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Abstract

Many recent inverse scattering techniques have been designed for single frequency
scattered fields in the frequency domain. In practice, however, the data is collected in
the time domain. Frequency domain inverse scattering algorithms obviously apply to
time-harmonic scattering, or nearly time-harmonic scattering, through application of
the Fourier transform. Fourier transform techniques can also be applied to non-time-
harmonic scattering from pulses. Our goal here is twofold: first, to establish conditions
on the time-dependent waves that provide a correspondence between time domain and
frequency domain inverse scattering via Fourier transforms without recourse to the
conventional limiting amplitude principle; secondly, we apply the analysis in the first
part of this work toward the extension of a particular scattering technique, namely
the point source method, to scattering from the requisite pulses. Numerical examples
illustrate the method and suggest that reconstructions from admissible pulses deliver
superior reconstructions compared to straight averaging of multi-frequency data.
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1 Introduction

One of the standard problems of inverse scattering is to determine the location and shape
of scatterers from measurements of acoustic or electromagnetic waves or fields due to il-
lumination of the region of interest by a given incident wave or field. The mathematical
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theory behind this problem has been thoroughly studied and can be found in such surveys
as [3, 11, 12, 23]. Frequency domain techniques range from linearized inversion (for exam-
ple, filtered backprojection), to nonlinear iterative methods (including Newton’s method,
Landweber iterations, and various manifestations of least-squares fits), to decomposition
algorithms (including the dual-space method proposed by Colton-Monk [4,5], the potential-
theoretic technique of Kirsch-Kress [3], and the point-source method of Potthast [21]) to
linear sampling and probe methods (including the linear sampling method of Colton and
Kirsch [2], the factorization method of Kirsch [8], the probe and enclosure methods of Ike-
hata [7], the method of singular sources [21], the no response test of Luke and Potthast [16],
and the range test of Potthast, Sylvester and Kusiak [22]). While the methodologies are
diverse, they all focus on single frequency, time-harmonic waves. Insofar as these techniques
can be applied to one frequency, they can be applied to all – with the possible exception
of the zero frequency. Linearized inversion techniques like filtered backprojection which em-
ploy the Born or physical optics approximations are limited to high frequency scattering.
In contrast, none of the other techniques mentioned above have such limitations. Moreover,
they work particularly well in the resonance region, that is, at low frequencies, where the
scatterers are about the same size as the wavelength of the incident field. The extension of
these methods to multifrequency settings is often implicit.

In this work we consider time-dependent nonharmonic waves, for which the multifrequency
content of the wave must be explicitly taken into account. In particular, we study plane
wave pulses with a frequency content satisfying certain decay/support conditions for large
and small frequencies. The conventional limiting amplitude principle does not apply in
this setting. Indeed the limiting amplitude principle yields the steady state solution to the
inhomogeneous wave equation with zero initial and boundary values in terms of radiating
solutions to the inhomogeneous Helmholtz equation with zero boundary values, that is, in
terms of time-harmonic fields. For the case we consider here, the steady state is not very
interesting - it is just zero. We must therefore reconstruct the fields for all time, or, in
practical terms, from the time the pulse is emitted to the time the wave has passed outside
of some measurement sphere in the far field of the scatterer.

Since the inverse scattering methods mentioned above are essentially frequency-domain
techniques, the first part of this paper, section 2, is concerned with precisely prescribing the
types of nonharmonic waves that are amenable to frequency domain treatment. Ultimately,
we will apply the Fourier transform to the measured time-dependent fields, and solve the
inverse scattering problem pointwise in the frequency domain using any of the techniques
listed above. The solution to the full inverse scattering problem is a weighted average of
the single-frequency solutions, depending on the amplitudes of the frequencies in the time-
dependent pulse. We take some care to establish an appropriate space of the functions in
which to work in the time-domain. This amounts to the determination of decay conditions
on the scattered waves in time and space that are the nonharmonic, time-domain counterpart
to the Sommerfeld radiation condition. We explicitly formulate these conditions and prove
equivalence of the family of frequency-domain boundary value problems with scattering in
the time-domain from the requisite pulses.
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In the second part of the paper, section 3, we apply these results to a particular inverse
scattering technique, namely the point-source method. We determine in what sense the
point-source method converges in the time domain, and establish results on the regularity
of the method, which is essential for ill-posed inverse problems. The original point-source
method is a scheme to reconstruct time-harmonic waves, which satisfy the Sommerfeld radi-
ation condition, from their far field patterns. At the heart of the method is the construction
of a density g which is used to backproject the data from the far field to some subset E of
the near field of the scatterer:

(1.1) us(x;κ) =

∫
S
e−iκx·ŷg(ŷ;κ)u∞(−ŷ;κ)ds(ŷ), x ∈ E,

where u∞ is the far field pattern and us is the reconstructed scattered field. For nonharmonic
waves, the dependency of g on κ is crucial to the convergence of the reconstruction. We
restrict ourselves, for the most part to the case where the incoming wave has no DC content,
that is, the wavenumbers in the pulse are supported on R \ {0}. Lemma 3.6 and Theorem
3.7, which establish the regularity of the point source method in the time domain, make the
further assumption that the pulses are bandlimited, that is, the frequencies are supported
on compact sets of R \ {0}. We then obtain uniform bounds for g with respect to κ, which
carries over to the reconstructed fields. The exclusion of the zero frequency is a technical
condition that arises only in two dimensional settings. In two dimensions the fundamental
solution has a strong singularity with respect to the wave number at κ = 0 which we avoid
by exclusion of a neighborhood of κ = 0. For practical applications in acoustics, it is not
necessary to burden oneself with such technicalities since zero frequency acoustic waves are
not physical. We provide appropriate conditions for the fields under consideration to obtain
either convergence in norm or point-wise convergence in time.

We conclude this work in section 4 with numerical results for the method in the time
domain. We show that the time-domain method with admissible pulses results in a weighted
average of multifrequency data that is not implicit in arbitrary multi-frequency data. We
compare reconstructions from the time-domain weighted averages with reconstructions from
unweighted multifrequency data to illustrate the superiority of reconstructions from admis-
sible pulses.

