
Mathematics and Computers in Simulation 66 (2004) 297–314

Multifrequency inverse obstacle scattering: the point source
method and generalized filtered backprojection

D. Russell Luke∗,1
Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada V5A 1S6

This work is dedicated to Rainer Kress in honor of his 60th birthday, with deep gratitude for his support and encouragement

Available online 25 March 2004

Abstract

We outline two methods for obstacle reconstruction from multifrequency far-field scattering data, the first built
upon the point source method proposed by Potthast for solving inverse scattering problems with single frequency
data in the resonance region, and the second based on filtered backprojection techniques using the physical optics
approximation for high frequency scattering. Our implementation using the point source method can be viewed
as a generalized filtered backprojection algorithm, the key to which is the construction of the filter used in the
backprojection operator. Numerical examples illustrate that the critical factor for reconstructions in multifrequency
settings is the frequency dependence of the filter.
© 2004 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, many innovative algorithms have appeared for inverse scattering applications in the
resonance region. Of particular interest here are algorithms that share the feature of splitting the original
ill-posed non-linear inverse problem into an ill-posed linear inverse problem, and a well-posed non-linear
problem. These algorithms were designed primarily with single, low-frequency applications in mind.
Good examples can be found in the pioneering work of Colton and Monk[6,7], Kirsch and Kress[10],
Colton and Kirsch[4], and Potthast[18]. In the present work, we study one of the above methods in
the context of a classical high-frequency technique that employs the physical optics approximation. In
this short space, it is impossible to do justice to all of the above techniques, so we limit our scope to
the point source method proposed by Potthast[18]. The multifrequency aspect of our investigation is
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not specific to the point source method, however, it serves to underscore the power of this essentially
non-linear technique in comparison with much simpler and coarse filtered backprojection based on the
physical optics approximation.

We begin with a brief orientation to forward scattering. Inverse scattering, including the point source
method and physical optics approximations, is treated inSection 3. Our discussion of the point source
method focuses mainly on the approximation of the scattered field. For more detail on the theory and
implementation, interested readers are referred to[19,20]. Numerical results are presented inSection 4.

2. Forward scattering

This discussion is limited to scattering of small-amplitude, monochromatic, time-harmonic waves from
an impenetrable, sound-soft obstacle embedded in an isotropic homogeneous medium. The obstacle is
identified by its supportΩ ⊂ R

m, m = 2 or 3. Throughout this work, unless otherwise stated,Ω is
assumed to be a bounded domain with connectedC2 (twice continuously differentiable) boundary∂Ω
and the unit outward normalν. The governing equation for this setting is the Helmholtz equation:

(∆+ κ2)v(x) = 0, x ∈ Ω̄c ⊂ R
m, (1)

where∆ denotes the Laplacian,κ ≥ 0 is thefrequencyor wavenumberandΩ̄c := R
m\Ω̄. Our analysis

is built upon the principle of superposition of single, fixed frequencies. To limit notational clutter, we
therefore omit any explicit dependency on the wavenumberκ and simply denote solutions toEq. (1)as
complex-valued scalar mappingsv : Ω̄c → C. If there is any chance for confusion, we denote the wave
v at x parameterized by the wavenumberκ asv(x, k) and consider this a mapping on the product space
v : Ω̄c × R+ → C. The surface of the obstacle is assumed to be perfectly absorbing or sound-soft. This
is modeled with Dirichlet boundary conditions:v = f on ∂Ω where,f is continuous on∂Ω.

Consider anincidentfield vi : R
m → C that, for fixedκ, is anentire solutionto the Helmholtz equation

onR
m, that isvi satisfiesEq. (1)onR

m. Thescattering problemis to find thetotal fieldv : Ωc → C that
satisfiesEq. (1)on Ω̄c andv = vi + vs with f = 0 for the boundary condition, and wherevs : Ωc → C

is thescattered fieldsatisfyingEq. (1)on Ω̄c and theSommerfeld radiation condition:

r(m−1)/2

(
∂

∂r
− iκ

)
vs(x) → 0, r = |x| → ∞, (2)

uniformly in all directions. The scattering problem has a unique solution[5]. At large distances from
the obstacleΩ, the scattered fieldvs is characterized by thefar-field patternv∞ : S → C on the set of
directionsS := {x ∈ R

m||x| = 1}. We denote the direction of a vectorx ∈ R
m by x̂ := x/|x|.

