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Abstract. We propose a general alternating minimization algorithm for nonconvex optimization problems with
separable structure and nonconvex coupling between blocks of variables. To fix our ideas, we apply
the methodology to the problem of blind ptychographic imaging. Compared to other schemes in the
literature, our approach differs in two ways: (i) it is posed within a clear mathematical framework
with practical verifiable assumptions, and (ii) under the given assumptions, it is provably convergent
to critical points. A numerical comparison of our proposed algorithm with the current state of the
art on simulated and experimental data validates our approach and points toward directions for
further improvement.
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1. Introduction. We consider algorithms for nonconvex constrained optimization prob-
lems of the following form:

(1.1) Find (x, y, z) ∈ argmin {F (x, y, z) | (x, y, z) ∈ C ≡ X × Y × Z} .

HereX×Y ×Z ⊂ R
p×R

q×R
r (that is, the constraints apply to disjoint blocks of variables) and

F is a nonlinear penalty function characterizing the coupling between the blocks of variables.
It will be convenient to reformulate problem (1.1) using indicator functions. The indicator
function of a set C is defined as ιC (x) = 0 for x ∈ C and ιC (x) = +∞ for x /∈ C. Define

(1.2) Ψ (x, y, z) ≡ F (x, y, z) + ιX (x) + ιY (y) + ιZ (z) .

An equivalent formulation of (1.1) is the formally unconstrained nonsmooth optimization
problem

(1.3) Find (x, y, z) ∈ argmin
(x,y,z)∈Rp×Rq×Rr

{Ψ(x, y, z)} .
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Algorithms for solving (1.1) or (1.3) typically seek only to satisfy first-order necessary condi-
tions for optimality, and the algorithm we propose below is no different. These conditions are
given compactly by

(1.4) 0 ∈ ∇F (x∗, y∗, z∗) + ∂ιX (x∗) + ∂ιY (y∗) + ∂ιZ (z∗) ,

where ∂f (z) is a set, the subdifferential, that generalizes the notion of a gradient for nons-
mooth, subdifferentially regular functions f defined precisely in Definition 3.1 below.

For the sake of fixing the ideas, we focus on the particular application of blind ptychogra-
phy, however our goal and approach are much more general. The partially smooth character
of the objective Ψ in (1.2) is a common feature in many optimization models which involve
sums of functions, some of which are smooth and some of which are not. Forward-backward-
type algorithms are frequently applied to such models, and our approach is no different. The
particular three-block structure of the problem is easily generalized to M blocks. The crucial
feature of the model for algorithms, and what we hope to highlight in the present study, is the
quantification of continuity of the partial gradients of F with respect only to blocks of vari-
ables. This is in contrast to more classical approaches which rely on the continuity of ∇F with
respect to all the variables simultaneously (see [4]). For the ptychography application, such a
requirement prohibits a convergence analysis along the lines of [4] since the gradient ∇F is not
Lipschitz continuous. However, the partial gradients with respect to the blocks of variables are
Lipschitz continuous. Following [11], this allows us to prove, in section 3, convergence of the
blocked algorithm given below (Algorithm 2.1) to feasible critical points. Issues concerning
noisy data (i.e., what is the quality of the stationary points?) are independent of the perfor-
mance of the algorithm presented here. We provide conditions under which the algorithm is
guaranteed to find a critical point, no matter the starting guess or the quality of the data.
The quality of the critical point depends, of course, on the quality and quantity of the data.

Our abstract formulation of the problem can be applied to many different applications
beyond ptychography, including control, machine learning, and deconvolution. We do not
attempt to provide a review of the many different approaches to these types of problems, or
even a more focused review of numerical methods for ptychography, but rather to provide a
common theoretical framework by which a variety of methods can be understood. Our focus
on ptychography allows us to also treat phase retrieval and wavefront sensing as special cases,
so the scope of the concrete application is broader than immediately obvious. Also, we were
inspired by the success of two algorithms, one by Maiden and Rodenburg [27] and the other
due to Thibault et al. [36]. These two touchstone methods represent, for us, fundamental
computational methods whose structures serve as a central bifurcation in numerical strate-
gies. Moreover, the prevalence of these two methods, and their easy specialization to other
well-known methods ensures that our theoretical framework will have the greatest practical
impact. (Which is not to say that the methods are the most efficient [30, 35].) We present an
algorithmic framework in section 2 by which these algorithms can be understood and analyzed.
We present in section 3 a theory of convergence of the most general Algorithm 2.1 which is
refined with increasingly stringent assumptions until it achieves the form of Algorithm 3.4
that can be immediately applied to ptychography. The specialization of our algorithm to
ptychography is presented in section 4 and summarized in Algorithm 4.1. We compare, in
section 5, Algorithm 4.1 with the state of the art on simulated and experimental data.
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2. Algorithms and modeling. The solution we seek is a triple, (x, y, z) that satisfies a
priori constraints, denoted by C, as well as a model characterizing the coupling between
the variables. We begin naively with a very intuitive idea for solving (1.1): alternating
minimization (AM) with respect to the three separate blocks of variables x, y, and z. More
precisely, starting with any

(
x0, y0, z0

) ∈ X × Y × Z, we consider the following algorithm:

xk+1 ∈ argmin
x∈X

{
F
(
x, yk, zk

)}
,(2.1a)

yk+1 ∈ argmin
y∈Y

{
F
(
xk+1, y, zk

)}
,(2.1b)

zk+1 ∈ argmin
z∈Z

{
F
(
xk+1, yk+1, z

)}
.(2.1c)

While the simplicity of the above algorithm is attractive, there are several considerations one
must address:

(i) The convergence results for the AM method are limited and applicable only in the
convex setting. It is unknown if the AM method converges in the nonconvex setting.
Of course, in the general nonconvex setting we cannot expect convergence to global
optimum but even convergence to critical points is not known. In [3] the authors prove
convergence to critical points for a regularized variant of AM. We follow this approach
in Algorithm 2.1 below, applying proximal regularization in each of the steps to obtain
provable convergence results.

(ii) Each one of the steps of the algorithm involves solving an optimization problem over
just one of the blocks of variables. Forward-backward-type methods are common
approaches to solving such minimization problems [13], and can be mixed between
blocks of variables [11]. Forward operators are typically applied to the ill-posed or
otherwise computationally difficult parts of the objective (usually appearing within
the smooth part of the objective) while backward operators are applied to the well-
posed parts of the objective (appearing often in the nonsmooth part).

In the particular case of ptychography, the subproblems with respect to the x and y variables
(steps (2.1a) and (2.1b) of the algorithm) are ill-posed. We handle this by applying a regular-
ized backward operator (the prox operator) to blockwise linearizations of the ill-posed forward
steps. The objective is well-posed, and particularly simple, with respect to the third block of
variables, z, so we need only to employ a backward operator for this step. Generalizing, our
approach addresses issue (ii) above by handling each of the blocks of variables differently.

Our presentation of Algorithm 2.1 makes use of the following notation. For any fixed
y ∈ R

q and z ∈ R
r, the function x �→ F (x, y, z) is continuously differentiable and its partial

gradient, ∇xF (x, y, z), is Lipschitz continuous with moduli Lx (y, z). The same assumption
holds for the function y �→ F (x, y, z) when x ∈ R

p and z ∈ R
r are fixed. In this case, the

Lipschitz moduli is denoted by Ly (x, z). Define L′
x (y, z) ≡ max {Lx (y, z) , ηx}, where ηx

is an arbitrary positive number. Similarly define L′
y (x, z) ≡ max {Ly (x, z) , ηy}, where ηy

is an arbitrary positive number. The role of ηx and ηy is to address the following issue: If
the Lipschitz constants Lx (y, z) and/or Ly (x, z) are zero then we should replace them with
positive numbers (for the sake of well-definedness of the algorithm). In practice, it is better
to choose them to be small numbers but for the analysis they can be chosen arbitrarily.
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Algorithm 2.1. Proximal block implicit-explicit algorithm.

Initialization. Choose α, β > 1, γ > 0, and
(
x0, y0, z0

) ∈ X × Y × Z.
General step (k = 0, 1, . . .).

1. Set αk = αL′
x

(
yk, zk

)
and select

(2.2) xk+1 ∈ argmin
x∈X

{〈
x− xk,∇xF

(
xk, yk, zk

)〉
+

αk

2

∥∥∥x− xk
∥∥∥2} .

2. Set βk = βL′
y

(
xk+1, zk

)
and select

(2.3) yk+1 ∈ argmin
y∈Y

{〈
y − yk,∇yF

(
xk+1, yk, zk

)〉
+

βk

2

∥∥∥y − yk
∥∥∥2} .

3. Select

(2.4) zk+1 ∈ argmin
z∈Z

{
F
(
xk+1, yk+1, z

)
+

γ

2

∥∥∥z − zk
∥∥∥2} .

Algorithm 2.1 can be interpreted as a combination of the algorithms proposed in [3] and
[6]. The regularization parameters αk and βk, k ∈ N, are discussed in section 5. For the
moment, suffice it to say that these parameters are inversely proportional to the step size
in steps (2.2) and (2.3) of the algorithm (see section 3). Noting that αk and βk, k ∈ N, are
directly proportional to the respective partial Lipschitz moduli, the larger the partial Lipschitz
moduli the smaller the step size, and hence the slower the algorithm progresses.

This brings to light another advantage of blocking strategies that goes beyond convergence
proofs: Algorithms that exploit block structures inherent in the objective function achieve
better numerical performance by taking heterogeneous step sizes optimized for the separate
blocks. There is, however, a price to be paid in the blocking strategies that we explore here,
namely, they result in procedures that pass sequentially between operations on the blocks, and
as such are not immediately parallelizable. Here too, the ptychography application generously
rewards us with added structure, as we show in section 3.3, permitting parallel computations
on highly segmented blocks.

The convergence theory developed in section 3 is independent of the precise form of the
coupling function F and independent of the precise form of the constraints. For our analysis
we require that F is differentiable with ∇F Lipschitz continuous on bounded domains, and
the partial gradient ∇xF (globally) Lipschitz continuous as a mapping on X for each (y, z) ∈
Y × Z fixed, and partial gradient ∇yF (globally) Lipschitz continuous as a mapping on Y
for (x, z) ∈ X × Z fixed. The constraint sets X, Y , and Z could be very general, we only
assume that they are closed and disjoint. This is discussed more precisely below. The analysis
presented in section 3 guarantees only that Algorithm 2.1 converges to a point satisfying (1.4),
which, it is worth reiterating, is not necessarily a solution to (1.1).

