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We study the general problem of mixing for ab-initio quantum-mechanical problems. Guided
by general mathematical principles and the underlying physics, we propose a multisecant form
of Broyden’s second method for solving the self-consistent field equations of Kohn-Sham density
functional theory. The algorithm is robust, requires relatively little fine-tuning and appears to
outperform the current state of the art, converging for cases that defeat many other methods. We
compare our technique to the conventional methods for problems ranging from simple to nearly
pathological.
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I. INTRODUCTION

We consider the problem of determining the electron density ρ that satisfies the self-consistent field equations
according to the Kohn-Sham density functional theory1,2:

(H0 + Vρ)φi = εiφi (I.1a)

ρ(x) =
∑
i

(
1 + eβ(εi−µ)

)−1

|φi(x)|2. (I.1b)

Here H0 is the single-particle noninteracting Hamiltonian and Vρ is an effective potential parameterized by the particle

density ρ. The constant β is 1/kT where k is Boltzmann’s constant and T is temperature. The term (1 + eβ(εi−µ))−1

is the Fermi-Dirac occupation and the constant µ is determined by
∫
ρ(x)dx = N for an N -body problem. Following3

we let Hρ := H0 + λVρ
46 denote the Kohn-Sham Hamiltonian and reformulate the above system of equations as a

nonlinear fixed point problem: find ρ such that

F (ρ)(x) :=
(

1 + eβ(Hρ−µ)
)−1

(x, x) = ρ(x) (I.2)

where µ is the unique solution to N = trace(
(
1 + eβ(Hρ−µ)

)−1
). We refer to the operator F above as the self-consistent

field (SCF) operator. We will not be concerned with the details of the SCF operator or its approximations since these
tend to be specific to the application. Also, we will work with the discretized version of the SCF operator, which we
will call the SCF mapping since it is a real vector-valued mapping of the discretized density. Throughout this work,
however, we will point to instances where the form of this mapping can cause problems for numerical procedures for
solving Eq.(I.2).

Numerical algorithms for solving Eq.(I.2) abound – the representative examples we focus on here are4–11. These
are iterative procedures and the process of determining the desired density ρ from previous estimates has come to
be known as “mixing” in the physical literature. For ab-initio methods there is frequently a user-provided mixing
term which, if it is improperly chosen, will lead to divergence of the iterations. In many cases the user has to learn
by failure what is the correct value to use, expending a fair amount of computer resources in the process. We will
show that many of the methods found in the physical literature have counterparts in the mathematical literature
where systematic approaches to the choice of algorithm parameters is well established. The goal of this work is the
development of a method that does not require expert user input, is fast, and can handle many of the more complicated
and poorly convergent problems such as metallic surfaces or heterostructures that can defeat a novice and sometimes
an expert.

In the next two sections we discuss the leading methods in a novel analytical framework that clarifies similarities
as well as fundamental differences. Our analysis sheds light on why the algorithms can fail which suggests strategies
for design of an improved method. The class of algorithms we study are predicated upon mappings with a great deal
of regularity – properties that the SCF mapping is not guaranteed to satisfy in all instances. Therefore, rather than
viewing successive iterates as deterministic steps in a path to a solution, we treat the prior steps as random samples
in a high-dimensional space. This viewpoint leads to a natural interpretation of the algorithm in terms of predicted
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and unpredicted components, as well as the need for regularization and controls on the relative magnitude of the
unpredicted step. In Section IV we present numerical results for both very easy problems as well as semi-pathological
cases. The new approach outperforms existing algorithms in most cases, and does significantly better with poorly
constructed Kohn-Sham mappings. The algorithm is also relatively insensitive to user input. We conclude with a
discussion of some of the open issues.

II. ITERATIVE METHODS FOR SOLVING NONLINEAR EQUATIONS

For fixed atom locations, we wish to determine the electron density ρ∗, a real-valued vector with k elements. With
an estimated density ρn at the n-th step of an iterative procedure for determining ρ∗, we check whether our estimate
satisfies the ab-initio self-consistent field (SCF) equations given by Eq.(I.2). Evaluation of the SCF mapping returns
a modified density ρ′n := F (ρn), another real-valued vector with k elements. The density we seek is a fixed point of
F , i.e., we solve the system of non-linear equations

F (ρ∗)− ρ∗ = 0. (II.1)

This suggests the usual Newton algorithm as a possible numerical solution strategy.

A. Newton-like Methods

Given a point ρn, Newton’s method generates the next approximate solution to Eq.(II.1), ρn+1, by

ρn+1 = ρn − (J(ρn)− I)−1(F (ρn)− ρn). (II.2)

Under standard assumptions, this iteration can be shown to converge quadratically in a neighborhood of a local
solution12. The computational cost of calculating the Jacobian is prohibitive for high-dimensional problems such as
density functional calculations. Instead one can approximate the Jacobian via solutions to the matrix secant equation:
Bn ≈ (J(ρn)− I) where

Bn(ρn − ρn−1) =
(

(F (ρn)− ρn)− (F (ρn−1)− ρn−1)
)

(II.3)

Introducing new variables, this is represented as

Bnsn−1 = yn−1 or (II.4)

Hnyn−1 = sn−1 (II.5)

where Hn = B−1
n and

sn−1 = ρn − ρn−1 and yn−1 = (F (ρn)− ρn)− (F (ρn−1)− ρn−1). (II.6)

The next density ρn+1 is then generated either by the recursion

ρn+1 = ρn −B−1
n (F (ρn)− ρn) (II.7)

where Bn satisfies Eq.(II.4), or by

ρn+1 = ρn −Hn(F (ρn)− ρn) (II.8)

where Hn satisfies Eq.(II.5). The variables in Eq.(II.4) and Eq.(II.5) are the matrices Bn and Hn respectively, and
there are infinitely many possible solutions, each leading to a different numerical technique. Our focus in this study
is on improvements of the Broyden family discussed next.

