations that do not rely on
an approximating domaif®,,. Before discussing this technique, we review an optimization approach for
calculatingg originally proposed by Potthagl8,20]for the case of full aperture scattering.

The density we select, denoted-, z, «) or simplyg..(-, z), is the one that, for a fixed frequeneyand
fixed pointz, solves a regularized least squares minimization problem. Recall thativkel we write
hy = fzg for ﬁg defined byEq. (9) The restriction to a limited apertuié C S is treated as a penalty in
the objective of the following optimization problem:

minimize||®(-, 2) — k(. D720, + @llgC. D172 + @ll(L = X_r)g(. D2z (16)

overg(-, z) € L?(S) whereX_ isthe indicator function for the reflected apertw, thatist_(3) = 1
fory e —I"andX_r(y) = 0 otherwise.

The first challenge is to choose the appropriate domain of approxim&jamd regularization pa-
rametersy anda without knowing exactly where or how large the obstacle is. To do this, we create a
generating domai2, for a point source located at= 0, and then calculate the corresponding density
g+ (-, 0) satisfyingEq. (16) The spatial invariance of the fundamental solution allows osedothe com-
putational domain by translations &f. The densityg. (-, z) corresponding to the translated generating
domain can be written explicitly in terms gf (-, 0) asProposition 1shows.

Proposition 1. Let$2, be any bounded test domairiit \ {0} with connected Eboundary and for which
k is not an eigenvalue for the interior Dirichlet proble@onsider the problem

minimize||®(-, 0) — /1, (-, 0)|[250,) + @ol1g (. O)| (2 + @ol (1 — X_r)g(-, )| (22 (17)
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overg(-, 0) € L?(S) where the function his the extension t8 offzg defined byEq. (9) This problem
has a unique solutiog. (-, 0). Moreover the optimal solution to the problem

minimize||® (-, 2) — hg (-, D 202000 T @0l1&C DN 2s) +&0ll(L— Xor)g(, DITzg),  (18)
overg(-, z) € L%(S) is given by
83,2 =e".(5,0, JeS. (19)

Proof of Proposition 1. The objective function ifEq. (17)is a uniformly convex functional, anb(S)
is complete, hence existence and uniqueness of solutions follows from standard results in optimization
theory.
To prove the second statement, note that the norms on the Bp@)eare invariant under multiplication
by the complex factor'€”; so one need only show that:

[1D(:, 0) — (-, O)Hiz(ago) = ||®(-, 2) — hy(:, Z)||i2(8(90+z))’

whereh, (-, 0) denotes the Herglotz wave function with kerge(-, 0), a solution toEq. (17) and with
g«(-, ) given byEq. (19) To see this, defing’, (x, z) by:

B.(x,2) = f &I g (25, 2 ds(3),
S

for g.(=3,z) = €“Vg. (=3, z). Note thath,(x, z) = h.(x — z,z). By the spatial invariance of the
fundamental solutionp(x, z) = @(x — z, 0), which yields:

2 2
D(-, 2) — hy(, Z)||L2(3(QO+Z)) =||®(, —z, 0 — h;(', —Z, Z)||L2(3(QO+Z))

=12(,0 — h;(’ Z)Hiz(g(go)) > [|D(:, 0) — hy(, 0)”22(3(90))'
(20)

Now, sinceg.. (3, 0) is the optimal solution t&q. (17) equality holds irEq. (20)if 4, (x, z) = h.(x, 0),
that is, if:

iKz-y

8.0, =€, 2 = 2.5, 0),
which is what we set out to prove. O

As a consequence @heorem 1one need solve the optimization problefy( (16) once for the gener-
ating domain of approximatiof2y. The solution tdeq. (17)can be written explicitly as the solution to the
normal equations. For details §d6,18,20] The backprojection operator given Byg. (8)corresponding
to these translated domains can be written in terms of the generating derisify) as:

(Agett™) (2, 7)) = / W™ (3, ﬁ)%f’me—im—f) ds(¥), zeR™ 1)
r

The pointsz satisfying the hypotheses dheorem ldepend on the geometry of this generating domain
and that of the scatter&. Where the hypotheses are not satisfied, the behavior of the function represented
in Eq. (21)is in general unpredictable, though it is often observed that the pointwise values are large
[15,16,18,20] The domain of approximation that we use is showRim 1(a) This domain is chosen in
particular to allow us to exploit the radial symmetry of point sources.
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Fig. 1. (a) Domain of approximatiof2,. (b) Scattering obstacle.