2.1. Blind ptychography. In scanning ptychography, an unknown specimen is illuminated
by a localized electromagnetic beam and the resulting wave is recorded on a CCD array
somewhere downstream along the axis of propagation of the wave (i.e., in the far field or the
near field of the object). A ptychographic dataset consists of a series of such observations,
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each differing from the others by a spatial shift of either the object or the illumination. In
the original ptychographic reconstruction procedure [22] it was assumed that the illuminating
beam was known. What we call blind ptychography, in analogy with blind deconvolution,
reflects the fact that the beam is not completely known; this corresponds to what is commonly
understood by ptychography in modern applications [33, 34, 27, 36]. Here the problem is to
simultaneously reconstruct the specimen and illuminating beam from a given ptychgraphic
dataset. We will treat the case of scanning x-ray ptychography with far field measurements.
This is not exhaustive of all the different settings one might encounter, but the mathematical
structure of the problem, our principal interest, is qualitatively the same for all cases. For a
review of ptychothographic methods, see [32] and the reference therein.

We formulate the ptychography problem on the product space C
n × C

n × C
n×m, where

the first block C
n corresponds to the model space for the probe, the second block corre-

sponds to the model space for the specimen, and the third block corresponds to the model
space for the data/observations. The physical model space equipped with the real inner prod-
uct is isomorphic to the Euclidean space (R2)n × (R2)n × (R2)n×m with the inner product
〈(x, y, z), (x′, y′, z′)〉 ≡ ∑n

j=1〈xj , x′j〉 +
∑n

j=1〈yj , y′j〉 +
∑n

j=1

∑m
i=1〈zij , z′ij〉 for xi, yi, zij ∈ R

2.
This is in fact how complex numbers are represented on a computer, and hence the model
space C

n with real inner product is just an efficient shorthand for (R2)n with the standard
inner product for such product spaces. We will therefore retain the complex model space with
real inner product when describing this problem, noting that all linear operators on this space
have analogues on the space (R2)n. The theory, however, will be set on real finite dimensional
vector spaces.

Denote z ≡ (z1, z2, . . . , zm) with zj ∈ C
n (j = 1, 2, . . . ,m). The objective function in our

general optimization problem (1.1), F : Cn × C
n × C

n×m → R+, is given by

(2.5) F (x, y, z) ≡
m∑
j=1

‖Sj (x)� y − zj‖2 .

Here Sj : C
n → C

n denotes the jth shift operator which shifts the indexes in x ∈ C
n in some

prescribed fashion and � is the elementwise Haadamard product. This function measures in
some sense the distance to the set

(2.6) M ≡ {(x, y, z) ∈ C
n × C

n × C
n×m | Sj (x)� y = zj , j = 1, 2, . . . ,m

}
.

Let bj ∈ R
n, j = 1, 2, . . . ,m, denote the experimental observations, and F be a two-

dimensional discrete Fourier transform (of dimension
√
n × √

n) rearranged for vectors on
C
n. The constraints X, Y , and Z are separable and given by

X ≡ {qualitative constraints on the probe},(2.7a)

Y ≡ {qualitative constraints on the specimen},(2.7b)

Z ≡ Z1 × Z2 × · · · × Zm,

where Zj ≡ {z ∈ C
n | |(Fz)l| = bj,l, (l = 1, 2, . . . , n)} (j = 1, 2, . . . ,m).(2.7c)

The qualitative constraints characterized by X and Y are typically a mixture of support,
support nonnegativity, or magnitude constraints corresponding, respectively, to whether the
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illumination and specimen are supported on a bounded set, whether these (most likely only the
specimen) are “real objects” that somehow absorb or attenuate the probe energy, or whether
these are “phase” objects with a prescribed intensity but varying phase. A support constraint
for the set X, for instance, would be represented by

(2.8) X ≡ {x = (x1, x2, . . . , xn) ∈ C
n | |xi| ≤ R (i = 1, 2, . . . , n) and, for i /∈ IX , xi = 0} ,

where IX is the index set corresponding to which pixels in the field of view the probe beam
illuminates and R is some given amplitude. A mixture of support and amplitude constraints
for the set Y would be represented by

(2.9) Y ≡ {y = (y1, y2, . . . , yn) ∈ C
n | 0 ≤ η ≤ |yi| ≤ η and, for i /∈ IY , yi = 0

}
,

where the index set IY is the analogous index set for the support of the specimen, and η/η
are lower/upper bounds on the intensity of the specimen. The set Z is nothing more than the
phase set appearing in feasibility formulations of the phase retrieval problem [25].

Remark 2.1 (feasibility versus minimization). Since the algorithms discussed below involve,
at some point, projections onto these sets, it is worthwhile noting here that, while, in most
applications, the projections onto the sets X, Y , and Z have a closed form and can be
computed very accurately and efficiently, we are unaware of any method, analytic or otherwise,
for computing the projection onto the set M defined by (2.6). For this reason, we have avoided
formulation of the problem as a (nonconvex) feasibility problem

find x ∈ M∩ (X × Y × Z) .

Nevertheless, this essentially two-set feasibility model suggests a wide range of techniques
within the family of projection methods, alternating projections, averaged projections, and
Douglas–Rachford being representative members. In contrast to these, our approach is essen-
tially a forward-backward method that avoids the difficulty of computing a projection onto
the set M by instead minimizing a nonnegative coupling function F that takes the value 0
(only) on M.

Remark 2.2 (phase retrieval and wavefront sensing as special cases). We point out various
specializations of the ptychography problem that will be familiar to many practitioners.

(i) Ptychography with a known illumination x and a single measurement set Z1 is just the
phase retrieval problem and Algorithm 2.1 reduces to a projected steepest descent algorithm
for minimizing the distance between the object constraint set Y and the set of vectors satisfying
the data, Z1.

(ii) Ptychography with several unknown on axis illuminations and corresponding mea-
surements (that is, the operator Sj in (2.5) is a shift in the direction of propagation of the
field, not a lateral shift) and a known object y (usually a point source) is the wavefront re-
construction problem discussed in [25]. In this setting our algorithm reduces to a projected
steepest descent algorithm for minimizing the sum of squared distances between the illumi-
nation constraints and the sets of vectors satisfying the data.

(iii) Ptychography with several unknown on axis illuminations and an unknown object is
what is known in astronomy as “phase diversity” [18, 25].
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3. Algorithm analysis.

3.1. Mathematical preliminaries. Algorithm 2.1 consists of three steps all of which reduce
to the computation of a projection onto a given constraint set (convex and nonconvex). Recall
that the projection onto a nonempty and closed subset Ω of a Euclidean space R

d is the (set-
valued) mapping PΩ : Rd ⇒ Ω defined by

(3.1) PΩ (v) ≡ argmin {‖u− v‖ | u ∈ Ω} .
In Euclidean spaces the projection is single valued if and only if Ω is convex (in addition
to being nonempty and closed). Specializing to the present application, for the constraints
specified by (2.7), PC = (PX , PY , PZ), where PX , PY , and PZ are, in general, multivalued
(consider PC (0)).

Since we are dealing with nonsmooth and nonconvex functions that can take the value
+∞, we require the following generalization of the derivative for nonconvex functions.

Definition 3.1 (subdifferential [31]). Let f : R
d → (−∞,+∞] be proper (not everywhere

infinite) and lower semicontinuous (l.s.c.).
• The regular or Fréchet subdifferential of f at u ∈ dom f , denoted ∂̂f(u), is the set of

vectors v ∈ R
d which satisfy

(3.2) lim inf
w �=u
w→u

f (w)− f (u)− 〈v,w − u〉
‖w − u‖ ≥ 0.

If u /∈ dom f then ∂̂f (u) ≡ ∅.
• The limiting subdifferential of f at u ∈ dom f , denoted ∂f (u), is the set of limits of

limiting subdifferentials:

∂f (u) ≡
⎧⎨⎩v ∈ R

d

∣∣∣∣∣ ∃uk → u with f
(
uk
)
→ f (u) and

vk → v with vk ∈ ∂̂f
(
uk
)

as k → ∞

⎫⎬⎭ .

We say that f is subdifferentially regular at u if ∂f (u) = ∂̂f (u), and subdifferentially regular
(without reference to the point u) if it is subdifferentially regular at every point in dom f .

The notion of regularity of a set can be understood in terms of the subdifferential regularity
of the indicator function of that set. We will call a set Clarke regular if the corresponding
indicator function is subdifferentially regular (see [31, Definition 6.4]).

In [11], Bolte, Sabach, and Teboulle present a general procedure for determining conver-
gence to critical points of generic algorithms for nonsmooth and nonconvex problems. The
procedure consists of verifying three criteria, two of which are quite standard and shared by
most descent algorithms; see, e.g., [4]. The third criterion depends not on the algorithm but
on the objective function: It must satisfy the Kurdyka–�Lojasiewicz (KL) property (see [9, 10]
and the references therein).

Definition 3.2 (KL property). Let f : Rd → (−∞,+∞] be proper and l.s.c. For η ∈ (0,+∞]
define

(3.3) Cη ≡

⎧⎪⎨⎪⎩ϕ ∈ C [[0, η) ,R+] such that

⎧⎪⎨⎪⎩
ϕ (0) = 0

ϕ ∈ C1 on (0, η)

ϕ′ (s) > 0 for all s ∈ (0, η)

⎫⎪⎬⎪⎭
⎫⎪⎬⎪⎭ .
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The function f is said to have the KL property at u ∈ dom ∂f if there exist η ∈ (0,+∞], a
neighborhood U of u, and a function ϕ ∈ Cη, such that, for all

u ∈ U ∩ [f(u) < f(u) < f(u) + η],

the following inequality holds:

(3.4) ϕ (f (u)− f (u)) dist (0, ∂f (u)) ≥ 1.

If f satisfies property (3.4) at each point of dom ∂f , then f is called a KL function.
For a given function, the KL property can be verified indirectly by checking membership

to certain classes of functions, in particular the class of semialgebraic functions [9]. For the
convenience of the reader, we recall here the definition of semialgebraic functions.

Definition 3.3 (semialgebraic sets and functions).
(i) A set S ⊆ R

d is (real) semialgebraic if there exists a finite number of real polynomial
functions pij, qij : R

d → R such that

S =

N⋃
j=1

K⋂
i=1

{
u ∈ R

d : pij (u) = 0 and qij (u) < 0
}
.