B. Rank One Updates

A new matrix Bn+1 is obtained by updating in some fashion Bn using the new data pair (sn, yn) combined with
the prior information (s0, y0), (s1, y1), ..., (sn−1, yn−1) subject to the constraint that Bn+1 satisfy Eq.(II.4). Broyden13

looked at two approaches, given here in a multistep recursion.
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The first (B1) is based on updates to the approximate Jacobian in Eq.(II.4), and is shown in14 (Theorem 6.2) to be

B−1
n+1 = B−1

0 −
(
B−1

0 Yn − βnSn
) (
Ln + STnB

−1
0 Yn

)−1
STnB

−1
0 (II.9)

where βn is a scaling,

Sn := [s0, s1, s2, . . . , sn] , Yn := [y0, y1, y2, . . . , yn] (k-by-(n+ 1) matrices) (II.10)

and (Ln)i,j :=
{
−sTi−1sj−1 if i > j; 0 otherwise

}
.

The second of Broyden’s methods (B2) is based on updates to the approximate inverse Jacobian in Eq.(II.5) and
is given by

Hn+1 = H0

n∏
j=0

Wj +

n∑
j=0

Zj n∏
i=j+1

Wi

 (II.11)

where the products ascend from left to right with the empty product defined as 1, and

Wn := I − yny
T
n

‖yn‖2
and Zn := βn

sny
T
n

‖yn‖2
(n = 1, 2, . . . ).

Here and throughout this work the norm ||y|| =
√
yT y is the Euclidean norm and a vector (understood to be a column

vector) or matrix raised to the power T indicates the transpose. Note that our sign convention is different to the sign
in Broyden’s paper where he takes Hn+1 = −B−1

n+1. Our recursion appears to be new, and for βn = 1 can be shown

to be equivalent to a recursion proposed by Srivastava9 with the same storage requirements.
Both Eq.(II.9) and Eq.(II.11) can be performed without storing or forming the matrix explicitly. In the recursions

Eq.(II.9) and Eq.(II.11) the initial matrix, B0 and H0 respectively, is crucial; we explore scalings in greater detail
in Subsection III C. Srivastava’s formulation was initially implemented for LAPW code by11 with H0 fixed, but a
dynamic H0 yields substantially better performance.

Both of Broyden’s methods are shown in15 to converge locally superlinearly under the standard assumptions that
the Jacobian exists, is nonsingular and Lipschitz continuous at the solution. Update Eq.(II.11), however, was not
recommended by Broyden and subsequently became known as Broyden’s “bad” method.

Broyden’s updates are the nearest matrices to the previous matrix with respect to the Frobenious norm47 that
satisfy the current matrix secant equation Eq.(II.4) or Eq.(II.5). The main difference between B1 and B2 is the space
in which the “nearest” criterion is applied16. For B1 the criterion is applied in the domain of the mapping, while B2
is applied in the range, where the domain of the mapping is the space of the density differences sn and the range
is the space of the residual differences yn. We see from Eq.(II.7) that an ill-conditioned matrix update Bn will lead
to a large and possibly unstable estimation of the step sn. On the other hand, from Eq.(II.8) it is clear that a least
change criterion in the space of the residual differences yn will lead to smaller steps that could slow progress for
well-conditioned problems; we return to this issue below.

C. Multisecant Methods

To generate the n+ 1-th Jacobian approximation the methods described above satisfy the matrix secant equation
Eq.(II.4) or Eq.(II.5) for the current step sn and residual difference yn. Updating the Jacobian based only on the
most recent sample and ignoring the other sample points imposes a bias toward the most recent step. Searching for
the nearest matrix that satisfies the matrix secant equation only for the most recent sample point is a greedy strategy
without recourse.

Multisecant techniques put the previous data on more equal footing with the most recent steps; that is, rather
than satisfying the matrix secant equation for only the most recent step one satisfies all matrix secant equations
simultaneously:

Yn = BnSn or Sn = HnYn (II.12)

where Sn = [s1,n, s2,n, . . . , sm,n] and Yn = [y1,n, y2,n, . . . , ym,n] are k-by-m (m ≤ min{n, k}) matrices whose columns
are previous steps and residual differences respectively. Multisecant techniques have been thoroughly studied in
the mathematical literature14,17–25. Methods appearing independently in the physical sciences literature5–8,10 are
relaxations of more conventional multisecant methods. A very recent study of multisecant methods brought to our
attention by an annonymous referee is26.
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Many multisecant methods are easily understood by formulating the underlying optimization problem each of the
approximate Jacobians (implicitly) solves. We consider first the constrained optimization problem

minimize
X∈C

1

2
‖A−X‖2 (II.13)

where, throughout, the norm of a matrix is the Frobenius norm, A is a real k × k matrix, and the set C :={
X ∈ Rk×k such that XD = G

}
. for D,G real k × m matrices such that C is nonempty. If the columns of D

are linearly independent, the solution X∗ to the optimization problem Eq.(II.13) is the orthogonal projection of A
onto C, written explicitly as

X∗ = A+ (G−AD)
(
DTD

)−1
DT . (II.14)

Specializing to multisecants, if A is an approximation to the Jacobian, D = Sn ∈ Rk×m and G = Yn ∈ Rk×m
(1 ≤ m ≤ n), the columns of which are denoted yj and sj respectively (j ∈ [0, n]), then we arrive at the multisecant
extension of the Broyden’s first update (MSB1) as studied by18,19,21,23:

Bn+1 = A+ (Yn −ASn)
(
STn Sn

)−1
STn . (II.15)

Elementary calculations using the Sherman-Morrison-Woodbury formula yield the multi-step recursion for B−1
n+1 ,

analogous to Eq.(II.9),

B−1
n+1 = A−1 +

(
Sn −A−1Yn

) (
(STn Sn)−1STnA

−1Yn

)−1

(STn Sn)−1STnA
−1 (II.16)

Sequences based on update Eq.(II.15) are shown in23 (Theorem 2.5) to be locally q-superlinearly convergent if, in
addition to other standard assumptions, the approximate Jacobians, Bn stay close to the behavior of the true Jacobian,
and if the columns of Sn are strongly linearly independent. Moreover, storage requirements for this formulation are
no greater than those of Srivastava’s implementation of Broyden’s second method.

