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VARIATIONAL ANALYSIS APPLIED TO THE PROBLEM
OF OPTICAL PHASE RETRIEVAL*

JAMES V. BURKE! AND D. RUSSELL LUKE?

Abstract. We apply nonsmooth analysis to a well-known optical inverse problem, phase re-
trieval. The phase retrieval problem arises in many different modalities of electromagnetic imaging
and has been studied in the optics literature for over forty years. The state of the art for this problem
in two dimensions involves iterated projections for solving a nonconvex feasibility problem. Despite
widespread use of these algorithms, current mathematical theory cannot explain their success. At the
heart of projection algorithms is a nonconvex, nonsmooth optimization problem. We obtain some
insight into these algorithms by applying techniques from nonsmooth analysis. In particular, we
show that the weak closure of the set of directions toward the projection generate the subdifferential
of the corresponding squared set distance function. Following a pattern of proof described in [F. H.
Clarke, Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski, Nonsmooth Analysis and Control Theory,
Springer-Verlag, New York, 1998], this result is generalized to provide conditions under which the
subdifferential of an integral function equals the integral of the subdifferential.
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1. Introduction. The phase retrieval problem arises frequently in a number of
different optical imaging modalities including diffraction imaging and interferometry.
While the imaging models differ slightly, the feature common to these techniques
is the problem of recovering the phase of a complex-valued function from measure-
ments of the amplitude of that function, as well as other a priori constraints. There
are many unsolved mathematical problems surrounding wavefront reconstruction and
phase retrieval in general. Nevertheless, engineers and physicists have been solving
this problem in some sense for over thirty years. The most famous application of
phase retrieval came with NASA’s Hubble Space Telescope (HST). Optical wavefront
reconstruction played a central role in the effort to identify gross manufacturing errors
in the HST and to design, in effect, a pair of glasses for the near-sighted telescope.
We refer the reader to [16] for a review and tutorial of wavefront reconstruction. Here
we present only the abstract setting.

The forward imaging model is formulated on the space L%[R?,R?] of square inte-
grable functions mapping R? to R%2. The model input u : R? — R? is an optical field
generated by the object we are trying to observe. The optical device is characterized
by a unitary bounded linear operator F,,, : L?[R? R?] — L%[R? R?]. The subscript m
indicates certain parameter settings in the optical device that constitute a particular
known “tuning” such as focus. Let R} denote the nonnegative orthant. The model
output, or data, corresponding to the mth tuning of the device, ¥, : R? — R, , is
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amplitude measurements. The imaging model is given by
1) |Fn(u( )l =¥m(), m=0,1,..., M,

where the modulus |- | is the pointwise Euclidean magnitude. Our discussion switches
frequently between the finite- and infinite-dimensional settings. Whenever there is
chance for confusion, we indicate a mapping F' on the function space explicitly as
Fu(-)).

Wavefront reconstruction is an inverse problem: given F,, and ¢,,, m =0,1,...,
M, determine u satisfying (1). For a more detailed review of the existence and unique-
ness theory behind this problem we refer to [16] and references therein. For our pur-
poses it suffices to note that there is no known closed-form solution to this inverse
problem. Moreover, in the presence of noise it is likely that a solution does not exist,
thus solution techniques involve minimizing a performance measure. Even though
the performance measure that we consider is smooth, the modulus in (1) leads to a
nonsmooth objective (see Theorem 3.1 in section 3). At first glance, it would seem
that one could easily handle nonsmoothness by squaring both sides of (1). It turns
out, however, that objectives based on the modulus function, or a nearby smooth
approximation, perform better than objectives built upon the modulus squared [16].
Therefore, it can be advantageous to exploit nonsmoothness rather than to avoid it.

Since noise in the data is most often modeled as additive white noise, the least
squares error metric is used to find the best fit to (1). For m = 0,1,..., M and ¢,
not equal to zero a.e., define

(2) Q= {u € L*[R*,R?] | |Fpn(u)| = thm ace. }.
The phase retrieval problem is given by

(3) minimize J(u)
over u € L?[R? R?|,

o~
(4) J(w) =Y 5 dist %(u; Q)

m=0

is the weighted ( 8, > 0 for m =0,..., M ) squared set distance error for the phase
retrieval problem and

i :Q,,) := inf —wl|.
o) dist (15 Q) == inf [~ w]

The error metric (4) has a long tradition in the optics literature [9, 10]. It has also
been studied in the convex setting where each of the sets Q,, is assumed to be convex
(e.g., see [2, 7]).

Problem (3) is often reformulated as a feasibility problem: the function u must
lie in the intersection of the sets Qo N Q1 N ---Q,,, assuming that this intersection is
nonempty. Projection algorithms are often used to find a point in the intersection of
such a collection of sets. Independent of the mathematical literature on projections
(and in some cases before these algorithms appeared in the mathematical literature)
optical scientists developed image processing algorithms for recovering the phase from
amplitude measurements known in the optics literature as iterative transform methods.
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Here one adjusts the phase of the current estimate, u(*), at iteration v by replacing
the magnitude of the image F,,(u®)(-)) with the known pointwise magnitude t,,,(-)
and then inverse transforming the result, % (¢, (- ) exp(v=T arg(F, (v (-))))). Tt
is straightforward to show that this operation is a projection [16]. The Gerchberg—
Saxton algorithm [10] is a classical example of this type of algorithm. When the
sets Q,, are convex and the intersection is nonempty, then this approach is perfectly
reasonable since cyclic projections onto such a finite collection of convex sets con-
verges to the intersection (e.g., see [3] and the references therein). In the setting of
phase retrieval, however, the sets Q,, are not even weakly closed, let alone convex [16,
Property 4.1]. This poses serious challenges to any convergence theory for algorithms
based on projections. Not surprisingly, many have noted that iterative transform al-
gorithms often stagnate. There are some well-known strategies for dealing with these
problems [9], but it has recently been observed that these too are applications of con-
vex operator splitting strategies in nonconvex, nonlinear settings [4], so convergence
is still problematic.