(ii) A function f : Rd → (−∞,+∞] is semialgebraic if its graph{
(u, t) ∈ R

d+1 | f (u) = t
}
,

is a semialgebraic subset of Rd+1.
The class of semialgebraic sets is stable under the following operations: finite unions,

finite intersections, complementation, and Cartesian products. For a thorough catalog of
semialgebraic functions and sets, see [2, 3, 4, 11] and the references therein.

While it may not be obvious how to verify the KL property directly it is easy to determine
whether a function is semialgebraic. The remarkable fact about semialgebraic functions is
that, as long as they are l.s.c., they automatically satisfy the KL property on their domain as
stated in the following result.

Theorem 3.4 (see [9, see Thm. 3.3, p. 1215]). Let f : R
d → (−∞,+∞] be a proper and

l.s.c. function. If f is semialgebraic then it satisfies the KL property at any point in dom f .
We now show that the ptychography problem, and hence the phase retrieval problem, is

semialgebraic, i.e., both the objective function F and the constraint set C are semialgebraic.
Proposition 3.5 (blind ptychography and phase retrieval are semialgebraic). The objective func-

tion F , defined by (2.5), is continuous and semialgebraic. The constraint sets X, Y , and Z,
defined by (2.7), are nonempty, closed, and semialgebraic. Consequently, the corresponding
function Ψ, defined by (1.2), is a KL function on X × Y × Z.

Proof sketch. The physical model is formulated with complex-valued vectors, but Cn with
the real inner product is isomorphic to the Euclidean space

(
R
2
)n

with the inner product
〈x, x′〉 ≡ ∑n

i=1 (xi, x
′
i) for xi, x

′
i ∈ R

2. The function F defined by (2.5) is finite everywhere,



434 R. HESSE, D. R. LUKE, S. SABACH, AND M. K. TAM

continuous (indeed, differentiable), and the level sets of the objective F are quadratics with
respect to y and zj, and quadratic with respect to x under linear transformations. Thus F
is semialgebraic. The sets X and Y are either subspaces (support constraint only, (2.8)) or
the intersection of a subspace with a box or ball (support and nonnegativity or support and
amplitude constraints (2.9)), and so both of these are nonempty semialgebraic. The set Z is
equivalent to an amplitude constraint in the image space of the linear mapping F with respect
to the 1-norm on each two-dimensional component of the product space

(
R
2
)n
. Thus Z is

also nonempty and semialgebraic. That Ψ defined by (1.2) is then a KL function for these F ,
X, Y , and Z then follows from Theorem 3.4.

3.2. Convergence analysis. Our convergence analysis is centered on Theorem 3.10, a
general result concerning the application of Algorithm 2.1 to problem (1.4). The special-
ization to the ptychography problem, Proposition 4.1, is then easily achieved by verifying
that the assumptions of a refinement, Theorem 3.13, are satisfied. Following [11], we carry
out the three-step procedure, outlined in section 3.1, for proving convergence of the sequence
{(xk, yk, zk)}k∈N, generated by Algorithm 2.1, to a point satisfying (1.4) provided that the ini-
tial point (x0, y0, z0) ∈ X ×Y ×Z. The analysis rests on the following assumptions, collected
here to avoid repetition.

Assumption 1. Let
{(

xk, yk, zk
)}

k∈N be iterates of Algorithm 2.1 for
(
x0, y0, z0

) ∈ X ×
Y × Z.

(i) X ⊂ R
p, Y ⊂ R

q, and Z ⊂ R
r are nonempty and closed.

(ii) F : Rp × R
q × R

r → R is differentiable and inf F > −∞. Moreover, ∇xF and ∇yF
(as defined above) are Lipschitz continuous with moduli Lx (y, z) and Ly (x, z), respectively.

(iii) The gradient of F , ∇F , is Lipschitz continuous on bounded domains in X × Y × Z.
Moreover, there exist λ+

x , λ
+
y > 0 such that

(3.5) sup
{
Lx

(
yk, zk

)
| k ∈ N

}
≤ λ+

x and sup
{
Ly

(
xk+1, zk

)
| k ∈ N

}
≤ λ+

y .

(iv) The iterates
{(

xk, yk, zk
)}

k∈N are bounded.
(v) The function Ψ defined by (1.2) is a KL function (see Definition 3.2).

Remark 3.1. In section 4, we will show that our ptychography model (described in sec-
tion 2.1) satisfies these assumptions. For the general setting we point out the following.

(i) Boundedness of the iterates, Assumption 1(iv), is a strong assumption that can be
handled by a more technical treatment than we would like to present here. For our purposes
this can be guaranteed by the physically natural assumption that the constraint set is bounded.
Since Algorithm 2.1 is a feasible point algorithm, all iterates belong to the bounded feasible
set, hence, in this case, the iterates are bounded.

(ii) Combining Assumptions 1(ii) and (iii) does not guarantee that the gradient ∇F is
globally Lipschitz, as is the case in the application described below (see section 4). The
inequalities in (3.5) could be obtained in several scenarios, for example, when F is C2 and
using the boundedness assumption Assumption 1(iv).

We begin with a technical lemma.
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Lemma 3.6 (sufficient decrease property). Let h : Rd → R be a continuously differentiable
function with gradient ∇h assumed to be Lh-Lipschitz continuous and let Ω be a nonempty
and closed subset of Rd. Fix any t > Lh. Then, for any u ∈ Ω and for u+ ∈ R

d defined by

u+ ∈ PΩ

(
u− 1

t
∇h (u)

)
,

we have

h
(
u+
) ≤ h (u)− 1

2
(t− Lh)

∥∥u+ − u
∥∥2 .

Proof. The result follows from [11, Lemma 2], where the nonsmooth function σ is the
indicator function ιΩ of the nonempty and closed set Ω.

Remark 3.2. When Ω is also convex, the conclusion of Lemma 3.6 can be improved (see
[6, Lemma 2.3]) to the following:

h
(
u+
) ≤ h (u)−

(
t− Lh

2

)∥∥u+ − u
∥∥2 .

This means that t > Lh/2 (rather than only t > Lh, as in the nonconvex case) is enough to
guarantee decrease of function value after projected-gradient step.

Using Lemma 3.6 we can prove the following basic property of Algorithm 2.1.
Proposition 3.7 (sufficient decrease). Let {(xk, yk, zk)}k∈N be a sequence generated by Algo-

rithm 2.1 for some initial point (x0, y0, z0) ∈ X × Y × Z. Suppose that conditions (i)–(ii) of
Assumption 1 hold. Then the sequence {F (xk, yk, zk)}k∈N is decreasing and

∞∑
k=1

∥∥∥(xk+1, yk+1, zk+1
)
−
(
xk, yk, zk

)∥∥∥2 < ∞.

Hence the sequence
{
F
(
xk, yk, zk

)}
k∈N converges to some F ∗ > −∞ as k → ∞.

Proof. We apply Lemma 3.6 to the first subproblem (see (2.2)) as follows. Take h (·) =
F
(·, yk, zk), Ω = X, and t = αk > L′

x

(
yk, zk

)
to obtain that

F
(
xk+1, yk, zk

)
≤ F

(
xk, yk, zk

)
− 1

2

(
αk − Lx

(
yk, zk

))∥∥∥xk+1 − xk
∥∥∥2

≤ F
(
xk, yk, zk

)
− 1

2

(
αk − L′

x

(
yk, zk

))∥∥∥xk+1 − xk
∥∥∥2

= F
(
xk, yk, zk

)
− 1

2
(α− 1)L′

x

(
yk, zk

)∥∥∥xk+1 − xk
∥∥∥2

≤ F
(
xk, yk, zk

)
− 1

2
(α− 1) ηx

∥∥∥xk+1 − xk
∥∥∥2 ,

where the second inequality follows from the facts that αk = αL′
x(y

k, zk) (see Algorithm 2.1)
and Lx(y

k, zk) ≤ L′
x(y

k, zk), the last inequality follows from the fact that ηx ≤ L′
x(y

k, zk)
and α > 1. Similarly, applying Lemma 3.6 to the second subproblem (see (2.3)) with h(·) =
F (xk+1, ·, zk), Ω = Y , and t = βk > L′

y(x
k+1, zk) yields

F
(
xk+1, yk+1, zk

)
≤ F

(
xk+1, yk, zk

)
− 1

2
(β − 1) ηy

∥∥∥yk+1 − yk
∥∥∥2 .
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On the other hand, immediately from the third updating rule (see (2.4)) we get that

F
(
xk+1, yk+1, zk+1

)
≤ F

(
xk+1, yk+1, zk

)
− γ

2

∥∥∥zk+1 − zk
∥∥∥2 .

Summing up all these inequalities yields

F
(
xk+1, yk+1, zk+1

)
≤ F

(
xk, yk, zk

)
− 1

2
(α− 1) ηx

∥∥∥xk+1 − xk
∥∥∥2

− 1

2
(β − 1) ηy

∥∥∥yk+1 − yk
∥∥∥2 − γ

2

∥∥∥zk+1 − zk
∥∥∥2 .

Denote λ− ≡ (1/2)min{(α − 1)ηx, (β − 1)ηy, γ}. Thus

(3.6) F
(
xk+1, yk+1, zk+1

)
≤ F

(
xk, yk, zk

)
− λ−

∥∥∥(xk+1, yk+1, zk+1
)(

xk, yk, zk
)∥∥∥2 .

This proves that the sequence {F (xk, yk, zk)}k∈N is decreasing. Since, in addition, we know
that F is bounded from below (see Assumption 1(ii)), we thus have a decreasing sequence
on a compact interval and it follows that {F (xk, yk, zk)}k∈N converges to some F ∗ > −∞.
Summing up this inequality, for k = 1, 2, . . . , N , yields

N∑
k=1

∥∥∥(xk+1, yk+1, zk+1
)
−
(
xk, yk, zk

)∥∥∥2 ≤ 1

λ−
(
F
(
x1, y1, z1

)− F
(
xN+1, yN+1, zN+1

))
≤ F

(
x1, y1, z1

)− F ∗

λ− ,(3.7)

where the last inequality holds true since F (xN+1, yN+1, zN+1) ≥ F ∗. Taking the limit as
N → ∞ yields the boundedness of the sum of step lengths and completes the proof.