2 Forward Scattering

We begin with waves traveling through a homogeneous, isotropic medium with an inclusion
denoted by Ω ⊂ Rm, m = 2, 3. These are modeled with the homogeneous wave equation

(2.1)

(
4− n2

c2
∂2

∂t2

)
V (x, t) = 0,

where x ∈ Rm is the spatial variable, t ∈ R denotes time, V : Rm × R → R , n = const > 0
and 4 denotes the spatial Laplacian

4V (x, t) =

(
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
m

)
V (x, t), x = (x1, . . . , xm) ∈ Rm, t ∈ R.
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If the waves are time-harmonic, then the wave V takes the form V (x, t, ω) =
Re{v(x, ω) exp[iωt]} where ω is the frequency of the wave. The spatial component of the
wave, v(·, ω), satisfies the Helmholtz equation

(2.2) (4+ k2n2)v(x, ω) = 0.

where k = ω/c = 2π/λ is the wave number, and λ is the wavelength. Without loss of
generality, we consider only a normalized (c = 1), nondimensionalized wave equation in free-
space (n = 1 on Ω

c
, the complement of Ω) and write the frequency variable as κ rather than

ω.
Very little changes when the time-harmonic assumption is dropped, however we need some

further assumptions on the behavior of the waves. If we assume that, for x fixed, V (x, ·) ∈
L2(R) and that the wave and its first derivative with respect to time decay sufficiently fast
as time approaches infinity, V (x, t) and ∂

∂t
V (x, t) → 0 as |t| → ∞, then taking the Fourier

transform with respect to time of both sides of Eq.(2.1) yields Eq.(2.2). Here v(x, κ) =
(FtV )(x, κ) where

(FtV )(x, κ) :=
1√
2π

∫ ∞

−∞
e−iκtV (x, t)dt,

and

(Fκv)(x, t) :=
1√
2π

∫ ∞

−∞
eiκtv(x, κ)dk.

Note that FκFtV = V .

2.1 The frequency domain

The time-domain wave is a real-valued mapping V : Rm \ Ω × R → R . Thus, its Fourier
transform is a Hermitian function of the frequency κ ∈ R, that is it satisfies the property
v(x, k) = v(x,−k) where v denotes the complex conjugate of v. In this case, the results
surveyed below hold for all wave numbers κ 6= 0. Throughout this work, the obstacle is
described by the bounded domain Ω ⊂ Rm (m = 2, or 3) with a connected, C2 (twice con-
tinuously differentiable) boundary ∂Ω with outward unit normal ν. More general, piecewise
C2 boundaries are also possible (see [6]).

For a fixed κ, given a continuous function f(·, κ) : ∂Ω → C , we seek the field v(·, κ) ∈
C2(Ω

c
) ∩ C(Ωc) that satisfies the Helmholtz equation with one of the following boundary

conditions:

(2.3) (4+ κ2)v(x, κ) = 0, x ∈ Ω
c
,

v(x, κ) = f(x, κ), x ∈ ∂Ω (sound-soft obstacle),(2.4)

∂v(x, κ)

∂ν(x)
= f(x, κ), x ∈ ∂Ω (sound-hard obstacle),(2.5)

∂v(x, κ)

∂ν(x)
+ iλ(κ)v(x, κ) = f(x, κ), x ∈ ∂Ω(2.6)

(impedance obstacle with λ : R → R+ ).
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For a fixed κ, a solution v(·, κ) to Eq.(2.3) whose domain of definition contains the exterior
of some sphere is called radiating if it satisfies the Sommerfeld Radiation Condition:

(2.7) |x|
m−1

2

(
∂

∂|x|
− iκ

)
v(x, κ) → 0, |x| → ∞,

uniformly in all directions.
The frequency-domain scattering problem that is central to this work is stated as follows.

Let the sound-soft scatterer Ω be embedded in a homogeneous medium. Given a
single-frequency incident field vi(·, κ) : Rm → C that solves Eq.(2.3) on all of
Rm, find the total field v(·, κ) : Ωc → C satisfying Eq.(2.3) on Ω

c
with f := 0

in Eq.(2.4), and with v = vi + vs, where vs(·, κ) is the scattered field satisfying
Eq.(2.3) and the radiation condition Eq.(2.7).

For simplicity, we only treat problems with the Dirichlet boundary condition Eq.(2.4). The
other boundary conditions Eq.(2.5)-(2.6) are handled similarly.

It is well known, that the scattering problem has a unique solution [3]. The scattered field
vs is a radiating solution to Eq.(2.3) and has the asymptotic behavior

(2.8) vs(x, κ) =
eiκ|x|

|x|
(m−1)

2

{
v∞(x̂, κ) +O

(
1

|x|

)}
, |x| → ∞,

where the function v∞(·, κ) : S → C is known as far field pattern,

S := {x ∈ Rm | |x| = 1} and x̂ :=
x

|x|
.

Green’s formula, stated below, represents fields in terms of fundamental solutions to the
Helmholtz equation. In particular, let Ω ⊂ Rm and v(·, κ) ∈ C2(Ω

c
)∩C(Ωc) satisfy Eq.(2.3)

and Eq.(2.7) (i.e., v is a radiating solution to the Helmholtz equation), with normal derivative
on ∂Ω in the sense of Gâteaux. Then

(2.9) v(x, κ) =

∫
∂Ω

{
v(y, κ)

∂Φ(y, x, κ)

∂ν(y)
− ∂v

∂ν
(y, κ)Φ(y, x, κ)

}
ds(y), x ∈ Ω

c
,

where Φ(·, x, κ) is the free space fundamental solution to Eq.(2.3) in Rm \ {x}. To accom-
modate negative frequencies, the fundamental solution is defined so that it is a Hermitian
function of κ:

κ > 0 Φ(x, z, κ) ≡

{
i
4
H

(1)
0 (κ|x− z|), x 6= z, and m = 2

1
4π

eik|x−z|

|x−z| , x 6= z, and m = 3,
(2.10)

κ < 0 Φ(x, z, κ) ≡

{
−i
4
H

(2)
0 (|κ||x− z|), x 6= z, and m = 2

1
4π

e−i|k||x−z|

|x−z| , x 6= z, and m = 3,
(2.11)

where H
(n)
0 denotes the zero-th order Hankel function of the n-th kind [3, Eq.(3.60) and

Eq(2.1)].
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Remark 2.1 Note that in three-dimensions there is no need to exclude κ = 0, however
in two dimensions the Hankel function has a singularity at the origin which we avoid by
excluding a neighborhood of κ = 0. In acoustic scattering zero-frequency waves are not
physical so the exclusion of the origin does not warrant undue attention. �

The representation in Eq.(2.9) gives the radiating solution to the Helmholtz equation as
a combination of acoustic single- and double-layer potentials defined respectively by

(2.12) (Sκϕ)(x, κ) =

∫
∂Ω

Φ(x, y, κ)ϕ(y)ds(y) x ∈ Rm \ ∂Ω

and

(2.13) (Kκϕ)(x, κ) =

∫
∂Ω

∂Φ(x, y, κ)

∂ν(y)
ϕ(y)ds(y) x ∈ Rm \ ∂Ω.