For fixedκ > 0 letvs ∈ C2(Ω̄c) ∩ C(Ωc) satisfyEqs. (1) and (2)with Dirichlet boundary conditions.
Denote the free-space fundamental solution toEq. (1)byΦ : R

m ×R
m → C (see Eqs. (2.1) and (3.60) in

[5]). Thenvs satisfies Green’s formula (Eq. (2.5) in[5]), also known as the Integral Theorem of Kirchhoff
and Helmholtz, forx ∈ Ω̄c andκ > 0 Letv be the corresponding solution to the scattering problem for a
sound-soft scatterer (i.e.v = 0 on∂Ω) with entire incident wavevi . Thenv(x) = vi(x)+ vs(x), x ∈ Ω̄c,
κ > 0, and Green’s formula applied tovs, together with the application of Green’s Theorem applied to
vi andΦ, yield the following formalization of Huygens’ principle (Theorem 3.12 in[5]):

vs(x) = −
∫
∂Ω

∂v(z)

∂ν(z)
Φ(x, z)ds(z), x ∈ Ω̄c. (3)
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The corresponding far-field pattern is given by:

v∞(x̂) = −β

∫
∂Ω

∂v(z)

∂ν(z)
e−iκx̂·z ds(z), x̂ ∈ S, (4)

whereβ is given by (Eqs. (2.13) and (3.64) in[5]):

β = e−i(π/4)

√
8πκ

for m = 2 and β = 1

4π
for m = 3. (5)

Note that in two dimensions,β is a function ofκ, unlike the three-dimensional setting. Thefar-field
mappingTΩα

: vs|Ωα → v∞ maps the scattered fieldvs restricted to any compact subsetΩα ⊂ Ω̄c

containing open subsets to the far-fieldv∞. This is a continuous mapping. We reserve special notation
for incidentplane wavesdenoted by:

ui(x, η̂) := eiκx·η̂, x ∈ R
m, η̂ ∈ S. (6)

Here,η̂ ∈ S, indicates thedirection of incidence.

3. Inverse scattering

Let Γ ⊂ S denote an open set of directions onS. Here,Γ models the aperture on which our sensors
lie. In our numerical experiments, this is a symmetric interval of the unit sphere centered with respect to
the direction of the incident field. The far-fieldu∞ due to an incident plane wave with directionη̂ ∈ S is
measured at pointŝy ∈ Γ . Define the operator̃Hκ : L2(−Γ) → L∞(Rm) by:

(H̃κg)(x) :=
∫
Γ

eiκx(−ŷ)g(−ŷ)ds(ŷ), x ∈ R
m, g ∈ L2(−Γ). (7)

It is shown in Lemma 2.1 in[15] that the operator̃Hκ is injective with dense range for almost everyκ. The
corresponding family of functions parameterized byκ and mappingRm to C, h̃g := (H̃κg)(·), consists
of entire solutions to the Helmholtz equation. Note that the functiong is only defined on−Γ where−Γ

is the mirror image of the intervalΓ on the unit sphere:̂y ∈ Γ ⇔ −ŷ ∈ −Γ . When the aperture is
the entire sphere,Γ = S, then we denote the corresponding function, also known as the Herglotz wave
function ([5], p. 55), byhg. In contrast to the densityg for limited apertures, the far-field due to scattering
from an incident plane waveu∞ is defined onΓ with any incident wave direction̂η. The region−Γ

defines avirtual aperture corresponding to the physical apertureΓ on which the sensors lie. Looking
ahead to filtered backprojection, the virtual aperture in the case of scattering is analogous to the actual
measurement array in X-ray transmission tomography. For example, in classical parallel scanning X-ray
tomography, a source with direction−η̂ emitted from the point̂η ∈ Γ has a corresponding receiver
located at the point−η̂ ∈ −Γ .

3.1. The point source method

The next theorem establishes the central principle behind the point source method. Here, the duality of
incident point sources and incident plane waves is used to construct a backprojection operator mapping
the far-field due to an incident plane wave to the corresponding scattered field at an arbitrary pointz in the
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near field. In fact, we construct afamily of backprojection operators with kernelg(·, z, κ) parameterized
by the locationz ∈ R

m and wavenumberκ ∈ R+ of the field to be reconstructed. To make clear the source
of the dependence onzandκ we write the family of backprojection operators as mappings on the product
spaceAg : L2(Γ × R+) → L2(Rm × R+):

(Agψ)(z, κ) :=
∫
Γ

ψ(ŷ, κ)
g(−ŷ, z, κ)

β(κ)
ds(ŷ), ψ ∈ L2(Γ × R+), (8)

for β(κ) given byEq. (5). The construction of such a backprojection operator relies on the approximation
of the fundamental solutionΦ at frequencyκ due to a point source at the pointz by the function:

h̃g(x, z, κ) := (H̃κg(−ŷ, z, κ))(x) =
∫
Γ

eiκx(−ŷ)g(−ŷ, z, κ)ds(ŷ), (9)

for x ∈ R
m, g(·, z, κ) ∈ L2(−Γ). Surely we cannot hope to approximateΦ everywhere, but it can be

shown that if we choose the densityg such thath̃g approximatesΦ on theC2 boundary of a bounded,
connected domainΩa satisfyingΩ̄ ⊂ Ωa, thenAg with kernelg operating onu∞(ŷ, η̂) will approximate
the scattered fieldus(z, η̂). Theorem 1is a restatement of Theorem 2.1 in[15], which includes the limited
aperture setting; the original idea in the full aperture setting is due to Potthast and can be found in[18,20].
As usual, the explicit dependence of the operators and functions onκ is dropped for notational ease since
κ is fixed.