Before proving the second step, we obtain the following immediate consequence.
Corollary 3.8 (rate of asymptotic regularity). Let {(xk, yk, zk)}k∈N be a sequence generated

by Algorithm 2.1 for some initial point (x0, y0, z0) ∈ X × Y × Z and define the correspond-
ing sequence of steps {sk}k∈N\{0} by sk+1 ≡ (xk+1, yk+1, zk+1) − (xk, yk, zk). Suppose that

conditions (i)–(ii) of Assumption 1 hold. Then sk → 0 as k → ∞ with the following rate

min
k=1,2,...,N

∥∥∥sk+1
∥∥∥ ≤

√
F (x1, y1, z1)− F ∗

Nλ− ,

where λ− ≡ (1/2)min{(α − 1)ηx, (β − 1)ηy, γ} and F ∗ ≡ limk→∞ F (xk, yk, zk).
Proof. From (3.7) we obtain that

N min
k=1,2,...,N

∥∥∥sk+1
∥∥∥2 ≤ N∑

k=1

∥∥∥sk+1
∥∥∥2 ≤ F

(
x1, y1, z1

)− F ∗

λ− ,

and thus

min
k=1,2,...,N

∥∥∥sk+1
∥∥∥2 ≤ F

(
x1, y1, z1

)− F ∗

Nλ− .

The result now easily follows.
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Proposition 3.9 (Lipschitz paths). Let {(xk, yk, zk)}k∈N be a sequence generated by Algo-
rithm 2.1 for some initial point (x0, y0, z0) ∈ X × Y × Z. Suppose that conditions (i)–
(iv) of Assumption 1 hold. For each positive integer k, define the following three quantities:
Ak

z ≡ γ(zk−1 − zk),

Ak
x ≡ αk−1

(
xk−1 − xk

)
+∇xF

(
xk, yk, zk

)
−∇xF

(
xk−1, yk−1, zk−1

)
,

and

Ak
y ≡ βk−1

(
yk−1 − yk

)
+∇yF

(
xk, yk, zk

)
−∇yF

(
xk, yk−1, zk−1

)
.

Then Ak ≡ (Ak
x, A

k
y , A

k
z ) ∈ ∂Ψ(xk, yk, zk) and there exists δ > 0 such that∥∥∥Ak
∥∥∥ ≤ (3λ+ + 2δ

) ∥∥∥(xk, yk, zk)− (xk−1, yk−1, zk−1
)∥∥∥ ,

where

(3.8) λ+ ≡ max
{
αλ+

x , αηx, βλ
+
y , βηy , γ

}
for λ+

x and λ+
y defined by (3.5).

Proof. Let k be a positive integer. Writing the optimality condition of the first updating
rule yields

∇xF
(
xk−1, yk−1, zk−1

)
+ αk−1

(
xk − xk−1

)
+ wk

x = 0,

where wk
x ∈ ∂ιX(xk). Hence

∇xF
(
xk−1, yk−1, zk−1

)
+ wk

x = αk−1
(
xk−1 − xk

)
.

It is clear from the definition of Ψ (see (1.2)), that

∂xΨ
(
xk, yk, zk

)
= ∇xF

(
xk, yk, zk

)
+ ∂ιX

(
xk
)
.

Combining these two facts proves that Ak
x ∈ ∂xΨ(xk, yk, zk). Following the same arguments

applied on the second updating rule yields the desired result that Ak
y ∈ ∂yΨ(xk, yk, zk). Now,

writing the optimality condition of the third updating rule yields

∇zF
(
xk, yk, zk

)
+ γ

(
zk − zk−1

)
+ wk

z = 0

for wk
z ∈ ∂ιZ(z

k), hence Ak
z ∈ ∂zΨ(xk, yk, zk).

We begin with an estimation of the norm of Ak
x. From Assumptions 1(iii) and (iv), there

exists δ > 0 such that∥∥∥∇xF
(
xk, yk, zk

)
−∇xF

(
xk−1, yk−1, zk−1

)∥∥∥ ≤ ∥∥∥∇F
(
xk, yk, zk

)
−∇F

(
xk−1, yk−1, zk−1

)∥∥∥
≤ δ

∥∥∥(xk, yk, zk)− (xk−1, yk−1, zk−1
)∥∥∥ .
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Now, from the definition of λ+ and (3.8), we have, for all k ∈ N,

αk ≤ αL′
x(y

k, zk) ≤ αmax
{
λ+
x , ηx

} ≤ λ+.

This together with Assumption 1(iii) yields∥∥∥Ak
x

∥∥∥ ≤ αk−1
∥∥∥xk−1 − xk

∥∥∥+ ∥∥∥∇xF
(
xk, yk, zk

)
−∇xF

(
xk−1, yk−1, zk−1

)∥∥∥
≤ λ+

∥∥∥xk−1 − xk
∥∥∥+ δ

∥∥∥(xk, yk, zk)− (xk−1, yk−1, zk−1
)∥∥∥

≤ (λ+ + δ
) ∥∥∥(xk, yk, zk)− (xk−1, yk−1, zk−1

)∥∥∥ .
By a similar argument, we have also∥∥∥Ak

y

∥∥∥ ≤ (λ+ + δ
) ∥∥∥(xk, yk, zk)− (xk−1, yk−1, zk−1

)∥∥∥ .
Thus ∥∥∥Ak

∥∥∥ ≤ ∥∥∥Ak
x

∥∥∥+ ∥∥∥Ak
y

∥∥∥+ ∥∥∥Ak
z

∥∥∥
≤ (λ+ + λ+ + 2δ

) ∥∥∥(xk, yk, zk)− (xk−1, yk−1, zk−1
)∥∥∥+ γ

∥∥∥zk−1 − zk
∥∥∥

≤ (3λ+ + 2δ
) ∥∥∥(xk, yk, zk)− (xk−1, yk−1, zk−1

)∥∥∥ .
This proves the desired result.

We are now ready to prove the main result of this section, namely, convergence of Algo-
rithm 2.1 to points satisfying (1.4) for any initial point (x0, y0, z0) ∈ X × Y × Z. It is in
deducing the last step of the general case that we use the assumption that Ψ satisfies the KL
inequality (3.4).

Theorem 3.10 (convergence to critical points). Let {(xk, yk, zk)}k∈N be a sequence generated
by Algorithm 2.1 for some initial point (x0, y0, z0) ∈ X × Y × Z. Suppose that Assumption 1
holds. Then the following assertions hold.

(i) The sequence {(xk, yk, zk)}k∈N has finite length, that is,

∞∑
k=1

∥∥∥(xk+1, yk+1, zk+1
)
−
(
xk, yk, zk

)∥∥∥ < ∞.

(ii) The sequence {(xk, yk, zk)}k∈N converges to a point (x∗, y∗, z∗) satisfying (1.4).
Proof. The result follows from Propositions 3.7 and 3.9 together with

[11, Theorem 1].

3.3. Acceleration of Algorithm 2.1 method. In this section we develop an accelerated
version of Algorithm 2.1. To motivate our approach, we return to the naive AM method
(2.1) with which we began. If each of the blocks were themselves separable, then we could
recursively apply the blocking strategy discussed in section 2 within the blocks. We first detail
recursive blocking, which improves the step sizes, and then we discuss additional structures
that enable efficient implementations via parallelization.
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For simplicity, we focus our discussion on the first block X, the same strategy also can
(and will) be applied to the block Y . Suppose the block X can be further subdivided into a
product of smaller blocks: X = X1 ×X2 × · · · ×XP with P ≤ p. For fixed y ∈ R

q and z ∈ R
r

we consider the problem (2.1a)

(3.9) min
x∈X1×X2×···×XP

{F (x, y, z)} .

This problem has the same difficulties with respect to the subblocks Xi, i = 1, 2, . . . , P , and
the other variables Y and Z as the original problem (1.3) has between the blocks X, Y ,
and Z. We therefore use the same forward-backward strategy to solve the problem on the
block, that is, we partially linearize F with respect to the subblocks of X (as opposed to a
partial linearization with respect to the whole block) and compute the corresponding proximal
operator.

More precisely, for ξ ∈ Xi define

ζki (ξ) ≡
(
xk+1
1 , xk+1

2 , . . . , xk+1
i−1 , ξ, x

k
i+1, . . . , x

k
P

)
∈ X1 ×X2 × · · · ×XP ,

and uki ≡ (xk+1
1 , xk+1

2 , . . . , xk+1
i−1 , x

k
i+1, . . . , x

k
P ). Let Lxi(u

k
i , y

k, zk) denote the modulus of Lip-

schitz continuity of the gradient of the mapping xi �→ F (ζki (xi), y
k, zk). For some ηxi > 0

(i = 1, 2, . . . , P ) fixed, define L′
xi
(uki , y

k, zk) ≡ max{Lxi(u
k
i , y

k, zk), ηxi}. From the iterate

xk = (xk1 , x
k
2 , . . . , x

k
P ) we compute xk+1 = (xk+1

1 , xk+1
2 , . . . , xk+1

P ) by the following procedure.

Subroutine 3.1 (successive subblock x updating rule). Define xk+1
0 ≡ xk1. Given block up-

dates xk+1
1 , xk+1

2 , . . . , xk+1
i−1 (i = 1, 2, . . . , P ) compute xk+1

i by

xk+1
i ∈ argmin

xi∈Xi

{〈(
xi − xki

)
,∇xiF

(
ζki

(
xki

)
, yk, zk

)〉
+

αk
i

2

∥∥∥xi − xki

∥∥∥2} ,

where αk
i ≡ αiL

′
xi
(uki , y

k, zk) for some fixed αi > 1.

Comparing this to (2.2), we note that the update for xk+1 computed by Subroutine 3.1 is
computed with different step size in each subblock, where the step size αk

i depends, again, on
the modulus of Lipschitz continuity of the gradient of the function defined on that subblock. In
contrast, the step size without recursive blocking, that is, the step size αk computed according
to (2.2), depends on the modulus of Lipschitz continuity of the gradient of the function defined
on the entire block, which is, by definition, larger than the constant associated with each sub-
block. Consequently, the steps in Algorithm (2.1) without subblocking will be smaller than
the steps computed via Subroutine 3.1.