An alternative specialization of Eq.(II.14) leads to a multisecant form of Broyden’s second method (MSB2) if we
let A be an approximation to the inverse of the Jacobian, D = Yn and G = Sn so that

Hn+1 = A+ (Sn −AYn)
(
Y Tn Yn

)−1
Y Tn . (II.17)

To our knowledge, there are no published numerical comparisons of Eq.(II.17) to alternatives, neither is there any
published convergence theory, though we believe this is only a minor modification of the theory for Eq.(II.15). Again,
the storage requirements for this recursion are equivalent to MSB1 and B2.

Independent studies appearing in the physics literature that parallel the mathematical literature have a different
variational form. The various approaches can all be shown to be specializations of the optimization problem

minimize
X∈Rk×k

1

2

n∑
j=1

αj dist 2
Cj (X) +

α0

2
‖A−X‖2 (II.18)

where each Cj :=
{
X ∈ Rk×k such that XDj = Gj

}
, A ∈ Rk×k, and dist Cj (X) is the Euclidean distance of X to the

set Cj . A short calculation yields the solution X∗ to Eq.(II.18)

X∗ =
∑
j∈J

γjA+

n∑
j=1

γj

(
(Gj −ADj)

(
DT
j Dj

)−1
DT
j

)
where γj :=

αj∑n
j=0 αj

. (II.19)

Specializing to multisecants, let A = Bn, Dj = sj and Gj = yj , where sj and yj are defined by Eq.(II.6). Then the
optimization problem Eq.(II.18) corresponds to the variational formulation of a method proposed by Vanderbilt and
Louie10. A local convergence analysis, together with numerical tests are studied in5. Our derivation and formulation
of the update, however, appears to be new and clarifies the connections between their method and Eq.(II.15) above:

Bn+1 =

n∑
j=0

γjBn +

n∑
j=1

γj

(
(yj −Bnsj)

(
sTj sj

)−1
sTj

)
. (II.20)

If instead we let let A = Hn, Dj = yj and Gj = sj , we get the update proposed by Johnson6:

Hn+1 =

n∑
j=0

γjHn +

n∑
j=1

γj

(
(sj −Hnyj)

(
yTj yj

)−1
yTj

)
. (II.21)
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Again, our derivation is different, and the new formulation makes the connection with Eq.(II.17) more transparent.
The weighting scheme of6,10 is similar to a technique proposed by Pulay8. A dynamic weighting scheme that

optimizes the weights γj simultaneously with the determination of the matrix Hn or Bn is possible via the extended
least squares techniques outlined in27. A variation of Eq.(II.21) due to Kawata et al7 combines the method of Johnson
with a construction of the columns of Sn and Yn proposed by Pulay8 and given in Eq.(III.3). We note that the methods
summarized by Eq.(II.20)-(II.21) and their relatives solve single matrix secant equations in parallel and then average
these solutions, while the methods summarized by Eq.(II.15)-(II.17) seek the single matrix that solves all the matrix
secant equations simultaneously, which is more restrictive.

In the above analysis we are not specific about how many previous steps should be included in the matrices Sn and
Yn. Recall that these matrices are made up of m columns of previous step information where m ∈ [1, n]. If m < n
then one is implicitly executing a limited memory technique14. If one constructs Sn and Yn via Eq.(III.3), as we do
in the following numerical experiments, then one would exclude points that are most distant from the current point
ρn. This is a reasonable strategy for highly nonlinear problems, where the linear approximation that is at the heart
of quasi-Newton methods is only valid on a local neighborhood of the current point. For extremely large problems
such a strategy is also expedient since the matrix updates need not be explicitly stored as they can be constructed
from a few stored vectors.

III. SAFEGUARDED MULTI-SECANTS

Newton-like algorithms are not global techniques for solving equations and can behave wildly, even chaotically, far
from a solution. For the practitioner who simply wants her software to converge for a particular example, unfortunately
this means that the algorithms come only with extremely limited warranties that may not even be verifiable. The
extent to which algorithms behave, or misbehave, depends on the functional properties of the SCF mapping. Consider
the following simple algorithm

ρn+1 = F (ρn). (III.1)

If F is a contraction on some closed subset of the space of densities (i.e. points move closer to one another under
the mapping F ), then the sequence ρn converges to the unique fixed point ρ∗ of F (Banach Contraction Theorem
see, for instance28). If F is not a contraction, then Eq.(III.1) could continue forever without ever approaching a fixed
point. Successive iterates might form a characteristic path, or they might behave chaotically. Less restrictive than
contractive mappings are nonexpansive mappings (i.e. points do not move further apart under the mapping F ). If F
is nonexpansive on a closed convex symmetric subset of Euclidean space X and has fixed points (as it would if X were
bounded29,30), then for any ρ0 ∈ X the sequence of steps defined by the iteration

(n = 0, 1, 2, . . . ) ρn+1 = F̃λ(ρn) := ρn + λ(F (ρn)− ρn) (III.2)

converges to a fixed point of F (see Theorem 2.1 and Corollary 2.3 of31).
Most readers will recognize iteration Eq.(III.2) as the Pratt step32. When F (ρn) − ρn is an approximation to the

gradient of the Kohn-Sham energy functional, then the Pratt step is simply an approximation to steepest descent
with (fixed) step length λ. Though convergence is guaranteed for nonexpansive SCF mappings on compact convex
regions it can be extremely slow. If F is not nonexpansive, then the numerical behavior of fixed point iterations like
Eq.(III.2) and even Broyden’s methods cannot be guaranteed.

Note that one can extend the above concepts to a subset of the density variables. For instance, the sp-electron states
might converge quickly, while d-electron states might be very difficult to converge. Indeed, a frequent observation is
that the density within the muffin-tins often behaves very differently to the density in the interstitial region.

The problematic part of the Kohn-Sham mapping is the effective potential Vρ. In general, there is no closed

form for Vρ. For certain approximations, denoted Ṽ , it is possible to prove the correspondence between the fixed
points of the corresponding SCF mapping FṼ and solutions to the Kohn-Sham equations3, and, moreover, that FṼ
is a contraction33. However, for exact Vρ at finite temperatures existence and uniqueness of fixed points is an open
question, further complicated by the occurrence of systems with multiple coexisting phases3.