To overcome some of the problems inherent in treating the leading algorithms as
nonconvex instances of projection algorithms, we approach the problem in its varia-
tional form (3) using the tools of nonsmooth analysis. We show that, for the squared
set distance error metric (4), some projection algorithms can be viewed as subgradient
descent algorithms. Thus, the critical object for our analysis is the subdifferential, or
generalized derivative of the squared set distance error metric J(u). In this analysis,
the space to which the data {¢,, : m =0,1,... M} belongs is of critical importance.
We require these functions to be nonnegative and finite-valued with their value tend-
ing to zero as their argument diverges to infinity in norm. Specifically, we assume
that the data belongs to the set U where

(6)

U= {veL'nL>nL>*R*R] such that v(z) > 0 a.e. and |v(z)| — 0 as |z| > oo} .

In section 2 we review the theory of projections applied to this problem. The most
common projection algorithms, stated in general form in section 2.3, are central to cur-
rent numerical techniques for this problem. In section 3, we look at the problem from
the perspective of nonsmooth least squares, beginning first with finite-dimensional
nonsmooth analysis in section 3.2 and building toward the infinite-dimensional anal-
ysis in section 3.5. We then apply these results to the problem of wavefront recon-
struction in section 3.6. In the final section of the paper we present a result on the
exchange of subdifferentiation and integration. Such results have a long history, be-
ginning with Rockafellar’s result [20] for convex normal integrands. Our result is in
the spirit of [6, Theorem 3.5.18]. Indeed, our method of proof parallels that given
by Clarke, Ledyaev, Stern, and Wolenski. The key difference between our result and
[6, Theorem 3.5.18] is that our domain of integration is all of R? as opposed to an
interval in R.

2. Geometric approaches.

2.1. Projections. In general, it may be difficult to prove that the projection of
a given point onto a given set exists, much less to identify it with a formula. Much
of the general theory of projections [24] does not apply since the sets in question are
neither weakly closed nor convex [16, Property 4.1]. However, in the application to
phase retrieval there is a very simple characterization in terms of pointwise, finite-
dimensional projections.
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Our focus is on sets of the form
(7) Q(b) :={ue L*[R*R?] | ju|=bae.}.

Here the set Q(b) is parameterized by the function b: R? — R, . Alternatively, one
can think of this set as being parameterized pointwise by x € R?, that is, at each point
x, the set Q(b(z)) C R? is simply the sphere of radius b(x), denoted b(z)S, where S
is the unit sphere in R2. For the closed set Q in the Hilbert space X, we define the
projection operator Ilg(v) as the multivalued mapping, or multifunction, given as the
set of all solutions to the minimum distance problem for the set Q:

8 11 = i — ={uecQ:|lv—al| = inf — .
(8) o(v) argglelgﬂv ul| ={ueQ: v—ul inf v —ull}

It is a simple matter to characterize the pointwise projection Ily,)s : R? = R?:

9) Hy(gys(v) = b(z)Is(v) = b(x) x { g for v # 0,

R
for v =0, ve
Note that the projection is multivalued at v = 0. In the following sections we construct
the infinite-dimensional projection Ilgw : L?[R? R?*] = L?*[R?,R?] onto Q(b) from
the corresponding pointwise projection at the point x, ITj(,s : R? = R? onto b(z)S.

2.2. Measurable multifunctions. We now review some of the properties of
measurable multifunctions used in this study [1, 6, 11, 21]. In section 3.3 we extend
this review to include the integration theory of measurable multivalued mappings.
For more information on this and related topics, we refer the interested reader to [21,
chapter 14].

Let Q # 0 and let A be a o-field of subsets of , called the measurable subsets of
Q or the A-measurable subsets. The corresponding measure space is denoted (2, .4).
Our discussion is limited to complete nonatomic measure spaces.

The multifunction F': 2 = R" is said to be A-measurable, or simply measurable,
if for all open sets V the set {z |V N F(z) # 0} is in A. The multifunction F is said to
be A® B"-measurable if gph(F) = {(z,v) |v € F(z)} € A® B". Here B™ denotes the
Borel o-field on R™ and A ® B™ is the o-field on 2 x R™ generated by all sets A x D
with A € Aand D € B™. If F(x) is closed for each x, then F' is closed. Similarly, F' is
said to be convex if F'(x) is convex for each z. Finally, we note that the completeness
of the measure space guarantees the measurability of subsets of €2 obtained as the
projections of measurable subsets G of 2 x R™:

GeAeB" = {weQ|FzeR"with (w,z)eG}eA,

and thus F is A-measurable if and only if F' is A® B"-measurable [21, Theorem 14.8].

Let F': Q = R™. Denote by S(F) the set of y-measurable functions f : Q — R™
that satisfy f(x) € F(x) a.e. in  (z € Q). We call S(F) the set of measurable
selections of F.

THEOREM 2.1 (measurable selections [21, Corollary 14.6]). A closed-valued mea-
surable map F : Q = R™ always admits a measurable selection.

For a measurable function f = (f1,...,fn), fi: Q@ = R, for i = 1,...,n, the
integral [ fdp is defined to be the vector

(J i f )
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{/fdﬂfGS(F)}

is the integral of the multivalued mapping F : © = R™ and is denoted by [ Fdy or
f F. We say that F : Q = R" is integrably bounded, or for emphasis p-integrably
bounded, if there is a p-integrable a : © — R’ such that

The set

(|U1|ﬂ cey |U7L|) < a(a:)

for all pairs (z,v) € (£2,R™) satisfying v € F(z). Here and elsewhere we interpret
vector inequalities as elementwise inequalities. If a(x) in the above inequality is
square-integrable with respect to the measure p on the measure space (2, .4, 1), then
the multifunction F is said to be L?-bounded. When Q = R", we let L2, (R", A, )
denote the Hilbert space of functions mapping R™ to R™ with inner product on the
measure space (R™, A, u) given by

(10) (.9)= | (Fa)g@utdo)

where (-, ) denotes the usual finite-dimensional vector inner product.

The next property is a generalization of [6, Exercise 3.5.14].

PROPOSITION 2.2 (weak compactness of measurable selections). Let the multi-
function F : R® = R™ be closed, conver-valued, and L?-bounded on L2 (R™, M", v,,),
where M™ 1is the Lebesgue field on R™ and v, is the n-dimensional Lebesgue mea-
sure. Then the set of measurable selections S(F) is a weakly compact, convex set in
L2 (R™, M™, v,).