Theorem 1 (Backprojection).LetΩa ⊂ R
m be a bounded domain(the domain of approximation) with

connected C2 boundary such that̄Ω ⊂ Ωa. For the fixed wavenumberκ > 0, assume thatκ2 is not a
Dirichlet eigenvalue of the negative Laplacian on the interior ofΩa. Denote the fundamental solution to
Eq. (1)with singularity atz ∈ R

m\Ω̄a byΦ(·, z), and let the functioñhg(·, z) : R
m → C be defined by

Eq. (9). Given anyδ > 0, there exists anε > 0 such that, for all g(·, z) ∈ L2(−Γ) satisfying:

||Φ(·, z)− h̃g(·, z)||C(∂Ωa) < ε, (10)

we have

|us(z, η̂)− (Agu
∞)(z, η̂)| < δ, (11)

where us and u∞ are the scattered field and far-field pattern due to an incident plane wave with direction
η̂ ∈ S andAg is defined byEq. (8).

Proof of Theorem 1. By the injectivity and denseness of the range of the operatorH̃κ on ∂Ωa (Lemma
2.1 in[15]), there exists a functioñhg satisfyingEq. (10). Let v : R

m → C be a solution to the scattering
problem onΩ with incident fieldvi = h̃g(·, z). Then bothvi andΦ solveEq. (1)on the interior ofΩa.
By the continuity ofΦ andvi on Ω̄a, given anyδ′, there is anε such thatEq. (10)implies:

||Φ(·, z)− vi ||C(Ω̄a)
< δ′, and hence ||Φ(·, z)− h̃g(·, z)||C(∂Ω) < δ′. (12)

On∂Ω, vs = −h̃g andws(·, z) = −Φ(·, z) wherews is the scattered field due to an incident point source.
Thus, since the far-field mapping,T∂Ω, fromvs to v∞ is a continuous mapping, there exists aδ′ such that,
given anyδ, ||ws(·, z)− vs||C(∂Ω) < δ′ implies:

|w∞(−η̂, z)− v∞(−η̂, z)| < δ, ∀ − η̂ ∈ S. (13)
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By Lemma 3.16 in[5]:

v∞(−η̂, z) =
∫
Λ

u∞(−η̂,−ŷ) g(−ŷ, z)ds(ŷ), (14)

whereu∞ is the far-field pattern due to scattering of an incident plane wave. Now,w∞ is related tous via
themixed reciprocity relation[11]:

w∞(−η̂, z) = βus(z, η̂), η̂ ∈ S, z ∈ R
m\Ω̄a. (15)

This, together with the standard reciprocity relationu∞(ŷ, η̂) = u∞(−η̂,−ŷ) (see Theorem 3.13 in[5]),
yields the result:∣∣∣∣us(z, η̂)−

∫
Γ

u∞(ŷ, η̂)
g(−ŷ, z)

β
ds(ŷ)

∣∣∣∣ < δ.

�

For an incident plane wave of fixed directionη̂, the point source method involves approximating the
scattered fieldus at every point zin the computational domain using the backprojection operatorAg with
densityg(·, z). By Theorem 1, the approximationEq. (11)depends on the construction ofg(·, z) at every
z to satisfyEq. (10). There are many possibilities for calculatingg depending on the size of the parameter
ε and the choice of the domain of approximationΩa. The approximating domain need not—indeedwill
not—be the same for every pointz. Neither will the conditionΩ ⊂ Ωa be satisfied for every domain
of approximation since the precise location and size of the objectΩ is not known. InSection 3.2, we
derive rough estimates forg based on high-frequency physical optics approximations that do not rely on
an approximating domainΩa. Before discussing this technique, we review an optimization approach for
calculatingg originally proposed by Potthast[18,20] for the case of full aperture scattering.

The density we select, denotedg∗(·, z, κ) or simplyg∗(·, z), is the one that, for a fixed frequencyκ and
fixed pointz, solves a regularized least squares minimization problem. Recall that whenΓ = S we write
hg = h̃g for h̃g defined byEq. (9). The restriction to a limited apertureΓ ⊂ S is treated as a penalty in
the objective of the following optimization problem:

minimize||Φ(·, z)− hg(·, z)||2L2(∂Ωa)
+ α||g(·, z)||2L2(S) + α̃||(1 − X−Γ )g(·, z)||2L2(S), (16)

overg(·, z) ∈ L2(S)whereX−Γ is the indicator function for the reflected aperture−Γ , that isX−Γ (ŷ) = 1
for ŷ ∈ −Γ andX−Γ (ŷ) = 0 otherwise.

The first challenge is to choose the appropriate domain of approximationΩa and regularization pa-
rametersα and α̃ without knowing exactly where or how large the obstacle is. To do this, we create a
generating domainΩ0 for a point source located atz = 0, and then calculate the corresponding density
g∗(·,0) satisfyingEq. (16). The spatial invariance of the fundamental solution allows one toscanthe com-
putational domain by translations ofΩ0. The densityg∗(·, z) corresponding to the translated generating
domain can be written explicitly in terms ofg∗(·,0) asProposition 1shows.

