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Abstract. Optical wavefront reconstruction algorithms played a central role in the effort to iden-
tify gross manufacturing errors in NASA’s Hubble Space Telescope (HST). NASA’s suc-
cess with reconstruction algorithms on the HST has led to an effort to develop software
that can aid and in some cases replace complicated, expensive, and error-prone hardware.
Among the many applications is HST’s replacement, the Next Generation Space Telescope
(NGST).

This work details the theory of optical wavefront reconstruction, reviews some nu-
merical methods for this problem, and presents a novel numerical technique that we call
extended least squares. We compare the performance of these numerical methods for po-
tential inclusion in prototype NGST optical wavefront reconstruction software. We begin
with a tutorial on Rayleigh–Sommerfeld diffraction theory.
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1. Introduction. The history of science is filled with misfortunes that have been
transformed into scientific triumphs. This article describes some of the scientific
progress in numerical methods for wavefront reconstruction that contributed to the
eventual and remarkable successes of NASA’s Hubble Space Telescope (HST). Shortly
after launch on April 24, 1990, it was discovered that the primary mirror of the HST
suffered from a large spherical aberration [21]. Several teams of researchers were
dispatched to apply a variety of image processing techniques to the flight data of
stellar images in order to identify the aberration and aid in the design of corrective
optics. Burrows [20] and Lyon, Miller, and Grusczak [79] applied parametric tech-
niques; Fienup [44] applied gradient-based algorithms; Fienup et al. [45] and Roddier
and Roddier [102] applied nonparametric projection techniques; Redding et al. [100]
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and Meinel, Meinel, and Schulte [82] applied ray tracing and diffraction propagation
techniques; and Barrett and Sandler [8] applied neural network techniques. The re-
sults of all groups were used in conjunction with archival HST manufacturing records
to pinpoint the size and source of the error. It wasn’t until 1993 that corrective op-
tics were installed. In the meantime, researchers continued with efforts to model the
telescope with enough precision to recover unaberrated images through postprocess-
ing. In addition to the gross manufacturing errors, researchers were able to identify
aberrations due to the polish marks on the primary and secondary mirrors. Again,
wavefront reconstruction techniques played an important role in this effort [69]. Dur-
ing this time much was learned about reconstruction algorithms. An important lesson
learned from the HST is that relatively simple software can aid and in some cases re-
place complicated and sensitive optical systems. In 2012 the replacement for the
HST, the Next Generation Space Telescope (NGST), will be folded into the nose of
a rocket and launched into geosynchronous orbit, far beyond the reach of astronauts.
Wavefront reconstruction algorithms will play a central role in maintaining alignment
on the NGST [81, 106].

Optical wavefront reconstruction is an inverse problem that arises in many ap-
plications in physics and engineering. Numerical algorithms for solving this problem
have been employed in crystallography, microscopy, optical design, and adaptive op-
tics for three decades. The history of the problem goes back much further. The
celebrated algorithm of Gerchberg and Saxton [48] demonstrated that practical nu-
merical solutions to the two-dimensional problems were possible. Since the intro-
duction of the Gerchberg–Saxton algorithm, numerous variations have been studied
[16, 31, 111, 36, 43, 45, 72, 78, 85, 88, 97, 128, 5, 90, 116, 49, 24]. The success
of these algorithms on the HST together with techniques for simultaneous phase re-
trieval and deconvolution developed for use with land-based astronomical observations
[23, 50, 68, 76, 94, 95, 96, 120, 123, 122, 105] has led to the development of software
that, in conjunction with simple optical systems, can achieve the same resolution as
complicated, expensive, and error-prone optical systems [77, 98, 99, 74, 73, 70].

While computational wavefront reconstruction algorithms have been successfully
applied for many years, most of the fundamental mathematical questions about the
behavior and properties of projection algorithms and related techniques remain open,
in particular questions regarding existence, uniqueness, and convergence. The theoret-
ical results often cited for projection algorithms do not apply to the problem of phase
retrieval since the required hypotheses are not satisfied. This work details the theory of
projection techniques for the wavefront reconstruction problem and related gradient-
based techniques. For ease of discussion, the problem is formulated in the continuum.
Results for the discrete case follow easily from these results. The numerical theory for
wavefront reconstruction is divided into two different approaches. The first approach,
which we call geometric, is based on the geometric properties of sets in a Hilbert space
and involves the projection onto these sets [16, 32, 43, 48, 72, 85, 131, 129, 31]. The
second approach, which we call analytic, is based on the analytic properties of smooth
objective functions that are to be minimized [6, 7, 35, 55, 54, 65, 71, 117, 43, 49]. Due
to the ease with which they are implemented, geometric approaches, known in the op-
tics community as iterative transform or projection methods, are common. However,
convergence is still an open question except in very special cases [31, 25]. Analytic
methods, on the other hand, while providing more stable and theoretically sound al-
gorithms, are often complicated and computationally expensive. It is shown below
that first-order analytic methods associated with a particular error metric are closely
related to iterative transform algorithms. For the wavefront reconstruction problem,
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however, analytic methods have several advantages over geometric approaches. The
most important of these is robustness. In addition, first-order analytic methods can
be readily extended to second-order methods for accelerated convergence.

The similarity between iterative transform algorithms and line search methods
applied to a particular error metric has been known for some time [6, 43, 48]. A
precise analysis of this correspondence, however, has proven elusive. The source of
the difficulty is the nonconvexity of the underlying sets and the nonsmoothness of
the error metric. This work details the connection between geometric and analytic
methods for the phase retrieval problem. We compare the numerical performance
of projection algorithms to standard line search algorithms applied to a perturbed
least squares error metric. In addition, we investigate a novel approach, which we call
extended least squares, together with limited memory and trust region techniques for
stabilizing and accelerating first-order analytic algorithms.

2. Literature Review. The problem of wavefront reconstruction is a special case
of the more general inverse problem of phase retrieval. The phase retrieval problem
arises in such diverse fields as microscopy [83, 47, 118, 119, 61, 37], holography [42,
115], crystallography [84], neutron radiography [3], optical design [39], adaptive optics,
and astronomy. Earlier reviews of the phase problem can be found in [62, 110]. Millane
[84] provided an excellent review of the phase problem in X-ray crystallography. The
physical setting is discussed in some detail in the following section. The abstract
problem is stated as follows: Given a : R2 → R+ and b : R2 → R+ , find u :
R2 → C satisfying |u| = a and |u∧| = b. Here R+ denotes the positive orthant, ·∧
denotes the Fourier transform, and the modulus is the pointwise Euclidean magnitude.
Simply stated, the problem is to find the phase of a complex-valued function given its
pointwise amplitude and the pointwise amplitude of its Fourier transform, hence the
name phase retrieval.

Until the 1970s the problem of phase retrieval was thought to be hopeless for
a number of reasons. In a letter to A. A. Michelson, Lord Rayleigh stated that
the continuous phase retrieval problem in interferometry was in general not possible
without a priori information on the symmetry of the data [113]. In one dimension it
was shown that the discrete problem has a multitude of solutions. Indeed, for a signal
that is represented by n terms of the Fourier series expansion, there are as many as
2n−1 possible solutions to the problem [1, 2]. Wolf was among the first to suggest that
these obstacles might not be insurmountable [126]. Kano and Wolf followed this claim
with an analytic reconstruction of the temporal complex coherence function of black-
body radiation [67]. Their reconstruction was not numerical in nature but depended,
rather, on the analytic properties of the continuous Fourier transform. Further efforts
were made to broaden the applicability of these results [103]. At the same time
Walther and O’Neill provided some hope for the possibility of meaningful solutions
in the discrete case and, in some relevant cases, uniqueness [91, 125]. As Dialetis and
Wolf later pointed out, however, the applicability of the theory for the continuous
case was limited [34]. Nevertheless, a number of researchers proposed the addition
of constraints to narrow the number of potential solutions for the one-dimensional
problem [37, 59, 61, 92, 97, 118, 119, 127].

As early as 1972 a practical algorithm was proposed for numerical solutions to the
seemingly more difficult two-dimensional problem. In their famous paper, Gerchberg
and Saxton [48], independently of previous mathematical results for projections onto
convex sets, proposed a simple algorithm for solving phase retrieval problems in two
dimensions. In [72] the algorithm was recognized as a projection algorithm. Projection
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algorithms in convex settings have been well understood since the early 1960s [17, 53,
56, 112, 124, 131, 129, 132]. The phase retrieval problem, however, involves nonconvex
sets. For this reason, the convergence properties of the Gerchberg–Saxton algorithm
and its variants are not completely understood.

In the majority of relevant cases numerical experience demonstrated that projec-
tion-type algorithms converged to correct solutions [40, 41]. It was suggested in [18]
that this seeming robustness of numerical methods is due to the factorability (or lack
thereof) of related polynomials. Indeed, the solution to the two-dimensional phase
retrieval problem for a discrete signal that can be represented by a finite Fourier series
expansion, that is, for a band-limited image, if it exists, is almost always unique up to
rotations by 180 degrees, linear shifts, and multiplication by a unit magnitude complex
constant. The proof and details of this result can be found in [58]. While this result
is of fundamental importance, it does not apply to many of the algorithms used for
phase retrieval, in particular in the presence of noise. Thus, while the uniqueness result
above remains valid for band-limited signals, it says nothing about the uniqueness of
approximate solutions in the event that a true solution does not exist, that is, when
the feasible set is empty. In the convex setting, when the constraint sets onto which
the projections are computed do not intersect, convergence of projection algorithms
is an open question [10, 12, 9, 30, 53, 130]. Much less is known about the nonconvex
setting where many applications lie [28, 29, 24, 107, 60].

In 1982 Fienup [43] generalized the Gerchberg–Saxton algorithm and analyzed
many of its properties, showing, in particular, that the directions of the projections
in the generalized Gerchberg–Saxton algorithm are formally similar to directions of
steepest descent for a squared set distance metric. We show in section 5.1 that this
connection to directions of steepest descent is complicated by the fact that the met-
ric is not everywhere differentiable. In 1985 Barakat and Newsam [6, 7] developed
an approach similar to the gradient descent analogy suggested in [43]. They mod-
eled their analysis on the projection theory for convex sets. A well-known fact from
convex analysis is that the gradient of the squared distance to a convex set is equiv-
alent to the direction toward the projection onto the set. To extend this property
to the nonconvex sets, Barakat and Newsam required the projection operators to be
single-valued; however, there is no known example of a nonconvex set for which the
projection operator is single-valued.1 Indeed, we show that the projections in the case
of phase retrieval are multivalued. We show precisely how the multivaluedness of the
projections is related to the nonsmoothness of the squared set distance metric.

In section 5.2 a smooth error metric is proposed and bounds are derived for
the distance between the gradient of the smooth metric and the directions toward
the projections. While projection methods often work well in practice, fundamental
mathematical questions concerning their convergence remain unresolved. What are
often referred to as convergence results for projection algorithms are statements that
the error between iterations will not increase [48, 72]. In general, projection algo-
rithms may not converge to the intersection of nonconvex sets. See [72] and [31] for
discussions.