Proof. This set is clearly convex since F' is pointwise convex-valued. Thus, by
[8, Theorem 1, p. 58] we need only show that S(F') is weakly sequentially compact.
Consider any sequence {f;} C S(F). We must show that {f;} has a weakly convergent
subsequence with limit f, € S(F). Since the sequence is L2-bounded, reflexivity,
separability, and Alaoglu’s theorem [23, Exercise 18(b), p. 269] imply that there exists
a weakly convergent subsequence whose limit belongs to the weak closure of S(F).
Since S(F') is convex, the strong and weak closures of S(F') coincide. Hence the result
follows if S(F) is strongly closed. Since strong convergence implies the existence of a
subsequence that is almost everywhere pointwise convergent [23, Theorem 3.12], and
F(z) is pointwise closed, we have that S(F) is strongly closed. d

2.3. Application to wavefront reconstruction: Projection algorithms.
We now characterize the projections associated with the problem of phase retrieval
in terms of the corresponding pointwise projections. This allows us to describe a
general algorithmic framework that includes many of the currently used phase retrieval
algorithms. Let b € L%[R?,R] with b(z) > 0 a.e., let the pointwise projection b(z)Ilg
be defined by (9), and let Q(b) be defined by (7). For u,v € L*[R? R?], it is shown
in [16, Theorem 4.2] that the projection Ilg) : L*[R?,R?] = L?[R? R?] onto Q(b) is
characterized as the collection of measurable selections from the pointwise projection
mapping (9):

(11) g (u) = S (b(-)Hs(u(-)))  and  dist (u; Qb)) = || [u] = b |-

One can characterize the projection onto the sets Q,, defined in (2) in a similar
fashion. The F,-transform of Ig ) (u) is the Fp,-transform of all v € Tlg) (u) and is
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written Fy, (o) (u)). For each of the unitary operators F,,, and all u € L*[R?,R?],
we know from [16, Corollary 4.3] that

(12) Ty, (u) = F, (Hgw,)(Fm(u)) and  dist (4 Qu) = || |Fm(u)] — Pl

A general framework for projection algorithms can be found in [3], which considers
sequences of weighted relaxed projections of the form

M
(13) ul ) € (Z W (1= al)T + asﬂn@,,j) ().
m=0

Here 7 is the identity mapping, a%) is a relaxation parameter usually in the interval

[0,2], and the weights fy,(,l; ) are nonnegative scalars summing to one. General results
for these types of algorithms apply only to convex sets. In the convex setting the
inclusion in (13) is an equality since projections onto convex sets are single-valued.
In the nonconvex setting this is not the case.

It is shown in [16] that the Gerchberg—Saxton algorithm [10] and its variants
can be viewed as an instance of (13). As in [16] we use the change of variables

AW BE) = 40 to rewrite (13) as
(14) wtD (17 )\(V)g(l/)) (u<u>> 7

where for all v the operators G*) : L? — L? are given by
M
(15) ¢ =Yg  with G =g (T-1g,).
m=0

In (14) the nonnegative weights ﬁy(,lf ) do not necessarily sum to 1, and the parameters
M) are to be interpreted as step lengths. This formulation of the projection algorithm
is shown in the next section to correspond to a steepest descent algorithm for a
weighted squared distance function.

3. Nonsmooth analysis. Convergence results for projection methods applied
to the phase retrieval problem are not possible in general due to the nonconvexity
of the constraint sets. The nonconvexity of the constraint sets is associated with
the nonsmoothness of the square of the set distance error dist (u; Q,,) defined in (5).
This is fundamentally different from the convex setting in a Hilbert space where the
squared distance function is smooth.

3.1. Least squares. In general the optimal value of the weighted squared set
distance error J(u) defined by (4) is nonzero. Classical techniques for solving the
problem numerically are based on satisfying a first-order necessary condition for op-
timality. For smooth functions this condition simply states that the gradient takes
the value zero at any local solution to the optimization problem. However, the func-
tions dist 2(u;(@m) are not differentiable. The easiest way to see this is to consider
the one-dimensional function a(x) = ||z| — b|?, where b > 0. This function is not
differentiable at = 0. (Indeed, it is not even subdifferentiably regular at x = 0—see
(19)). It is precisely at these points that the finite-dimensional projection operator
IIps is multivalued. Similarly, dist 2(u;(@m) is not differentiable at functions u for
which there exists a set Q C supp (¢,,) of positive measure on which u vanishes.
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In the nonsmooth setting the usual first-order necessary condition for optimality is
replaced by a first-order variational principle of the form 0 € 9J(u.), where 9 denotes
a subdifferential operator such as those studied in [5, 6, 12, 13, 15, 18]. In this paper,
the phrase the subdifferential refers to the nonconvex subdifferential introduced by
Kruger and Mordukhovich [15]. This subdifferential is precisely described in Definition
3.12, and its calculus is extensively developed in [18]. The main result of this paper
is the characterization of the subdifferential of the distance functions dist ?(;Q,,)
and the objective function J (equation (4)). We do this by following the pattern
of proof used by Clarke, Ledyaev, Stern, and Wolenski in [6, Theorem 3.5.18]. A
consequence of this approach is that we also establish the subdifferential regularity
of the functions dist %(-; Q,,) and J. This in turn implies that for these functions the
Clarke subdifferential [5, 6] and the nonconvex subdifferential [15] are equivalent. The
statement of the main result now follows.

THEOREM 3.1 (projections and subdifferentials). Let ¢, : R? — Ry belong
to U where the set U is defined in (6), and let g, : L* = Q,, be defined by (8).
Then the functions dist 2(-;Qm) and J are everywhere subdifferentially reqular and
for u € L?[R?,R?] we have

(16) 9 (dist *(u; Q) = 2c1* (T — g, (u))
and
M
(17) 0T (u) =Y " (Gm(w),
m=0

where Gy, is defined by (15), J is defined in (4), and cl* (-) denotes the weak-star
closure.

Note that in a Hilbert-space setting cl* (- ) = w—cl (- ), where w—cl (- ) denotes the
weak closure. The proof is given at the end of this section. In passing, we note that
in the convex case Theorem 3.1 is an elementary consequence of a much more general
result for convex functions given in [19, Theorem 20]. For further results along these
lines we refer the reader to [5, Proposition 2.5.4] and [21, Example 8.53].