Proposition 1. LetΩ0 be any bounded test domain inR
m\{0} with connected C2 boundary and for which

κ is not an eigenvalue for the interior Dirichlet problem. Consider the problem:

minimize||Φ(·,0)− hg(·,0)||2L2(∂Ω0)
+ α0||g(·,0)||2L2(S) + α̃0||(1 − X−Γ )g(·,0)||2L2(S), (17)
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overg(·,0) ∈ L2(S) where the function hg is the extension toS of h̃g defined byEq. (9). This problem
has a unique solutiong∗(·,0). Moreover, the optimal solution to the problem:

minimize||Φ(·, z)− hg(·, z)||2L2(∂(Ω0+z)) + α0||g(·, z)||2L2(S) + α̃0||(1 − X−Γ )g(·, z)||2L2(S), (18)

overg(·, z) ∈ L2(S) is given by:

g∗(ŷ, z) = e−iκz·ŷg∗(ŷ,0), ŷ ∈ S. (19)

Proof of Proposition 1. The objective function inEq. (17)is a uniformly convex functional, andL2(S)

is complete, hence existence and uniqueness of solutions follows from standard results in optimization
theory.

To prove the second statement, note that the norms on the spaceL2(S) are invariant under multiplication
by the complex factor eiκz·ŷ; so one need only show that:

||Φ(·,0)− h∗(·,0)||2L2(∂Ω0)
= ||Φ(·, z)− h∗(·, z)||2L2(∂(Ω0+z)),

whereh∗(·,0) denotes the Herglotz wave function with kernelg∗(·,0), a solution toEq. (17), and with
g∗(·, z) given byEq. (19). To see this, defineh′

∗(x, z) by:

h′
∗(x, z) :=

∫
S

eiκx(−ŷ)g′
∗(−ŷ, z)ds(ŷ),

for g′
∗(−ŷ, z) = eiκz(−ŷ)g∗(−ŷ, z). Note thath∗(x, z) = h′

∗(x − z, z). By the spatial invariance of the
fundamental solution,Φ(x, z) = Φ(x − z,0), which yields:

||Φ(·, z)− h∗(·, z)||2L2(∂(Ω0+z)) = ||Φ(·,−z,0)− h′
∗(·,−z, z)||2L2(∂(Ω0+z))

= ||Ω(·,0)− h′
∗(·, z)||2L2(∂(Ω0))

≥ ||Φ(·,0)− h∗(·,0)||2L2(∂(Ω0))
.

(20)

Now, sinceg∗(ŷ,0) is the optimal solution toEq. (17), equality holds inEq. (20)if h′
∗(x, z) = h∗(x,0),

that is, if:

g′
∗(ŷ, z) = eiκz·ŷg∗(ŷ, z) = g∗(ŷ,0),

which is what we set out to prove. �

As a consequence ofTheorem 1, one need solve the optimization problem (Eq. (16)) once for the gener-
ating domain of approximationΩ0. The solution toEq. (17)can be written explicitly as the solution to the
normal equations. For details see[15,18,20]. The backprojection operator given byEq. (8)corresponding
to these translated domains can be written in terms of the generating densityg∗(·,0) as:

(Ãg∗u∞)(z, η̂) :=
∫
Γ

u∞(x̂, η̂)
g∗(−x̂,0)

β
e−iκz(−x̂) ds(x̂), z ∈ R

m. (21)

The pointsz satisfying the hypotheses ofTheorem 1depend on the geometry of this generating domain
and that of the scattererΩ. Where the hypotheses are not satisfied, the behavior of the function represented
in Eq. (21)is in general unpredictable, though it is often observed that the pointwise values are large
[15,16,18,20]. The domain of approximation that we use is shown inFig. 1(a). This domain is chosen in
particular to allow us to exploit the radial symmetry of point sources.
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Fig. 1. (a) Domain of approximationΩa. (b) Scattering obstacle.

3.2. Physical optics and filtered backprojection

The high frequency asymptotics of the far-field pattern yield a variety of shape reconstruction tech-
niques. In this section, we briefly review the well-known Fourier inversion method for reconstructing
sound-soft scatterers based on the classicalphysical opticsor Kirchhoff approximation. Our description
is terse. The usual justification for Fourier inversion is limited toconvexobstacles[3], however, with
some further assumptions on the regularity ofΩ, this can be extended to weakly non-convex obstacles
[2,12].

To begin, letui(·, η̂) be an incident plane wave with directionη̂. Define∂Ω+ to be the illuminated side
of the scattering domain∂Ω+ := {x ∈ ∂Ω|ν(x) · η̂ < 0}. The shadow of the scattering domain,∂Ω−, is
defined as∂Ω− := ∂Ω\∂Ω+. The physical optics or Kirchhoff approximation is written:

∂us(x, η̂)

∂ν(x)
≈




∂ui(x, η̂)

∂ν(x)
, x ∈ ∂Ω+

−∂ui(x, η̂)

∂ν(x)
, x ∈ ∂Ω−

, κ � 0. (22)