Assuming that v is a solution to the scattering problem for a sound-soft scatterer with
incident wave vi satisfying Eq.(2.3) on all of Rm, then the first part of the integrand in
Eq.(2.9) is zero and we have v(x, κ) = vi(x, κ) + vs(x, κ), x ∈ Ω

c
, κ ∈ R \ {0}, where the

scattered field is given by Huygens’ principle as

(2.14) vs(x, κ) = −
∫

∂Ω

∂v(y, κ)

∂ν(y)
Φ(x, y, κ)ds(y), x ∈ Ω

c
.

The corresponding far field pattern is given by

(2.15) v∞(x̂, κ) = −γ
∫

∂Ω

∂v

∂ν
(y, κ)e−iκx̂·yds(y), x̂ ∈ S,

which follows by passing to the far field pattern of Φ(·, y, κ).
The exterior Dirichlet problem is the fundamental problem we address in what follows.

This is stated precisely as:

Given a continuous function f on ∂Ω, find a radiating solution v ∈ C2(Ω
c
) ∩

C(Ωc) to Eq.(2.3) that satisfies Eq.(2.4).

The following results, which we state without proof, are well known.

Theorem 2.2 For κ ∈ R \ {0} fixed, the exterior Dirichlet problem has a unique solution
that depends continuously on the boundary data with respect to uniform convergence of the
solution on Ωc and all its derivatives on closed subsets of Ω

c
.

Corollary 2.3 If the boundary value f(x, κ) is n-times smoothly differentiable with respect
to κ ∈ R \ {0}, then so is the corresponding solution to the exterior Dirichlet problem.
Likewise, if f(x, κ) is Hermitian with respect to κ ∈ R \ {0}, then so is the corresponding
solution to the exterior Dirichlet problem.
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Corollary 2.4 Let f ∈ C(∂Ω)×C(R \ {0}) be the boundary value for the exterior Dirichlet
problem parameterized by κ ∈ R \ {0}. Then the corresponding solution v(x, κ) exists and
satisfies the radiation condition Eq.(2.7) uniformly in κ on compact subsets of R \ {0}.

Proof. Since f is continuous, Theorem 2.2 guarantees that v(x, κ) exists pointwise in
κ, and, by definition, satisfies Eq.(2.7) pointwise in κ. Moreover, by Corollary 2.3 v is
continuous in κ on R \ {0}, therefore v satisfies Eq.(2.7) uniformly in κ on compact subsets
of R \ {0}. �

2.2 The time-domain

We now turn our attention to scattering in the time-domain, where the waves V : Rm×R →
R satisfy the wave equation Eq.(2.1) with n = c = 1 on x ∈ Ω

c
, that is,(

4− ∂2

∂t2

)
V (x, t) = 0, x ∈ Ω

c
,(2.16)

V (x, t) = F (x, t), ∀ t and x ∈ ∂Ω (sound-soft)(2.17)

Radiating solutions to the wave equation whose domain of definition contains the exterior
of some sphere satisfy the time-domain Sommerfeld Radiation Condition:

(2.18)

∥∥∥∥|x|m−1
2

(
∂

∂|x|
− ∂

∂t

)
V (x, ·)

∥∥∥∥
L2(R)

→ 0, |x| → ∞

uniformly in all directions.

Remark 2.5 Note that, in contrast to the frequency domain radiation condition Eq.(2.7),
the radiation condition Eq.(2.18) is satisfied in norm rather than pointwise with respect to
t. Also notice that no initial value is specified in the system above. �

The boundary-value problem Eq.(2.16)-(2.18) is under-determined. To remedy this we
impose further restrictions on the decay of V and its derivatives. Using multi-index notation,
these are given explicitly by

(2.19)
∂n

∂tn
∂|l|

∂xl
V (x, ·) ∈ L1(R), |l|, n ∈ {0, 1, 2},

and

(2.20)

∫
|t|>r

∣∣∣∣ ∂n

∂tn
∂|l|

∂xl
V (x, t)

∣∣∣∣ → 0, r →∞, |l|, n ∈ {0, 1, 2},

uniformly in x on compact sets, where l is a multi-index. The motivation for these decay
conditions will become apparent in the proof to the correspondence between the time-domain
scattering problem and the frequency domain problem, Theorem 2.7.
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Remark 2.6 We would like to point out the contrast between the system of equations
Eq.(2.16)-(2.18) together with the decay conditions Eq.(2.19)-(2.20) and systems for which
the limiting amplitude principle [17] holds. The limiting amplitude principle gives the steady
state solution to the inhomogeneous wave equation with zero initial and boundary values in
terms of radiating solutions to the inhomogeneous Helmholtz equation with zero boundary
values. This is very different from the situation above, where, rather than the steady state,
we are interested in the behavior of the waves for all time. Indeed, the steady state for our
system of equations is not very interesting since it is simply zero. Instead, it is what happens
in between that allows us to reconstruct the obstacle. �

The time-domain Dirichlet scattering problem that we consider is the following.

For a scatterer Ω, given an incident field V i : Rm×R → R that solves Eq.(2.16)
on all of Rm × R, find the total field V : Ωc → R satisfying Eq.(2.16) on Ω

c

with F := 0 in Eq.(2.17) and with V = V i + V s, where V s is the scattered field
satisfying Eq.(2.16) and the radiation conditions Eq.(2.18)-(2.20).

The next theorem establishes the correspondence between this scattering problem and the
classical scattering problem in the frequency-domain.

Lemma 2.7 (Correspondence of time- and frequency-domain.) Let
f(x, κ) : ∂Ω × R → C satisfy f ∈ C(∂Ω) × C2(K), with f(x, ·) Hermitian and supp f =
∂Ω×K, where K ⊂ R \ {0} is compact. Then the function v satisfies the exterior Dirichlet
problem at almost every κ ∈ K if and only if the Fourier dual V : Rm × R → R , V ∈
C2(Ω

c
) × C2(R), satisfies the time-domain boundary value problem Eq.(2.16)-(2.20), with

F (x, t) := (Fκf)(x, t) in Eq.(2.17).

Proof. Suppose that v(x, κ) satisfies the exterior Dirichlet problem with boundary values
f at almost every κ ∈ K. Then, by Corollary 2.3, v is almost everywhere equivalent to
v∗ ∈ (C2(Ω

c
) ∩ C(Ωc)) × C2(R), with supp v∗(x, ·) ⊂ K and v∗(x,−k) = v∗(x, k). Also, by

Corollary 2.4, v∗ satisfies Eq.(2.7) uniformly in κ on K, thus

(2.21)

∥∥∥∥|x|m−1
2

(
∂

∂|x|
− iκ

)
v∗(x, ·)

∥∥∥∥
L2(R)

→ 0, |x| → ∞.