3.2. Finite-dimensional nonsmooth analysis. In [16, Theorem 4.2] it is
shown that the squared set distance error dist *(u; Q(b)) defined in (7) is given as
the integral of the pointwise distance function defined by (11). In Theorem 3.1 we
extend this correspondence to the subdifferentials of the associated infinite- and finite-
dimensional functions. We begin this analysis by introducing the necessary tools from
finite-dimensional variational analysis.

Recall that

dist %(u; Q(b)) = /R2 r(u(z);b(x))dz = |Jul®+ ||b]|* + 2h(u;b),

where the pointwise residual 7 : R? x R, — R and the mapping h : L*[R? R?] — R
are given by

(18) r(u(x);b(x)) = |u(z)| — b(x) and h(u;b) := /R2 —|u(z)| b(z)dx,

respectively. While dist *(u; Q(b)) is not smooth, it is straightforward to show that it
is Lipschitz continuous on bounded subsets of L2[R? R?].
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A function f: X — R is locally Lipschitz near z if there exists a constant K > 0
and a neighborhood V(z) C X of x such that

If(z) = fWI< K[z =yl  Vz,ye V().

For any set V C X over which f is finite-valued, f is said to be locally Lipschitz on V
if it is locally Lipschitz at every x € V. The function is said to be (globally) Lipschitz
on V if

If(z) = fly)| < K|z -yl Vaz,yeV.

PROPOSITION 3.2 (Lipschitz constants). If b € L%[R? /R] with b(x) > 0 a.e.,
then the mapping dist ?(-; Q(b)) : L?[R? R?] — Ry is finite-valued and Lipschitz on
any bounded subset V. C L*[R?,R?] with Lipschitz constant

K = Kj.j2 + Kan(p),

where K2 = 2sup,,cy ||ul| is a Lipschitz constant for ||ul|* on V and Kop (.. = 2][b]|
is a Lipschitz constant for h(-;b), independent of V.

Proof. This follows from the proof of [16, Lemma B.2]. |

Lipschitz continuity of the squared set distance error J is a straightforward con-
sequence of Proposition 3.2 and the fact the mappings F,, are unitary.

We now introduce some basic definitions from nonsmooth analysis. In our dis-
cussion we allow mappings to have infinite values; thus it is convenient to define the
extended reals R, where R = R U {+o00}. The effective domain of f : R* — R,
denoted dom f C R", is the set on which f is finite. To avoid certain pathological
mappings the discussion is restricted to proper, i.e., not everywhere infinite, lower
semicontinuous (l.s.c.) functions.

DEFINITION 3.3 (subderivatives [21]). For a Lipschitz function f : R™ — R and
a point u, € R™ with f(u.) finite,

(i) the subderivative function df (u,) : R™ — R is defined by

df (u.)(w) := lim inf flus + Tw) — f(u*);

7N\.0 T

(ii) the regular subderivative function (or the Clarke generalized directional de-
rivative when f is Lipschitz) df(u.):R™ — R is defined by

df (u,)(w) := limsup flutrw) - f(u)
U— Uy, TN\,0 T

DEFINITION 3.4 (subgradients: finite-dimensions [21]). Consider a function f :
R™ — R, a point v € R™, and a point u, € R™ with f(u.) finite.
(i) v is a regular subgradient of f at u. if

lim inf flu) = flus) = (v, v —u)

1;::; \u — u*|

We call the set of regular subgradients v the regular subdifferential of f at u.
and denote this set by Of (u.).
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(ii) v is a (general) subgradient of f at u. if there are sequences u") — wu,
and v € af(u(”)) with f(u®)) — f(u,) and v®) — v. We call the set of
(general) subgradients v the (general) subdifferential of f at u. and denote
this set by Of (ux).

(iii) v is a Clarke subgradient of f at u. if f is l.s.c. on a neighborhood of u. and
v satisfies

(v, w) < df(u,)(w) Vw € R™.

We call the set of Clarke subgradients v the Clarke subdifferential of f at u.
and denote this set by Of (u).

(iv) A Lipschitz function f : R™ — R is said to be (subdifferentially) regular at
uy € dom f with Of (us) # 0 if

(19) Of (u.) = Of (u.).

Remark 3.5 (subdifferentials with closed graphs). From the definitions it can be
shown that if f: R" — R is continuous, then the subgradients df and ) f are closed
with O f convex and B) f C 0f. Moreover, the mapping df is outer semicontinuous [21,
Definition 5.4]. Therefore, by [21, Theorem 5.7] the graph of 9f is closed.

Remark 3.6 (subdifferentials of compositions). If g : X — R is given as the
composition of two functions f : Y — R and h: X — Y, i.e., g(x) = (foh)(z) =
f(h(x)), then we write dg(z) = d(f o h)(x). On the other hand, we write 0f(h(z)) to
denote the subdifferential of f evaluated at h(z).

The subdifferential definitions are illustrated with the following important exam-
ple.

Ezample 3.7 (subdifferential of the modulus). Let b € (0,00). Since the function
blu| is convex it is subdifferentially regular for all u, and

bt ifu 0,
ol =po(u)={ T u70

where 0B is the ball of radius b: B = {u : |u] < 1}.
In contrast, the function —blu| for b € (0, 00) is not regular at 0. Nevertheless for
all u

bt ifu A0,
o (=tlul) =00 (-lu) ={ I 7]

where bS is the sphere of radius b: S = {u : |u| = 1}. The Clarke subdifferential of
—b|ul is the convex hull, denoted conv (- ), of the generalized subdifferential:

0(=blu|) = conv d(—blul) = —0(blul).

Proof. The first part of the statement is a trivial modification of [21, Exercise
8.27]. The last statement follows from [21, Theorem 8.49]. d

This example yields the following correspondence between finite-dimensional pro-
jections ITyg and the subdifferential 9(—blul ).

PROPOSITION 3.8 (pointwise projections and subdifferentials). Let Ilpg(u) be
the projection defined in (9). For u € R?, b € Ry, and r? : R2 — R defined in (18)
we have

I(=blu|) = —Is(u), I(=bu|) = —conv (IMys(u)), and Or*(u;b) = 2(I — ys(u)),
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where I is the finite-dimensional identity operator. Moreover,
Or?(u; b) = conv [2(1 — Tys(u))].