In words, for largeκ (that is, small wavelengths), the obstacle can be locally approximated by a plane,
and the scattered field behaves accordingly. The physical optics approximation is to obstacle scattering
what the Fresnel approximation is to diffraction (see Section 3.1.1 in[14]). Explicit upper bounds on the
error are beyond the scope of this work. Suffice it to say that the accuracy of the approximation depends
essentially on a small angle argument. For more detailed asymptotics, interested readers are referred to
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Lies (Section 8 in[12]) and references therein. SubstitutingEq. (22)into Eq. (3)yields the identity:

us(x, η̂) ≈ −2
∫
∂Ω+

∂ui(z, η̂)

∂ν(z)
Φ(x, z)ds(z), κ � 0. (23)

The corresponding far-field pattern thus has the following asymptotic behavior with respect to the
wavenumber:

u∞(x̂, η̂) ≈ −2β(κ)
∫
∂Ω+

∂ui(z, η̂)

∂ν(z)
e−iκx̂·z ds(z), (24)

for x̂, η̂ ∈ S and κ(x̂ − η̂) � 0. Note that, in this case, the approximation is asymptotically valid
for κ(x̂ − η̂) � 0, not just whenκ � 0. In particular, if x̂ ≈ η̂, that is at points in the far-field
in or near the shadow of the obstacle, the non-linear effects of scattering are strong and hence the
physical optics approximation is only valid at very large wavenumbers. Likewise, on the shadow ofΩ we
have:

u∞(x̂,−η̂) ≈ 2β(κ)
∫
∂Ω−

∂ui(z,−η̂)

∂ν(z)
e−iκx̂·z ds(z). (25)

Let X̂Ω denote the Fourier transform of the indicator function of the obstacleΩ:

X̂Ω(ξ) := 1

(2π)m/2

∫
Rm

X(z)e−iξ·z dz,

withXΩ(z) the indicator function of the scattererΩ. Then, Green’sfirst theorem (Eq. (2.2) in[5]), together
with Eqs. (24) and (25)for κ(x̂ − η̂) � 0, yield:

u∞(x̂, η̂)+ u∞(−x̂,−η̂) ≈ −2β(κ)
∫
∂Ω

∂ui(z, η̂)

∂ν(z)
e−iκx̂·z ds(z)+ R(x̂, η̂), (26)

= 2(2π)m/2β(κ) κ2(1 − η̂ · x̂) X̂Ω(κ(x̂ − η̂))+ R(x̂, η̂), (27)

where

R(x̂, η̂) = 4i Im(β(κ))

∫
∂Ω−

∂ui(z, η̂)

∂ν(z)
e−iκx̂·z ds(z). (28)

Rearranging terms inEq. (27)yields:
(
u∞(x̂, η̂)+ u∞(−x̂,−η̂)

) g̃(κ)

β(κ)
≈ (1 − η̂ · x̂) X̂Ω(κ(x̂ − η̂))+ g̃(κ)

β(κ)
R(x̂, η̂), (29)

with

g̃(κ) := 1

2(2π)m/2κ2
, m = 2,3. (30)

The dependence of the approximations onx̂ andη̂ as well asκ is clear with the term (1− η̂ · x̂) in Eqs. (27)
and (29). Indeed, at̂x = η̂ the approximation predicts that the far-field is zero. Also note that inR

3 the
factorβ(κ) is real (seeEq. (5)), so the term involving the integralR vanishes. In this case, it is apparent
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Fig. 2. Scattering data geometry forR2. (a) Full scattering data for two incident directions. (b) Backscatter only for all incident
directions.

from Eq. (29)that for a fixed incident direction̂η, the far-field data at wavenumberκ, u∞(x̂, η̂), lies in the
spatial frequency domain along a sphere of radiusκ with center−κη̂/2. This is illustrated inFig. 2(a)for
three wavenumbers and two incident field directions. It is clear fromFig. 2(a)that one requires a sufficient
number of incident fields and/or wavelengths to adequately “cover” the spatial frequency domain in order
to recoverXΩ by Fourier inversion. There is some redundancy, however, in the data in the case where
data from all wavenumbers and all incident directions is collected. This redundancy has been noted in
the case of scattering from inhomogeneous media in[21]. Fig. 2(a)serves as a graphical heuristic for
a uniqueness theorem proven by Colton and Sleeman[8] which states that the scattering problem with
Dirichlet boundary data is unique, given a finite number of incident fields depending on the wavenumber
κ and the size of the scatterer.

We rewriteEq. (29)in terms of the backprojection operatorÃg̃ (seeEq. (21)) with kernelg̃ (seeEq. (30))
by multiplying both sides ofEq. (29)by eiκx̂·z and integrating with respect tôx over the apertureΓ :

(Ãg̃u
∞)(z, η̂)+ (Ãg̃ũ)(z, η̂) ≈

∫
Γ

(1 − η̂ · x̂) X̂Ω(κ(x̂ − η̂))eiκx̂·z ds(x̂)+ (Ãg̃R)(z, η̂), (31)

with ũ(x̂, η̂) := u∞(−x̂,−η̂). Unlike the densityg∗ satisfyingEq. (17), the densitỹg does not depend on
a domain of approximationΩ0 or the point of approximationz. For pointsz ∈ Ωc satisfyingΩ ⊂ Ω0 + z

for anyΩ0, wherever̃g satisfiesEq. (10)for ε > 0 large enough, the backprojection operatorÃg̃ applied
to the far-field datau∞(x̂, η̂) approximates the scattered fieldus(z, η̂)with upper bounds on the pointwise
error given byEq. (11). Thus, the physical optics approximation yields an easily calculated density whose
dependence on the wavenumberκ is explicit. This is discussed next.
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3.3. Special case: backscattering