Now, repeating this argument for the Y -block of variables yields an analogous sequential
updating rule for this block. For μ ∈ Yj and Q ≤ q, define

φk
j (μ) ≡

(
yk+1
1 , yk+1

2 , . . . , yk+1
j−1 , μ, y

k
j+1, . . . , y

k
Q

)
∈ Y1 × Y2 × · · · × YM = Y,

and vkj ≡ (yk+1
1 , yk+1

2 , . . . , yk+1
j−1 , y

k
j+1, . . . , y

k
Q). Let Lyj(x

k+1, vkj , z
k) be the modulus of Lips-

chitz continuity of the gradient of the function yj �→ F (xk+1, φk
j (yj), z

k). For some ηyj > 0
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(j = 1, 2, . . . , Q) fixed, define L′
yj (x

k+1, vkj , z
k) ≡ max{Lyj(x

k+1, vkj , z
k), ηyj}. From the iterate

yk = (yk1 , y
k
2 , . . . , y

k
Q) we compute yk+1 = (yk+1

1 , yk+1
2 , . . . , yk+1

Q ) by the following procedure.

Subroutine 3.2 (successive subblock y updating rule). Define yk+1
0 ≡ yk1 . Given block up-

dates yk+1
1 , yk+1

2 , . . . , yk+1
j−1 (j = 1, 2, . . . , Q) compute yk+1

j by

yk+1
j ∈ argmin

yj∈Yj

{〈
yj − ykj ,∇yjF

(
xk+1, φk

j

(
yki

)
, zk
)〉

+
βk
j

2

∥∥∥yj − ykj

∥∥∥2} ,

where βk
j ≡ βjL

′
yj (x

k+1, vkj , z
k) for some fixed βj > 1.

To generalize Algorithm 2.1 to the above recursive splitting, one simply replaces (2.2) and
(2.3) with Subroutines 3.1 and 3.2, respectively.

Algorithm 3.3. Proximal heterogeneous block implicit-explicit algorithm.

Initialization. Choose αi > 1 (i = 1, 2, . . . , P ) , βj > 1 (j = 1, 2, . . . , Q), γ > 0, and
(x0, y0, z0) ∈ X × Y × Z.
General step (k = 0, 1, . . .).

1. Update xk+1 according to Subroutine 3.1.
2. Update yk+1 according to Subroutine 3.2.
3. Select

zk+1 ∈ argmin
z∈Z

{
F
(
xk+1, yk+1, z

)
+

γ

2

∥∥∥z − zk
∥∥∥2} .

The assumptions for proof of convergence of this algorithm in the generalized setting take
the following form.

Assumption 2. Let {(xk, yk, zk)}k∈N be iterates generated by Algorithm 3.3 with(
x0, y0, z0

) ∈ X × Y × Z = (X1 ×X2 × · · · ×XP )× (Y1 × Y2 × · · · × YQ)× Z.

(i) Xi ⊂ R
pi, Yj ⊂ R

qj , and Z ⊂ R
r are nonempty and closed (0 < pi, qj , r ∈ N with∑P

i=1 pi = p and
∑Q

j=1 qi = q).
(ii) F : Rp×R

q×R
r → R is differentiable on X×Y ×Z and inf F > −∞. Moreover, ∇xiF

(i = 1, 2, . . . , P ) and ∇yjF (j = 1, 2, . . . , Q) are Lipschitz continuous with moduli Lxi (ui, y, z)
and Lyj (x, vj , z), respectively. Here ui ∈ R

p−pi and vj ∈ R
q−qj .

(iii) The gradient of F , ∇F , is Lipschitz continuous on bounded domains in X × Y × Z.
Moreover, there exists λ+

xi
, λ+

yj > 0 (i = 1, 2, . . . , P ) (j = 1, 2, . . . , Q) such that

sup
{
Lxi

(
uki , y

k, zk
)

| k ∈ N

}
≤ λ+

xi
, and

sup
{
Lyj

(
xk+1, vkj , z

k
)

| k ∈ N

}
≤ λ+

yj .

(iv) The iterates {(xk, yk, zk)}k∈N are bounded.
(v) The function Ψ defined by (1.2) is a KL function (see Definition 3.2).

We now state the generalized convergence result analogous to Theorem 3.10.
Theorem 3.11 (convergence to critical points—recursive). Let {(xk, yk, zk)}k∈N be a sequence

generated by Algorithm 3.3 with(
x0, y0, z0

) ∈ X × Y × Z = (X1 ×X2 × · · · ×XP )× (Y1 × Y2 × · · · × YQ)× Z.
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Suppose that Assumption 2 holds. Then the following assertions hold.
(i) The sequence {(xk, yk, zk)}k∈N has finite length, that is,

∞∑
k=1

∥∥∥(xk+1, yk+1, zk+1
)
−
(
xk, yk, zk

)∥∥∥ < ∞.

(ii) The sequence {(xk, yk, zk)}k∈N converges to a point (x∗, y∗, z∗) satisfying (1.4).
Proof sketch. The proof of convergence of the multiblock method follows by induction

from the proof of the three-block case detailed in section 3.
As mentioned in section 2, the trade-off for the larger step sizes used in recursive blocking

is an (P + Q + 1)-step sequential algorithm instead of the original 3-step algorithm. In the
next section we explore additional structures that permit parallelization.

3.4. Parallelization. We show here that the sequential Algorithm 3.3 can be parallelized
within the blocks x and y under the following assumption.

Assumption 3.
(i) For y ∈ Y and z ∈ Z fixed, the function x �→ ∇xF (x, y, z) is separable in x in the

following sense:

(3.10) ∇xF (x, y, z) = (g1 (x1, y, z) , g2 (x2, y, z) , . . . , gP (xP , y, z)) ,

where gi (·, y, z) : Xi → Xi for i = 1, 2, . . . , P .
(ii) For x ∈ X and z ∈ Z fixed, the function y �→ ∇yF (x, y, z) is separable in y in the

following sense:

(3.11) ∇yF (x, y, z) = (h1 (x, y1, z) , h2 (x, y2, z) , . . . , hQ (x, yQ, z)) ,

where hj (x, ·, z) : Yj → Yj for j = 1, 2, . . . , Q.
An immediate consequence of the above assumption is the following.
Proposition 3.12 (parallelizable separability). Suppose F : X×Y ×Z → R satisfies Assump-

tion 3. Let {(xk, yk, zk)}k∈N be a sequence generated by Algorithm 3.3. Then

∇xiF
(
ζki

(
xki

)
, yk, zk

)
= ∇xiF

(
xk, yk, zk

)
and

∇yjF
(
xk+1, φk

j

(
ykj

)
, zk
)
= ∇yjF

(
xk+1, yk, zk

)
.

Consequently, the modulus of Lipschitz continuity of the gradient of the mapping given by
xi �→ F (ζki (xi)y

k, zk), Lxi(u
k
i , y

k, zk), is dependent only on yk and zk, thus one can write
Lxi(y

k, zk) and L′
xi
(yk, zk) for the corresponding Lipschitz constants. The same holds for the

partial gradients with respect to yj, where one can write Lyj(x
k+1, zk) and L′

yj(x
k+1, zk) for

the corresponding Lipschitz constants.
An important consequence of Proposition 3.12 is that the successive steps of the respective

Subroutines 3.1 and 3.2 can be computed in parallel. We summarize the results of this section
with the following fully decomposable and parallelizable algorithm.
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Algorithm 3.4. Proximal parallel heterogeneous block implicit-explicit

algorithm.

Initialization. Choose αi > 1 (i = 1, 2, . . . , P ), βj > 1 (j = 1, 2, . . . , Q), γ > 0, and
(x0, y0, z0) ∈ X × Y × Z.
General step (k = 0, 1, . . .).

1. For each i = 1, 2, . . . , P , set αk
i = αiL

′
xi
(yk, zk) and select

xk+1
i ∈ argmin

xi∈Xi

{〈
xi − xki ,∇xiF

(
xk, yk, zk

)〉
+

αk
i

2

∥∥∥xi − xki

∥∥∥2} .

2. For each j = 1, 2, . . . , Q, set βk
j = βjL

′
yj (x

k, zk) and select

yk+1
j ∈ argmin

yj∈Yj

{〈
yj − ykj ,∇yjF

(
xk+1, yk, zk

)〉
+

βk
j

2

∥∥∥yj − ykj

∥∥∥2} .

3. Select

zk+1 ∈ argmin
z∈Z

{
F
(
xk+1, yk+1, z

)
+

γ

2

∥∥∥z − zk
∥∥∥2} .

We now state the generalized convergence result for the parallel algorithm, analogous to
Theorem 3.11.

Theorem 3.13 (convergence to critical points—parallel recursive). Let {(xk, yk, zk)}k∈N be a
sequence generated by Algorithm 3.4 with(

x0, y0, z0
) ∈ X × Y × Z = (X1 ×X2 × · · · ×XP )× (Y1 × Y2 × · · · × YQ)× Z.

Suppose that Assumptions 2 and 3 hold. Then the following assertions hold.
(i) The sequence {(xk, yk, zk)}k∈N has finite length, that is,

∞∑
k=1

∥∥∥(xk+1, yk+1, zk+1
)
−
(
xk, yk, zk

)∥∥∥ < ∞.

(ii) The sequence {(xk, yk, zk)}k∈N converges to a point (x∗, y∗, z∗) satisfying (1.4).
Proof sketch. The proof of convergence of the parallel multiblock method follows by induc-

tion from the proof of the three-block case detailed in section 3 and Proposi-
tion 3.12.

4. Implementation for blind ptychography. We apply the above results to the ptychogra-
phy problem described in section 2.1 where the objective function F is given by (2.5) and the
constraint set C by (2.7), (2.8), and (2.9). The sets X,Y ⊂ C

n decompose into the product
of n complex planes. More precisely, X → X1 ×X2 × · · · ×Xn ⊂ (C)n with

(4.1) Xi ≡
{
{x ∈ C | |x| ≤ R} for i ∈ IX ,

{0} otherwise,
i = 1, 2, . . . , n,
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where, again, IX is the index set corresponding to the support of the probe beam and R is
some given amplitude. Similarly, Y → Y1 × Y2 × · · · × Yn ⊂ (C)n with

(4.2) Yi ≡
{{

y ∈ C | 0 ≤ η ≤ |y| ≤ η
}

for i ∈ IY ,

{0} otherwise,
i = 1, 2, . . . , n,

where the index set IY is the index set for the support of the specimen, and η/η are given
lower/upper bounds on the intensity of the specimen. We begin by showing that in this setting
Assumptions 2 and 3 hold. In the context of the more general theory, in Assumption 2 for
this application, we have P = Q = n and pi, qi = 2 for i = 1, 2, . . . , n, where n is the number
of pixels, and r = 2mn, where m is the number of images.