As with the finite-dimensional projection II,s and the infinite-dimensional projec-
tion g : L?[R?,R?] = L?*[R?,R?] defined in (11), there is a relationship between
the finite-dimensional Clarke subdifferential dr?(u(z); b(x)) (x fixed) and the “subd-
ifferential” of the square distance function, d(dist ?(u; Q(b))). In infinite-dimensional
spaces there are several possible definitions for the subdifferential depending on the
underlying geometry and topology of the space. Fortunately, in the separable Hilbert-
space setting of phase retrieval many of these definitions coincide [18, Theorem 9.2].
Thus we can choose the characterization that is most convenient. The following de-
velopment parallels that of Clarke, Ledyaev, Stern, and Wolenski in [6, chapter 3,
section 5]. We begin by recalling the definitions and theorems necessary for the anal-
ysis.

3.3. Integrals of multivalued functions. We now develop some properties of
integrals of multivalued mappings. The next theorem, due to Hildenbrand [11], is a
restatement of Theorems 3 and 4 of Aumann [1] for multifunctions on the nonatomic
measure space (€, A, ). These results are central to the theory of integrals of
multivalued functions.

THEOREM 3.9 (integrals of multifunctions [11, Theorem 4 and Proposition 7]).
The following properties hold for integrably bounded multifunctions F': Q@ = R™ on
nonatomic measure spaces (2, A, 1) :

(i) if F is A® B"-measurable, then [ F = [ conv F};

(ii) f F is closed (not necessarily A ® B™-measurable), then [ F is compact.

The following result is instrumental in the proof of our main result. It is a
generalization of [6, Exercise 3.5.17].

PROPOSITION 3.10 (weak closure of nonconvex multivalued integrands). Let v
be chosen from the set of selections S(conv F), where F : R? = R? is a nonempty,
closed, M?®B?-measurable, L?-bounded multifunction on L3(R?, M?, P) for the prob-
ability measure P(dx) = b(x)dx defined by the density b : R? — R, . Then there exists
a sequence {f;} of measurable selections of F which converges weakly to v. Conse-
quently,

(20) S(conv F) C cl* (S(F)).

Proof. Consider the box I,, = [-n,n] x [-n,n| for n = 1,2,3,.... Suppose each
box I, is partitioned into (2n2)? pixels of width 1/n. Set

k
th=——n fork=0,1,...,2n%
n

and for each t € [—n, n] define

@n:max{tﬁj:t}j <t,k=0,...,2n°} and (¢),=min{t}: ¢} >¢,k=0,...,2n%}.

Note that 0 < max{t — t) (), — t} < 1/n whenever ¢t € [-n,n]. By Theorem 3.9

there exists a selection f,, € F on (R?, M2, P) corresponding to the partition of the
box I,, such that

. fu(x)b(z)dx = /R2 v(x)b(z)dx
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with

1 tk+1 J+1 ftig
/ / dz—/ / v(x)b(z)dz, n=1,2,3,...,5,k=0,...,2n°%

We show that the sequence f, converges weakly to v. Let g € C°°[R? R?] and
Xym be the indicator of the box M = [a, 8] X [y,n]. Given € > 0 we will show that
there exists n' such that [(gXy, fn —v)| <€ forall n >n’, ie., (gXu, fn—v) — 0.

Let ny be such that M C I,,, for all n > n;. Choose n > n;. Integration by parts
yields

n B
(21) (g, fu—v) = <g<ﬂ,n>, / / [fn<s,t>v(s,tnb(s,t)dsdt)

(22) - / ! <gy(ﬂ7y), / g L) — (s, Hb(s. ) dt) ay
(23) -/ ’ <gz<x7n>, / [ Ut = ot 0.t dt) da
(24) +/j/j (gmy(x,y),[yy/:[fn(s,t) — o(s, )]b(s, t)ds dt) du dy.

Note that each of these terms contains an expression of the form

7 B 0B
25) [ [ (ulot) — vls )00, ) dt = / N [ atsut) = ot )bt s
yJa n
/(’Y) / (fn(s,t) —v(s,t))b(s,t)dsdt

/((m / (Ful5,) = v(s,))b(s, t)ds dt

),
/ / (fa(s,t) — v(s,1))b(s, t)ds dt,
(D /(B),

where [3,7] x [&, 8] C [v,7] x [a, 8] C [-n,n] x [-n,n]. Let a € L2(R2, M2, P) be an
L2-bound for conv F. For any box of the form [o/, 3] x [y, 7], we have the bound

(s,t) — v(s,t))b(s,t)ds dt

oy
S/j /a | f(5,8) = v(s,8)[b(s, t)ds dt

n/ B/
< / / 2|a(s,t)|b(s,t)dsdt
’Y/ al

9 /]R o) ity (20l
<2l || M1t (22

= 2||al| b(x)dz.
[a,8/]x[v" ']
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Next note that the Lebesgue measure of each of the sets [(ﬁ)n, il % &, 3], %, (%),,] x

[d,B], [@n,ﬁ] X [@,@n}, and [@n,@n] X [(B)n,ﬁ] appearing in (25) is bounded by

maxc{(n ), (5 o)),

which can be made arbitrarily small. By [23, Exercise 12, p. 33], for every € > 0 there
is an 6(€) > 0 such that

/b(x)dx < € whenever M(E) < (),
E

where M(E) is the Lebesgue measure of the set E. Therefore, given € > 0, we can
choose n so that L max{(n —~),(8 — @)} < é§(€). By combining this with (25), we
obtain the bound

i B
(26) / / (Fuls,1) — v(s, £))b(s, £)ds dt| < 8]lal.

If we set

I = max {[g(s, )], |9y (s, 1), |92 (s, )], |92y (s, )| = (s,8) € [, 5] x [7,ml}

the bound (26) yields the following bound for the sum of the four integrands (21)—(24):

(g, fo =) ST+ =7)+(B—a)+(n—)B—a)lBlald.

Given any € > 0 there exists an € > 0 such that the left-hand side, and so also the
right-hand side, of this inequality is less than €; moreover, for this € there is an n’
such that

Cmax{(n-7), (8- )} <8(6)  ¥n>a.