The plan of the paper is as follows. As is true with any inverse problem, great
care must be taken in the formulation of the forward problem. In section 3 we derive
the mathematical model for diffraction imaging and formulate the inverse problem

1The issue of nonuniqueness of the projection operator is not to be confused with the uniqueness
of the phase problem. The results of [58] are not affected by the multivaluedness of the projection
operators.
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Fig. 1 Model optical system.

associated with phase retrieval. In the same section, the abstract optimization prob-
lem associated with wavefront reconstruction is formulated. The notation that is used
throughout the paper is introduced in section 3.1.6. Readers familiar with this theory
can skip to section 4, referring back to sections 3.1.6 and 3.2 for notation. Section
4 details projection algorithms, among which are the well-known iterative transform
techniques, reviewed in section 4.2. In section 5 we formulate the specific optimiza-
tion problem to which iterative transform algorithms are applied. In section 5.1 a
least squares measure is formulated. This measure is shown to be nonsmooth, and
its relationship to projections is discussed. To avoid theoretical technicalities and
numerical instability associated with nonsmoothness, a smooth perturbation to the
least squares error metric is proposed in section 5.2. The relation of this perturbed
measure to the projections is summarized in Theorem 5.1. In section 5.3 we apply
a recent extension to the least squares measure that allows adaptive weighting of
the errors between measurements [13]. The convergence of a line search algorithm
to first-order optimality conditions for smooth measures is proved in Theorem 6.1 of
section 6. The application of limited memory techniques with trust regions is studied
in section 6.2. The corresponding algorithm is given by Algorithm 6.2. Numerical
results are detailed in section 7.

3. Optical Imaging.

3.1. The Forward Imaging Model. The physical setting we consider here is that
of a monochromatic, time-harmonic electromagnetic field in a homogeneous, isotropic
medium with no charges or currents. This is depicted as a wave propagating away
from some source to the left of the pupil plane in Figure 1. By Maxwell’s equations,
at a given frequency ω ∈ R+, the spatial components of the electric and magnetic
fields can be represented as the real part of complex-valued functions Uω : R3 → C

satisfying the Helmholtz equation describing the spatial distribution of energy in an
expanding wave:

(1) (�+ k2n2)Uω(x) = 0.

Here � denotes the Laplacian, n ∈ R+ is the index of refraction of the medium, and
k ∈ R+ is the wave number. The wave number is related to the frequency since ω/k
is the speed of light. Another quantity that arises is the wavelength λ defined as
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λ = 2π/k. For convenience, let n = 1. In all that follows, the fields are assumed to
be monochromatic (i.e., single frequency); thus we drop the ω subscript from Uω.

The wave in Figure 1 passes through an optical system consisting of apertures,
aberrating media such as mirrors and crystal structures, and a focusing lens. The
focused wave is imaged onto an array of receptors that measure intensity. The plane
in which the receptors lie is referred to as the image plane. The pupil of the optical
system is an abstract designation for intervening media—atmosphere, mirror surfaces,
crystal structures, etc.—through which the electromagnetic wave travels before it is
finally refocused and projected onto the image plane. The entrance pupil is the
aperture through which the unaberrated or reference wave enters the optical system.
The exit pupil is the aperture through which the aberrated wave exits the optical
system. In the mathematical model of the optical system, the entrance pupil and exit
pupil are collapsed into a single plane with all aberrating effects occurring at what is
referred to as the pupil plane. The intensity mapping resulting from a point source
is the point-spread function for the optical system. The electromagnetic field may be
written in phasor notation as U = f exp[iθ], where f and θ are real-valued functions.
The phase retrieval problem involves recovering the phase, θ, of an electromagnetic
field in the exit pupil from intensity measurements in the image plane when the source
is a point source.

We begin our discussion by building the mathematical model of the optical system
and image formation starting with a brief discussion of the fundamentals of diffrac-
tion. Diffraction theory models the propagation of a field through a small aperture.
The resulting model represents the field on the image plane as an integral operator
of the value of the field across the aperture. This is a mathematical formalization of
Huygens’s principle, i.e.,

light falling on the aperture [A] propagates as if every [surface ] element
[dS] emitted a spherical wave the amplitude and phase of which are given
by that of the incident wave [U ] [109].

Boundary conditions at the aperture (Kirchhoff boundary conditions) and at infinity
(radiation conditions) yield approximations to the kernel of the integral operator
on the aperture. Two such approximations are derived, the Fresnel kernel and the
Fraunhofer kernel. The Fraunhofer kernel links diffraction theory to the Fourier
transform. After deriving this model, we then develop its consequences for fields
resulting from a point source; that is, an explicit representation of the point-spread
function of the optical system is derived.

3.1.1. Rayleigh–Sommerfeld Diffraction. We now provide a terse summary of
Rayleigh–Sommerfeld diffraction theory. More detailed developments can be found
in [52, 15, 109]. Let Ω be a closed volume in R3 whose boundary is the orientable
closed surface S and let �n denote the unit inward normal to Ω. Let U and Ũ be twice
continuously differentiable scalar fields mapping Ω and S. By Green’s theorem,2

−
∫
S

Ũ
∂U

∂�n
− U

∂Ũ

∂�n
dS =

∫
Ω

Ũ�U − U�ŨdV,

2Green’s theorem is usually stated in terms of the unit outward normal. In optics, for the
derivation of Rayleigh–Sommerfeld diffraction, the unit inward normal is generally used.
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where ∂
∂�n denotes the derivative in the direction of the unit inward normal at S. If

both U and Ũ satisfy the Helmholtz equation (1), then

(2) −
∫
S

Ũ
∂U

∂�n
− U

∂Ũ

∂�n
dS = 0.

Let Bε denote the Euclidean ball of radius ε in R3 having surface Sε, and let Bε(ξ)
be the Euclidean ball of radius ε centered at ξ. Given ξ ∈ int (Ω), choose ε > 0 so
that Bε(ξ) ⊂ int(Ω) and set Ωε = Ω\Bε(ξ). Consider the Green’s function

(3) G0(x; ξ) =
exp(ik|x− ξ|)

|x− ξ| , x 	= ξ,

where | · | denotes the standard Euclidean norm. The function G0 is a unit-amplitude
spherical wave centered at ξ. On Ωε the scalar field G0 satisfies the Helmholtz equation

(∆ + k2)G0(x; ξ) = 4πδ(x− ξ).

Thus, as in (2),

(4) −
∫
S+Sε

exp(ik|x− ξ|)
|x− ξ|

∂U

∂�n
− U

∂

∂�n

exp(ik|x− ξ|)
|x− ξ| dS = 0.

The integral theorem of Helmholtz and Kirchhoff [15, 109] uses (4) to establish the
identity

U(ξ) = lim
ε→0

−1
4π

∫
Sε

exp(ik|x− ξ|)
|x− ξ|

∂U

∂�n
− U

∂

∂�n

exp(ik|x− ξ|)
|x− ξ| dS

=
1
4π

∫
S

exp(ik|x− ξ|)
|x− ξ|

∂U

∂�n
− U

∂

∂�n

exp(ik|x− ξ|)
|x− ξ| dS.(5)

Thus, the field at any point ξ can be expressed in terms of the boundary values of
the wave on any orientable closed surface surrounding that point.

Rayleigh–Sommerfeld diffraction theory is derived by considering a specific vol-
ume Ω and surface S (see Figure 2) together with a particular Green’s function G.
Let the surface S be the arbitrarily large half-sphere composed of the hemisphere E
and the disk D contained in the plane T. The disk D consists of an annulus A′ with
a small opening A. Let x′ be an element of the open half-space determined by the
plane T and having empty intersection with Ω. Let I ⊂ Ω be a screen parallel to T
and whose distance from T equals that of x′ to T. The problem is to determine the
field U on I under the assumption that the field propagates only through A.

Consider the field G due to the two mirror point sources, ξ ∈ I and x′:

(6) G(x;x′, ξ) ≡ G0(x;x′)−G0(x; ξ),

where G0 is defined in (3) and |x − x′| = |x − ξ| for all x ∈ T. The field G is
the Green’s function for a half-space with Dirichlet boundary conditions; that is, it
satisfies the following conditions:

(∆ + k2)G = 4π(δ(x− x′)− δ(x− ξ)) in Ω;

G = 0 on T;

|x− ξ|
(

∂G

∂�n
− ikG

)
→ 0 as |x− ξ| → ∞.
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Fig. 2 Rayleigh–Sommerfeld diffraction.

The field G satisfies the conditions required for substitution into (5) in place of G0,
yielding

(7) U(ξ) =
1
4π

∫
S

G
∂U

∂�n
− U

∂G

∂�n
dS.

While G is identically zero on the plane T between x′ and ξ, its normal derivative is
nonzero. We postulate that the unknown field U satisfies the following conditions:

U = 0 on A′;(8)

|x− ξ|
(

∂U

∂�n
− ikU

)
→ 0 as |x− ξ| → ∞.(9)

Condition (8) states that the screen is a nearly “perfect conductor”; (9) is the Rayleigh–
Sommerfeld radiation condition. In the limit as the radius of the hemisphere E goes
to infinity, (6) and (7), together with the radiation conditions and (8), yield

(10) U(ξ) =
1
4π

∫
A

−U
∂G

∂�n
dS.

Let α map two vectors to the cosine of the angle between them,

α(x,y) =
x · y
|x||y| .

If |ξ − x| � λ on A, then

∂G

∂�n
= 2

exp(ik|ξ − x|)
|ξ − x|

(
ik − 1

|ξ − x|

)
α(�n, ξ − x)

≈ 2ki
exp(ik|ξ − x|)

|ξ − x| α(�n, ξ − x).(11)
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Substituting (11) into (10) yields the following mathematical formulation of Huygens’s
principle:

(12) U(ξ) ≈
∫
A

U(x)h(ξ;x)dS,

where

h(ξ;x) ≡ exp(ik|ξ − x|)
iλ|ξ − x| α(�n, ξ − x)

and, again, λ = 2π/k is the wavelength.
At this point it is useful to introduce into the discussion the paraxial or small angle

approximation wherein α(�n, (ξ − x)) ≈ 1. For this we establish reference coordinates
(x1, x2, x3) relative to the plane T centered on the region A. Let the x3-axis be
perpendicular to T and I, with the origin at the center of the region A. Let x ∈ A.
Denote the distance between I and A by ξ3, and let ξ ∈ I satisfy |(x1−ξ1, x2−ξ2, 0)| �
ξ3. Then α(�n, ξ − x) ≈ 1 and the kernel of the Rayleigh–Sommerfeld diffraction
integral is h(x; ξ) ≈ exp(ik|ξ−x|)

iλ|ξ−x| . Using the binomial expansion, in the region where
both |ξ1 − x1| � ξ3 and |ξ2 − x2| � ξ3, yields

(13) |ξ − x| ≈ ξ3

[
1 +

1
2ξ2

3
(ξ1 − x1)2 +

1
2ξ2

3
(ξ2 − x2)2

]
.