We show next that the Fourier transform of v∗ and it’s derivatives are absolutely integrable
with respect to κ uniformly in x on compact sets. To see this, recall that, for |l| = 0, 1 or 2,

the partial derivative ∂|l|v∗
∂xl is Hermitian and belongs to (C2−|l|(Ω

c
) ∩ C(Ωc)) × C2(R). The

Fourier transform of ∂|l|v∗
∂xl , call it Vl where Vl(x, t) = (Fκ

∂|l|v∗
∂xl )(x, t), is therefore a bounded,

real-valued function with Fκ(iκ)
n ∂|l|v∗

∂xl = ∂nVl

∂tn
, satisfying

∣∣∣∂nVl(x,t)
∂tn

∣∣∣ ≤ M|l|(x) (1 + |t|)−2 by

standard Fourier analysis, and, in particular, ∂nVl(x,·)
∂tn

∈ L1(R), for n ≥ 0 uniformly in x
on compact sets. Now, since v∗ is bandlimited with respect to κ and twice continuously
differentiable with respect to x then ∂|l|v∗

∂xl ∈ L1(R) uniformly in x on compact sets. Thus,
by [9, Theorem 53.5] we can differentiate under the integral in the Fourier transform to
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yield Vl = ∂|l|V
∂xl (||l| = 0, 1 or 2). The Fourier dual V therefore satisfies Eq.(2.19)-(2.20) and

the boundary value problem Eq.(2.16)-(2.18) where the radiation condition Eq.(2.18) follows
from Parseval’s relation.

Conversely, suppose that the bounded, real-valued function V : Rm × R → R , V ∈
C2(Ω

c
) × C2(R), satisfies Eq.(2.19)-(2.20) uniformly in x on compact sets, in addition to

the time-domain boundary value problem Eq.(2.16)-(2.18), with F (x, t) := (Fκf)(x, t) in
Eq.(2.17). Then [9, Theorem 53.5] can be applied to show Ft

∂V
∂|x| = ∂v

∂|x| and Ft4V = 4v,
where v = FtV . These, together with the decay conditions Eq.(2.20) yield

(4+ κ2)v(x, κ) = 0, x ∈ Ω
c
,

v(x, κ) = f(x, κ), x ∈ ∂Ω,

and

∥∥∥∥|x|m−1
2

(
∂

∂|x|
− iκ

)
v(x, ·)

∥∥∥∥
L2(R)

→ 0, |x| → ∞.(2.22)

To complete the proof, we must achieve a pointwise decay condition from Eq.(2.22). To
do this, define Sj := {x ∈ Rm | |x| = rj }, where the sequence of scalars rj → ∞. The
corresponding sequence of functions is given by

ψj(κ) := max
x∈Sj

∣∣∣∣|x|m−1
2

(
∂

∂|x|
− iκ

)
v(x, κ)

∣∣∣∣ .
The radiation condition Eq.(2.22) implies that ‖ψj‖L2 → 0, thus there exists a subsequence
ψji

(κ) converging pointwise almost everywhere to zero in κ [24, Theorem 3.12]. Since v(·, κ)
satisfies Eq.(2.3), ψji

(κ) → 0 implies that∣∣∣∣|x|m−1
2

(
∂

∂|x|
− iκ

)
v(x, κ)

∣∣∣∣ → 0, |x| → ∞,

that is, v(x, κ) satisfies the exterior Dirichlet Problem at almost every κ. �

Theorem 2.8 (Uniqueness and Existence for time-domain scattering.) Under the
hypotheses of Lemma 2.7, solutions V to Eq.(2.16)-(2.20) are unique.

Proof. This follows directly from Theorem 2.2 and Lemma 2.7. �

3 Inverse Scattering

The original point-source method reconstructs a time-harmonic wave satisfying the Som-
merfeld radiation condition from its far field pattern. At the heart of the method is the
construction of a backprojection operator with density g such that the scattered field is
calculated on some domain E by

(3.1) vs(x, κ) =

∫
S
e−iκx·ŷg(ŷ, κ)v∞(−ŷ, κ)ds(ŷ), x ∈ E.
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The backprojection operator relies on the duality of point-sources and plane waves. We
denote the total field generated by an incident plane wave by u,

(3.2) u(x, η̂, κ) = ui(x, η̂, κ) + us(x, η̂, κ)

where ui(x, η̂, κ) := eiκx·η̂, x ∈ Rm, κ ∈ R, and η̂ ∈ S denotes the direction of incidence.
The field resulting from excitation by a point-source Φ(x, z, κ) (x 6= z) is given by w(·, z, κ) :

Ω
c → C :

(3.3) w(·, z, κ) := wi(·, z, κ) + ws(·, z, κ),

where wi(·, z, κ) := Φ(·, z, κ), z ∈ Ω
c
, and κ 6= 0. The field w is a solution to the scattering

problem with an incident point-source. This field is the Green function for the boundary
value problem Eq.(2.3), Eq.(2.4) (or Eq.(2.5) or Eq.(2.6)) and Eq.(2.7), and is symmetric:
w(x, z, κ) = w(z, x, κ) x, z ∈ Ω

c
, x 6= z. The corresponding scattered field ws(·, z, κ)

satisfies Eq.(2.3)-(2.7) with f = −Φ(·, z, κ) on ∂Ω.

3.1 The time-dependent point-source method

Consider Ωa ⊂ Rm a bounded domain with C2 boundary. We first note that, for Ω ⊂ Ωa, a
straight forward argument using Green’s theorem and the boundary conditions for the fields
u and w (see [10]) shows that

(3.4) w∞(−η̂, z, κ) = γ(κ)us(z, η̂, κ), η̂ ∈ S, z ∈ Ω
c

a,

where

(3.5) γ(κ) =

{
e−i π

4√
8πκ

, m = 2
1
4π

m = 3
.

Equation Eq.(3.4) is referred to as the mixed reciprocity relation and is discussed in further
detail in [21, Theorem 2.1.4]. Second, by the principle of superposition for far field patterns
[3, Theorem 3.16], the far field pattern due to scattering from any incident field (in particular
an incident point-source) can be expressed as a superposition of far field patterns due to
scattering from incident plane waves. The point-source method uses these two facts to
reconstruct the scattered field on some region E outside of Ω. This technique has been
explored in [13–15,19–21] where it is applied to frequency-domain problems. Here we extend
this methodology to nonharmonic, time-dependent waves.