Therefore, for all n > n’ we have |(gXu, fn — v)| < €, which is what we set out to
show. Since functions of the form g&j;, where g € C°[R? R?] and M C R? is a box,
are dense in L3(R?, M2, P) we have that the sequence f,, converges weakly to v. ]

3.4. Application to wavefront reconstruction. We now apply the above
results to the weighted negative modulus mapping —b(- )|u(-)]|.

PROPOSITION 3.11 (integrals of projections and subgradients). Let b € U be
a density function for the probability measure P(dz) = b(z)dz on (R?, M?) and let
u € L?[R% R?]. The negative modulus function —|u(x)| has the following properties:

(i) S (b(-)0(—|u(-)])) is a weakly compact, convez set in L3(R?, M?, vs);

(i) [O(—|u(z)|)b(z)dx = [—conv (Is(u(x)))b(z)dx, and [ d(—|u(x)|)b(z)dx is

a compact subset of R?;
(iii) S (b(-)O(—|u(-)])) € —cI* (Mg (w)) for all u € L*[R? R?], where Q(b) is
defined by (7) and Ilge)(u) by (8).

Proof. (i) At each x, b(x)d(—|u(z)|) is closed and convex-valued. In addition,
by Example 3.7 every element of the set d(—|u(z)|) has magnitude less than or
equal to 1 and so the multifunction b(-)d(—|u(-)|) is L?-bounded in (R2, M2, vy).
Hence, by Proposition 2.2, the multifunction S (b(z)d(—|u(z)|)) is weakly compact
in L3(R?, M2, 1).
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(ii) We wish to apply Theorem 3.9, so we must show that the multifunction F
written as the composition of a multifunction with a measurable function

Fa) = [0(=|-|) o ul(z) = 9(|u(x)])

is P-integrably bounded and M?® B2-measurable. By Example 3.7, the multifunction
F : R? = R? is P-integrably bounded with bound equal to 1. By Remark 3.5
d(—|-|) : R?2 = R? has closed graph and is therefore M? ® B2-measurable. By
hypothesis, the function u is a Lebesgue measurable mapping from (R?, M?) into
(R%, M?). Thus, by [11, Proposition 1.b, p. 59] the composite multifunction F defined
above is M? ® B?-measurable. Therefore Theorem 3.9 applies to give the result.

(iii) By Proposition 3.10 every v(-) € S (b(-)0(—|u(-)|)) is the weak limit of a
sequence of functions in S (b(-)9(—|u(-)])), since conv (A(—|u(-)|)) = d(—|u(-)|) (see
Example 3.7). If v € S(b(-)9(—|u(-)])), then by [16, Theorem 4.2] and Proposition
3.8 —v € S(b(-)Is(u(-))). Hence, by (11),

S (b(-)a(=[u(-)])) € g (u),
from which the result follows. O

3.5. Infinite-dimensional nonsmooth analysis. The next step is to relate
the subdifferential of the integral to the integral of the subdifferential. We begin with
a brief review of infinite-dimensional nonsmooth analysis. For a complete discussion
see [5, 6, 12, 13, 14, 15, 17, 18] and the references therein. To begin with, let df (u)
and d. f(u) be defined in exactly the same way that they were defined in the finite-
dimensional setting in Definition 3.3.

DEFINITION 3.12 (subgradients: infinite-dimensions). Let X be a separable
Hilbert space, let f : X — R be locally Lipschitz continuous, and let u, € dom f.

(i) A wector v € X* is a Dini e-subgradient of f at u, if

(v, w) < df (us)(w) + €f|w]| Vwe X,

where df (u.)(w) is the infinite-dimensional version of the subderivative de-
fined in Definition 3.3(i). We call the set of Dini e-subgradients v the Dini
e-subdifferential of f at u. and denote this set by O f(u.). When € = 0,
we write 0~ f(uy) instead of Oy f(u.). By the definition of the subderiva-
tive function Definition 3.3(1) and the regular subgradient Definition 3.4(i)
it can be shown that for Lipschitz f the Dini 0-subdifferential is simply the
infinite-dimensional version of the reqular subgradient, 0~ f(u.) = Of (uy).
(ii) A vector v € X* is a subgradient of f at u, if there are sequences ) \, 0,

u™) — u,, and v € a7 f(u™)) with v EN v, where . denotes weak-star
convergence. We call the set of subgradients v the subdifferential of f at u.
and denote this set by Of (u.).

(iii) We define the Clarke generalized subdifferential, Of(u,) of f at u., as in the
finite-dimensional case, Definition 3.4(iii).

(iv) The function f is said to be subdifferentially regular at u, if Of(u.) # 0 and

~

Of (uy) = Of (uy).

Remark 3.13. This construction of the subdifferential comes from [14] where it is
used the to construct the A-subdifferential, or approximate subdifferential. However,
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due to the equivalence theorem of Mordukhovich and Shao [18, Theorem 9.2] it can
also be used in the separable Hilbert space setting to define the subdifferential given
in [15]. From Mordukhovich and Shao [18, Theorem 8.11], we also obtain the relation

(27) Of (uy) = cl* (conv Of (u,)).
In particular, this implies that f is subdifferentiably regular at . if and only if

Of (us) = 0f (us)-

In addition, when f is strictly differentiable, then df(u) coincides with the Fréchet
derivative. Finally, we note that the sets 9f(u) are weakly closed.

Until now we have been concerned with the issue of when a subset of R™ depends
measurably on the parameter z € €. It is equally important for us to consider the
properties of measurable real-valued functions on R™. For this we make use of normal
integrands as defined in [21, Definition 14.27]. A function f : Q x R® — R is called a
normal integrand if its epigraphical mapping epi f(x,- ), z € , is closed-valued and
measurable. Any autonomous, Lipschitz continuous mapping, i.e., f(z,u) := g(u),
where g : R™ — R is Lipschitz, is a normal integrand [21, Example 14.30]. For
example, the mapping |u| is a normal integrand. We use normal integrands to prove
the measurability of the following important mappings.

LEMMA 3.14 (measurability of exposed faces). Consider a closed-valued Lebesque
measurable multifunction F : R™ = R". For x € R™ and w € R" define F, :
R™ x R™ = R™ by

Fy(z,w) = argmax {(v, w) |v € F(x)}.