3.2. Physical optics and filtered backprojection

The high frequency asymptotics of the far-field pattern yield a variety of shape reconstruction tech-
niques. In this section, we briefly review the well-known Fourier inversion method for reconstructing
sound-soft scatterers based on the clasgiogsical opticor Kirchhoff approximation. Our description
is terse. The usual justification for Fourier inversion is limiteccémvexobstacleq3], however, with
some further assumptions on the regularityzfthis can be extended to weakly non-convex obstacles
[2,12].

To begin, lets' (-, 7) be an incident plane wave with directignDefineds2. to be the illuminated side
of the scattering domaids2, := {x € 32|v(x) - < 0}. The shadow of the scattering domads?_, is
defined a92_ := 8£2\052... The physical optics or Kirchhoff approximation is written:

W) a0
ous , 5 8v(x) ’ *
e ) | . k>0 22)
aU(X) aul(x’ 1’:]) 90
_ Y, X _
av(x)

In words, for largec (that is, small wavelengths), the obstacle can be locally approximated by a plane,
and the scattered field behaves accordingly. The physical optics approximation is to obstacle scattering
what the Fresnel approximation is to diffraction (see Section 3.114i§). Explicit upper bounds on the

error are beyond the scope of this work. Suffice it to say that the accuracy of the approximation depends
essentially on a small angle argument. For more detailed asymptotics, interested readers are referred tc
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Lies (Section 8 iff12]) and references therein. Substitutiag. (22)into Eqg. (3)yields the identity:
du' (z, 7
MS(x’ 7’;]) ~ _2/ u (Z 77)

302, v (z)

@(x,z)ds(z), «>0. (23)

The corresponding far-field pattern thus has the following asymptotic behavior with respect to the
wavenumber:

u'(z, 7)) -
w G~ —2p00 [ E D gtz gy, (24)

a, 0v(z)
for x,n7 € S andx(x — 17) > 0. Note that, in this case, the approximation is asymptotically valid
for k(x — 1) > 0, not just whenxe > 0. In particular, ifx ~ 7, that is at points in the far-field
in or near the shadow of the obstacle, the non-linear effects of scattering are strong and hence the
physical optics approximation is only valid at very large wavenumbers. Likewise, on the shastoweof
have:
du'(z,

W@ =) i ds(z). (25)

(%, —f) A 2
WS (3, =) ~ 2B(0) fm =

Let X,, denote the Fourier transform of the indicator function of the obst&cle
1
(Zn)m/Z

with X (z) the indicator function of the scatter€r Then, Green’firsttheorem (Eq. (2.2) ifb]), together
with Eqgs. (24) and (25or k(X — 1) > 0, yield:

Xo(8) = /R X(z) €757 dg,

U® G, ) + uS (=%, 1) ~ —2B(k) / W@ inse ds(z) + R, 7), (26)
a2 0v(2)
= 220" 2B(k) K3 (L — 7 - &) X (k& — 7)) + R, 7)), (27)
where
A . (M) i
R(%, ) = 4iIm(B(k)) — = T vz gg(y). (28)
a2 0v(z)

Rearranging terms ikg. (27)yields:

(G + 7 =) 50~ A= Kol = ) + 5 S RG 29)
with

g(k) = ! =23 30

g(K)-—W, m =z o (30)

The dependence of the approximations@mnds as well asc is clear with the term (% 7 - ) in Egs. (27)
and (29) Indeed, aft = 7 the approximation predicts that the far-field is zero. Also note th&Sithe
factor B(x) is real (seeeg. (5), so the term involving the integr&d vanishes. In this case, it is apparent
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3

Exe

(b)

Fig. 2. Scattering data geometry f&?. (a) Full scattering data for two incident directions. (b) Backscatter only for all incident
directions.

from Eq. (29)that for a fixed incident directiof, the far-field data at wavenumber:* (x, 1), lies in the
spatial frequency domain along a sphere of radiwgth center—«7/2. This is illustrated irFig. 2(a)for
three wavenumbers and two incident field directions. Itis clear ff@mn2(a)that one requires a sufficient
number of incident fields and/or wavelengths to adequately “cover” the spatial frequency domain in order
to recoverXy by Fourier inversion. There is some redundancy, however, in the data in the case where
data from all wavenumbers and all incident directions is collected. This redundancy has been noted in
the case of scattering from inhomogeneous medi21h Fig. 2(a)serves as a graphical heuristic for
a unigueness theorem proven by Colton and Slegjawhich states that the scattering problem with
Dirichlet boundary data is unique, given a finite number of incident fields depending on the wavenumber
« and the size of the scatterer. 3

We rewriteEq. (29)in terms of the backprojection operatdg (seeEq. (21) with kernelg (seeEq. (30)
by multiplying both sides oEq. (29)by €< and integrating with respect foover the aperturé™:

(Azu™®)(z, 7) + (AziD) (z, 7) ~ /F (L—7-%) X — i) ¥ ds(R) + (AzR)(z, 7), (31)

with (%, ) := u®(—Xx, —n). Unlike the density, satisfyingEq. (17) the densityg does not depend on

a domain of approximatiofe, or the point of approximatior For points; € 22° satisfying2 C 20+ z

for any 229, whereverg satisfiesEq. (10)for € > 0 large enough, the backprojection operatgrapplied

to the far-field data* (x, 1) approximates the scattered fiafiz, 77) with upper bounds on the pointwise
error given byEq. (11) Thus, the physical optics approximation yields an easily calculated density whose
dependence on the wavenumbas explicit. This is discussed next.
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3.3. Special case: backscattering

We finish this discussion of inverse scattering techniques by examining the special case of reconstruc-
tions by a single far-field data measuremeft(y, 7, ) for each incident field with directioy and
wavenumbex, u' (x, 7, k). We do not omit the dependence omere since this emphasizes the critical
difference between the filter suggested by the physical optics approximation and that calculated by the
point source method. The limited aperture is a single pbiat {$}. For an incident field with direction
1, the aperturdy} = {—n} corresponds tbackscatteredlata. This case illustrates the key differences
between the density calculated as the solution &x. (17) or some related optimization problem, and
the densityg predicted by the physical optics approximati&u((30). We begin with the physical optics
approximation.

For simplicity, we consider only scatteringR?. Here,Eq. (27)simplifies to:

(w0 + G 0) S 220, 32)

p(k)

Note that, for fixed wavelength the datas™ is collected along a sphere in the spatial frequency domain
with radius Z (seeFig. 2(b). Thisis reminiscent of the radon transform, where the Fourier Slice Theorem
(Theorem 2.1.1ifl7]) relates the Fourier transform in polar coordinates to the Radon transform. Indeed,
by this interpretation, the fact@ris afilter in the standard filtered backprojection algorithm for inverting
the Radon transform. This connection between scattering and generalized Radon transformation is wel
known. Interested readers are referrefllg] for details.

For the integrals over the aperture= {—7} in Eq. (31)to be meaningful in the case of backscattering
(in particular,Eq. (9)and all related integral operators) we interpret the demsity adistribution Here,
we include the dependence @ng(y,z,«x) = 8(y — n) c(z, k), wherec : R" x R, — C andd is
the Dirac delta function. According to this interpretation, the density calculated by the physical optics
approximation is given by:
)

T 2(2m)ym/2¢2’
independent of the point € R™ or the approximation domais2,. By Theorem 1 however, in order
to achieve the best approximation (in th&é sense) to the scattered fialfl at the pointz for a given
generating approximation domaf, we seek an optimal choice for the constanhat yields the best
approximation to the point sour@® on §2y + z by thebackscatteringHerglotz wave operataf given
by Eq. (7)acting on the distribution, that is,(Hg(3, z, €))(x) = € c(z, k). A similar argument to the
Proof of Proposition 1 shows that the solution to the finite-dimensional optimization problem

g, 1) m=2,3, (33)

minimize||®(-, z, k) — € Vc(z, ©)] 12250, 10 (34)

overc(z, k) € C, is given bye,(z, k) = €%, (0, k) wherec, (0, ) is the optimal solution to:
minimize||®(-, 0, k) — €“7c(0, )11 250,): (35)

overc(0, k) € C.
A straight-forward calculation shows that the unique optimal solution to this problem is:

(0, k) = D(x, 0, x), ei”'f’> (36)

L2(392)

3|
fa(zo ds(x)
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with the corresponding optimal distribution given by:
g:(3, 2, k) =89 — i) &7, (0, k). (37)

Note thatgz behaves ag~2 while the behavior o, is on the order ok'—"/2,
This is a critical difference for multifrequency data. In the next section we compare the results of
reconstructions using both densitigandg..