With this in mind, and before we present the details of our algorithm, we describe in physical terms some of
the features of ab-initio calculations that are problematic, together with common symptoms of poorly convergent
problems.

i. In many cases, for instance bulk MgO, the algorithms reach an acceptable solution in a surprisingly small number
of iterations, e.g. 10 − 20 for 104 unknown density components. This implies that, at least for a substantial
subset of the density parameters, the domain of attraction of the fixed point is large and the SCF mapping has
“good” functional properties on this domain.
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FIG. 1: (Color online) Iterates for an O2 molecule with atomic densities having a spin of +2 the other with 0. The figures
show the difference between the spins (vertical axis) for the two atoms and the difference between the total charges (horizontal
axis) within the muffin tins for iterates generated by the Pratt step (Eq.(III.2)) with different fixed step-length parameters λ.
In frame (a) the Pratt step parameter is λ = 0.30, in frame (b) the Pratt step parameter is λ = 0.40.

ii. In some cases there can be issues with the scaling of different parts of the density because they are represented in
quite different fashions. For instance, with LAPW methods the plane wave components outside the muffin-tins
are represented by the Fourier coefficients whereas the density inside the muffin-tins is expanded in terms of
spherical harmonics.

iii. The conventional wisdom for LAPW-based methods is that the muffin-tins should be as large as possible without
overlapping. This implies that the basis set used for the muffin-tins is better suited for the physics or for the
geometry of the atoms. This is manifested in more rapid convergence of the coefficients corresponding to these
basis elements and indicates that the domain of attraction of the fixed point for these coefficients is large relative
to the domain of attraction for the fixed point of the plane wave elements.

iv. The most physically interesting problems are often harder to solve. A spin unpolarized DFT calculation of
NiO, for example, may converge very slowly. The slow convergence of the mixing cycle is in part because spin
unpolarized the system is metallic, but is also coincidental with an imperfect functional description of this
system, in which case the Hamiltonian in Eq.(I.2) can be ill-posed. It is not uncommon to compromise on the
physical model, particularly for large and complicated problems.

v. In some cases, for instance when there are d or f electrons, charge carriers are in a large unit cell and for surfaces,
mixing converges poorly and can easily diverge. In the literature this is called “charge sloshing” because one has
oscillations of charge density between different spatial regions of the problem or between different local states
such as d-electrons. Mathematically this sometimes corresponds to ill-conditioning when a small change in the
density ρ can lead to large change in F (ρ), with large eigenvalues of the matrix H (or small eigenvalues of B).
Alternatively, it may be that the higher-order terms in the Taylor series expansion of the Jacobian are large,
so neglecting them is only appropriate for a very small change in the density. A third possibility in the case of
charge sloshing is that the SCF mapping is not nonexpansive (and hence not contractive) along this trajectory.
None of these possibilities is mutually exclusive.

To illustrate these features a simple model is an O2 molecule starting from atomic densities where the two atoms
are deliberately treated differently, one starting with a spin of +2 the other with 0. Shown in Figure 1 is the difference
between the spins (vertical axis) for the two atoms and the difference between the total charges (horizontal axis)
within the muffin tins for iterates generated by the Pratt step (Eq.(III.2)) with different fixed step-length parameters
λ. While the spins converge relatively smoothly to the final solution, the total charge oscillates or “sloshes”. The
charge oscillations become unstable for a realtively small change in the Pratt step parameter.
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A. Mathematical Framework

There are two elements that distinguish our approach from previous work on matrix secant methods: first is the
view of the matrix secant update as a Jacobian simplex of a vector-valued mapping, and second is the separation of
the matrix update into predicted and unpredicted components. Both of these viewpoints are rooted in the observation
that the dimension of the underlying problem is on the order of 104 or higher while the information used to model
the fixed point mapping is at most dimension 2n where n is the number of iterations (on the order of 100). The
conventional view is that the n steps and residual differences generated in matrix secant methods are deterministic
points on a path to the solution. Alternatively, we consider the n steps as random samples of a high-dimensional
mapping.

The origins of many matrix secant methods are closely related to the conjugate gradient algorithm. According to
this interpretation the construction of the matrices Sn and Yn given in Eq.(II.6) is consistent with the columns of Sn
being conjugate directions. Viewing the steps instead as samples on a small neighborhood of the current iterate leads
us to the alternative centering

sj,n = ρj − ρn and yj,n = (F (ρj)− ρj)− (F (ρn)− ρn) (j = 0, 1, . . . , n− 1). (III.3)

The matrix secant update built from these step and residual differences is essentially a finite difference approximation
to the Jacobian centered at ρn and, in the context of scalar-valued functions, yields what is known as the gradient
simplex. The generalization in the present context is then appropriately called a Jacobian simplex. We therefore
consider the vectors sj and yj given by Eq.(III.3) merely as data samples with no significance given to the order in
which the samples were collected. This is a fundamentally different approach than the conventional matrix secant
updates based on Eq.(II.6).

Independent of how one centers the step history is how one treats the components of the new step generated by
the matrix secant update. Given the data samples, the algorithm predicts the behavior of the SCF mapping Eq.(I.2)
at ρn. The multi-secant methods detailed in the previous sections can all be rewritten as

ρn+1 = ρn −A0

(
I − Yn−1An

)
gn − Sn−1Angn. (III.4)

where gn = F (ρn) − ρn, An is a matrix dependent on the method, and A0 is an inverse Jacobian estimate. Let us
write this as

ρn+1 − ρn = un + pn (III.5)

where, according to Eq.(III.4), pn = −Sn−1Angn and un = −A0(I − Yn−1An)gn. We interpret pn as the part of the
vector gn that can be explained by (is in the range of) the data at step n, and un is the component that is orthogonal
to this information, and hence unpredicted. Intuitively, taking too large a step along the unpredicted component may
be a bad idea and one of the sources of instabilities in these methods. We propose a strategy for controlling this step
component in section III C. One of the main differences between (MS)B1 and (MS)B2 is the size of the unpredicted
component. We show below that this component is inherently larger for (MS)B1 than for (MS)B2. Therefore if
instabilities are due to large steps in the unpredicted direction it follows that B2 and MSB2 may perform better,
which we will see later is the case for DFT problems.