We finish this discussion of inverse scattering techniques by examining the special case of reconstruc-
tions by a single far-field data measurementu∞(ŷ, η̂, κ) for each incident field with direction̂η and
wavenumberκ, ui(x, η̂, κ). We do not omit the dependence onκ here since this emphasizes the critical
difference between the filter suggested by the physical optics approximation and that calculated by the
point source method. The limited aperture is a single pointΓ = {ŷ}. For an incident field with direction
η̂, the aperture{ŷ} = {−η̂} corresponds tobackscattereddata. This case illustrates the key differences
between the densityg calculated as the solution toEq. (17), or some related optimization problem, and
the densitỹg predicted by the physical optics approximation (Eq. (30)). We begin with the physical optics
approximation.

For simplicity, we consider only scattering inR3. Here,Eq. (27)simplifies to:(
u∞(−η̂, η̂, κ)+ u∞(η̂,−η̂, κ)

) g̃(κ)

β(κ)
≈ 2X̂Ω(−2κη̂). (32)

Note that, for fixed wavelengthκ, the datau∞ is collected along a sphere in the spatial frequency domain
with radius 2κ (seeFig. 2(b)). This is reminiscent of the radon transform, where the Fourier Slice Theorem
(Theorem 2.1.1 in[17]) relates the Fourier transform in polar coordinates to the Radon transform. Indeed,
by this interpretation, the factorg̃ is afilter in the standard filtered backprojection algorithm for inverting
the Radon transform. This connection between scattering and generalized Radon transformation is well
known. Interested readers are referred to[13] for details.

For the integrals over the apertureΓ = {−η̂} in Eq. (31)to be meaningful in the case of backscattering
(in particular,Eq. (9)and all related integral operators) we interpret the densityg as adistribution. Here,
we include the dependence onκ, g(ŷ, z, κ) = δ(ŷ − η̂) c(z, κ), wherec : R

m × R+ → C and δ is
the Dirac delta function. According to this interpretation, the density calculated by the physical optics
approximation is given by:

g̃(ŷ, κ) = δ(ŷ − η̂)

2(2π)m/2κ2
, m = 2,3, (33)

independent of the pointz ∈ R
m or the approximation domainΩa. By Theorem 1, however, in order

to achieve the best approximation (in theL2 sense) to the scattered fieldus at the pointz for a given
generating approximation domainΩ0 we seek an optimal choice for the constantc that yields the best
approximation to the point sourceΦ onΩ0 + z by thebackscatteringHerglotz wave operator̃H given
by Eq. (7)acting on the distributiong, that is,(H̃g(ŷ, z, κ))(x) = eiκx·η̂c(z, κ). A similar argument to the
Proof of Proposition 1 shows that the solution to the finite-dimensional optimization problem

minimize||Φ(·, z, κ)− eiκ(·)η̂c(z, κ)||2L2(∂Ω0+z), (34)

overc(z, κ) ∈ C, is given byc∗(z, κ) = e−iκz·η̂c∗(0, κ) wherec∗(0, κ) is the optimal solution to:

minimize||Φ(·,0, κ)− eiκ(·)η̂c(0, κ)||2L2(∂Ω0)
, (35)

overc(0, κ) ∈ C.
A straight-forward calculation shows that the unique optimal solution to this problem is:

c∗(0, κ) = 1∫
∂Ω0

ds(x)

〈
Φ(x,0, κ),eiκx·η̂

〉
L2(∂Ω0)

, (36)
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with the corresponding optimal distribution given by:

g∗(ŷ, z, κ) = δ(ŷ − η̂)e−iκz·η̂c∗(0, κ). (37)

Note thatg̃ behaves asκ−2 while the behavior ofg∗ is on the order ofκ1−m/2.
This is a critical difference for multifrequency data. In the next section we compare the results of

reconstructions using both densitiesg̃ andg∗.

4. Results

4.1. Series representations

The optimization approach ofEq. (17)provides a means for explicitly constructing the densityg∗(·, 0).
We gain some insight into the behavior ofg∗(·, 0) through elementary series expansions. For simplicity
the discussion is limited toR2.

For a fixed pointxand fixed wavenumberκ, write the functionhg defined byEq. (9)in polar coordinates:

hg(x, z) =
∫
S

eiκx(−ŷ)g(−ŷ, z)ds(ŷ) =
∫ 2π

0
e−ikr cos(θ−φ)g(−φ, z)dφ, (38)

for x = r(cosθ, sinθ), andŷ = (cosφ, sinφ). Note that, as inEq. (16), the restriction to a limited aperture
Γ ⊂ S has been dropped in the formulation of the functionhg since this is treated as a penalty in the
optimization problem associated with the construction ofg. Sinceg is defined on the torus, it has a Fourier
series expansion:

g(φ, z) =
∞∑
n=0

ĝn(z, κ)einφ, with ĝn(z, κ) =
∫ 2π

0
g(φ, z)einφ dφ.