Let Λ ⊂ S denote an open set of directions on S. Here, Λ models the aperture on which
our sensors lie. In our numerical experiments, this is a symmetric interval of the unit sphere
centered with respect to the direction of the incident field. The far field u∞ due to an
incident plane wave with direction η̂ ∈ S is measured at points ŷ ∈ Λ. Define the Herglotz
wave operator Hκ : L2(−Λ) → L∞(Rm) by

(3.6) (Hκg)(x) :=

∫
Λ

eiκx·(−ŷ)g(−ŷ) ds(ŷ), x ∈ Rm, g ∈ L2(−Λ).
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The corresponding family of Herglotz wave functions parameterized by κ and mapping Rm

to C, hg(·, κ) := (Hκg)(·), consists of entire solutions to the Helmholtz equation for fixed κ.
Of particular interest is the Herglotz wave operator restricted to some surface X ⊂ Rm. The
adjoint of Hκ with κ fixed, denoted H∗

κ : L2(X) → L2(Λ) , is given by

(H∗
κψ)(η̂) :=

∫
X
e−iκx·(−η̂)ψ(x) ds(x), η̂ ∈ Λ.

Let Ωa be a bounded domain with simply connected, C2 boundary and Ω ⊂ intΩa. Suppose
κ /∈ K where

(3.7) K ≡ {κ ∈ IR | κ2 is an eigenvalue of −4 on Ωa}.

It can then be shown that Hκ and H∗
κ restricted to ∂Ωa are injective with dense range. Thus

one can choose the Herglotz wave function hg with density g to approximate arbitrarily
closely any convenient incident field vi on ∂Ωa. The incident field we approximate is an
incident point-source located at a point z ∈ Ω

c

a. To see this, define the Herglotz wave
function as a function of the spatial variable x ∈ Ωa and wavenumber κ ∈ R parameterized
by the point z as

(3.8) hg(x, z, κ) :=

∫
Λ

eiκx·(−ŷ)g(−ŷ, z, κ) ds(ŷ).

The backprojection operator that is central to the point-source method is built upon the
integral operator Bg : L2(Λ×S×R) → L2(Rm×S×R) with kernel g(·, z, ·). For a function
ψ ∈ L2(Λ× S× R), the operator Bg is defined by

(3.9) (Bgψ)(z, η̂, κ) :=

∫
Λ

ψ(ŷ, η̂, κ)
g(−ŷ, z, κ)

γ(κ)
ds(ŷ),

for γ(κ) given by Eq.(3.5). The corresponding time-domain operator, denoted Bg : L2(Λ×
S× R) → L2(Rm × S× R) , is defined by

(3.10) Bg := FκBgFt.

Remark 3.1 The dependency of g on κ is essential to the convergence properties of re-
constructions in the time domain. For technical reasons mentioned in Remark 2.1, in two
dimensions we exclude the zero frequency. In Lemma 3.6 and Theorem 3.7 below, we also
restrict ourselves to the cases where the incoming wave is compactly supported with respect
to κ on R \ {0} in order to assure the regularity of the inversion process in the time do-
main. Again, this is not physically unreasonable since sources with unbounded bandwidth
are indeed rare. �

Theorem 3.3 states that, provided Ω ⊂ Ωa, the density g(·, z, κ) for which the Herglotz
wave function approximates Φ(·, z, κ) on ∂Ωa allows one directly to calculate an approx-
imation to the scattered field us at the point z from fixed frequency far field data u∞.
For multifrequency fields in the time-domain, we are interested in the uniformity of such
approximations with respect to κ. For this we need the following lemma.
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Lemma 3.2 Let Ωa ⊂ Rm be a bounded domain with simply connected, C2 boundary. The
set of Dirichlet eigenvalues of the negative Laplacian on the interior of Ωa has measure zero
with respect to Lebesgue measure on R.

Proof. The spectrum of −4 on bounded domains has a countably infinite spectrum [12,
Theorem 4.1], and any countable set of points in R has measure zero with respect to Lebesgue
measure. �

Before stating the main result of this section, we introduce the far field mapping TΩ′
a

:

vs|Ω′
a
→ v∞ mapping the scattered field vs restricted to any compact subset Ω′

a ⊂ Ω
c

containing open subsets to the far field v∞. This is a continuous mapping. The time domain
counterpart to this – also a continuous mapping – is denoted T with TΩ′

a
: vs|Ω′

a
→ v∞ . The

next theorems show how to approximate the inverse of the far field mapping of the scattered
field due to an incident plane wave.

Theorem 3.3 (Norm convergence in frequency) Let Ωa ⊂ Rm be a bounded domain
with simply connected, C2 boundary satisfying Ω ⊂ Ωa and let K = R\B(0, ε′) where B(0, ε′)
is the closed ball of radius ε′ centered at the origin. Given any δ > 0 and any fixed z ∈ Ω

c

a,
there exists an ε > 0 such that, for all η̂ ∈ S, and g satisfying

(3.11)
∥∥∥Φ(·, z, ·)− hg(·, z, ·)

∥∥∥2

C(∂Ωa)×L2(K)
< ε

we have

(3.12)
∥∥∥us(z, η̂, ·)− (Bgu

∞)(z, η̂, ·)
∥∥∥2

L2(K)
< δ.

Here us and u∞ are the scattered field and far field pattern due to an incident plane wave
with direction η̂, Bg is defined by Eq.(3.9), and hg(·, z, ·) is defined by Eq.(3.8).

Proof. The Herglotz wave operatorHκ is injective with dense range on ∂Ωa for all κ ∈ K\K
where K is defined by Eq.(3.7). Recall (Lemma 3.2) that K is countable, so we will index
elements of this set by κj. Since special care is needed for the frequencies in K, we exclude
small neighborhoods of these frequencies. More precisely, let K′ ≡ ∪κj∈KB(κj, ε

′
j). We then

split the norm with respect to κ in Eq.(3.11) into two parts:∥∥∥Φ(·, z, ·)− hg(·, z, ·)
∥∥∥2

C(∂Ωa)×L2(K)
=

∥∥∥Φ(·, z, ·)− hg(·, z, ·)
∥∥∥2

C(∂Ωa)×L2(K\K′)

+
∥∥∥Φ(·, z, ·)− hg(·, z, ·)

∥∥∥2

C(∂Ωa)×L2(K′)
.(3.13)

It follows immediately from the denseness of the Herglotz wave operator on K \K′ that for
all ε > 0 there is a density g such that∥∥∥Φ(·, z, ·)− hg(·, z, ·)

∥∥∥2

C(∂Ωa)×L2(K\K′)
≤ ε

2
.
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The corresponding Herglotz wave function hg and Φ solve Eq.(2.3) for each fixed κ ∈ K \K′

on the interior of Ωa and thus are analytic with respect to the spatial variable [3, Theorem
2.2] and the bound in Eq.(3.11) extends to the interior of Ωa, that is, for some c′ > 0

(3.14)
∣∣∣∣∣∣Φ(·, z, ·)− hg(·, z, ·)

∣∣∣∣∣∣2
C(Ωa)×L2(K\K′)

≤ c′
ε

2
.