This is made rigorous when we consider the multisecant formulation of Broyden’s second method. Rewriting
Eq.(II.8) with Hn replaced by Eq.(II.17) and rearranging components according to Eq.(III.4) yields

An :=
(
Y Tn−1Yn−1

)−1
Y Tn−1. (III.6)

Note that
(
Y Tn−1Yn−1

)−1
Y Tn−1gn is the solution to the least squares minimization problem

minimize
z∈Rm

1
2‖Yn−1z − gn‖2, (III.7)

where m ∈ [1, n − 1] is the number of previous data points used in the update. Here,
(
Y Tn−1Yn−1

)−1
Y Tn−1gn is the

element in the domain of Yn−1 that comes closest (in the least squares sense) to “predicting” the vector gn. It follows,
then, that (

I − Yn−1An

)
gn =

(
I − Yn−1

(
Y Tn−1Yn−1

)−1
Y Tn−1

)
gn (III.8)

is the orthogonal projection of gn onto the space orthogonal to the residual differences yj defined by one of Eq.(II.6)
or Eq.(III.3), our prior data.
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The formalization for Broyden’s first method is not as immediate. From Eq.(II.7) with B−1
n replaced by Eq.(II.16),

the modification of Eq.(III.4) for MSB1 amounts to

An :=
( (
STn−1Sn−1

)−1
STn−1A0Yn−1

)−1 (
STn−1Sn−1

)−1
STn−1A0, (III.9)

where, again, A0 is an estimate of the inverse Jacobian. Again, we note that
(
STn−1Sn−1

)−1
STn−1A0w is the solution

to the least squares problem minimize
z∈Rn−1

1
2‖Sn−1z − A0w‖2. If, in addition, A0 = σI, then an elementary calculation

yields the simplification to Eq.(III.9)

An =
(
STn−1Yn−1

)−1
STn−1 (III.10)

If
(
STn−1Yn−1

)−1
is well-defined, then the mapping I − Yn−1An is a nonorthogonal projection48 onto the nullspace

of the columns of Sn−1, or in other words, a projection onto the space orthogonal to the range of the columns of
Sn−1, our prior step data. Unlike Eq.(III.6) the projection is not to a nearest element in the range of S⊥n−1, hence, by
definition, the resulting step will be larger than the orthogonal projection.

B. Regularization, and preconditioning: the matrix An

The discussion in the previous subsection of MSB2 assumes that Yn−1 is full-rank. If the columns of Yn−1 are

nearly linearly dependent, then the inverse
(
Y Tn−1Yn−1

)−1
can be numerically unstable. More fundamentally, we are

implicitly assuming that the approximation to the Jacobian in Eq.(II.2) is, first of all, valid on the neighborhood of
ρn defined by the other data points and, second of all, that the Newton step is the right step to take. If either one of
these assumptions does not hold, as would be the case when we are far from the solution and our sample points are
far apart, conventional optimization strategies link local and global techniques by allowing steps to rotate between
the steepest descent direction (in the present setting, the direction of the vector gn) and a Newton-like direction. One
well-known strategy of this kind is the Levenberg-Marquardt algorithm34,35. We propose a different technique that
is an unusual use of a classical regularization technique usually attributed to Tikhonov36–38 and rediscovered in the
statistics community under the name of ridge regression39, though the more general notion of proximal mappings due
to Moreau40 predates both of these. In particular we regularize Eq.(III.7) in the usual way:

minimize
z∈Rm

1
2‖Yn−1z − gn‖2 + α

2 ‖z‖
2, (α > 0). (III.11)

The solution to Eq.(III.11) is

zn =
(
Y Tn−1Yn−1 + αI

)−1
Y Tn−1gn (III.12)

which yields the following regularization of An given by Eq.(III.6):

Aαn :=
(
Y Tn−1Yn−1 + αI

)−1
Y Tn−1. (III.13)

Note that as α→∞, Aαn → 0, and the step generated by Eq.(III.4) rotates to the direction A0gn. We thus interpret

the regularization parameter in both the conventional way, stabilizing
(
Y Tn−1Yn−1

)−1
, and as an estimation of the

uncertainty of the approximate Newton step. Given our understanding of the previous step data as pseudo-random
samples from an unknown process, the latter interpretation has a very natural explanation in terms of the Wiener filter
for a signal with normally distributed zero-mean white noise. The size of the regularization parameter corresponds
to the energy of the noise, or uncertainty in our model.

Similarly, the discussion of MSB1 in the previous subsection also assumes that
(
STn−1Yn−1

)−1
is well-defined, but

this says nothing of whether or not STn−1Yn−1 is well-conditioned. Regularization of
(
STn−1Yn−1

)−1
in Eq.(III.10)

gives

Aαn :=
(
STn−1Yn−1 + αI

)−1
STn−1 (III.14)

which shifts the eigenvalues to the right. Since STn−1Yn−1 could have negative eigenvalues, unless α is chosen large
enough, this regularization could result in an even more ill-conditioned matrix. Our numerical experience is that
α > 10−6 is sufficiently large to avoid this possibility for the applications of interest to us.
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Johnson6 proposes a normalization of the columns of the matrices of Yn and Sn for numerical reasons, though this
can easily be shown to have no formal impact on the algorithm. Such a normalization can, however, have a significant
effect on the choice of the regularization parameter. This is equivalent to multiplication of the matrices Yn and Sn
on the right by the diagonal matrix Ψn. We show the formalism for MSB2 – MSB1 is handled similarly. The least
squares problem analogous to Eq.(III.11) under such a renormalization is

minimize
z∈Rm

1
2‖Yn−1Ψnz − gn‖2 + α

2 ‖z‖
2, (α > 0) (III.15)

with the solution
(
ΨnY

T
n−1Yn−1Ψn + αI

)−1
ΨnY

T
n−1. It follows immediately from this that if we normalize the columns

of Yn−1,

Ψn =


1/‖y(n−1)

1 ‖ 0 . . . 0

0 1/‖y(n−1)
2 ‖

. . .
...

...
. . .

. . .
...