Using this approximation and neglecting the quadratics in the denominator, the kernel
h reduces to the well-known Fresnel kernel

(14) hFre(ξ;x) =
exp(ikξ3)

iλξ3
exp

(
ik

2ξ3

(
(ξ1 − x1)2 + (ξ2 − x2)2)) .

This kernel exactly satisfies what is known as the parabolic wave equation,

(15)
[

∂

∂ξ3
− i

2k
�t − ik

]
hFre = 0,

where �t is the Laplacian in the ξ1ξ2-plane, i.e., �t = ∂2

∂ξ2
1

+ ∂2

∂ξ2
2
. By substituting

hFre into (12), we obtain the Fresnel diffraction field

(16) UFre(ξ) =
∫
A

U(x)hFre(ξ;x) dx1 dx2.

This field also satisfies (15).
If the aperture is small compared to the image (x1, x2 � ξ1, ξ2, as is the case

in diffraction imaging), one can expand the quadratic in the Fresnel kernel (14) and
neglect quadratic terms in x1 and x2:

(ξ1 − x1)2 + (ξ2 − x2)2 = ξ2
1 + ξ2

2 − 2(x1ξ1 + x2ξ2) + x2
1 + x2

2

≈ ξ2
1 + ξ2

2 − 2(x1ξ1 + x2ξ2).

With this approximation, (14) reduces to

(17) hFra(ξ;x) =
exp(ikξ3)

iλξ3
exp

(
ik

2ξ3
(ξ2

1 + ξ2
2)
)

exp
(

ik

ξ3
(x1ξ1 + x2ξ2)

)
.

This is known as the Fraunhofer approximation of the Fresnel diffraction field.
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The Fraunhofer transform of a field U(x) across an aperture A is given by

(18) UFra(ξ) =
∫
A

U(x)hFra(ξ;x) dx1 dx2.

Close examination of (18) reveals a relationship between the Fraunhofer transform
and the Fourier transform. For u : Rn → C , let ∧ denote the Fourier transform
defined by3

(19) u∧(ξ) ≡
∫
Rn

u(x) exp(−2πix · ξ) dx.

Let XA denote the indicator function for the region A:

(20) XA(x) ≡
{

1 for x ∈ A,

0 for x 	∈ A.

Assume U ∈ L1 ∩ L2[R3,C]; then

UFra(ξ) =
∫
A

U(x)hFra(ξ;x)dx1dx2

= C(ξ)[XAU ]∧T (ξ̂1, ξ̂2, ξ3).

Here ξ̂i = 1
λξ3

ξi for i = 1, 2, [·]∧T denotes the Fourier transform with respect to the
(x1, x2) coordinates, and

C(ξ) =
exp(ikξ3)

iλξ3
exp

(
ik

2ξ3
(ξ2

1 + ξ2
2)
)

.

3.1.2. Diffraction Imaging with a Lens. Based on these integral approximations
to the field U on the image plane I, we now derive the associated Green’s function
of the optical system with a lens. We begin with a brief discussion motivating the
mathematical model for a thin lens using the paraxial approximation [15, Chap. 4],
[52, Chap. 5].

A lens is modeled from a geometric optics perspective. Under this interpretation
a wave propagates along rays orthogonal to its level surface, or in mathematical
parlance, along the characteristics of the Helmholtz equation (1). The phase, θ of the
complex phasor representation,4 of a wave describes the geometric shape of the level
surface, and thus the orientation of the rays along which the wave travels. A lens is
a (thin) piece of glass or some other transparent material with a different index of
refraction (depending on the wave number k) than that of the surrounding medium.
Physically a lens changes the path [15, Chap. 3] of the wave without altering its
amplitude; that is, it changes the geometric path of propagation. This is modeled as
a change in the direction of the rays, or equivalently a change in the phase θ of the
wave across the lens.

For instance, the direction of propagation of the wave described by the Fresnel
kernel hFre (14) is parabolic with axis of symmetry along the ξ3 axis.5 Suppose

3Note that this definition is valid only for functions in L1∩L2. In section 3.2 we use the extension
of this transform to functions on L2, the Fourier–Plancherel transform.

4The phase function θ : R3 → R , sometimes called the eikonal, satisfies the eikonal equation [15,
Chap. 3].

5The amplitude of the wave is constant in the x1x2-plane.
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2 l/k

thin lens

Fig. 3 Lens model.

we place a lens, shown in Figure 3, at the pupil plane of our model optical system
(Figure 1) with axis of symmetry in the x3 direction centered at x1 = x2 = 0. Suppose
further that this lens is designed to change the direction of propagation of the field
in a parabolic fashion across the aperture A. In the complex phasor representation of
the wave, this physical effect is modeled by the addition of a complex phase term on
the support of the lens. We represent such a lens by the function

(21) φ(x) = exp
(
XA(x)

−ik

2l
(x2

1 + x2
2)
)

,

where k is the wave number and l is a scaling that describes the curvature of the lens.
All rays parallel to the axis of symmetry of the lens and passing through the lens will
cross the x3-axis at the point (0, 0, 2l/k). Notice that the lens does not change the
amplitude of the wave.

The Fraunhofer approximation (17) to the Fresnel kernel (14) also arises in models
of optical systems with a lens. To see this, consider a wavefront of the form hFre at
the x1x2-plane. The field immediately after the lens is given by multiplying hFre by
the lens (21). If l = ξ3, this multiplication yields the identity φhFre = hFra.

We now detail Kirchhoff’s diffraction theory for the following imaging model,
based on Huygens’s principle (12), with diffraction kernel hFre and a lens of the
form (21):

(22) U(ξ) ≈
∫
A

U(x)φ(x)hFre(ξ;x)dx.

The derivation of (12) requires the conditions (8) and (9), where U satisfies (1). Here
we encounter the difficulty that we have not specified any boundary conditions on
the region A, without which we cannot obtain an explicit approximation for U at ξ.
Kirchhoff’s diffraction theory is based on the conditions (8) and (9) together with the
additional boundary condition

U(x) = G0(x;x′) for x′ /∈ Ω and x ∈ A,

where G0 is given by (3). Since x′ enters as a parameter on the right-hand side, we
write the field U on A satisfying the above equation as

(23) U(x;x′) = G0(x;x′) for x′ /∈ Ω and x ∈ A.
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Similarly, we write U(ξ) = U(ξ;x′) to indicate that the field U on I is also param-
eterized by the location of the point source x′. Conditions (8) and (23) are called
Kirchhoff’s boundary conditions.

The function satisfying (1), (8)–(9), and (23) is very special indeed. For most
applications, however, it is sufficient to approximate the field U by the field that
would result from a point source at x′ in the absence of the screen S, that is, U(·;x′) ≈
G0(·;x′) everywhere to the left of the screen except on A′, where U(·;x′) = 0. The
justification of such an approximation is beyond the scope of this work. There is a
vast classical literature surrounding this problem. Interested readers are referred to
[15, Chap. 11] and references therein.

Assume next that x′ satisfies |(x′1, x′2, 0)| � x′3, where x′3 = dist(x′,T). Then,
as in the derivation of the Fresnel kernel (14), the field at any point x ∈ A can be
approximated by

(24) U(x;x′) ≈ exp(ikx′3)
iλx′3

exp
(

ik

2x′3

(
(x1 − x′1)

2 + (x2 − x′2)
2)) .

Substituting (24) into (22) with the lens (21) yields

U(ξ;x′) ≡ exp(ik(x′3 + ξ3))
−λ2x′3ξ3

C̃(ξ)C̃(x′)

×
∫ ∫ ∞
−∞

XA(x) exp
(

ik

2
(1/x′3 + 1/ξ3 − 1/l)(x2

1 + x2
2)
)

× exp
(
−2πi

λx′3ξ3
(x′1ξ3 + ξ1x′3, x′2ξ3 + ξ2x′3) · (x1, x2)

)
dx1dx2.

(25)

Here C̃(ξ) = exp
(
ik
2ξ3

(ξ2
1 + ξ2

2)
)
, and likewise for C̃(x′). When the lens law [52,

(5)–(30)] is satisfied, that is, when

(26) 1/x′3 + 1/ξ3 − 1/l = 0,

then the rays along which the light wave travels depend only linearly on the coordi-
nates in the aperture A. The field at I is said to be in focus when the lens law is
satisfied, since this plane (where the receptors lie) coincides with the level surface of
the wave.6 We consider only those points (ξ1, ξ2, ξ3) ∈ I and (x′1, x′2, x′3) ∈ I′ for which

(27) ξ3 �
k(ξ2

1 + ξ2
2)

2
and x′3 �

k(x′1
2 + x′2

2)
2

,

where I and I′ are the planes depicted in Figure 2. Then, as with the Fraunhofer
approximation, the C̃(·) factors are nearly unity. Thus, when (27) and the lens law
(26) hold,

U(ξ;x′) ≈ − exp(ik(x′3 + ξ3))
λ2x′3ξ3

×
∫ ∫ ∞
−∞

XA(x) exp
(
−2πi

λx′3ξ3
(ξ3x′1 + x′3ξ1, ξ3x′2 + x′3ξ2) · (x1, x2)

)
dx1dx2.(28)

6Note that the lens law depends entirely on the parabolic approximation to the incident wavefront
given by (24).
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The field U(ξ;x′) is the field at the image plane of a diffractive optical system with
a lens due to a point source at x′. Define the change of variables

x̂ =
ξ3

x′3
x′ and ξ̂ = x̂+ ξ

to obtain the following Fourier transform representation,

U(ξ;x′) ≈ c

∫ ∫ ∞
−∞

XA(x) exp
(
−2πi

λξ3
(ξ̂1, ξ̂2) · (x1, x2)

)
dx1dx2

= cX∧TA

(
ξ̂

λξ3

)
,(29)

where c = − exp(ik(x′3+ξ3))
λ2x′3ξ3

and, again, ·∧T denotes the Fourier transform in the ξ̂1ξ̂2-
plane.

The image ψ due to an extended source ϕ in the object plane I′ is given by the
superposition of the optical system’s response to point sources,

ψ(ξ) =
∫
R2

U (ξ;x′)ϕ(x′)dx′1dx′2.

If every point in the support of the source in the object plane satisfies |(x′1, x′2, 0)| �
x′3, as we have been assuming all along, then we can approximate the dependence
of U(ξ;x′) on x′ by U(ξ;x′) ≈ U(ξ) = U(ξ̂ − x̂). This approximation implies that
the system’s response to a point source U(ξ;x′) remains invariant under translation
of the source in the x′1x′2-plane.