On K′ we fix any κj ∈ B(κj, ε
′
j) \ {κj} and construct a constant density gj(ŷ, z, ·) on

B(ε′j, κj) that satisfies

(3.15)
∥∥∥Φ(·, z, κj)− hgj

(·, z, κj)
∥∥∥2

C(∂Ωa)
≤ ε′′j .

We show below that, for ε′j and ε′′j small enough, these constant densities on B(κj, ε
′
j) satisfy

(3.16)
∥∥∥Φ(·, z, ·)− hg(·, z, ·)

∥∥∥2

C(∂Ωa)×L2(K′)
≤ ε

2
.

Moreover, by our construction, this bound can be carried into the interior of Ωa to yield, for
some constant c′ > 0,

(3.17)
∥∥∥Φ(·, z, ·)− hg(·, z, ·)

∥∥∥2

C(Ωa)×L2(K′)
≤ c′

ε

2
.

For the moment, we take this for granted.
Equations (3.14) and (3.17) together yield

(3.18)
∣∣∣∣∣∣Φ(·, z, ·)− hg(·, z, ·)

∣∣∣∣∣∣2
C(∂Ω)×L2(K)

≤ cε

for some constant c > 0. Now consider the scattered field associated with the incident field
vi(x, z, κ) = hg(x, z, κ) due to scattering from the sound-soft obstacle Ω. Likewise, consider
the scattered field ws due to an incident point source Φ(x, z, κ), z ∈ Ωc

a. On ∂Ω we have
vi = −vs and ws = −Φ, thus Eq.(3.18) can be rewritten as∣∣∣∣∣∣− ws(·, z, ·) + vs(·, z, ·)

∣∣∣∣∣∣2
C(∂Ω)×L2(K)

≤ cε.

Since the far field mapping is T∂Ω is a continuous mapping, for any choice of δ > 0 there is
an ε > 0 such that ‖ws(·, z, ·)− vs(·, z, ·)‖2

C(∂Ω)×L2(K) ≤ cε implies∣∣∣∣∣∣w∞(−η̂, z, ·)− v∞(−η̂, z, ·)
∣∣∣∣∣∣2

L2(K)
≤ δ, ∀ η̂ ∈ S.

By [3, Lemma 3.16], v∞(−η̂, z, κ) =
∫

Λ
u∞(−η̂,−ŷ, κ)g(−ŷ, z, κ)ds(ŷ), where u∞ is the far

field pattern due to scattering of an incident plane wave. Now, the mixed reciprocity relation



Luke, Potthast 14

Eq.(3.4) together with the standard reciprocity relation u∞(−η̂,−ŷ, κ) = u∞(ŷ, η̂, κ) (see [3,
Theorem 3.13]) yield the result∥∥∥∥us(z, η̂, ·)− 1

γ(κ)

∫
Λ

u∞(ŷ, η̂, ·)g(−ŷ, z, ·)ds(ŷ)
∥∥∥∥2

L2(K)

≤ δ, ∀ η̂ ∈ S.

What remains is to show Eq.(3.16) and (3.17). For each j and a given ε′j and ε′′j , choose any
κj ∈ B(κj, ε

′
j) \ {κj} and let gj satisfy Eq.(3.15) (again, possible because at κj the Herglotz

wave operator is injective with dense range on C(∂Ωa)). For this choice of κj, the bound in
Eq.(3.15) can be extended to the interior, that is, there is a constant c′j such that

(3.19)
∥∥∥Φ(·, z, κj)− hgj

(·, z, κj)
∥∥∥2

C(Ωa)
≤ c′jε

′′
j .

Define

(3.20) ρ(ε′j, κj) ≡ max
κ∈B(κj ,ε′j)

∥∥∥Φ(·, z, κ)−Φ(·, z, κj)
∥∥∥2

C(∂Ωa)
+

∥∥∥hgj
(·, z, κj)− hgj

(·, z, κ)
∥∥∥2

C(∂Ωa)

where B is the closure of the ball. We write “max” instead of “sup” to emphasize that the
supremum is attained since the feasible set is compact and the objective is continuous on
this compact set; moreover ρ is a continuous function of ε′j > 0 with ρ(ε′j, κj) → 0 as ε′j → 0.
This bound can also be continued to the interior of Ωa because the objective, which we know
explicitly, is a continuous (in fact, analytic) function of both the spatial variable and κ on
Ωa × B(κj, ε

′
j), that is,

(3.21) max
κ∈B(κj ,ε′j)

∥∥∥Φ(·, z, κ)−Φ(·, z, κj)
∥∥∥2

C(Ωa)
+

∥∥∥hgj
(·, z, κj)− hgj

(·, z, κ)
∥∥∥2

C(Ωa)
≤ c′jρ(ε

′
j, κj)

Together Eq.(3.19) and Eq.(3.21) yield, for all κ ∈ B(κj, ε
′
j) and some c′j > 0,∥∥∥Φ(·, z, κ)− hgj

(·, z, κ)
∥∥∥2

C(Ωa)
≤

∥∥∥Φ(·, z, κ)− Φ(·, z, κj)
∥∥2

C(Ωa)

+
∥∥∥hgj

(·, z, κj)− hgj
(·, z, κ)

∥∥∥2

C(Ωa)

+
∥∥∥Φ(·, z, κj)− hgj

(·, z, κj)
∥∥∥2

C(Ωa)

≤ c′j(ρ(ε
′
j, κj) + ε′′j )(3.22)

The pointwise – with respect to κ – bound of Eq.(3.22) then yields∥∥∥Φ(·, z, ·)− hg(·, z, ·
∥∥∥2

C(Ωa)×L2(K′)
=

∫
K′

∥∥∥Φ(·, z, κ)− hg(·, z, κ)
∥∥∥2

C(Ωa)
d κ

≤
∑

j

2c′jε
′
j

(
ρ(ε′j, κj) + ε′′j

)
.(3.23)
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Since the neighborhood radius ε′j and approximation error ε′′j are arbitrary, they can be
chosen so that ∑

j

2c′jεj
(
ρ(ε′j, κj) + ε′′j

)
< c′

ε

2
.