Proposition 4.1. Let F be defined by (2.5) and let the constraint sets X, Y , and Z be
defined by (2.7). Then F , together with the constraints X, Y , and Z satisfies Assumption 3
and the iterates of Algorithm 3.4 satisfy Assumption 2. Hence Algorithm 3.4 applied to the
ptychography problem converges to a critical point from any feasible starting point.

Proof. There are several items from Assumption 2 that are trivial:
(i) the constraints X, Y , and Z are clearly nonempty and closed;
(ii) the objective function F is differentiable;
(iii) the generated sequence is bounded since this is a feasible point algorithm and the
constraint set C is bounded (see Remark 3.1(i));
(iv) the Lipschitz continuity of ∇F on bounded subsets of X × Y × Z follows im-
mediately from the fact that F is C2 and the fact that the generated sequence is
bounded;
(v) by Proposition 3.5 the function Ψ (see (1.2)) is a KL function.

The only remaining parts needing verification are Lipschitz continuity of the partial gradients
in Assumption 2(ii) and separability of the gradients in Assumption 3. The technical details
of this calculation are left for an appendix where we show that (in a slight abuse of notation)

∇xF (x, y, z) = (∇x1F (x1, y, z) ,∇x2F (x2, y, z) , . . . ,∇xnF (xn, y, z)) ,(4.3)

∇yF (x, y, z) = (∇y1F (x, y1, z) ,∇y2F (x, y2, z) , . . . ,∇ynF (x, yn, z)) ,(4.4)

with respective moduli of continuity

Lxi (y, z) = 2

⎛⎝ m∑
j=1

S∗
j (y � y)

⎞⎠
i

, i = 1, 2, . . . , n,(4.5)

Lyi (x, z) = 2

⎛⎝ m∑
j=1

Sj (x� x)

⎞⎠
i

, i = 1, 2, . . . , n.(4.6)

Convergence of Algorithm 3.4 applied to critical points of the ptychography problem for any
feasible initial guess then follows immediately from Theorem 3.13.

We note that the partial gradients ∇xiF (x, y, z) (respectively, ∇yiF (x, y, z)) are with
respect to the real and imaginary parts of xi ∈ C (respectively, yi ∈ C), or equivalently with
respect to the two-dimensional real vectors xi ∈ R

2 (respectively, yi ∈ R
2). So ∇xiF (x, y, z)
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(respectively, ∇yiF (x, y, z)) are actually mappings to vectors in R
2 with moduli of Lipschitz

continuity Lxi(y, z) (respectively, Lyi(x, z)).
The regularization parameters can be determined explicitly by the modulus of Lipschitz

continuity of the gradient of F with respect to the isolated blocks of variables x and y,
respectively. More precisely, for i = 1, 2, . . . , n, we have

αk
i = αLxi

(
yk, zk

)
= α

⎛⎝ m∑
j=1

S∗
j

(
yk � yk

)⎞⎠
i

,(4.7)

βk
i = βLyi

(
xk+1, zk

)
= β

⎛⎝ m∑
j=1

Sj

(
xk+1 � xk+1

)⎞⎠
i

,(4.8)

where α, β > 1 are arbitrary.
In drawing the connections to other algorithms in the literature it is helpful to recognize

that steps (1) and (2) of Algorithm (3.4) are easily computed projections. Indeed,

xk+1
i ∈ argmin

xi∈Xi

{〈
xi − xki ,∇xiF

(
xki , y

k, zk
)〉

+
αk
i

2

∥∥∥xi − xki

∥∥∥2}

= argmin
xi∈Xi

⎧⎨⎩
∥∥∥∥∥∥xi −

⎛⎝xki −
2

αk
i

m∑
j=1

[(
S∗
j

(
yk � yk

))
i
� xki −

(
S∗
j

(
yk � zkj

))
i

]⎞⎠∥∥∥∥∥∥
2⎫⎬⎭

= PXi

⎛⎝xki −
2

αk
i

m∑
j=1

[(
S∗
j

(
yk � yk

))
i
� xki −

(
S∗
j

(
yk � zkj

))
i

]⎞⎠ ,(4.9)

where PXi is the projection onto the constraint set Xi. Similarly

yk+1
i ∈ argmin

yi∈Yi

{〈
yi − yki ,∇yiF

(
xk+1, yki , z

k
)〉

+
βk
i

2

∥∥∥yi − yki

∥∥∥2}

= argmin
yi∈Yi

⎧⎨⎩
∥∥∥∥∥∥yi −

⎛⎝yki −
2

βk
i

m∑
j=1

[(
Sj

(
xk+1 � xk+1

))
i
� yki −

(
Sj

(
xk+1

)
� zkj

)
i

]⎞⎠∥∥∥∥∥∥
2⎫⎬⎭

= PYi

⎛⎝yki − 2

βk
i

m∑
j=1

[(
Sj

(
xk+1 � xk+1

))
i
� yki −

(
Sj

(
xk+1

)
� zkj

)
i

]⎞⎠ ,

(4.10)

where PYi is the projection onto the constraint set Yi. The last step is also a projection step
given by

zk+1 ∈ argmin
z∈Z

{
F
(
xk+1, yk+1, z

)
+

γ

2

∥∥∥z− zk
∥∥∥2}

= argmin
z∈Z

⎧⎨⎩
m∑
j=1

∥∥∥∥( 2

2 + γ
Sj

(
xk+1

)
� yk+1 +

γ

2 + γ
zkj

)
− zj

∥∥∥∥2
⎫⎬⎭ = PZ

(
z̃k+1

)
,
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where z̃k+1 ≡ (z̃1
k+1, z̃2

k+1, . . . , z̃m
k+1) for

(4.11) z̃j
k+1 ≡ 2

2 + γ
Sj

(
xk+1

)
� yk+1 +

γ

2 + γ
zkj , j = 1, 2, . . . ,m.

Since Z is separable, the projection can be written as

(4.12) PZ

(
z̃k+1

)
= PZ1

(
z̃1

k+1
)
× PZ2

(
z̃2

k+1
)
× · · · × PZm

(
z̃m

k+1
)
,

so that zk+1 = (zk+1
1 , zk+1

2 , . . . , zk+1
m ), where

(4.13) zk+1
j ∈ PZj

(
2

2 + γ
Sj

(
xk+1

)
� yk+1 +

γ

2 + γ
zkj

)
, j = 1, 2, . . . ,m.

For a given point z ∈ C
n the projector onto the set Zj (see (2.7c)) is given by [25]

(4.14)

PZj (z) = F−1 (ẑ) , where, for some θ ∈ (0, 2π] , ẑk =

{
bjk

[F(z)]k
|[F(z)]k| , |[F (z)]k| �= 0,

bjke
iθ, |[F (z)]k| = 0.

We summarize this discussion with the following specialization of Algorithm 3.4 to the
blind ptychography problem.

Algorithm 4.1. Ptychographic PHeBIE.
Initialization. Choose αi > 1 and βi > 1 (i = 1, 2, . . . , n), γ > 0, and (x0, y0, z0) ∈ X×Y ×Z.
General step (k = 0, 1, . . .).

1. For each i = 1, 2, . . . , n, set αk
i = αi(

∑m
j=1 S

∗
j (y

k � yk))i and select

xk+1
i ∈ PXi

⎛⎝xki −
2

αk
i

m∑
j=1

[
S∗
j

(
yk � yk

)
i
� xki − S∗

j

(
yk � zkj

)
i

]⎞⎠ .

2. For each i = 1, 2, . . . , n, set βk
i = βi(

∑m
j=1 Sj(xk+1 � xk+1))i and select

yk+1
i ∈ PYi

⎛⎝yki − 2

βk
i

m∑
j=1

[(
Sj

(
xk+1 � xk+1

))
i
� yki −

(
Sj

(
xk+1

)
� zkj

)
i

]⎞⎠ .

3. For each j = 1, 2, . . . ,m select

zk+1
j ∈ PZj

(
2

2 + γ
Sj

(
xk+1

)
� yk+1 +

γ

2 + γ
zkj

)
.

Convergence of Algorithm 4.1 to critical points has already been established in Proposi-
tion 4.1.

4.1. Relation to current state of the art algorithms. It is helpful to see Algorithm 4.1
in the context of two other blind ptychographic reconstruction algorithms, popular in the
literature, namely, the methods of Thibault et al. [36], and Maiden and Rodenburg [27]. We
show that these algorithms should not be expected to converge in general to a fixed point.
However, the connection to Algorithm 4.1 and the attendant analysis immediately suggest how
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the methods of Thibault and Maiden and Rodenburg can be adjusted for greater stability or
speed (or both). On the other hand, understanding these two methods in the context of the
more general Algorithm 3.3 points the way to different constructions and compositions of the
three basic steps of either Algorithm 3.3 or 3.4 for more efficient procedures. The analysis of
such variants would then follow along the lines of the analytical methodology presented here.

4.1.1. Thibault et al. [36]. In order to explain the scheme suggested in [36] we first recall
the definition of

(4.15) Z ≡ Z1 × Z2 × · · · × Zm ⊂ C
n×m.

Define the set D on the product space C
n×m:

(4.16) D ≡ {z = (z1, z2, . . . , zm) | ∃ (x, y) ∈ X × Y with zi = Si (x)� y (i = 1, 2, . . . ,m)} .

If it were possible to compute the projection onto the set D (no closed form is known), then
the Douglas–Rachford algorithm [14, 23, 5] could be applied to solve the feasibility problem

(4.17) find x ∈ D ∩ Z.

More precisely, we have the following algorithm.

Algorithm 4.2. Douglas–Rachford for ptychography.

Initialization. (x0, y0, z0) ∈ X × Y × Z.
General step (k = 0, 1, . . .).

1. Select an approximation vk to some element from PD(z
k).

2. Select

ẑk+1 ∈ PZ

(
2vk − zk

)
.

3. Set

(4.18) zk+1 = zk + ẑk+1 − vk.

As noted above, no closed form is known for the projection onto the set D. The method
of [36] is an approximate Douglas–Rachford algorithm for set feasibility with the following
subroutine serving as an approximation to some element from the projector PD. We describe
the subroutine below as an approximation to the projector, however, there has been no analysis
to estimate exactly how good, or in what sense, it is an approximation, hence the qualifier
heuristic.