Interchanging the sum and the integral yields:

hg(x, z) =
∞∑
n=0

ĝn(z, κ)Wn(κr, θ), (39)

where

Wn(κr, θ) :=
∫ 2π

0
ei(nφ+κr cos(θ−φ) dφ. (40)

The substitutionω = θ − φ + π/2 [9, Eq. (8.411.1)]yields:

Wn(κr, θ) = 2πein(θ+(π/2))Jn(κr), (41)

whereJn is the Bessel function of ordern ∈ N.
As described inProposition 1, the generating domainΩ0 is constructed relative to a fundamental

solution centered at the origin,z = 0. It is not important at this point what the domain of approximation
Ω0 is, as long as it does not contain the origin, and the wavenumberκ is not a Dirichlet eigenvalue on
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the interior ofΩ0. In polar coordinates the centered fundamental solution onR
2 is a scaled, zero-order

Hankel function of the first kind:

Φ(r) = 1
4i(J0(κr)+ iY0(κr)), (42)

whereY0 is the Neumann function of order zero (Eq. (3.60) in[5]). The Fourier coefficients of the truncated
series representation forg∗(·,0) are calculated as the solution to the following finite-dimensional least
squares optimization problem with respect to the vector of coefficients:

minimize||Φ(r)−WN(κr, θ) · ĝ(0, κ)||2L2(∂Ω0)
+ α0||ĝ(0, κ)||2RN + α̃0||TN(φ) · ĝ(0, κ)||2L2(S), (43)

over ĝ(0, κ) = (ĝ0(0), ĝ1(0), . . . , ĝN(0)) ∈ C
N+1. Here,WN is the vector of functions,WN(κr, θ) =

(W0(κr, θ), . . . ,WN(κr, θ)), andTN is the vector of functionsTN(φ) = (I− XΓ (φ)) (1,eiφ, . . . ,eiNφ).
Further computational efficiency can be achieved by representing the fundamental solution as an ex-

pansion of Bessel functions. CombiningEqs. (39) and (42)and writing the Neumann function inEq. (42)
in terms of Bessel functions[1, Eq. (9.1.89)]yields:

hg(x,0)=
∞∑
n=0

2πĝn(0, κ)ein(θ+(π/2))Jn(κr)

=
[

i

4
− 1

2π

(
ln
κr

2
+ γ

)]
J0(κr)+ 1

π

∞∑
m=1

(−1)m

m
J2m(κr). (44)

for x = r(cosθ, sinθ) ∈ δΩ0: The scalarγ is Euler’s constant. At first glance, since both sides of
Eq. (44) involve expansions in terms of integral order Bessel functions, it might seem fruitful to ob-
tain explicit expressions for the coefficientsĝn(0, κ) by simply matching terms. This leads to coeffi-
cientsĝn(0, κ) that depend on the spatial variablesr andθ. In order to approximate the fundamental
solutioneverywhereon some closed curve∂Ω0 it is still necessary to solve the optimization problem
(Eq. (43)).

Sampling the fundamental solution along the boundary of the generating approximation domain shown
in Fig. 1(a)is particularly simple since with this domain one can exploit the radial symmetry. Care must
be taken, however, to ensure that the radial components of the curve∂Ω0 are sampled at a high enough
rate relative to the wavenumberκ. Since, for every wavenumberκ, the total field satisfies the Dirichlet
boundary conditionu = 0 on∂Ω, we expect the sum of the modulus squared of the total field over all
sampled wavenumbers to also be small in a neighborhood of the boundary. The images we construct are
thus given by:

f(zi) =
K∑
k=1

J∑
j=1

|us
∗(zi, η̂j, κk)+ ui(zi, η̂j, κk)|2. (45)

at pointszi ∈ G (i ∈ N), the computational grid, where usus
∗(zi, η̂j, κk) is an approximation to the

scattered field for each sampled directionη̂j, (j ∈ N) and each frequencyκk, (k ∈ N).
Reconstructions using the point source method are accomplished in the following series of steps.
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Fig. 3. Plots of the valuesf(zi) calculated viaEq. (45)for full aperture,Γ = S, far-field data sampled at 128 points, 1 incident
field with direction 7π/8, and 16 wavenumbers evenly spaced on the interval [0.75, 10]. (a) Reconstruction using the physical
optics densitỹg (seeEq. (30)) in Step 2 ofAlgorithm 1, rather thang∗. (b) Reconstruction with the point source method with
densityg∗ calculated by using the first term of the Fourier series expansion ofg∗. (c) Reconstruction with the point source
method with densityg∗ calculated by using the exact optimization problem (Eq. (17)). For both (b) and (c), the regularization
parameterα = 10−8. The corresponding approximation domain is shown inFig. 1(a)with parameter valuesR1 = 0.07,R2 = 6,
θε = 10−16.
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Algorithm 1 (Multifrequency point source method).