which establishes Eq.(3.17)-(3.17) and completes the proof. �

Corollary 3.4 (Pointwise convergence in time) In addition to the assumptions of The-
orem 3.3, let ui(·, η̂, κ) = 0 for all κ ∈ B(0, ε′) then there exists a sequence {gj} such that

(Bgj
U∞)(z, η̂, t) → U s(z, η̂, t), ∀ η̂ ∈ S,

Proof. The region K is not assumed to be compact, so the usual justification does not apply.
Instead, note that, since ui(·, κ, η̂) = 0 for κ ∈ B(0, ε′), the scattered field and far field
pattern at these wavenumbers are also zero. Without loss of generality define g(ŷ, z, κ) := 0
for κ ∈ B(0, ε′). Thus, the inequality Eq.(3.12) can be extended to

(3.24)
∥∥∥us(z, η̂, ·)− (Bgu

∞)(z, η̂, ·)
∥∥∥

L2(R)
< δ.

By Parseval’s identity, we have

(3.25)
∥∥∥U s(z, η̂, ·)− (BgU

∞)(z, η̂, ·)
∥∥∥

L2(R)
< δ,

where U s = Fκu
s, U∞ = Fκu

∞ and B is defined by Eq.(3.10). It follows from [24, Theorem
3.12] that there exists a sequence {gj} – which can be constructed as a subsequence of
another sequence of densities for which the bound in Eq.(3.11) converges to zero – such that

(Bgj
U∞)(z, η̂, t) → U s(z, η̂, t), ∀ η̂ ∈ S, and a.e. t,

where Bgij
is defined by Eq.(3.10). Moreover, since U s(z, η̂, ·) and (Bgi

U∞)(z, η̂, ·) ∈ C2(R)
convergence is pointwise everywhere. �

We close this section with a few remarks about the regularity of the point-source method,
by which we mean that the method admits a regular regularization strategy. Noisy inverse
problems are characterized by a mismatch, or error, between the true image ψ of the input
ϕ under the operator A, ψ = Aϕ, and the observed image ψδ. The next definition estab-
lishes the framework for analyzing the convergence properties of regularized inversion in the
presence of noise.

Definition 3.5 A regularization strategy Rα, that is a rule for choosing α depending on
the size of the image error δ, is called regular if, for all ψ ∈ rangeA and all ψδ ∈ Y with
‖ψδ − ψ‖ ≤ δ we have

Rα(δ)ψδ → A−1ψ, as δ → 0.
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Lemma 3.6 The density

(3.26) gα(·, z, κ) := (H∗
κHκ + αI)−1H∗

κΦ(·, z, κ)

depends continuously on κ ∈ IR \ {0}. The norm ||gα(·, z, κ)||L2(Λ) is uniformly bounded with
respect to κ on compact subsets of IR \ {0}.

Proof. First, we remark that the Tikhonov operator (H∗
κHκ + αI)−1H∗

κ is well defined for
all κ ∈ IR. The operator Hα depends continuously on κ for all κ ∈ IR, since its kernel is
analytic in κ. Also, the function Φ depends continuously on κ for κ ∈ IR \ {0}. But then
by standard arguments the solution gα depends continuously on κ ∈ IR \ {0} in its L2-norm
on Λ. A continuous function is bounded on compact subsets of its domain, this yields the
second statement. �

Theorem 3.7 (Regularity of the time-domain point-source method) The density
gα(ŷ, z, κ) given by (3.26) is a regularized solution (in fact, the Tikhonov regularized solution)
to the inverse problem

(Hκg)(x, z, κ) = Φ(x, z, κ), x ∈ ∂Ωa

for κ ∈ K ⊂ IR\{0} compact. Moreover, under the assumptions of Corollary 3.4, the operator
Bgα defined by Eq.(3.10) is a regularized inverse of the far field mapping TΩ′

a
on compact

subsets of Ω
c
, which, in the presence of noise, admits a regular regularization strategy.

Proof. Recall that Hκ and H∗
κ, restricted to ∂Ωa for fixed κ and κ2 not a Dirich-

let eigenvalue of −4 on Ωa, are injective with dense range. Thus the operator Rα =
(αI + H∗

κHκ)
−1H∗

κ is the Tikhonov regularized inverse operator for Hκ on ∂Ωa, for κ ∈
K \ {Dirichlet eigenvalues of −4 on ∂Ωa} (see for example [3, Ch.4]).

To prove the remainder of the theorem we decompose the error into the regularization
error and the data error:

||BgαU
∞
δ′ − T−1

Ω′
a
U∞|| ≤ ||BgαU

∞ − T−1
Ω′

a
U∞||+ ||Bgα(U∞ − U∞

δ′ )||(3.27)

where U∞
δ′ is a noisy measurement satisfying ‖U∞(z, η̂, t) − U∞

δ′ (z, η̂, t)‖ < δ′(t). To show
that Bgα is a regularized inverse of TΩ′

a
, we need only show that, for all U∞ ∈ rangeTΩ′

a
, the

first norm on the right of Eq.(3.27) tends to zero as α→ 0. If the second norm on the right
of Eq.(3.27) tends to zero as the data error ‖U∞(z, η̂, t)−U∞

δ′ (z, η̂, t)‖ < δ′(t) → 0, then Bgα

is regular.
First, assuming that us(·, η̂, κ) = 0 for all κ ∈ Kc, then by Eq.(3.25), given any δ > 0 and

any U∞ ∈ rangeT{z}, there exists ε > 0 and α > 0 such that∣∣∣∣∣∣Φ(x, z, κ)− (Hκgα)(x, z, κ)
∣∣∣∣∣∣

C(∂Ωa)×L2(K)
< ε

implies

(3.28)
∥∥∥(T−1

{z}U
∞)(z, η̂, ·)− (BgαU

∞)(z, η̂, ·)
∥∥∥

L2(R)
<
δ

2
, ∀ η̂ ∈ S.
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Since (αI +H∗
κHκ)

−1H∗
κ is a regularized inverse of Hκ, which is injective with dense range,

the norm above tends to zero as ε, and α→ 0.
For the second step, recall the definition Bgα = FκBgFt. The function

(3.29) Ft

(
U∞(z, η̂, ·)− U∞

δ (z, η̂, ·)
)

has compact support K with respect to κ. On K the operator gα is uniformly bounded
and thus also the backprojection operators Bg are bounded as operators L2(Λ) into the set
of continuous functions for any appropriate compact subset M of the open exterior of the
scatterer Ω uniformly for κ ∈ K. Since Bg are pointwise in frequency and uniformly bounded
on K, for given δ/2 > 0 there is δ′ such that

(3.30) ||U∞(z, η̂, ·)− U∞
δ′ (z, η̂, ·)||L2(IR) ≤ δ′

yields

(3.31)
∣∣∣∣∣∣FκBgFt

(
U∞(z, η̂, ·)− U∞

δ′ (z, η̂, ·)
)∣∣∣∣∣∣

L2(IR)
≤ δ

2
, z ∈M.