The method of [36] is Algorithm 4.2 with step 1 replaced with the computation of ṽk

via Subroutine 4.3. Subroutine 4.3, in turn, can be cast within our framework. Step 1
(respectively, step 2) of Algorithm (4.1) with Xi = C (respectively, Yi = C) for each i =
1, 2, . . . , n is equivalent to step 1 (respectively, step 2) of Subroutine 4.3.
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Subroutine 4.3 (heuristic approximation to PD).
Input. xk ∈ C

n, yk ∈ C
n, zk ∈ C

n×m,Λ ∈ {1, 2, 3, . . .}.
Initialization. Define x̂0 ≡ xk, ŷ0 ≡ yk.
General step (l = 0, 1, . . . ,Λ).

1. Define αl ∈ R
m by

αl
i ≡ Lxi

(
ŷl, zk

)
= 2

⎛⎝ m∑
j=1

S∗
j

(
ŷl � ŷl

)⎞⎠
i

for i = 1, 2, . . . ,m,

and update x̂l+1 by

x̂l+1
i =

2

αl
i

⎛⎝ m∑
j=1

S∗
j

(
ŷl � zkj

)⎞⎠
i

.

2. Define βl ∈ R
m by

βl
i ≡ Lyi

(
x̂l, zk

)
= 2

⎛⎝ m∑
j=1

Sj

(
x̂l � x̂l

)⎞⎠
i

for i = 1, 2, . . . ,m,

and update ŷk+1 by

ŷl+1
i =

2

βl
i

⎛⎝ m∑
j=1

Sj

(
x̂l
)
� zkj

⎞⎠
i

.

Final step. Define xk+1 ≡ x̂Λ+1, yk+1 ≡ ŷΛ+1, and set

(4.19) ṽk+1 ≡
(
S1

(
xk+1

)
� yk+1, . . . , Sm

(
xk+1

)
� yk+1

)
.

Remark 4.1. Some further remarks on the method of Thibault et al., are in order.
(i) In an implementation of Thibault et al., one monitors xk and yk (i.e., the object and

illumination function) rather than the iterate zk itself. Since xk and yk are obtained during
the computation of the so-called shadow iterates, PDz

k, this can be interpreted as implicit
monitoring of the shadow sequence PD

(
zk
)
.

(ii) The Douglas–Rachford methods are known to be sensitive to small perturbations in
the constraint sets. In particular, if the intersection D∩Z is empty (not at all an improbable
event with noisy, misspecified data), then the Douglas–Rachford algorithm cannot converge
[5]. The relaxation of the Douglas–Rachford algorithm studied in [26, 24] is one possibility
for addressing this.

4.1.2. Maiden and Rodenburg [27]. In comparison to the other algorithms presented,
the distinctive feature of the method of Maiden and Rodenburg [27] is that only a single
magnitude measurement in used in each step. Their method can be described as follows.
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Algorithm 4.4. Maiden and Rodenburg.

Initialization. Choose αi = α ≥ 2 and βi = β ≥ 2 (i = 1, 2, . . . , n). Fix the mapping
I : N �→ {1, 2, . . . ,m}, where the cardinality of the preimage of any j ∈ {1, 2, . . . ,m} is
infinite. Choose (x0, y0, z0) ∈ X × Y × ZI(0).
General step (k = 0, 1, . . .).

1. Set αk = α
∥∥∥∑m

j=1 S
∗
j (y

k � yk)
∥∥∥
∞

and, for each i = 1, 2, . . . , n, select

xk+1
i ∈ PXi

⎛⎝xki −
2

αk

m∑
j=1

[
S∗
j

(
yk � yk

)
i
� xki − S∗

j

(
yk � zk

)
i

]⎞⎠ .

2. Set βk = β‖∑m
j=1 Sj(xk � xk)‖∞ and, for each i = 1, 2, . . . , n, select

yk+1
i ∈ PYi

⎛⎝yki − 2

βk

m∑
j=1

[(
Sj

(
xk � xk

))
i
� yki −

(
Sj

(
xk
)
� zk

)
i

]⎞⎠ .

3. Select

zk+1 ∈ PZI(k+1)

(
Sj

(
xk+1

)
� yk+1

)
.

Remark 4.2. In the context of Algorithm 4.1, several features of Algorithm 4.4 are worth
noting.

(i) As established in sections 3.2 and 4, the scalings αk and βk in steps 1 and 2 of
Algorithm 4.4 are Lipschitz constants of the partial gradient of F defined by (2.5) on the
entire x and y blocks. This could be refined by using the scaling αk

i given in steps 1 and 2 of
Algorithm 4.1.

(ii) Steps 1 and 2 of Algorithm 4.4 can be performed in parallel since the y update does
not use information from the x update as in Algorithm 4.1.

(iii) As Algorithm 4.4 is essentially a cyclic projection algorithm, in practice one should
expect the iterates to cycle.

5. Numerical examples. To illustrate the differences between the various algorithms de-
veloped above, in section 5.1 we compare algorithm performance on synthetic data where the
problem “difficulty” is relatively well controlled (and the answer, shown in Figure 1, is known)
and in section 5.2 we compare algorithm performance on experimental data reported in [37].
In both the synthetic and experimental demonstrations we compare four different algorithms.

1. PHeBIE-I: Algorithm 3.3 specialized to ptychography with γ = 1e-30.
2. PHeBIE-II: Algorithm 4.1 (the ptychographic specialization of Algorithm 3.4) with

γ = 1e-30.
3. Thibault et al. [36]: Algorithm 4.2 with step 1 computed via Suboroutine 4.3 with

Λ = 3.
4. Maiden and Rodenburg [27]: Algorithm 4.4.
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Figure 1. Simulated data (no noise), probe and object recovered by the PHeBIE II algorithm. All algorithms
in the comparison with no noise yielded comparable recoveries.

5.1. Synthetic data. Let x (respectively, y) denote the true probe (true object). For the
noiseless simulated data, we compute the measured data vectors using

bj = |F (Sj (x)� y)| for j = 1, 2, . . . ,m.

For the simulated data with noise, we use Poisson noise with mean/variance λ = 2.
In typical ptychography experiments one more or less knows a priori what the probe

looks like, though its precise structure, due to instrumentation aberrations, is unknown. The
object, on the other hand, is assumed to be completely unknown except for certain qualitative
properties, for example, that it is not absorbing. For the simulated data, the initial probe
estimate consists of a circle of radius slightly larger than the true probe having constant
amplitude and phase. Objects are initialized with a random initial guess. We demonstrate
the stability of the algorithms in the results shown in Table 3 by purposely constraining the
pupil to be smaller than the true pupil. This is not an unreasonable scenario since in practice
the true pupil is not known.

Consistent with existing literature, we run several iterations of each algorithm without
updating the probe to obtain a better initial object guess. The results of this “warm-up”
procedure are then used as the initial point (x0, y0, z0) for the main algorithm of which 300
iterations were performed. Experimentally, the “warm-up” procedure could also be accom-
plished with an “empty” beam data set consisting of beam images taken without a specimen.

Where convenient, we use uk to denote (xk, yk, zk). Five trials of each problem instance
were performed with random object initializations. Tables 1, 2, and 3 report the average and
in brackets, the worst result for the following statistics.

1. The final value of the least-squares objective given by (2.5).
2. The square of the norm of the change between the final two iterations, i.e.,

‖u300 − u299‖2.
3. The root-mean-square (rms) error of the final object and probe as described in [19].

The error is computed up to translation, a global phase shift, and a global scaling factor.1

4. The R-factor at iteration 300, where

(5.1) R-factork =

∑m
j=1

∣∣bj − Sj

(
xk
)� yk

∣∣∑m
j=1 bj

.

As in (2.7c), bj denotes the experimental observations.

1Computed using code written by Mauel Guizar available online from MATLAB Central’s File Exchange.

http://au.mathworks.com/matlabcentral/fileexchange/18401-efficient-subpixel-image-registration-by-cross-correlation
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Table 1
Average (worst) results for noiseless simulated data.

Algorithm F (u300)
∥
∥u300 − u299

∥
∥2

rms-Object rms-Probe R-factor300 Time (s)

PHeBIE-I 99.63 (126.64) 0.5931 (0.9383) 0.0410 (0.0461) 0.0155 (0.0222) 0.0131 (0.0154) 913.75 (925.85)
PHeBIE-II 70.76 (77.17) 0.2210 (0.3522) 0.0423 (0.0471) 0.0081 (0.0154) 0.0101 (0.0108) 636.74 (652.17)
Rodenburg & Madien 948.13 (1499.11) 5.5164 (8.4885) 0.0542 (0.0590) 0.0952 (0.1714) 0.0350 (0.0419) 1178.21 (1198.72)
Thibault et al. 4347.08 (4554.28) 28.8622 (34.4422) 0.0515 (0.0642) 0.0240 (0.0378) 0.0244 (0.0264) 875.94 (887.76)

Table 2
Average (worst) results for simulated data with Poisson noise.

Algorithm F
(
u300

) ∥∥u300 − u299
∥∥2

rms-Object rms-Probe R-factor300 Time (s)

PHeBIE-I 1.4415e+07 (6.9222e+ 07) 4.1504 (14.0823) 0.1928 (0.6840) 0.1896 (0.7084) 0.3499 (1.2698) 899.30 (933.54)
PHeBIE-II 1.4364e+07 (6.8972e+ 07) 521.9450 (2600.9689) 0.2807 (0.9940) 0.2537 (0.9746) 0.4001 (1.5135) 685.67 (714.21)
Rodenburg & Madien 6.7894e+04 (3.1414e+ 05) 14633.8000 (61868.3743) 0.2654 (0.9996) 0.3205 (0.9507) 0.3827 (1.2814) 1168.36 (1177.71)
Thibault et al. 1.4520e+07 (6.9688e+ 07) 247.3130 (976.2039) 0.2476 (1.0000) 0.0700 (0.2498) 0.1748 (0.5686) 868.07 (892.19)

Table 3
Average (worst) results for noiseless simulated data with overly restrictive pupil constraint.