0 . . . 0 1/‖y(n−1)
m ‖

 (III.16)

where y
(n−1)
j is the j-th column of Yn−1, then our regularization parameter will be independent of multiple scales

between the columns of the matrix Yn−1. Viewing the regularization as a Wiener filter applied to the approximate
Newton step, the normalization reduces the effect of outliers on the regularization parameter in the least squares
estimation, these outliers coming from steps that are relatively far away from the current point. We denote the
matrix corresponding to this renormalization, together with the regularization α by Aα,Ψn where

Aα,Ψn :=

{
Ψn

(
ΨnS

T
n−1Yn−1Ψn + αI

)−1
ΨnS

T
n−1 (MSB1), or

Ψn

(
ΨnY

T
n−1Yn−1Ψn + αI

)−1
ΨnY

T
n−1 (MSB2).

(III.17)

We turn next to preconditioning. We propose rescaling elements of the density ρn to account for multiple scales
between the interstitial electrons and the muffin tin electrons. Such a preconditioning is generically represented by
multiplying the density ρn at each iteration n on the left by an arbitrary invertible diagonal matrix Ωn. One need

not change any of the formalism above; specifically, one replaces Yn, Sn, and An in Eq.(III.4) with Ŷn := ΩnYn,

Ŝn := ΩnSn, and,

Aα,Ψn,Ωnn :=

Ψn

(
ΨnŜ

T
n−1Ŷn−1Ψn + αI

)−1

ΨnŜ
T
n−1Ωn (MSB1), or

Ψn

(
ΨnŶ

T
n−1Ŷn−1Ψn + αI

)−1

ΨnŶ
T
n−1Ωn (MSB2).

(III.18)

The preconditioner used in the numerical experiments in Section IV rescales the change in the interstitial electrons
relative to that in the muffin-tin electrons. We represent the interstitial and muffin-tin portions of the residual

gn = F (ρn) − ρn by g
(I)
n and g

(M)
n respectively where gn =

(
g

(I)
n

T
, g

(M)
n

T
)T

. The averages of the residuals of these

components separately are

g(I)
n =

n∑
j=0

‖g(I)
j ‖/‖gj‖, and g(M)

n =

n∑
j=0

‖g(M)
j ‖/‖gj‖, (III.19)

Our preconditioner Ωn is defined by

Ωn =

(
ωnI1 0

0 I2

)
where ωn =

√√√√g
(M)
n

g
(I)
n

(III.20)

and Ij is the lj × lj identity matrix where lj is the dimension of the interstitial/muffin tin electrons respectively. We
note that the ωn term enters the multisecant form squared, hence our use of a square root. Removing this square
root is also reasonable, and in some cases is better in numerical tests, but it can be less stable and lead to runaway
behavior where the interstitial regions converge too rapidly. More sophisticated preconditioning are also plausible, for
instance a dielectric term for the plane waves41,42, though we found this simple form to be very effective.

Before concluding this section we note that, by construction, the vectors sn, yn conserve charge, as does the residual
gn, and the preconditioners and normalizations do not have any effect on the charge. The result will then conserve
charge automatically within numerical accuracy, so no explicit charge constraint is necessary.
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C. Step Control and the generating matrix A0

In Broyden’s original numerical experiments he constructed the initial matrix A0 from a finite difference approxima-
tion to the true Jacobian (see13 (Section 7)). This is not a practical approach for DFT calculations. The convention
for the initial estimate is a scaling of the identity; that is, at each iteration n we choose A0,n = σnI. From the previous
analysis, the magnitude of the unpredicted step depends upon σn, increasing linearly for both B2 and MSB2 and in
general increasing for both B1 and MSB1 as well although in a more complicated fashion. Therefore, by controlling
σn we control the size of the step in the unperdicted direction. The choice of the scaling is critical – if it is poorly
chosen iterations can stagnate or diverge. A more technical discussion of strategies for choosing σn are intimately
connected to a convergence analysis of the algorithms, which is the topic of subsequent work.

For our purposes it suffices to give a number of effective controls. Our strategy for implementing a dynamic step
length σn has three parts. First we constrain σn so that the step in the direction of the unpredicted component has
an upper bound that is proportional to the size of the predicted component:

σn ≤ R|pn|/|gn| (III.21)

where R is a fixed parameter. One has to take some step along this component, as otherwise no new information is
generated; however if too large a step is taken the algorithm can diverge. As a second level of control, we bound the
total variation between successive scalings:

σ̃n = σn−1 ∗max(0.5,min(2.0, ‖gn−1‖/‖gn‖)). (III.22)

Note that we do not reject steps that yield a larger residual gn, but rather reduce the size of the step in the unpredicted
direction. In almost all cases a large improvement is achieved in the next step by retaining the bad step. As a third
level of control, we include an upper bound on the absolute value of the scaling, σ.

Of these controls on σn our numerical experience is that the parameter R is the most important. For hard problems
we have found that a value of R from 0.05 to 0.15 works well. The upper bound on σn that we have found to
be effective is σ ≈ 0.1 − 0.2. These values are problem specific, however, and may fail for examples we have not
considered. An automatic dynamic choice for σn in conjunction with standard trust region strategies is the subject
of future research

Before concluding we note that for the very first cycle we take a small step with

σ0 = σ ∗ (0.1 + exp(−2.0 ∗max(dQ, dPW/3.5, dRMT ))), (III.23)

where dQ is the change in the charge within the muffin tins, dPW is the change in the rescaled plane waves and dRMT
is the change of the density within the muffin tins. This form is based upon numerical experience with WIEN2k, and
is somewhat conservative.

D. Summary

Algorithm III.1 (Regularized, preconditioned, limited-memory multisecant method)

0. Choose an initial ρ0, σ0 according to Eq.(III.23), generate ρ1 = ρ0 +λ(F (ρ0)−ρ0) for λ > 0 some appropriately
chosen step length (this is the Pratt step Eq.(III.2)), set n = 1 and fix α > 0 (10−6 to 10−4).

1. If the convergence criterion is met, terminate. Otherwise, given Sn−1 and Yn−1, whose columns are steps sj
and residual differences yj respectively (j = n − m, , n − (m − 1), . . . , n − 1 for some appropriate number of
prior steps, e.g. m = min{n, 8}) centered on the current point ρn as in Eq.(III.3), calculate Aα,Ψn,Ωnn via
Eq.(III.18) for either MSB2 or MSB1 with the scaling Ψn given by Eq.(III.16) and the preconditioner Ωn given
by Eq.(III.19)-(III.20). Determine the value of σn according to

σn = min{σ̃n, R|pn|/|gn|, σ} (III.24)

where σ̃n is given by Eq.(III.22) and σ is some appropriately chosen upper bound (0.1 to 0.2). Calculate the
next step ρn+1 according to Eq.(III.4) with An replaced by Aα,Ψn,Ωnn .