4. Results
4.1. Series representations
The optimization approach &fq. (17)provides a means for explicitly constructing the dengity, 0).
We gain some insight into the behaviorg@{-, 0) through elementary series expansions. For simplicity

the discussion is limited t&2.
For afixed poink and fixed wavenumbae, write the functiorh, defined byEq. (9)in polar coordinates:

2 .
he(x,7) = / & e(=5,2)ds(P) = / g Kreosi=9) (g, 7) dp, (38)
S 0

for x = r(cosb, sind), andy = (cosg, sing). Note that, as ifcq. (16) the restriction to a limited aperture
I' C S has been dropped in the formulation of the functigrsince this is treated as a penalty in the
optimization problem associated with the constructiog. &incegis defined on the torus, it has a Fourier
series expansion:

nd . 2 )
8D = gz 0 €, with  2,(z00 = fo g(¢.2) €" d.
n=0

Interchanging the sum and the integral yields:

he(x,2) =Y _8u(z, 1) Wy (icr, 6), (39)
n=0
where
2
W, (kr, 0) = / g9+ Cof0=9) dgy. (40)
0

The substitutiono = 6 — ¢ + /29, Eq. (8.411.1)}ields:
W, (kr, 0) = 27"+ g, (ier), (41)

wherel, is the Bessel function of ordere N.

As described inProposition 1 the generating domaire, is constructed relative to a fundamental
solution centered at the origin,= 0. It is not important at this point what the domain of approximation
20 is, as long as it does not contain the origin, and the wavenumizenot a Dirichlet eigenvalue on
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the interior of§2. In polar coordinates the centered fundamental solutioR%is a scaled, zero-order
Hankel function of the first kind:

®(r) = 3i(Jo(kr) + iYo(kr)), (42)

whereYp is the Neumann function of order zero (Eqg. (3.6Jp]). The Fourier coefficients of the truncated
series representation fgr.(-, 0) are calculated as the solution to the following finite-dimensional least
squares optimization problem with respect to the vector of coefficients:

minimize||(r) — Wy (kr, 6) - 8(0, ©)|[7250,) + @0l12(0, ©1fx + @0l | Tv(9) - (0, 011355, (43)

overg(0, x) = (20(0), 21(0), ..., gn(0)) € CN*L. Here,Wy is the vector of functionsiWy (kr, 6) =
(Wo(kr, 0), ..., Wx(kr, 0)), andTy is the vector of function§y (¢) = (T — Xr(¢)) (1, €2, ..., eN?).
Further computational efficiency can be achieved by representing the fundamental solution as an ex-
pansion of Bessel functions. Combinikgs. (39) and (423nd writing the Neumann function Eq. (42)
in terms of Bessel functiorg, Eq. (9.1.89)ields:

oo
hg(x, 0) = Zzngn (0, ) €O+ 1 (4er)
n=0

L 1N (=D
_[Z_E<n5+y)i| Jo(K")‘F;mX; m JZm(Kr)- (44)

for x = r(cosh, sind) € 8£2p: The scalary is Euler's constant. At first glance, since both sides of

Eq. (44)involve expansions in terms of integral order Bessel functions, it might seem fruitful to ob-
tain explicit expressions for the coefficiergs(0, ) by simply matching terms. This leads to coeffi-
cientsg, (0, x) that depend on the spatial variableandé. In order to approximate the fundamental
solutioneverywhereon some closed curve?, it is still necessary to solve the optimization problem

(Eq. (43).

Sampling the fundamental solution along the boundary of the generating approximation domain shown
in Fig. 1(a)is particularly simple since with this domain one can exploit the radial symmetry. Care must
be taken, however, to ensure that the radial components of the &@gvare sampled at a high enough
rate relative to the wavenumber Since, for every wavenumber the total field satisfies the Dirichlet
boundary condition = 0 onds2, we expect the sum of the modulus squared of the total field over all
sampled wavenumbers to also be small in a neighborhood of the boundary. The images we construct an
thus given by:

K J

flz) = ZZlui(Zi, My i)+ u'(zi, 7y k)% (45)

k=1j=1

at pointsz; € G (i € N), the computational grid, where ug(z;, 7, kx) is an approximation to the
scattered field for each sampled directign(j € N) and each frequenay, (k € N).
Reconstructions using the point source method are accomplished in the following series of steps.
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Fig. 3. Plots of the value§z) calculated vigEq. (45)for full aperture,I” = S, far-field data sampled at 128 points, 1 incident
field with direction #/8, and 16 wavenumbers evenly spaced on the interval [0.75, 10]. (a) Reconstruction using the physical
optics densityg (seeEq. (30) in Step 2 ofAlgorithm 1, rather tharyg,.. (b) Reconstruction with the point source method with
densityg, calculated by using the first term of the Fourier series expansign.dt) Reconstruction with the point source
method with density, calculated by using the exact optimization probldfqg.((17). For both (b) and (c), the regularization
parameter = 10°8. The corresponding approximation domain is showRim 1(a)with parameter valueR; = 0.07, R, = 6,

6. = 10718,
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Algorithm 1 (Multifrequency point source method).
Step 1 (Generating density * (v, 0, ¥)). Set up the generating approximation dom&gand, at each

frequencyk,, solve the minimization problerq. (17) or (43)or the generating density, (—y;, 0, «x)
corresponding to the far-field measuremerf&y,, 1, «x) (I, k € N).