7 The superposition is thus represented by the two-
dimensional convolution, denoted ∗:

ψ(ξ̂) =
∫
R2

U
(
ξ̂ − x̂

)
ϕ̂(x̂)dx̂1dx̂2

= U ∗ ϕ̂(ξ̂),(30)

where ϕ̂(x̂) = (x
′
3
ξ3

)2ϕ(x
′
3
ξ3
x̂) = (x

′
3
ξ3

)2ϕ(x′).

3.1.3. Incoherent Fields. The last piece of physics to be added to the mathe-
matical model is the fact that what is actually measured in many optical devices is
the intensity of an incoherent field. In this setting, the incoherence of the field is
related to statistical properties of waves. In the interest of brevity, our discussion
is superficial. Interested readers are referred to [51]. In (1) we have only accounted
for the spatial component of a time-harmonic wave. The entire wave is of the form
Uω(x, t) = U(x) exp(iωt) for fixed frequency ω (see (1)). Define the mutual coherence
function, Γ, to be the cross correlation of light at x and y,

(31) Γ(x,y, τ) ≡
〈
〈Uω(x, ·+ τ), Uω(y, ·)〉

〉
,

where Uω denotes the complex conjugate and 〈〈·, ·〉〉 denotes an infinite time average

〈
〈Uω(x, ·+ τ), Uω(y, ·)〉

〉
≡ lim

T→∞

1
T

∫ T/2

−T/2
Uω(x, t + τ)Uω(y, t)dt.

7Regions in the x′1x
′
2-plane over which this approximation are employed are called isoplanatic

patches.
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The normalized mutual coherence function evaluated at τ = 0 measures the spatial
coherence of the light. The mutual intensity of the light at x and y is defined by

J(x,y) ≡ Γ(x,y, 0).

The (coincident) intensity is simply the modulus squared of the wave at the point x:

J(x,x) =
〈
〈Uω(x, ·), Uω(x, ·)〉

〉
= |U(x)|2.

The intensity of the image ψ in (30) at a point ξ̂ is thus given by

(32) |ψ|2 =
∣∣∣U ∗ ϕ̂(ξ̂)

∣∣∣2 .

Rearranging the integrals yields∣∣∣ψ(ξ̂)
∣∣∣2 =

∫
R2

∫
R2

U(ξ̂ − x̂)U(ξ̂ − ŷ)ϕ̂(x̂)ϕ̂(ŷ)dx̂1dx̂2 dŷ1dŷ2.

However, the resolution of our optical system in the image plane is such that what is
observed is best approximated by the time-averaged quantity

(33)
∣∣∣ψ(ξ̂)

∣∣∣2 =
∫
R2

∫
R2

J(ξ̂ − x̂, ξ̂ − ŷ)ϕ̂(x̂)ϕ̂(ŷ)dx̂1dx̂2 dŷ1dŷ2.

If in addition the optical system has a resolution in the image plane that is coarser
than the spatial coherence of the light, then the light is said to be incoherent. The
mutual intensity corresponding to incoherence can be approximated by

(34) J(ξ̂, η̂) ≈ ĉ|U(ξ̂)|2δ(x̂− η̂),

where ĉ is some real constant. For a detailed discussion of this intricate theory see
[51, section 5.5]. Substituting (34) into (33) yields

(35)
∣∣∣ψ(ξ̂)

∣∣∣2 ≈ ĉ |U |2 ∗
∣∣∣ϕ̂(ξ̂)

∣∣∣2 .

If the coherence of the light is resolvable, then one must work with the less convenient
representation of (32).

3.1.4. Rescaling the Model. We assume that λξ3 = 1 (this is equivalent to resiz-
ing the aperture). The contribution of the x′3 component to the field U given in (29)
is just a scalar multiple. This is normalized so that the scaling in (35) is unity,

(36) ĉ|U |2 ∗ |ϕ|2(ξ) = |c̃X∧A |
2 ∗ |ϕ|2(ξ),

where c̃ = − exp (ik(x′3 + ξ3)). We represent the field at the exit pupil of the optical
system, that is, on the right “side” of the pupil plane of the imaging system in Figure 1,
by the function u : R2 → C . In (36) this field is known:

(37) u = c̃XA and U = u∧.

We show in the next section that the field u is not always of this form.
The normalized mathematical model for the intensity mapping in the focal plane

of a diffracted, incoherent, monochromatic, far-field electromagnetic field (35) be-
comes

(38) |ψ|2(ξ) ≈ |u∧|2 ∗ |ϕ|2(ξ).

The kernel of the convolution |u∧|2 is known as the point-spread function of the
idealized optical system of Figure 1. This kernel characterizes the optical system.
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3.1.5. Aberrated Optical Systems. It has been assumed that the optical system
is in the far field (with respect to some source) of a homogeneous medium; thus the
wave at the entrance pupil, that is, on the left side of the pupil plane, is characterized
by a constant amplitude plane wave, arg(u−) ≡ 0 and |u−| = const across the aperture
A, where u− indicates the field at the entrance pupil. This is often called the reference
wave. In most applications, however, the assumption of homogeneity is not correct for
the field at the exit pupil. Inhomogeneities in the media cause deviations in the true
wave from the reference wave. There are two types of deviations from the reference
wave. We refer to deviations in the phase as phase aberrations and deviations from
the amplitude as the throughput of the optical system. Deviations may occur at any
point along the path of propagation and can be caused by an intervening medium such
as atmosphere, crystal structure, or mirror surface. In geometric optics, the wave is
assumed to travel along rays normal to the wavefront. The phase represents differences
in the optical path length along different rays. The locations of the deviations along
the rays are not important. Accordingly, all deviations are taken to occur at the pupil
plane depicted in Figure 1.

A simple example of a phase aberration is defocus, which can be modeled by use
of a lens as in (21). The field due to a defocused generalized pupil function is given by
(25), where the lens law (26) is not satisfied, that is, 1/z0 +1/ζ−1/l = ε, 0 < |ε| � 1.
It often happens, however, that the aberration is unknown. Defocus is added to an
optical system to improve signal-to-noise ratios in the tails of images. Defocus is
also used to stabilize numerical schemes for recovering arg(u) (phase retrieval) and ϕ
(deconvolution) from the image ψ.

The throughput of the optical system is affected by the mounts and bolts used
to hold optical mirrors in place as well as the support of the aperture. These objects
change the amplitude of the wave as it propagates through the system and are modeled
by the amplitude of the field u.

The function u accounting for all of the above aberrations is referred to as the
generalized pupil function. The generalized pupil function uniquely characterizes the
optical system. For a perfect, deviation-free normalized optical system (where, in
particular, λξ3 = 1) the generalized pupil function is given by u = c̃XA, as in (37). For
a field with deviations from the reference wave u−, that is, with phase aberration θ(x)
and throughput A(x), the generalized pupil function can be represented in complex
phasor form by

(39) u[A(x), θ(x)] = A(x) exp[iθ(x)].

The corresponding imaging model for an aberrated optical system is the same as (38).

3.1.6. Notation and Summary. We now establish the notation that will be used
throughout the remainder of this work and summarize the above results with the
new notation. Since the third spatial dimension, x′3 and ξ3, only determines relative
scalings and magnification factors in the image plane and the pupil planes, we will
only be interested in the behavior of the fields in the x1x2-plane (respectively, the
ξ1ξ2-plane). From this point forward, the fields are therefore described as mappings
on R2. Rather than defining a new variable for the intensity of the image and object,
we reassign the variables ψ and ϕ to represent rescaled amplitude mappings instead
of complex scalar waves:

|ψ| → ψ : R2 → R+ and |ϕ̃| → ϕ : R2 → R+ .
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The imaging model thus takes the form

(40) ψ2(ξ) ≈ |u∧|2 ∗ ϕ2(ξ).

3.2. Inverse Problems. In the previous sections we have taken great care to
develop the forward model for image formation. We now turn our attention to the
inverse problem. If u is known and ϕ unknown, (40) is a Fredholm integral equation
of the first kind. Recovering ϕ2 from u and ψ2 is called, for good reason, deconvolu-
tion. The phase retrieval problem arises when the amplitude of the generalized pupil
function u is known, but the phase aberration, θ in (39), is unknown. When both the
object ϕ and the phase aberrations in u are unknown,8 one is faced with the problem
of simultaneous deconvolution and phase retrieval. This work is limited to the case
of phase retrieval.

3.2.1. Phase Retrieval. While phase aberrations can be recovered from extended
sources with the full imaging model (40) (see [23, 50, 68, 76, 94, 95, 96, 120, 123, 122,
105]), they are most often (and more reliably) recovered from images of point sources
ϕ2 = δ. In this case,

ψ2(ξ) ≈ |u∧|2(ξ).

The amplitude |u| is assumed to be known and satisfies the equation

(41) A = |u|,

where A : R2 → R+ is known. This is often modeled as an indicator function for
the aperture, A = XA. For the purposes of this work it is only necessary to note that
A ∈ U+, where U+ is a cone of nonnegative functions to be explicitly defined below.
According to the uniqueness results proved in [58], for discrete band-limited images in
two dimensions, if a solution to the phase retrieval problem exists, knowledge about
both |u| and |u∧| uniquely characterizes u and thus the optical system, up to a complex
constant, linear shifts, and rotations by 180 degrees.

In most cases there is no closed-form analytic solution to the phase retrieval
problem. Notable exceptions were first recognized in [67, 34, 103]. In numerical
approaches, the problem is further constrained by the addition of known phase aber-
rations to the system. The corresponding images are called diversity images. The
problem is then to find the unknown phase common to all images given the amplitude
constraints. For m = 1, . . . , M, let θ̃m : R2 → R denote a known phase aberration
added to the system across the aperture. The corresponding diversity images are
denoted by ψm : R2 → R . These images are approximated by

(42) ψ2
m ≈ |Pm[u]|2 ,

where Pm is defined by

(43) Pm[u] ≡
[
u exp[iθ̃m]

]∧
.

8This is a common situation in land-based astronomical observation where the earth’s atmosphere
introduces unknown phase aberrations during observations.
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Therefore, the mth aberrated point-spread function is |Pm[u]|2. The phase retrieval
problem for M diversity images is formulated as a system of nonlinear equations,

(44)


A2

ψ2
1
...

ψ2
M

 =


|u|2

|P1[u]|2
...

|PM [u]|2

 .

3.2.2. An Optimization Perspective. In the presence of noise it is unlikely that
an exact solution to the system of equations given by (44) exists.9 One therefore
seeks the best estimate, u∗, for a given performance measure, ρ. While many different
algorithms can be applied to recover the best estimate u∗ numerically, it is our view
that they all address some type of optimization problem. The method by which the
best estimate is found involves some sort of optimality principle that depends on the
formulation of the underlying optimization problem. Before stating this optimization
problem, some remarks about the spaces in which the operators lie are necessary.