Algorithm F
(
u300

) ∥∥u300 − u299
∥∥2

rms-Object rms-Probe R-factor300 Time (s)

PHeBIE-I 25653.20 (25656.12) 0.1474 (0.1682) 0.0443 (0.0501) 0.0492 (0.0494) 0.2936 (0.2937) 959.26 (1108.53)
PHeBIE-II 25653.80 (25660.13) 0.0622 (0.0852) 0.0314 (0.0356) 0.0496 (0.0499) 0.2936 (0.2937) 632.61 (645.10)
Rodenburg & Madien 3987.67 (4413.77) 6.2921 (16.3055) 0.0689 (0.0760) 0.0550 (0.0570) 0.2834 (0.2839) 1190.19 (1309.23)
Thibault et al. 306602.00 (378554.38) 219.2110 (267.9303) 0.9432 (0.9437) 0.1898 (0.2435) 0.3634 (0.3916) 897.67 (962.45)

5. The total time (seconds) for the “warm-up” and main algorithm.
Remark 5.1 (error metrics). Theorem 3.11(i) guarantees that the difference between the

iterates of Algorithm 2.1 and Algorithm 3.4 converge in the norm to zero. To compute the
rms error a knowledge of the true object and probe are required, which in real applications
are not known. The R-factor can still be evaluated in experimental settings (see Figure 3)
and used as a measure of quality of the reconstruction, though the theoretical behavior of this
metric is not covered by our analysis.

For the noiseless simulated dataset, the quality of the reconstructed object and probe from
each of the methods examined are comparable. This applies to the quantitative error metrics
recorded in Table 1, as well as to a visual comparison of reconstructions (not shown). In the
absence of noise, all the methods examined worked well. It is worth noting that Algorithm 4.1
was significantly faster than all the other methods.

With the addition of Poisson noise, the quality of the reconstructed objects and probes
deteriorates. The error metrics are mixed, and no clear “winner” emerges from the values
reported in Table 2. The method of Thibault et al. could be expected to be more unstable
since it is based on the Douglas–Rachford algorithm; it has the advantage of pushing past
local minima that might otherwise trap Algorithm 3.4.

The results for an improperly specified pupil constraint (too small) demonstrate the rela-
tive stability of the respective methods. The method of Thibault et al. was the most sensitive
to the overly restrictive pupil constraint and performed the worst. This is expected since the
modeling errors lead to inconsistency of the underlying feasibility problem: It is well known
that the Douglas–Rachford algorithm does not have fixed points for inconsistent feasibility
problems [5]. Visually, the method of Thibault was not able to recover any semblance of the
true solution. Algorithms 3.3 and 3.4 are clearly more robust. Visual comparisons also bear
this out.
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Tables 1, 2, and 3 suggest that is it not appropriate to compare the final objective value
and step size of the various algorithms directly. Significant variability was exhibited in these
metrics between the methods, despite all recordings having similar rms and R-factor errors in
the ideal case of noiseless data.

5.2. Experimental data. In this section we examine the four algorithms applied to an
experimental dataset (from [37]) in which the actual illumination function and specimen are
unknown. The reconstructed illumination functions and specimens obtained from the four
algorithms are shown in Figure 2. By visual inspection, the reconstructions are of comparable
quality, with the exception of the results from the method of Madien and Rodenburg, which
is of noticeably poorer quality.

In Figure 3 we compare two error metrics as a function of the number of iterations for the
four algorithms. The first graph, Figure 3(a) shows the norm of the difference of successive
iterates, which, for PHeBIE, is the only quantity guaranteed to converge to zero by the theory
we have developed above. The second graph, Figure 3(b), shows the R-factor which, as
discussed in Remark 5.1, is computable in experimental settings. The best performance, with
respect to both of these metrics, was observed for the fully decomposed parallel PHeBIE-II
(Algorithm 4.1). We do not make any direct comparison with the reconstructions in [37],
however, because there the authors implement routines beyond the scope of our theory. A
more complete benchmarking study on experimental data is forthcoming.

6. Conclusion. This study is an attempt to set the stage for more sophisticated variants of
the basic template explored here. As noted in Remark 2.2, Algorithm 2.1 specializes to other
well-known algorithms in other contexts involving diffraction imaging. Our results then yield,
to the best of our knowledge, the most general proofs of global convergence of these algorithms
to critical points. In [25, Theorem 6.1] global convergence of generic descent algorithms
was proved under the assumption of global Lipschitz continuity of the coupling function F .
Theorem 3.10 generalizes this result by requiring Lipschitz continuity only with respect to
the blocks of variables and applying descent steps only with respect to the blocks. Also in
[25, section 4.2] it was pointed out that steepest descents without step-length optimization
is equivalent to averaged projections, which is in turn equivalent to alternating projections
on the product space [24], and thus extensions of the techniques here can be used to prove
global convergence to critical points of projection algorithms like the Gerchberg–Saxton and
error reduction algorithms [17, 15]. Again, it should be stressed that it is well known that
these algorithms get stuck in bad local minima: the results say nothing about the quality
of the critical points, only that critical points will be found. Moreover, the convergence of
the algorithm is entirely independent of noise in the data, so long as the assumptions on the
analytical properties of the coupling function are satisfied. There is some analysis showing
that, if enough images are collected, local minima can be ruled out, and convergence to a
global solution is guaranteed for certain algorithms [7, 8, 21]. A next step is to develop a
similar analysis for Algorithm 2.1.

Regarding more sophisticated variations of our basic algorithmic template, an anonymous
referee raised the possibility of considering a variable metric variant of Algorithm 2.1, pointing
to [1, 12, 16], for example. It is also possible to rearrange the ordering of the blocks, and update
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(c) Reconstructed specimen phases.

Figure 2. Results for the experimental dataset for the four different algorithms.

some more frequently than others, change the size of the blocks, etc. Many of these ideas have
in fact been employed within the framework of the basic algorithms proposed by [27, 36] (see
for instance [20] and [37]). These issues have been studied in the context of ptychography in
[28] and for multiresolution statistical image processing in [29]. A systematic study of all of
these ideas would certainly be of interest.
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(a) The norm of the differences between successive iterates.

(b) The R-factor of the iterates defined by (5.1).

Figure 3. Performance profiles for the four algorithms applied to experimental data.

Appendix. First, we compute the partial gradient of both functions:

∇xF (x, y, z) = 2

m∑
j=1

[Sj (·)� y]∗ (Sj (x)� y − zj) = 2

m∑
j=1

S∗
j (y � (Sj (x)� y − zj))

= 2
m∑
j=1

[
S∗
j (y � y)� x− S∗

j (y � zj)
]
,(A.1)

and

∇yF (x, y, z) = 2
m∑
j=1

[Sj (x)� (·)]∗ (Sj (x)� y − zj) = 2
m∑
j=1

Sj (x)� (Sj (x)� y − zj)

= 2

m∑
j=1

[Sj (x� x)� y − Sj (x)� zj ] ,(A.2)



454 R. HESSE, D. R. LUKE, S. SABACH, AND M. K. TAM

where S∗
j , j = 1, 2, . . . ,m, denotes the adjoint transformation of Sj and z denotes the element-

wise complex conjugate of z. We remind the reader that S∗
j = S−1

j . We also used the following
two facts:

[Sj (·)� y]∗ = S∗
j (y � (·)) and [Sj (x)� (·)]∗ = Sj (x)� (·) .

Using (A.1) we obtain, for any x, x′ ∈ C
n, that

∇xF (x, y, z) −∇xF
(
x′, y, z

)
= 2

m∑
j=1

[
S∗
j (y � y)� x− S∗

j (y � y)� x′
]
,

= 2
m∑
j=1

S∗
j (y � y)� (x− x′

)
,

= 2

⎛⎝ m∑
j=1

S∗
j (y � y)

⎞⎠� (x− x′
)
,(A.3)

which means that

∥∥∇xF (x, y, z)−∇xF
(
x′, y, z

)∥∥ ≤ 2

∥∥∥∥∥∥
m∑
j=1

S∗
j (y � y)

∥∥∥∥∥∥
∞

· ∥∥x− x′
∥∥ ;

the last inequality follows from the following fact

‖u� v‖2 =
m∑
j=1

(ujvj)
2 ≤

m∑
j=1

(|uj∗| · |vj|)2 = u2j∗
m∑
j=1

v2j = ‖u‖2∞ ‖v‖2 ,

where j∗ is the index of the largest entry in the absolute value of u. This proves that

Lx (y, z) ≤ 2

∥∥∥∥∥∥
m∑
j=1

S∗
j (y � y)

∥∥∥∥∥∥
∞

.

On the other hand, choosing x′ = 0 and x = ei (which is the ith standard unit vector) and
using (A.3) shows that

∇xF (x, y, z) −∇xF
(
x′, y, z

)
= 2

⎛⎝ m∑
j=1

S∗
j (y � y)

⎞⎠� ei = 2

⎛⎝ m∑
j=1

S∗
j (y � y)

⎞⎠
i

,

where (v)i denotes the ith component of the vector v. This means that if we take i = j∗, the
largest entry in absolute value of

∑m
j=1 S

∗
j (y � y), then we obtain that

∇xF (x, y, z) −∇xF
(
x′, y, z

)
= 2

∥∥∥∥∥∥
m∑
j=1

S∗
j (y � y)

∥∥∥∥∥∥
∞

.
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This shows that

Lx (y, z) = 2

∥∥∥∥∥∥
m∑
j=1

S∗
j (y � y)

∥∥∥∥∥∥
∞

.

Similar arguments show that

Ly (x, z) = 2

∥∥∥∥∥∥
m∑
j=1

Sj (x� x)

∥∥∥∥∥∥
∞

.

As a direct consequence of (A.3) we achieve

Lxi (y, z) = 2

⎡⎣ m∑
j=1

S∗
j (y � y)

⎤⎦
i

,

and by similar argument

Lyi (x, z) = 2

⎡⎣ m∑
j=1

Sj (x� x)

⎤⎦
i

,

which are (4.5) and (4.6), respectively.
Remark A.1 (block partial Lipschitz constants). For more general variable blocks of the form

considered in section 3.3, the corresponding formula for Lxi (y, z) (respectively, Lyi (x, z)) are
given by taking twice the largest entry in the block Xi (respectively, Yi) from the summation.
That is,

Lxi (y, z) = 2

∥∥∥∥∥∥
⎛⎝ m∑

j=1

S∗
j (y � y)

⎞⎠∣∣∣∣∣∣
Xi

∥∥∥∥∥∥
∞

, Lyi (x, z) = 2

∥∥∥∥∥∥
⎛⎝ m∑

j=1

Sj (x� x)

⎞⎠∣∣∣∣∣∣
Yi

∥∥∥∥∥∥
∞

,

where |Xi (respectively, |Yi) denotes the restriction to the block Xi (resp., Yi).
From these formulas one immediately recovers (4.5) and (4.6) as special cases.
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