(©

Fig. 4. Plots of the valuef$z) calculated videq. (45)for quarter aperturd, = 7/2, incident fields evenly spaced on the interval
[0, 2], and 8 wavenumbers evenly spaced on the interval [0.75, 10]. (a) Reconstruction using the physical opticg (seesity
Eqg. (30) in Step 2 ofAlgorithm 1, rather tharg.. (b) Reconstruction with the point source method with dengitgalculated
by using the first term of the Fourier series expansiog,ofc) Reconstruction with the point source method with dengity
calculated by using the exact optimization problefa.((17). For both (b) and (c), the regularization parametes 10~ and
the penalty parametér= 20. The corresponding approximation domain is showfign 1(a)with parameter valueg; = 0.07,

Ry =6,0, =10715,



D.R. Luke /Mathematics and Computers in Simulation 66 (2004) 297-314 311

Step 2 (Backprojection). At pointg; € G (i € N); the computational grid, calculate the approximation
to the scattered fieldS (z;, 7,k for each directiory);, (j € N) and each frequenay, (k € N).

Step 3 (Integration). Add the modulus squared of all approximated total fields, that is, fozearhpute
f(z) defined byEq. (45)

-

(@) (b)

()

Fig. 5. Plots of the valuei§z) calculated vigEg. (45)for limited aperture]” = (0, 7/16), 32 incident fields evenly spaced on

the interval [0, Z], and 16 wavenumbers evenly spaced on the interval [0.75, 10]. (a) Reconstruction using the physical optics
densityg (seeEq. (30) in Step 2 ofAlgorithm 1, rather tharg,.. (b) Reconstruction with the point source method with density

g, calculated by using the first term of the Fourier series expansign ¢¢) Reconstruction with the point source method with
densityg, calculated by using the exact optimization probldaq.((17). For both (b) and (c), the regularization parameter

a = 108 and the penalty paramet&r= 20. The corresponding approximation domain is showhiin 1(a)with parameter
valuesR, = 0.07,R, = 6,6, = 10716,
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Fig. 6. Backscattering with 128 incident fields evenly spaced on the intervat]0a@d 16 wavenumbers evenly spaced on the
interval [0.75, 10]. (a) Reconstruction using the physical optics depgjtyen byEq. (33)in Step 2 ofAlgorithm 1, rather than
g« given byEq. (37) (b) Reconstruction with the point source method for dengitgiven byEgs. (36) and (37)

For our simulations, we use a kite-shaped sound-soft obstacle used in SectiofbB.5 s is shown
in Fig. 1(b) The parameter values for the approximation domain shoviignl(a)are the following:
Ry =0.07,R; = 6,6, = 10716,

Reconstructions with the point source method are shown with dengitiealculated via the exact
optimization problentqg. (17)and also using the first term of the Fourier series expansigp, dhat is
solvingEg. (43)with N = 0. In each, the regularization parameter 10~ and the penalty parameter
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a = 20. These reconstructions are compared to reconstructions using the physical opticsgdeesty

Eg. (30) in Step 2 ofAlgorithm 1, rather tharg,.. The figures show reconstructions for four different
regimes: Fig. 3) full aperture " = S, sampled at 128 points, 1 incident field, and 16 wavenumbers evenly
spaced on the interval [0.75, 10Fi@. 4 quarter aperturel” = /2, sampled at 32 points, 8 incident
fields evenly spaced on the interval [G;]2and eight wavenumbers evenly spaced on the interval [0.75,
10]; (Fig. 5 limited aperture]” = (0, 7/16) sampled at 4 points, 32 incident fields evenly spaced on the
interval [0, 2r], and 16 wavenumbers evenly spaced on the interval [0.75, 10]Fagdd backscattering

with 128 incident fields evenly spaced on the interval [@], 2and 16 frequencies evenly spaced on the
interval [0.75, 10]. In each of the experiments above, the same number of data points is used, that is, the
number of far-field measurements times the number of incident fields times the number of frequencies
used is always equal to 2048.

Ournumerical resultsillustrate thatthe critical factor for reconstructions in multifrequency settingsis the
frequency dependence of the filter. Our results also show that the frequency dependence encoded in filters
calculated by solvingeq. (17) or (43)elivers higher quality reconstructions than those generated with
filters suggested by classical, high-frequency techniques. The Fourier series expansions explored here,
together with a particular generating approximation domaig.(1(a) allow efficient implementations
of the point source method with multifrequency data.
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