2. Evaluate F (ρn+1), set n = n+ 1 and repeat Step 1.
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IV. RESULTS

We test the performance of the algorithm on five examples of increasing physical difficulty, all run using the WIEN2k
code4 and the PBE functional43; we provide the details below with technical information so they can be reproduced
as well as reasons for their choice.

Model 1 Simple bulk MgO, spin-unpolarized with RMT’s of 1.8 a.u., an RKMAX of 7 and a 5× 5× 5 k-point mesh
and a Mermin-functional2 (i.e. Fermi-Dirac distribution) with a temperature of 0.0068eV. This is a very easy
to solve problem.

Model 2 Bulk Pd, spin-unpolarized with RMT’s of 2.0 a.u., an RKMAX of 7.5, a 5 × 5 × 5 k-point mesh and a
Mermin-functional with a temperature of 0.0068eV. This is slightly harder because of the possibility of sloshing
between the d-electron states and the fact that one should use a larger sampling of reciprocal space.

Model 3 A bulk silicon cell with an RMT of 2.16 a.u., an RKMAX of 7.0, a 6× 6× 6 k-point mesh and a Mermin-
functional with a temperature of 0.0013eV.

Model 4 A 2×2×2 Pd supercell with a vacancy at the origin, RMT’s of 2.5 a.u., an RKMAX of 6.5, a k-point mesh
of 3 × 3 × 3 and a Mermin-functional with a temperature of 0.0068eV . Here, in addition to sloshing between
d-electron states one can have longer-range dielectric sloshing. In addition, this is a poorly constructed problem
because the RKMAX is too small as is the k-point mesh.

Model 5 A 4.757× 4.757× 34.957 a.u., spin-polarized (111) fcc nickel surface with seven atoms in the range −1/3 ≤
z ≤ 1/3. Technical parameters were RMTs of 2.13, an RKMAX of 7 and a 11 × 11 × 1 k-point mesh, also
with a Mermin-function temperature of 0.0068eV . It should be noted that the two surfaces are sufficiently close
together, so there is real electron density in the vacuum. In this case one can have spin sloshing, d-electron
sloshing as well as long-range Coulomb sloshing of electrons in the vacuum.

In all cases we started from densities calculated as a sum of independent atoms, and the calculations were run with
both forms of Broyden multisecants given by Eq.(II.17) and Eq.(II.15), as well as the more conventional Broyden first
Eq.(II.9) and second Eq.(II.11) methods. Convergence criteria were an energy change of 10−5 Rydbergs and an RMS
convergence of the charge within the muffin tins of 10−5 electrons. For the multisecant implementations eight prior
memory steps were used. To simplify the results, unless noted otherwise we used fixed values of the regularization
parameter α of 10−4 and R = 0.1. In almost all cases, Figure 2 shows that the convergence appears to be linear,
although the precision of the calculations does not allow one to observe the final asymptotic behavior, including rates
of convergence, of the algorithms.

TABLE I: Iterations to convergence as a function of σ for models 1 − 5 with fixed α = 10−4 and R = 0.1. The mean and
standard deviation are for σ between 0.05 and 0.8 for Models 1 − 3, 0.05 to 0.5 for Models 4 and 5.

MSB2 MSB1 B2 B1
mean stdev mean stdev mean stdev mean stdev

Model 1 16.22 0.44 14.56 1.01 18.67 1.66 22.44 12.71
Model 2 12 0 12.89 0.33 20.11 0.78 39.78 9.58
Model 3 15.44 2.35 16.78 0.67 25.22 2.95 57.56 7.76
Model 4 24.17 2.04 29.17 4.92 – – – –
Model 5 54.60 3.51 – – – – – –

For the very simple Model 1 all the methods converge quickly and the parameter σ has no significant impact on
performance. The MSB1 method is slightly faster, but as the latter results indicate this is an exception. If σ is too
small (below 0.025) convergence is slower. Interestingly, even for this very simple case the multisecant methods are
significantly faster.

For the slightly more complicated Model 2, both multisecant methods converge rapidly, whereas the B2 method
converges more slowly and the B1 method is worst by a significant margin. The principal difference between Models
1 and 2 is that in Model 1 there are large changes during the iterations both within the muffin-tins, as well as for
the plane waves, whereas in Model 2 almost all the changes are in the plane waves. This supports the rule-of-thumb
discussed earlier that one should make the muffin tins as large as possible without overlapping.
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FIG. 2: (Color online) Plot of the convergence for models 1-5 (frames (a)-(e) respectively). using the multisecant update based
on Broyden’s first method (MSB1) and second method (MSB2), compared to Broyden’s second method (B2) and Broyden’s
first method (B1). In model 5 the only algorithm to converge is MSB2.

With Model 3 the multisecant methods significantly outperform the classical secant methods. For bulk silicon
much of the covalent bonding lies in the interstitial region. We conjecture, therefore, that the improvement is due
to the improved step direction and size for the multisecant methods that allow these methods to handle the greater
variations of the Kohn -Sham mapping for this basis set.

The same trend continues with both Model 4 and Model 5 to the extent that B2 and B1 only converge for “good”
values of σ (which have to be found by trial and error) and in many cases diverge. For the hardest problem we report
here, Model 5, only the MSB2 method converged. If one added a line search the other methods would probably
converge albeit less rapidly and with a many more SCF evaluations.

The σ parameter in the MSB2 update gives one direct control over the size of the steps, which is an important
feature for models with strong variations. The control of steps is less immediate for the MSB1 update and involves
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a more sensitive coupling of the regularization parameter α and the step size parameter σ. This is illustrated by the
greater variance in performance of the MSB1 update versus MSB2 for models 1, 2, 4, and 5 shown in Table I.

V. DISCUSSION

To summarize the main points of this work:

• We argue that for DFT problems, where many physically interesting models result in noncontractive SCF
mappings, one should consider the information from previous points of the SCF cycle more as samples of a
higher-dimensional space than as part of a deterministic path. As a consequence multisecant methods are
better than sequential secant updates, as born out in the results.