To establish a well-posed optimization problem the domain must be closed. The
Fourier transform defined by (19) is only valid on L1 ∩ L2, which is not closed. This
technicality is avoided by defining the corresponding transform on L2. The Fourier–
Plancherel transform is the unique L2 limit of the Fourier transform of elements in
L1 ∩ L2 [66]. All of the properties of the standard Fourier transform hold for this
extended definition. In addition to being closed, the space L2 has the advantage of
being a Hilbert space. In all of the following, the transforms Pm : L2[R2,R2] →
L2[R2,C] are defined by

Pm[u] ≡
[
u exp[iθ̃m]

]∧
,

where ∧ indicates the Fourier–Plancherel transform. The transform Pm is a unitary
bounded linear operator with adjoint denoted by P∗m, with P∗m = P−1

m .
It will be convenient to represent the fields as mappings into R2 rather than C.

Define the transformation R : R2 → C by

R(v) ≡ v1 + iv2,

where v = (v1, v2) ∈ R2. The adjoint of R with respect to the real inner product for
v, v′ ∈ C defined by

〈v, v′〉 = Re (v′v)

is given by

R∗(v) =
(

Re v
Im v

)
.

The mapping R is a unitary bounded linear operator with R−1 = R∗. Our discus-
sion switches frequently between finite-dimensional and infinite-dimensional settings.
Therefore, it is convenient to think of R as a mapping from L2[R2,R2] to L2[R2,C].

9The uniqueness results studied in [58] therefore do not apply.
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Whenever there is chance for confusion, square brackets are used to indicate a map-
ping, e.g.,

(45) R[v] ≡ R(v(·))

for v : R2 → R2 .
Using this notation, we equivalently write the field at the exit pupil as the function

u : R2 → R2 ,

u = R∗[u].

The imaging equation (42) is equivalently written as

(46) ψ2(ξ) ≈ |Fm[u]|2 (ξ),

where

(47) Fm[u] ≡ R∗ [Pm[R[u]]] .

In general, | · | denotes the pointwise magnitude where the finite-dimensional 2-norm
is assumed. The modulus, |v|, of a function v : R2 → C is used interchangeably with
the pointwise Euclidean norm |v| of the function v : R2 → R2 . Unless indicated
otherwise, ‖ · ‖ denotes the L2 operator norm. Since both Pm and R are unitary
bounded linear operators, Fm also has this property. The adjoint is denoted by F∗m,
with F∗m = F−1

m .
For convenience define

(48) F0 ≡ I,

where I is the identity operator. Define the the aperture constraint (41) to be ψ0:

ψ0 ≡ A.

The optimization problem over L2[R2,R2] becomes

minimize
M∑
m=0

ρ [ψm, |Fm[u]| ](49)

over u ∈ L2[R2,R2].

We have much more flexibility with regard to restrictions on the data ψm. These
functions are restricted to subsets of the space U, a set of finite-valued functions for
which the Fourier transform is well defined and whose tails tend to zero sufficiently
fast. The data, ψm and A, belong to U+. For easy reference, the following hypothesis
is assumed throughout.

Hypothesis 3.1. Let u = (ure, uim), where ure and uim ∈ L2[R2,R]. Assume
that ψm satisfies ψm ∈ U+ for m = 0, 1, . . . , M, where U+ is the cone of nonnegative
functions given by

U+ =
{
v ∈ L1[R2,R+] ∩ L2[R2,R+] ∩ L∞[R2,R+] such that |v(x)| → 0 as |x| → ∞

}
.

The remainder of this work is devoted to the study of numerical methods for
the solution of the above optimization problem. We restrict our attention to the
optimization problem and optimality principles that underlie methods related to the
iterative transform algorithms of Gerchberg, Saxton, Misell, and Fienup [48, 85, 43].
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4. Geometric Approaches. Projection algorithms, such as iterative transform
methods, are well-known numerical techniques for solving the phase retrieval prob-
lem [16, 32, 43, 48, 72, 85, 131, 129]. Much is known about projections onto convex
sets [124, 17, 112, 56, 53, 132, 11]. However, the problem of phase retrieval involves
projections onto nonconvex sets. It is shown below that as a consequence of noncon-
vexity the projections can be multivalued. This is the principal obstacle to proving
the convergence of projection-type algorithms. For special classes of nonconvex sets,
a convergence theory can be provided [31, 25]. The nonconvex sets considered here
do not belong to these classes. The geometric analysis of [31] applies to the phase
retrieval problem, although it requires assumptions that are difficult to satisfy. A
convergence theory for generalized projection algorithms is developed in [6]; however,
there are no known nonconvex sets to which their hypotheses apply. In particular,
the hypotheses required in Proposition 2 of [6] are not satisfied in the case of phase
retrieval.

4.1. Projections. Iterative transform methods first adjust the phase of the cur-
rent estimate, u(ν) or Fm[u(ν)], at iteration ν and then replace the magnitude with
the known pointwise magnitude. It is straightforward to show that this operation is
a projection.

The amplitude data for a one-dimensional example is depicted in Figure 4. The
functions satisfying the data belong to sets that are collections of functions that lie
on the surface of the tube-like structures depicted in Figure 5.

Given ψm 	≡ 0 and θ̃m measurable, the mathematical description of these tube-
like sets is

(50) Qm ≡
{
u ∈ L2[R2,R2] | |Fm[u]| = ψm a.e.

}
.

Property 4.1 (see Appendix A for proof). The sets Qm defined by (50) are
neither weakly closed nor convex in L2[R2,R2] whenever ψm is not identically zero.

The true generalized pupil function must satisfy all the constraints simultaneously.
That is, it lies in the intersection of the sets Q0 ∩Q1 ∩ · · · ∩Qm, assuming that this
intersection is nonempty. Projection methods are common techniques for finding such
intersections in the convex setting. The Gerchberg–Saxton algorithm, discussed later
in this section, is a well-known projection algorithm that has been successfully applied
to the nonconvex problem of phase retrieval. However, due to the nonconvexity of
these sets, it does not always converge.

We now develop the projection theory for sets of the form (50). Let X be a metric
space with metric ρ : X → R+ and let Q ⊂ X. Define the distance of a point x ∈ X
to the set Q by

(51) dist (x;Q) ≡ inf
u∈Q

ρ(x, u).

We assume that the metric ρ is the Euclidean norm in Rn and the L2-norm in L2. Let
the set Q ⊂ X be closed. Define the projection operator, ΠQ[v], to be the possibly
multivalued mapping that sends every point of X to the set of nearest points in Q :

(52) ΠQ[v] ≡ argmin
u∈Q

‖v − u‖ = {ū ∈ Q : ‖v − ū‖ = inf
u∈Q

‖v − u‖}.

There is a general theory that addresses the question of the existence of projections
onto sets in a metric space [121, 38]. Fortunately, we are able to provide a simple
constructive proof of existence of sets of the type given by (50), which simultaneously
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Fig. 4 One-dimensional pupil with corresponding image data. Frame (a) is a one-dimensional cross
section of the amplitude across the aperture shown in Figure 6a. Frames (b)–(d) are cross
sections of the corresponding point-spread functions for the aperture in frame (a) with some
unknown phase aberration as well as a known defocus.

provides a complete description of these projections. The formulation agrees for the
most part with what has heretofore been called the projection in the literature. While
it is elementary, we are not aware of any other proof of the existence of this specific
projection, much less its precise characterization.

We are interested in computing the projection onto sets of the form

(53) Q[b] ≡
{
u ∈ L2[R2,R2] | |u| = b a.e.

}
,

where b ∈ L2[R2,R+] with b 	≡ 0. We show that the projection of u ∈ L2[R2,R2] onto
Q[b] is precisely the set

Π[u; b] ≡ {π[u; b, θ] | θ measurable} ,

where the functions π[u; b, θ] : R2 → R2 are given by

(54) π[u; b, θ](x) ≡
{

b(x) u(x)
|u(x)| for u(x) 	= 0,

b(x)R∗ [exp[iθ(x)]] for u(x) = 0

for θ : R2 → R Lebesgue measurable. Indeed, the proof shows that the set Π[u; b] is
precisely the set of all functions in Q[b] that attain the pointwise distance of u(x) to
b(x)S a.e. on R2.
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(a) (b)

(c) (d)

Fig. 5 Tube constraints. The vertical axis and the axis coming out of the page correspond to the real
and imaginary components of the tubes. The horizontal axes correspond to the horizontal
axes of Figure 4. Frame (a) represents the constraint set corresponding to Figure 4a. Frames
(b)–(d) represent the constraint sets corresponding to Figures 4b–4d.

Theorem 4.2. For every b ∈ L2[R2,R+] and u,v ∈ L2[R2,R2], we have

v ∈ Π[u; b] ⇐⇒ |v(x)− u(x)| = dist(u(x); b(x)S) a.e.,(55)

ΠQ[b][u] = Π[u; b], and(56)

dist(u;Q[b]) = ‖ |u| − b‖.(57)

Proof. We first show (55). Let u ∈ L2[R2,R2] and b ∈ L2[R2,R+] be given.
Observe that if π[u; b, θ] ∈ Π[u; b], then π[u; b, θ] ∈ Q[b] and

π[u; b, θ](x) ∈ argmin
w∈b(x)S

|u(x)−w| ∀x ∈ R2.

That is, the function π[u; b, θ] attains the pointwise distance of u(x) to the set b(x)S
on R2. Conversely, suppose that v ∈ L2[R2,R2] attains the pointwise distance of
u(x) to the set b(x)S on R2. Then by [104, Corollary 1.9.e] there exists a complex
measurable function α : R2 → C such that |α(x)| = 1 for all x ∈ R2 and R[v] = α|v|.
Define the measurable function θ : R2 → R by θ = cos−1(Re(α)), where we take the
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principal branch of cos−1. Then α = exp[iθ]. Consequently,

v(x) =

{
b(x) u(x)

|u(x)| , u(x) 	= 0,

b(x)R∗[exp[iθ(x)]], u(x) = 0,

which implies that v ∈ Π[u; b]. Therefore (55) holds.
We now show that Π[u; b] ⊂ ΠQ[b][u]. Choose π[u; b, θ] ∈ Π[u; b] for some

Lebesgue measurable θ : R2 → R , and let v ∈ Q[b] with v /∈ Π[u; b]. Clearly,
π[u; b, θ] ∈ Q[b]. Moreover, since v /∈ Π[u; b], there must exist a set of positive mea-
sure Y ⊂ R2 on which v does not attain the pointwise distance of u(x) to b(x)S, that
is,

|u(x)− π[u; b, θ](x)| = min
w∈b(x)S

|u(x)−w|

< |u(x)− v(x)| ∀x ∈ Y.