This yields

(3.32)
∥∥∥BgαU

∞(z, η̂, ·)−BgαU
∞
δ′ (z, η̂, ·)

∥∥∥
L2(R)

≤ δ

2
, ∀ η̂ ∈ S, z ∈M.

Together Eq.(3.28) and Eq.(3.32) yield∥∥∥T−1
{z}U

∞(z, η̂, ·)−BgαU
∞
δ′ (z, η̂, ·)

∥∥∥
L2(R)

< δ, ∀ η̂ ∈ S, z ∈M,

and thus the regularity of the point-source method. �

Remark 3.8 Theorem 3.7 relies on some strong, but practical, assumptions about the na-
ture of the noise. Specifically, we assume that the error in the time dependent far field
pattern U∞

δ′ is band-limited and it is integrable with respect to time. �

4 Numerical examples

We conclude with two numerical demonstrations that illustrate the advantage of the time
domain formulation over straight averaging over multi-frequency data. We begin with a few
remarks about a realization of the method for discretely sampled data.

Again, the set of values of K defined by Eq.(3.7) is countable. Given ε > 0 we choose
a discretization κ0 < κ1 < ... < κj < ...κn ∈ K \ K such that for every κ ∈ K there is
j ∈ {1, ..., n} such that

(4.1) ‖Φ(·, z, κ)− Φ(·, z, κj)‖2
C(∂Ωa) ≤

ε

3n
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uniformly on K. We construct the density gα,j(·, z, κj) via Eq.(3.26) for Hκj
and its adjoint

restricted to ∂Ωa where α is chosen so that

(4.2) ‖Φ(·, z, κj)− hgα,j
(·, z, κj)‖C(∂Ωa) ≤

ε

3n

and ∥∥hgα,j
(·, z, κj)− hgα,j

(·, z, κ)
∥∥2

C(∂Ωa)
≤ ε

3n

for all j = 0, ..., n and all nearest κ ∈ K. We define the density on the continuum of
wavenumbers, gα(·, z, κ), by piecewise constant interpolation over the wavenumber grid,
that is, gα(·, z, κ) = gα,j(·, z, κj) where κj is the nearest grid point to a given κ. Similar to
Eq.(3.22), this leads to the estimate for each j

‖Φ(·, z, κ)− hgα(·, z, κ)‖C(∂Ωa) ≤ ‖Φ(·, z, κ)− Φ(·, z, κj)‖C(∂Ωa)

+
∥∥hgα,j

(·, z, κj)− hgα,j
(·, z, κ)

∥∥2

C(∂Ωa)

+
∥∥Φ(·, z, κj)− hgα,j

(·, z, κj)
∥∥2

C(∂Ωa)

≤ ε

n
,(4.3)

where κj is the nearest discretization point to κ.
In Figure 3 we show the actual and reconstructed time progression of the total wave-field

(scattered plus incident waves) as it scatters around a sound soft obstacle. The incident
wave travels from right to left, and has the frequency profile shown in Figure 1. As this
picture shows, the incident field, that is, the boundary condition f in Eq.(2.4), has been
constructed so that it satisfies the hypotheses of Lemma 2.7. The obstacle is the well known
kite shown in Figure 2. Note that the wave numbers range from −5 to 5 and the obstacle
diameters are around 2, thus the wave numbers are in the resonance region of the obstacles.

The data consists of time-series measurements of the scattered field on a sphere S in the
far field. To generate the forward data we use the integral equation techniques described
in [3]. We discretize the integral equations using 160 points on the boundary, ignoring the
singularity. We evaluate the far field pattern at 80 points on the unit sphere with 66 time
slices for two different incident field directions. The scattered field, reconstructed using the
point-source method, was computed at 6400 evenly spaced radial points in the computational
domain. For reference, we calculate the true scattered field via boundary integral techniques
on a 80× 80 Cartesian grid.

To implement the point-source method in this setting, we apply the Fourier transform to
the far field data and solve for the scattered field at the sampled wavenumber κ in the usual
way with the point-source method (see [19,21]). We refine our solution for the scattered fields
at each frequency by estimating the location of the center of the obstacle via a first-order
physical optics approximation for the backprojection density as described in [14]. With the
location of the center in hand, we then reconstruct the total field at each frequency along
radial lines extending from this center. Applying the inverse Fourier transform yields the
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Figure 1: Frequency profile of incident wave.

time-dependent wave. This is shown in the series of snap-shots of the wave displayed in
Figure 3.

The advantage of imaging with pulses is demonstrated in Figure 4. In the first image,
Figure 4(a), we compute the time-average (66 time samples) of the total field amplitude over
the two incident pulses. In the second image, Figure 4(b), we compute the frequency-average
(66 frequencies) of the total field amplitude over the two incident field directions assuming
that all frequencies are present with the same amplitude. The image obtained from the time-
dependent pulses is smoother and has fewer local maxima that could frustrate subsequent
image processing algorithms for finding the minimum curve. The figures illustrate the value
of a weighted average over straight averaging. When one synthesizes multi-frequency data
without consideration of what kind of time signal the frequencies represent, one has no
indication of how to weight the frequencies when averaging the data.

To give some idea of the computational intensity of these experiments, the forward solution
for the time-dependent scattered field calculated on the 80×80 Cartesian grid via boundary
integral techniques took 206 seconds using MATLAB with the DP Toolbox [18] on a parallel
cluster of 6 Linux PC’s (2 Ghz, 1280 MB RAM). In contrast, the inverse solution, calculated
on a polar grid of 6400 evenly spaced points from 80 simulated far field measurements, took
13 seconds.
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field measurements at times t = 21, 31 and 42 with an incident wave traveling southeast to north-
west. (d)-(f) Amplitude of the total wave calculated via the point-source method from far field
measurements at times t = 21, 31 and 42 with an incident wave traveling northwest to southeast.
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Figure 4: (a) Total field amplitude averaged over all time samples and incident pulse directions.
(b) Total field amplitude averaged over all frequencies for equal amplitude time-harmonic fields.
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