Then F is closed-valued and Lebesgue measurable.

Remark 3.15. Whenever the set F,(z,w) is nonempty it is called an exposed face
of the convex set F(z) [22, section 18]. It is easily shown that these sets are indeed
faces of F(x) in the sense of [22, section 18]. Here we have focused on Lebesgue
measure, but other o-finite complete measures are possible.

Proof. Since F is closed-valued and measurable, [21, Example 14.32] implies that
the function f: (R™ x R") x R® — R given by

f(wiav) = <Ua _w> + 6F(a:)(v)
is a normal integrand. Hence the result follows from [21, Theorem 14.37] since
F.(z,w) = argmin f(z,w,v). d

We remark that if, in addition, F' is compact-valued, then so is F.

LEMMA 3.16 (subgradients of normal integrands [21, Theorem 14.56]). Let
(Q, A, 1) be a complete measure space. For the proper normal integrand f : QxR™ —
R, and any u(z) € dom f(x,-) depending measurably on x € §Q, the subderivative
functions

(2, w) = df (@, u(@)(w),  (2,w) = df (2, u(2))(w)
are normal integrands and the subdifferential mappings
T — 5f(x,u(x)), x— Of(z,u(x))

are closed-valued and measurable.



590 JAMES V. BURKE AND D. RUSSELL LUKE

In the remainder of this section, whenever we speak of measure we will be referring
to Lebesgue measure.

LEMMA 3.17 (measurable selections for the regular subderivative). Let f : R" —
R be locally Lipschitz and let v : R™ — R™ and w : R™ — R™ be measurable
mappings. Then the subdifferential mapping Of (u(-)) is measurable and possesses a
measurable selection v: R™ — R™ such that

(28) (w(x), w(z)) = df(u(x))(w(z)) a.e. r € R™.

Proof. By [21, Theorem 14.56] the mapping df is measurable. Since df(u) is
simply the convex hull of 9f(u) for all u € R", [21, Exercise 14.12] implies that Of is
compact convex-valued and measurable. Hence, by [21, Theorem 14.13], the mapping
Of(u(-)) is also compact convex-valued and measurable. It remains to establish the
existence of a measurable selection satisfying (28).

By [21, Theorem 8.49], we have c?f(u)(w) = sup (0f(u), w) for all w € R",

and we have shown that the mapping df is compact convex-valued and measurable.
Therefore, by Lemma 3.14, the mapping

F, (u,w) = argmax {(v, w) |v € df(u)}
is also compact convex-valued and measurable with
dom (Fy) = {(u,w) | Fu(u,w) # 0} =R" x R™.

Again, by [21, Theorem 14.13], the mapping Fi(u(-),w(-)) is also compact convex-
valued and measurable. The measurable selection theorem Theorem 2.1 now implies
the existence of a measurable function v(- ) such that v(z) € Fi(u(z), w(z)) a.e., which
proves the lemma. a

We now have our first general result on the interchange of integration and subd-
ifferentiation.

LEMMA 3.18 (interchange of subdifferentiation and integration. I). Let H =
L2, (R", M™, v,) be the Hilbert space of square integrable functions mapping from
R™ to R™ defined in section 2.2, where M™ 1is the o-field of Lebesgque measurable
sets on R™ and vy, is Lebesque measure. For simplicity, we write dv = v, (dx). Let
f: R™ —= R be globally Lipschitz continuous with Lipschitz constant K, and suppose
there exists 4 € H such that f o is an L*-bounded function on the space (R™, M™, i)
where p = bv,, where b: R® — Ry with b € L*NL?> N L>®°[R",R]. Define the integral
functional J : H — R by

J(u) = / £ (ua))b(z)dz.

Then J is globally Lipschitz with Lipschitz constant K||b||2, and for every u € H the
mapping f o u is L?-bounded and

(29) 9J(u) C S(b(-)0f (u(-)))-

Proof. Let u € H. The fact that f o u is L?-bounded follows immediately from
the inequality

[f (u(@))] < |f(a(2))] + Klu(z) — a(z)].
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The global Lipschitz continuity of J is a consequence of the following derivation:

@) = I < [ Klulz) = @) bo)ds
= K({|Ju—v|, b)
< K[[bll2fu = vf2-
Remark 3.13 tells us that 9J(u) is a weakly compact convex subset of H for all
u € H. We also have from Proposition 2.2 that the set S(b(-)0f(u(-))) is also a

weakly compact convex subset of H for all u € H. Hence the inclusion (29) follows if
it can be shown that

sup {(v, w) |v € S(b(-)Af (ul-))} = dJ (u)(w)

for all w € H.
Let w € H and let {u;} C H and {r;} C R4 be such that {u;} strongly converges
to v and 7; | 0 with

37 () (w) = lim 2L FTw0) = J(w)

Then, by Fatou’s lemma,

g/@wummmwmm

By Lemma 3.17, the multifunction 0f (u(-)) possesses a measurable selection v such
that df (u(x))(w(z)) = (v(z), w(x)) a.e. on R™. Therefore, by (30) we have

o~

dJ(u)(w) < /<U(:L’) , w(z)) b(x)dx
<sup {(v, w) [veSO(-)If(u(-)))},

proving the result. O

3.6. Application to wavefront reconstruction. In the next proposition we
establish the connection between the projection Ilg) defined by (8) and the subd-
ifferential of h : L?[R? R?] — R defined by (18), where b € U with U defined in
(6). Proposition 3.19 is a special case of a more general result to be proved in the
final section (Theorem 4.2). However, here we provide a separate and fundamentally
different proof which provides the motivation for the perturbation methods studied
n [16].

PROPOSITION 3.19 (projection-subdifferential equivalence). Let b € U and let
g, : L? = Q(b) be as defined in (8) with Q(b) defined by (7), and h : L?[R? R?] —
R be as defined by (18). Then for all u € L?*[R? R?]

(31) 9 (h(u;0)) = 8 (b()D (=[u(-)])) = eI (~Tlgp) (w)) = 0 (h(u;b)).

Thus, in particular, h(-;b) is everywhere subdifferentiably regular.
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Proof. Note that the equivalences in (31) are scale invariant in the sense that
if they are shown to be true for a given function b, then they must be true with b
replaced by ab for any choice of a > 0 since

ad(h(u;b)) = O(h(u;ab)),  aS(b(-)d(—[u(-)])) = S(ab(-)o(~|u(-)])),

and

acl” (~Tge)(u) = el (~Tlgap) ().