Therefore,

‖u− π[u; b, θ]‖2 =
∫
R2

min
w∈b(x)S

|u(x)−w|2 dx

<

∫
R2\Y

min
w∈b(x)S

|u(x)−w|2 dx +
∫
Y

|u(x)− v(x)|2 dx

≤
∫
R2
|u(x)− v(x)|2 dx

= ‖u− v‖2,

where the strict inequality follows from the fact that the set Y has positive measure
and v /∈ Π[u; b]. Hence π[u; b, θ] ∈ ΠQ[b][u].

Conversely, if v ∈ ΠQ[b][u], then, in particular, v ∈ Q[b]. If v /∈ Π[u; b], then,
as above, there is a set of positive measure on which v does not attain the pointwise
distance to the set b(x)S, which implies the contradiction ‖u− π[u; b, θ]‖ < ‖u− v‖
for any function π[u; b, θ] ∈ Π[u; b]. Thus we have established (56).

We now show (57). Choose π[u; b, θ] from ΠQ[b][u]. Then

dist 2(u;Q[b]) = ‖u− π[u; b, θ]‖2

=
∫
| u(x)− π[u; b, θ](x)|2 dx

=
∫ ∣∣∣∣(|u(x)| − b(x))

u(x)
|u(x)|Xsupp(u)(x)

∣∣∣∣2 dx

+
∫
| b(x)R∗ [exp[iθ(x)]]|2

(
1−Xsupp(u)(x)

)
dx

=
∫ ∣∣ |u(x)| − b(x)

∣∣2 Xsupp(u)(x) + |b(x)|2
(
1−Xsupp(u)(x)

)
dx

= ‖ |u| − b‖2.
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As an elementary consequence of Theorem 4.2 we are also able to characterize
the projection onto the sets Qm defined in (50). The projection mappings ΠQ[b] are
multivalued mappings from L2[R2,R2] to R2. For any linear operator A : L2 →
X , where X is any topological vector space, we define the image of the multivalued
mapping ΠQ[b] under A to be the set

AΠQ[b][u] =
{
A[v]

∣∣v ∈ ΠQ[b][u]
}

.

Corollary 4.3. Let the set Qm be defined as in (50) and let the operators ΠQm
and Fm be as defined in (52) and (47), respectively. Then

(58) ΠQm [u] = F∗m
[
ΠQ[ψm][Fm[u]]

]
and

dist(u;Qm) = ‖ |Fm[u]| − ψm‖

for all u ∈ L2[R2,R2].
Proof. Since the operator Fm is unitary and surjective, we have

inf
w∈Qm

‖u−w‖ = inf
w∈Qm

‖Fm[u]−Fm[w]‖

= inf
v∈Q[ψm]

‖Fm[u]− v‖.

Therefore,

w′ ∈ argmin
w∈Qm

‖u−w‖

⇐⇒

Fm[w′] ∈ ΠQ[ψm][Fm[u]]

⇐⇒

w′ ∈ F∗m
[
ΠQ[ψm][Fm[u]]

]
,

since F∗m = F−1
m .

Finally, since Fm is unitary, we obtain from Theorem 4.2 that

dist (u;Qm) = ‖u−F∗m [π[Fm[u];ψm, θ]] ‖

= ‖Fm [u]− π[Fm[u];ψm, θ]‖

= ‖ |Fm [u]| − ψm‖

for any π[Fm[u]; b, θ] ∈ ΠQ[ψm][Fm[u]].

4.2. Projection Algorithms. A general framework for projection algorithms can
be found in [11], which considered sequences of weighted relaxed projections of the
form

(59) u(ν+1) ∈
(

M∑
m=0

γ(ν)
m

[
(1− α(ν)

m )I + α(ν)
m ΠQm

])
[u(ν)].

Here I is the identity mapping, α
(ν)
m is a relaxation parameter usually in the interval

[0, 2], and the weights γ
(ν)
m are nonnegative scalars summing to 1. General results
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for these types of algorithms apply only to convex sets. In the convex setting the
inclusion in algorithm (59) is an equality since projections onto convex sets are single
valued. In the nonconvex setting this is not the case.

The Gerchberg–Saxton algorithm [48] and its variants can be viewed as an in-
stance of algorithm (59). To see this, define the set of active indices at iteration ν
by

J(ν) ≡ {j ∈ 0, . . . , M | γ(ν)
m > 0}.

Index m is active at iteration ν if γ
(ν)
m > 0, that is, if m ∈ J(ν). Suppose J(ν) consists

of the single element {ν mod (M + 1)} for ν ≥ 0. In this case the weights γ
(ν)
m are

given by

γ(ν)
m =

{
1 if m ∈ J(ν), i.e., if m = ν mod (M + 1),

0 otherwise,
m = 0, 1, . . . , M.

This is an instance of what is called a cyclic projection algorithm [11]. Projections
onto the sets Qm are calculated one at a time in a sequential manner. Thus M + 1
iterations of this cyclic algorithm are the same as one iteration of the following sequen-
tial projection algorithm, known in the optics community as the iterative transform
algorithm:

(60) u(ν+1) ∈
(

M∏
m=0

[
(1− α(ν)

m )I + α(ν)
m ΠQm

])
[u(ν)].

The Gerchberg–Saxton algorithm [48] is obtained by setting M = 1 and α
(ν)
0 = α

(ν)
1 =

1. Variants of this algorithm [85, 78] involve increasing the number of diversity images,
that is, M > 1, and adjusting the relaxation parameters α

(ν)
m . Convergence results

often cited for the Gerchberg–Saxton algorithm refer to the observation that the set
distance error, defined as the sum of the distances of an iterate u(ν) to two constraint
sets, Q0 and Q1, will not increase as the iteration proceeds [72]. For M > 1, this
may not be the case. That is, the set distance error can increase. In all cases, the
algorithm may fail to converge due to the nonconvexity of the sets Qm (see Levi and
Stark [72] for an example of this behavior).

In our analysis it is convenient to use the change of variables

(61) λ(ν)β(ν)
m ≡ γ(ν)

m α(ν)
m

to rewrite algorithm (59) as

(62) u(ν+1) ∈
(
I − λ(ν)G(ν)

)
[u(ν)],

where for all ν the operators G(ν) : L2 → L2 are given by

(63) G(ν) ≡
M∑
m=0

G(ν)
m ,

where

(64) G(ν)
m ≡ β(ν)

m (I −ΠQm) .
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In algorithm (62) the nonnegative weights β
(ν)
m do not necessarily sum to 1, and the pa-

rameters λ(ν) are to be interpreted as a step length. This formulation of the projection
algorithm is shown in section 5 to be equivalent to a steepest descent algorithm for a
weighted squared distance function under very special circumstances. In our opinion
the multivalued nature of the projections has not been adequately addressed in the
numerical theory for the phase retrieval problem. Insufficient attention to this detail
can result in unstable numerical calculations. This is discussed in section 7. Several
authors have proposed extensions to projection algorithms to overcome stagnation
[43, 116]. These methods are a valuable topic for further study; however, in order to
illustrate the comparison between geometric methods and analytic methods studied
in the following sections, we restrict our attention to simple projection algorithms of
the form of algorithm (59) and algorithm (60)

5. Analytic Methods. Convergence results for projection methods applied to the
phase retrieval problem are not possible in general due to the nonconvexity of the
constraint sets. In this section we show that the nonconvexity of the constraint sets
is related to the nonsmoothness of the square of the set distance error dist (u;Qm)
defined in (51). This is fundamentally different from the convex setting in a Hilbert
space, where the squared distance function is smooth. The nonsmoothness of the
squared distance function in the nonconvex setting is a consequence of the multival-
uedness of the projection operator. In this section some insight into this relationship
is given.

Our numerical methods are based on smooth approximations to the squared set
distance error E. This allows us to provide a convergence theory that is easily de-
rived from standard results in the optimization literature. By relating the smooth
approximations to the projection operators, we are able to provide an interpretation
of iterative transform methods in the context of the analytic methods studied in this
section.

There are many different approaches based on other error metrics (maximum
entropy, for example). Since the primary focus of this work is on projection methods
and related techniques, we limit our discussion to two analytic approaches. The first
is a direct application of smoothing methods, which we refer to as perturbed least
squares; the second is an extended least squares approach that allows us to adaptively
correct for the relative variability in the diversity measurements, ψm.

5.1. Least Squares. Consider the weighted squared set distance error for the
phase retrieval problem given by the mapping E : L2[R2,R2]→ R+ ,

(65) E[u] =
M∑
m=0

βm
2

dist 2(u;Qm),

where βm ≥ 0 for m = 0, . . . , M , and by Corollary 4.3,

dist 2(u;Qm) ≡ inf
w∈Qm

‖u−w‖2 = ‖|Fm[u]| − ψm‖
2

.

With this least squares objective the optimization problem (49) becomes

minimize E[u](66)
over u ∈ L2[R2,R2].

In general the optimal value for this problem is nonzero, and so classical tech-
niques for solving the problem numerically are based on satisfying a first-order neces-
sary condition for optimality. For smooth functions, this condition simply states that
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the gradient takes the value zero at any local solution to the optimization problem.
However, the functions dist 2(u;Qm) are not differentiable. The easiest way to see
this is to consider the one-dimensional function a(x) = | |x| − b|2, where b > 0. This
function is not differentiable at x = 0 (indeed, it is not even subdifferentiably regular
at x = 0 [101, Def. 7.25]). It is precisely at these points that the pointwise projection
operator ΠQm is multivalued. Similarly, the functions dist 2(u;Qm) are not differen-
tiable at functions u for which there exists a set Ω ⊂ supp(ψm) of positive measure
on which u ≡ 0. Nondifferentiability in this context is related to the nondifferentia-
bility of the Euclidean norm at the origin: ∇|x| = x/|x|. A common technique to
avoid division by zero is to add a small positive quantity to the denominator of any
suspect rational expression. This device was used in [46] to avoid division by zero
in the representation of the derivative of the modulus function. However, this is not
a principled approach to the need for approximating the modulus function and its
derivatives globally. In the next section we study an alternative approximation to the
modulus function itself that possesses excellent global approximation properties.

In the nonsmooth setting the usual first-order optimality condition is replaced by
a first-order variational principle of the form

0 ∈ ∂E[u∗],

where ∂ denotes a subgradient operator such as those studied in [27, 26, 86, 87, 63, 64].
It was shown in [75] that one can apply the calculus of subdifferentials to obtain the
identity

(67) ∂
(
dist 2(u;Qm)

)
= 2cl ∗ (I −ΠQm) [u],

where cl ∗ denotes the weak-star closure. Using this fact and standard calculus rules
for the subdifferential, we obtain that

∂E[u] =
M∑
m=0

cl ∗Gm[u],

where Gm is defined by (64). An understanding of the theory of subdifferentials is not
required for the numerical theory developed in subsequent sections. Readers interested
in these relationships are referred to [75]. In order to avoid the difficulties associated
with nondifferentiability, we consider smooth objectives that are perturbations of the
least squares objective functional E.