• There is a fundamental difference between methods based upon Broyden’s first (B1) and second (B2) methods in
terms of the space they operate in. The second method is more robust and handles poorly constructed, (nearly)
ill-posed problems better – in general these are the more interesting physical problems.

• Scaling, regularization and preconditioning have a significant impact on algorithm performance. Moreover,
regularization acts simultaneously to reduce instabilities due both to linear dependencies as well as to deficiencies
in the model.

• Controlling the step size σn along the direction about which no information is available is critical. For difficult
problems, this step should in general be smaller than for easy problems.

• The multisecant method based upon Broyden’s second formulation (MSB2) with appropriate safeguards simply
and quickly solves problems which may defeat a novice, sometimes even an expert.

The method we have detailed (MSB2) is robust and has been part of the main WIEN2k distribution since August 2007
without any apparent problems. Even in the hands of an experienced user for complicated problems such as LDA+U
we have been told of cases where the MSB2 version is three times faster than the earlier B2 code. The default values
of α = 10−4 and R = 0.1 will be approximately correct for a pseudopotential code where preconditioning the variables
is not necessary though there are strong variations Kohn-Sham mapping. We have not attempted to implement the
MSB2 algorithm for a pseudopotential code but see no reason why it should not work at least as well. One can of
course adjust these parameters to improve a single problem, but we recommend values that perhaps are slightly slower
in a few cases, but more robust for a wide variety of problems. There may also be ways to stabilize MSB1 so that it
could possibly work better for pseudopotential codes where preconditioning is easier.

We acknowledge that we have only considered relatively small problems here, but experience indicates that the
convergence depends only very weakly (if at all) upon the size of the problem either in terms of the size of the basis
set or the number of atoms. For instance, for a h-BN/Rh(111) nanomesh slab of 1108 atoms44 with the earlier Broyden
mixing algorithm it did not converge even after 200 iterations, but did in 30-40 with the new algorithm. For other
large structures, for instance a Si (111) 7x7 surface with 498 atoms, starting from neutral atoms the convergence is
only slightly slower than it is for Model 3. We emphasize once again the link between convergence of the mixing
process and the functional properties of the underlying Kohn-Sham mapping. A poorly constructed problem will
in most cases converge much more slowly than a well constructed one; a single atom may converge slower than 104

atoms. This may be a consequence of short-cuts in the DFT calculation, e.g. too few k-points or numerical errors in
an iterative diagonalization, or it can be due to a poorly constructed Hamiltonian or perhaps density functional. For
the general user poor convergence should be taken as a suggestion that the model of the physics may not have been
properly constructed.

Some additional comments are appropriate about the role of the term in the regularization. As mentioned earlier,
we are using this simultaneously in three ways, firstly as a standard regularization technique to avoid ill-conditioning
associated with near linear dependence of the columns of Yn, secondly as a Levenberg-Marquardt-type strategy to
rotate the step and thirdly in a standard Wiener filter sense to account for model uncertainty. The regularization
parameter can be considered to scale proportionally to the noise or uncertainty in the secant equations. Far from
the solution the quasi-Newton step may not be appropriate, suggesting that one should use a larger regularization.
Similarly, near the solution if the quasi-Newton step is accurate, it will yield faster rates of convergence, in which case
one would choose a smaller regularization. While one could dynamically adjust the regularization parameter, for our
numerical experiments we choose a relatively large fixed value of α ( 10−4). This, in our experience, yields adequate
overall convergence and better convergence in the “dangerous” early stages of the iterations.

The fact that we that we obtain improvement under the assumption that most models of physical interest do not
lead to contractive, or more generally monotone SCF mappings raises some questions. It is well established that
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current density functionals are inexact descriptions of the physics, but the exact analytic properties of many physical
systems are unknown. In particular, for many systems it is not known whether the SCF operator is monotone, let
alone that it has fixed points, although it is hard to conceive of an experimentally observable equilibrium structure
that does not have fixed points. An interesting question to raise is whether the SCF operator is monotonic with
the ”true” density functional that correctly describes the physics. Since in many cases the effective potential Vρ has
no closed form, it is not known whether many of these theoretical properties are verifiable. It is tempting to infer
analytic properties from numerical experiments – and we have made numerical progress by doing just this – but one
cannot on numerical evidence alone determine the extent to which numerical behavior is indicative of the true nature
of the physical system. As a final speculation, we raise the question of whether the character of the SCF mapping can
be experimentally measured, or whether this type of behavior is a mathematical anomaly resulting from being much
further away from equilibrium than any feasible experimental system will ever be.

There are several directions of research with regard to algorithms. Firstly, the heuristics for adjusting the step size
σn need to be put on firm mathematical footing. This would accompany a study of the asymptotic behavior of the
algorithm and is the subject of future research. While the analysis of Eq.(III.6) has attractive interpretations in terms
of nearest points in the range and space orthogonal to the prior data, the notion of “nearest” is with respect to the
usual Euclidean (L2) norm, which is biased towards outliers. One could consider the development of algorithms based
on weighted norms, or even non-Euclidean prox mappings as opposed to those detailed in Subsection II C. The Ωn
considered by5,6,10 is in the spirit of weighted norms. Other areas for improvement could be found in the initialization
of the iterations. We used the Pratt step, however one could use information from a previous SCF iteration.

Finally, while we have used some physics in helping to design the algorithm, there may be more that could be
exploited. We find particularly appealing the observation discussed at the beginning of Section III that the density
appears to be separable into distinct subsets. One might envision tailoring algorithms to exploit this property.
For instance, one could iterate on the components of the density associated with the muffin-tins, while holding the
interstitial electron density fixed. Alternatively, one could iterate on the sp-electron density holding the d-electron
density fixed, or one could iterate on other observables such as the spin associated with a particular atom. Such an
approach might allow one to isolate irregular variables within the SCF mapping and design algorithms accordingly.
This general approach is known as operator splitting about which there is a vast literature. (see, for instance45 and
references therein). This would allow one to isolate the analytical properties of the SCF operator and work more
directly with specific physical quantities.
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