Step 1 (Generating densityg ∗ (ŷ,0, κ)). Set up the generating approximation domainΩ0 and, at each
frequencyκk, solve the minimization problemEq. (17) or (43)for the generating densityg∗(−ŷl,0, κk)
corresponding to the far-field measurementsu∞(ŷl, η̂, κk) (l, k ∈ N).

Fig. 4. Plots of the valuesf(zi) calculated viaEq. (45)for quarter aperture,Γ = π/2, incident fields evenly spaced on the interval
[0, 2π], and 8 wavenumbers evenly spaced on the interval [0.75, 10]. (a) Reconstruction using the physical optics densityg̃ (see
Eq. (30)) in Step 2 ofAlgorithm 1, rather thang∗. (b) Reconstruction with the point source method with densityg∗ calculated
by using the first term of the Fourier series expansion ofg∗. (c) Reconstruction with the point source method with densityg∗
calculated by using the exact optimization problem (Eq. (17)). For both (b) and (c), the regularization parameterα = 10−8 and
the penalty parameterα̃ = 20. The corresponding approximation domain is shown inFig. 1(a)with parameter valuesR1 = 0.07,
R2 = 6, θε = 10−16.
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Step 2 (Backprojection). At pointszi ∈ G (i ∈ N); the computational grid, calculate the approximation
to the scattered fieldus

∗(zi, η̂j,κk) for each direction̂ηj, (j ∈ N) and each frequencyκk, (k ∈ N).

Step 3 (Integration). Add the modulus squared of all approximated total fields, that is, for eachzi compute
f(zi) defined byEq. (45).

Fig. 5. Plots of the valuesf(zi) calculated viaEq. (45)for limited aperture,Γ = (0, π/16), 32 incident fields evenly spaced on
the interval [0, 2π], and 16 wavenumbers evenly spaced on the interval [0.75, 10]. (a) Reconstruction using the physical optics
densityg̃ (seeEq. (30)) in Step 2 ofAlgorithm 1, rather thang∗. (b) Reconstruction with the point source method with density
g∗ calculated by using the first term of the Fourier series expansion ofg∗. (c) Reconstruction with the point source method with
densityg∗ calculated by using the exact optimization problem (Eq. (17)). For both (b) and (c), the regularization parameter
α = 10−8 and the penalty parameterα̃ = 20. The corresponding approximation domain is shown inFig. 1(a)with parameter
valuesR1 = 0.07,R2 = 6, θε = 10−16.
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Fig. 6. Backscattering with 128 incident fields evenly spaced on the interval [0, 2π], and 16 wavenumbers evenly spaced on the
interval [0.75, 10]. (a) Reconstruction using the physical optics densityg̃ given byEq. (33)in Step 2 ofAlgorithm 1, rather than
g∗ given byEq. (37). (b) Reconstruction with the point source method for densityg∗ given byEqs. (36) and (37).

For our simulations, we use a kite-shaped sound-soft obstacle used in Section 3.5 in[5]. This is shown
in Fig. 1(b). The parameter values for the approximation domain shown inFig. 1(a)are the following:
R1 = 0.07,R2 = 6, θε = 10−16.

Reconstructions with the point source method are shown with densitiesg∗ calculated via the exact
optimization problemEq. (17)and also using the first term of the Fourier series expansion ofg∗, that is
solvingEq. (43)with N = 0. In each, the regularization parameterα = 10−8 and the penalty parameter
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α̃ = 20. These reconstructions are compared to reconstructions using the physical optics densityg̃ (see
Eq. (30)) in Step 2 ofAlgorithm 1, rather thang∗. The figures show reconstructions for four different
regimes: (Fig. 3) full aperture,Γ = S, sampled at 128 points, 1 incident field, and 16 wavenumbers evenly
spaced on the interval [0.75, 10]; (Fig. 4) quarter aperture,Γ = π/2, sampled at 32 points, 8 incident
fields evenly spaced on the interval [0, 2π], and eight wavenumbers evenly spaced on the interval [0.75,
10]; (Fig. 5) limited aperture,Γ = (0, π/16) sampled at 4 points, 32 incident fields evenly spaced on the
interval [0, 2π], and 16 wavenumbers evenly spaced on the interval [0.75, 10]; and (Fig. 6) backscattering
with 128 incident fields evenly spaced on the interval [0, 2π], and 16 frequencies evenly spaced on the
interval [0.75, 10]. In each of the experiments above, the same number of data points is used, that is, the
number of far-field measurements times the number of incident fields times the number of frequencies
used is always equal to 2048.

Our numerical results illustrate that the critical factor for reconstructions in multifrequency settings is the
frequency dependence of the filter. Our results also show that the frequency dependence encoded in filters
calculated by solvingEq. (17) or (43)delivers higher quality reconstructions than those generated with
filters suggested by classical, high-frequency techniques. The Fourier series expansions explored here,
together with a particular generating approximation domain (Fig. 1(a)) allow efficient implementations
of the point source method with multifrequency data.
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