5.2. Perturbed Least Squares. One obvious solution to the problem of non-
smooth objectives is simply to square the data and the modulus. The modulus squared
is a smooth function. For this reason, analytic techniques tend to favor objectives
based on the modulus squared. See [35] for a very careful treatment of analytic
techniques for the modulus squared. In our experiments, however, objectives based
on the modulus squared, while robust, suffer from very slow rates of convergence
compared to the nonsmooth or nearly nonsmooth objectives studied in section 5.
An intuitive explanation for this is that the modulus squared smooths out curvature
information in the objective [65, 71]. Another explanation is that the singular values
of the operator |Fm[u]|2 are much more spread out compared to those of the operator
|Fm[u]| ; that is, the squared modulus system is more ill conditioned than the modulus
system. This results in slower convergence of methods based on linearizations of the
operator |Fm[u]|2. See [4, 57] for a discussion. While it is difficult to work with, we
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have found that the modulus function outperforms the modulus squared function as
an objective in optimization techniques. The principal goal of this work is to develop
tools for taking advantage of these “good” aspects of the modulus, while avoiding
instabilities.

The smooth least squares objective function we consider in this section is based
on a smooth perturbation of the modulus function |u| of the form

κε(u) =
|u|2

(|u|2 + ε2)1/2 .

This smoothing of the modulus function enjoys three key properties,

κε(0) = 0, ||u| − κε(u)| ≤ ε, and |∇κε(u)| ≤ 3 ∀u.

That is, κε is integrable for integrable u with supp(κε[u]) = supp(u), it converges
uniformly to | · | in ε, and it has a uniformly bounded gradient. We therefore expect
κε to be numerically stable. The corresponding perturbed squared set distance error
is denoted Eε : L2[R2,R2]→ R+ and is given by

(68) Eε[u] =
M∑
m=0

βm
2

∥∥∥∥∥∥∥
|Fm[u]|2(

|Fm[u]|2 + ε2
)1/2 − ψm

∥∥∥∥∥∥∥
2

,

where 0 < ε � 1. Consistent with our observations about κε, Eε[u] is a continuous
function of ε for fixed u (see Appendix B). Thus we expect this perturbed objective
to be numerically stable. Indeed, we have found this perturbation to perform well in
practice.

Next we study the analytic properties of Eε. Define the pointwise residual r :
R2 × R+ → R by

(69) r(u; b, ε) =
|u|2

(|u|2 + ε2)1/2 − b.

When the arguments of r are functions, this is denoted as usual with square brackets.
Denote the extended reals by R = R ∪ {∞}, and define the integral functional J :
L2[R2,R2]→ R by

(70) J [u; b, ε] =
∫
R2

r2(u(x); b(x), ε)dx.

For u(·) ∈ L2[R2,R2], b(·) ∈ L1[R2,R+] ∩ L2[R2,R+] ∩ L∞[R2,R+], and all ε,
J [u(·); b(·), ε] is finite valued and Fréchet differentiable with globally Lipschitz continu-
ous derivative (see Appendix B). Using this notation, we can rewrite Eε in composition
form as

(71) Eε[u] ≡
M∑
m=0

βm
2

(J [·;ψm, ε] ◦ Fm) [u].

In Appendix B it is shown that Eε is Fréchet differentiable as a function on L2,
with Fréchet derivative given by

(72) E′ε[u][w] =
M∑
m=0

βm
2

(J [·;ψm, ε] ◦ Fm)′ [u][w],
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where

(73)

(J [·;ψm, ε] ◦ Fm)′ [u][w] = 2

〈
F∗m

[
r[Fm[u];ψm, ε]

|Fm[u]|2 + 2ε2

(|Fm[u]|2 + ε2)3/2Fm[u]

]
, w

〉
.

Since Eε : L2 → R is Fréchet differentiable, E′ε[u] is an element of the dual of L2

for all u. Since L2 is a Hilbert space, we can identify E′ε[u] with an element of L2.
We denote this element by ∇Eε[u]. Using (72) and (73) we obtain the formula

∇Eε[u] =
M∑
m=0

βmF∗m

[
r[Fm[u];ψm, ε]

|Fm[u]|2 + 2ε2

(|Fm[u]|2 + ε2)3/2Fm[u]

]
.(74)

See Appendix B for the complete calculation.
We now establish the principal relationship between ∇Eε and the operator G

given by (63).
Theorem 5.1 (see Appendix B). Let the functions u and ψm satisfy Hypothesis

3.1. At each u with E[u] < δ, there exists an ε > 0 such that

(75) ‖∇Eε[u] − v‖ < Cδ1/2

for all v ∈ G[u], where

G =
M∑
m=0

βm (I −ΠQm)

and

C =
√

2
M∑
m=0

β1/2
m

(
1 +

√
2β1/2

m

)
.

Remark 5.2. Though G is a multivalued mapping, the norm ‖∇Eε[u]− v‖ is
the same for every v ∈ G[u]. See Appendix B for details.

Suppose E[u] < δ. Then from (75) we have

‖∇Eε[u]‖2 − 2〈∇Eε[u], v〉+ ‖v‖2 ≤ C2δ

for every v ∈ G[u]. Therefore, if ‖∇Eε[u]‖2 + ‖v‖2 ≥ C2δ, then the direction −v is
necessarily a direction of descent for Eε[u] for every v ∈ G[u]. In particular, if a line
search algorithm

u(ν+1) = u(ν) − λ(ν)∇Eε[u(ν)]

produces a sequence with Eε(u(ν))→ 0, then the corresponding projection algorithm

u(ν+1) ∈
(
I − λ(ν)G(ν)

)
[u(ν)]

behaves similarly. That is, the qualitative convergence behavior of the projection al-
gorithm can be studied by examining the convergence properties of the corresponding
line search algorithm for the perturbed objective. However, in the presence of noise,
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where the global solution to (66) is greater than zero, the behavior of the algorithms
near the solution could differ significantly since the bound (75) does not guarantee
that dist (∇Eε[u],G[u])→ 0.

The principal obstacle to a bound of the form (75) depending only on ε and not
on the value of E[u] is the possibility that the estimate u has a domain of positive
measure over which u is near zero but the data is nonzero. In the numerical literature
for wavefront reconstruction, this difficulty is often circumvented by either implicitly
or explicitly assuming that none of the estimates u have this property. If one is willing
to make this assumption, then a bound of the form (75) that depends only on ε is
possible. The discrepancy in the general case is consistent with the fact that ∇Eε is
a smooth approximation of the multivalued projection operator.

Define V ⊂ L2[R2,R2] by

V ≡
M⋂
m=0

Vm,

where

Vm ≡ {v | |Fm[v]| 	= 0 a.e. on supp(ψm)} .

In the next corollary we establish that for every v ∈ V the projection operator is
single valued and the gradient ∇Eε converges pointwise to the operator G.

Corollary 5.3 (see Appendix B). Let the hypotheses of Theorem 5.1 hold and
let u ∈ V 	= ∅; then G[u] is single valued. Suppose further that for each m = 0, 1, 2, . . .

ψ̃m =
ψm

|Fm[u]|Xψm ∈ L∞[R2,R+].

Then given any δ > 0 there exists an ε > 0 such that

‖∇Eε[u]− G[u] ‖ ≤ δ.

Remark 5.4. The assumptions of Corollary 5.3 are extremely strong. While each
of the sets Vm is dense in L2[R2,R2], this is not true for the intersection. Indeed, it
is common that V = ∅, as in the case of noisy data.

Supposing V 	= ∅, for u ∈ V we define the “gradient” of the unperturbed set
distance error by

∇E[u] ≡ lim
ε→0

∇Eε[u].

Together with Lebesgue’s dominated convergence theorem [66, p. 133], the above
corollary implies that for u ∈ V 	= ∅

∇E[u] = G[u] a.e.

Note that∇E[u] is not the gradient in the Fréchet sense. In [6] the authors impose
assumptions that allow them to prove that this object is the gradient in the Fréchet
sense. Again, in most practical situations V = ∅; thus the applicability of any such
assumption is very narrow. Applying this theory to algorithms is also problematic.
Supposing that V 	= ∅, then one must find an initial point u0 ∈ V. Once an initial
admissible point is found, one must guarantee that all subsequent iterates remain
in V as well. Algorithms that do not take this into account suffer from numerical
instabilities. This issue is revisited in section 7.
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5.3. Extended Least Squares. The projection algorithm (59) allows the user to
choose the relaxation parameters α

(ν)
m and weightings γ

(ν)
m at each iteration ν. This

begs the question as to what the optimal choice of these parameters might be. Under
the change of variables (61), one is similarly confronted with the issue of optimally
selecting the step lengths λ(ν) and weights β

(ν)
m . Step lengths are discussed in section

6.1. In this section we consider an approach to optimal weight selection. This requires
an extension of (66) to accommodate variable weights.

Following the work of Bell, Burke, and Shumitzky [13], define the objective

(76) Lε[u,β] =
M∑
m=0

− ln(2πβm) + βm (J [Fm[u];ψm, ε] + Gm[u]) ,

where β = (β0, . . . , βM ). This objective corresponds to the negative log likelihood
measure for normally distributed data errors. The weight βm is the variance of the
data set ψm. The functional Gm[u] is a regularization term. For the purposes of
illustrating the connection between projection methods and line search methods, the
regularization that is used is simply a nonnegative constant Gm[u] = cm > 0. Each
data set can be matched exactly using nonparametric techniques such as projection
methods. The constant reflects prior belief about the reliability of the M data sets
relative to one another. Given the data ψm, the estimates for the true value of the
vector of parameters u ∈ L2[R2,R2] and the vector of variances β ∈ RM+ are obtained
as the solution to the problem

minimize Lε[u,β]

over u ∈ L2[R2,R2], 0 < β.

A Benders decomposition is applied to solve for the optimal vector of weights,
β∗, in terms of u.

Lemma 5.1. Let Lε : L2[R2,R2] × RM+1
+ → R be defined by (76) and let u ∈

L2[R2,R2]. Let

β∗[u] ≡ (β0∗[u], . . . , βM∗[u]) ,

where

(77) βm∗[u] = (J [Fm[u];ψm, ε] + cm)−1 for m = 0, . . . , M.

If cm > 0, then Lε[u,β∗[u]] ≤ Lε[u,β] for all β > 0.
Proof. This is nearly identical to Lemma 1 of Bell, Burke, and Shumitzky [13].

Their proof also holds in this setting.
Substituting β∗[u] for β into (76) yields

Lε[u,β∗] =
M∑
m=0

[− ln(2π) + ln(βm∗ + cm) + 1] .

Dropping the constants yields the reduced objective

(78) Rε[u] =
M∑
m=0

ln(J [Fm[u];ψm, ε] + cm).
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The corresponding optimization problem is

minimize Rε[u](79)

over u ∈ L2[R2,R2].