Since b is nonnegative and integrable, we may therefore assume with no loss in gen-
erality that b is a probability density function for some probability measure P(dx) =
b(x)dz.

If (31) holds, then the subdifferential regularity of i(-; b) follows immediately from
Proposition 3.11(i) and (27). By Lemma 3.18 and part (iii) of Proposition 3.11,

Oh(u;b) € S (b(-)D(=[u()1) € eI (~Tlgq) (u).
Since Oh(u;b) C Oh(u;b), the result follows once it is shown that
(32) ol (~Tg) (u)) € Oh(u;b).

By Proposition 3.2 the mapping h is globally Lipschitz continuous with Lips-
chitz constant K = ||b||, and by Remark 3.13 Oh(u;b) is weakly closed. There-
fore, if —IIg)(u) C Oh(u;b), then cl* (—Igp)(u)) C Oh(u;b). We now show that
—Ilge) (u) C Oh(u;b).

Let v € —Ilgp)(u) and for all € > 0 define . := uXupp (u) + €v(1 — &
Then, by [16, Theorem 4.1],

upp (u) )-

s = el = €01 = Fapp )l| < €llBl
and | -| is differentiable at @.(z) for every x € supp (b) with

v(z) = =V|te(x)|b(x) Ve > 0.
For every w € L?[R?,R?] and z € supp (b), we have

|t () + tw(z)| — |t (z)|
t

— (Vlue()], w(z)),

and, since | - | is Lipschitz with Lipschitz constant 1,

|te(x) + tw(z)| — |ue (@)
t

< |w(z)| Yz € supp (b).

Therefore, by the Lebesgue dominated convergence theorem, the function h(-;b) is
Géateaux differentiable at @, with Gateaux derivative —V|4.|b = v. Hence, since | - |
is Lipschitz continuous the liminf in Definition 3.3(ii) is attained as a limit yielding
dh(@e; b)(w) = (v, w). Consequently

v € 07 h(Te; b) Ye>0.

Taking the limit as ¢ | 0, we find that v € Oh(u;b). Therefore, —Ilgw)(u) C
Oh(u;b). O
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The proof of Theorem 3.1 now follows easily from the calculus of subdifferentials.
Proof of Theorem 3.1. [16, Corollary 4.3] gives the representation

dist ?(u, Q,,) = dist Z(fm(u)7 Q(¥m))
= [|Fm @) + m* + 2 [Fon (u); ).

By applying [18, Theorem 6.7] together with Proposition 3.19 and [16, Corollary 4.3],
we obtain

. 1
0ist (£, Q0 =20 ( (5111 + 1)) o 7 )
=275, [Fin(u) + oI (~Ilg,, (Fm(u)))]
=2cl" (7 — Ig,, (u)).
Hence the subdifferential regularity of all the functions involved in conjunction with
[18, Theorem 4.1] yields the result. d

4. Concluding remarks. We conclude with a generalization of Theorem 3.19.
Theorem 4.2 establishes the equivalence of the infinite-dimensional subdifferential
objects in the setting relevant to phase retrieval and establishes their relation to the
finite-dimensional Clarke subdifferential. The result, and its proof, closely parallels
that given in [6, Theorem 3.5.18].

LEMMA 4.1 (interchange of subdifferentiation and integration. II). Let the hy-
potheses of Lemma 3.18 hold. Then

(33) SO(-)0f (u(-))) € 8J (w).

Proof. Let z € S(b(-)0f(u(-))). Since df (u(-)) is closed-valued and measurable,
there exists v € S(Of(u(-))) for which z = bv. We show that z € 9J(u). For this

purpose, let C' be a countably dense subset of gph ) f. Observe that
Of (u) = {_lim v [ {(W, v} CC W — u}
J—00

Let {(u*, v*)} be an enumeration of C. Then for each + € R" and each integer
i €{1,2,...}, define k;(x) be the first integer k for which

1 1
[ub — u(z)| < h and |vf —w(2)| < T
For each i = 1,2, ..., define u’ : R® — R™ and v’ : R® — R™ by
u'(z) = uF®)  and vi(z) = ki),
We claim that the functions u’ and v* are measurable with
(34) vi(z) € Df(u'(x)) ae.

for i = 1,2,.... Indeed, the range of both u’ and v’ is contained in the set C' and so
is countable. Moreover, for a given integer k,

{o [ (W'(@),0'(2) = (", ") }

(o~ u(o)l |~ o)} < |

wax(lod = o) o~ o)} > 1 }

k—1
=N
j=1
N {:v

where each of the sets on the left-hand side is measurable.
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Next observe that for all w € H, we have from Fatou’s lemma that

; T+ Tw) — J(u ; ;
dJ(u')(w) = hgl\l(r}lf (' + 7_) () > /R2 df (v’ (2)) (w(z))b(z)dz > (v, w),

where the last inequality follows from (34). Hence bv' € aJ (u') for i = 1,2,....

Finally, since u’* — u and v* — v by construction, we have bv € 9.J(u). ]
THEOREM 4.2 (interchange of subdifferentiation and integration). Let the hy-

potheses of Lemma 3.18 hold with n = m = 2. Then, for all u € H = L?[R? R?],

0J(u) = cI"S(b(-)0f () = S(b(-)If(-)) = 0J (u).

In particular, this implies that J is everywhere subdifferentially reqular.
Proof. By Proposition 3.10 we have

SO(-)0f (u(-))) € " SO(-)0f (u(-)))-

Since the set 0.J(u) is weakly closed, Lemma 4.1 implies that

" S(b(-)0f (u(-))) € 0J (u).
Combining these facts with Lemma 3.18 yields

0J(u) C S(b(-)df (u(-)))

C el S(b(-)af (u(-)))
C 9J(u)
c 0J(u),

which proves the result. ]

The restriction in Theorem 4.2 to the case n = m = 2 follows from the use of
this hypothesis in Proposition 3.10. However, we believe that it is possible to extend
this proposition to the general case, which would allow us to remove the restriction
n =m = 2 from Theorem 4.2.
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