For Fréchet differentiable J , the objective above is Fréchet differentiable with deriva-
tive given by

R′ε[u][w] =
M∑
m=0

(J [Fm[u];ψm, ε] + cm)−1 (J [·;ψm, ε] ◦ Fm)′ [u][w],

where, by (73) and (77),

(80) ∇Rε[u] = 2
M∑
m=0

βm∗[u]F∗m

[
r[Fm[u];ψm, ε]

|Fm[u]|2 + 2ε2

(|Fm[u]|2 + ε2)3/2Fm[u]

]
.

This is simply the Fréchet derivative of the perturbed least squares objective scaled by
the inverse of the perturbed squared set distance plus some constant. The complete
calculation can be found in Appendix B.

6. Numerical Methods. In this section we present two basic numerical ap-
proaches for the minimization of the perturbed least squares objective, Eε, and the
perturbed extended least squares objective, Rε. The first algorithm is a simple first-
order line search method, while the second is a trust region algorithm that incorporates
curvature information using limited memory techniques.

6.1. Line Search. Let F : L2[R2,R2] → R be Fréchet differentiable. Given an
initial estimate of the solution u(0), a descent algorithm for the minimization of F
generates iterates u(ν) by the rule

u(ν+1) = u(ν) + λ(ν)w(ν),

where

(81) w(ν) ∈ D[u(ν)] =
{
w ∈ L2[R2,R2]

∣∣∣F ′[u(ν)][w] < 0
}

and λ(ν) is a well-chosen step length parameter.
There are several methods for computing a suitable step length [89]. The criteria

we use is the sufficient decrease condition:

F [u(ν) + λ(ν)w(ν)] ≤ F (ν) + ηλ(ν)
〈
∇F (ν), w(ν)

〉
,(82)

where 0 < η < 1 is a fixed parameter and

F (ν) ≡ F [u(ν)] and ∇F (ν) ≡ ∇F [u(ν)].

Theorem 6.1 (see Appendix B). Let F : L2[R2,R2] → R be Fréchet differen-
tiable and bounded below. Consider the following algorithm.
Step 0: (Initialization) Choose γ ∈ (0, 1), η ∈ (0, 1), c ≥ 1, and u(0) ∈ L2[R2,R2],

and set ν = 0.
Step 1: (Search Direction) If D[u(ν)] = ∅, STOP; otherwise, choose w(ν) ∈ D[u(ν)]∩

cB, where D is defined by (81) and B is the closed unit ball in L2[R2,R2].
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Step 2: (Step Length) Set

λ(ν) ≡ maximize γs

subject to s ∈ N ≡ {0, 1, 2, . . . }

with F [u(ν) + γsw(ν)]− F (ν) ≤ ηγs
〈
∇F (ν), w(ν)

〉
.

Step 3: (Update) Set u(ν+1) ≡ u(ν) + λ(ν)w(ν) and ν = ν + 1. Return to Step 1.
If ∇F is globally Lipschitz continuous, then the sequence {u(ν)} satisfies〈

∇F (ν), w(ν)
〉
→ 0.

In particular, if w(ν) is chosen so that

w(ν) = − c̃

‖∇F (ν)‖∇F (ν)

for 0 < c̃ ≤ c, then

‖∇F (ν)‖ → 0.

Since for noisy examples it is not known a priori what the optimal value of the
objective is, the algorithm in Theorem 6.1 provides the norm of the gradient as a
suitable exit criterion.

6.2. Acceleration Techniques: Limited Memory BFGS with Trust Regions.
Ideally, for a twice differentiable function one would want to use Newton’s method
near the solution. In “nonparametric” techniques, however, explicit calculation of the
Hessian is often impossible. For example, if the objective F [u] is discretized into a
pixel basis for a 512×512 image, the number of unknowns is 2∗218. The corresponding
Hessian, assuming it exists, is a dense 219 × 219 matrix. Limited memory methods
provide an efficient way to use approximate Hessian information without explicitly
forming the matrix. These methods are derived from matrix secant methods that
approximate curvature information of the objective function from preceding steps
and gradients. Limited memory methods are made robust with the introduction of
trust regions. For a thorough treatment of matrix secant and trust region methods,
see [33].

Denote the discretized unknown functions u by the same variable with the two
dimensions stacked into one column vector, that is, u ∈ Rn for some integer n. Matrix
secant iterates are generated by

(83) u(ν+1) = u(ν) −
(

M (ν)
)−1

∇F (ν),

where M (ν) ∈ Rn×n is an approximation to ∇2F (ν) satisfying the matrix secant
equation:

(84) M (ν)(u(ν−1) − u(ν)) = ∇F (ν−1) −∇F (ν).

Infinitely many solutions are possible since (84) is a system of n equations in n2

unknowns. Common choices for the secant approximation M (ν) are Broyden’s update,
the symmetric-rank-one (SR1) update, and the Broyden–Fletcher–Goldfarb–Shanno
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(BFGS) update. Limited memory techniques for BFGS matrices are reviewed here;
however, similar methods for alternative updates are possible.

The BFGS update to the true Hessian is given by

M (ν) = M (ν−1) +
y(ν)y(ν)T

y(ν)Ts(ν)
− M (ν−1)s(ν)s(ν)TM (ν−1)

s(ν)TM (ν−1)s(ν)
, ν = 1, 2, . . . ,

where

(85) y(ν) ≡ ∇F (ν+1) −∇F (ν), s(ν) ≡ u(ν+1) − u(ν).

The BFGS approximation is symmetric and positive definite as long as s(ν)Ty(ν) > 0
and M (ν−1) is symmetric and positive definite.

Define

S(ν) ≡ [s(ν−m), . . . , s(ν−1)] ∈ Rn×m and Y (ν) ≡ [y(ν−m), . . . ,y(ν−1)] ∈ Rn×m.

Limited memory techniques involve generating at each iteration the BFGS matrix
from the m most recent of the pairs {yi, si}

ν−1
i=1 and generating matrix M (0,ν). Typi-

cally m ∈ [5, 10]. The choice of M (0,ν) most often used is M (0,ν) = µ(ν)I, where I is
the identity matrix and µ(ν) is some scaling (see [108]). With this generating matrix,
limited memory BFGS (L-BFGS) is equivalent to doing m steps of conjugate gradient
at each iteration. It can be shown that the complexity of calculating the L-BFGS
update (83) is on the order of mn + m3. See [22] for details.

Acceptance of the step to the next iterate depends on the accuracy of the quadratic
approximation

(86) F̃ (ν+1) = F (ν) +∇F (ν)T · s(ν) +
1
2
s(ν)TM (ν)s(ν)

against the true function value F (ν+1). A measurement of this accuracy is given by
the ratio of the actual change in the function value between iterates u(ν) and u(ν+1)

and the predicted change,

(87) ρ(s(ν)) =
actual change(ν)

predicted change(ν) = − F (ν) + F (ν+1)

∇F (ν)T · s(ν) + 1
2s

(ν)TM (ν)s(ν)
.

If the ratio is below some tolerance η̃, then the step is restricted. A line search
strategy such as the one given in Theorem 6.1 can be employed to find an acceptable
step size; however, this often requires several function evaluations. In applications
such as nonparametric phase retrieval, function and gradient evaluations are the most
expensive part of each iteration, thus we consider alternative strategies for finding
acceptable steps. We have found in practice that a single application of a trust region
strategy is usually all that is required to find a step that satisfies (82). A trust region
is a ball around the current iterate u(ν) within which the quadratic approximation is
reliable.

The trust region subproblem with trust region radius ∆(ν) is given by

TR(∆(ν)) minimize ∇F (ν)Ts+
1
2
sTM (ν)s,

‖s‖ ≤ ∆(ν).
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Using compact representations of the L-BFGS approximation derived by Byrd, No-
cedal, and Schnabel in [22], Burke and Wiegmann [19] derived a compact repre-
sentation of the inverse of the matrix τI + M (ν) required to solve the trust region
subproblem without actually forming the matrix. This inverse can be computed with
the same order of computational complexity as the computation of

[
M (ν)

]−1
. With

the proper scaling, µ(ν), the trust region is required only a small fraction of the time.
This is consistent with observations noted in [19]. The scaling is key to the success
of the algorithm. There are many proposals for the scaling µ(ν) [93]. We employ the
scaling suggested by Shanno and Phua [108]:

(88) µ(ν) =
y(ν−1)Ty(ν−1)

s(ν−1)Ty(ν−1)
.

As in [19], we default to the unconstrained L-BFGS method at the beginning of
each iteration, that is, ∆(ν)

0 =∞ in TR(∆(ν)). The trust region is invoked only if the
ratio ρ(s(ν)) falls below a given tolerance, indicating that the quadratic model (86) is
not reliable.

Algorithm 6.2 (Limited Memory BFGS with Trust Regions).
Step 0: (Initialization) Choose η̃ > 0, ζ > 0, m ∈ {1, 2, . . . , n}, and u(0) ∈ Rn,

and set ν = m = 0. Compute ∇F (0), F (0), and ‖∇F (0)‖.
Step 1: (L-BFGS step) If m = 0, compute u(ν+1) by some line search algorithm (e.g.,

the algorithm in Theorem 6.1); otherwise compute s(ν) = −
(
M (ν)

)−1∇F (ν),
where M (ν) is the L-BFGS update [22], u(ν+1) = u(ν) + s(ν), F (ν+1), and the
predicted change (86).

Step 2: (Trust Region) If ρ(s(ν)) < η̃, where ρ is given by (87), reduce the trust
region ∆(ν), solve the trust region subproblem for a new step s(ν) [19], and
return to the beginning of Step 2. If ρ(s(ν)) ≥ η̃, compute u(ν+1) = u(ν)+s(ν)

and F (ν+1).
Step 3: (Update) Compute ∇F (ν+1), ‖∇F (ν+1)‖, y(ν) from (85), and s(ν)Ty(ν). Dis-

card the vector pair {s(ν−m),y(ν−m)} from storage. If s(ν)Ty(ν) ≤ ζ, set
m = max{m − 1, 0}, ∆(ν+1) = ∞, µ(ν+1) = µ(ν), and M (ν+1) = M (ν)

(i.e., shrink the memory and don’t update); otherwise set µ(ν+1) = y(ν)Ty(ν)

s(ν)Ty(ν) ,

∆(ν+1) =∞, m = min{m +1, m}, add the vector pair {s(ν),y(ν)} to storage,
and update M (ν+1) [22]. Set ν = ν + 1 and return to Step 1.

Remark 6.3. With a slight modification, Algorithm 6.2 can be used as a back-
tracking line search algorithm, where m = 1 and M (ν) = µ(ν)I for all ν.

7. Numerical Results. This section details the results of numerical experiments
comparing the average performance of line search and L-BFGS methods with pro-
jection methods of similar type for noiseless and noisy data for the phase retrieval
problem.

The aperture of the pupil consists of seven meter-class panels shown in Figures 6a
and 7. This design is one of several configurations being studied at NASA’s Goddard
Space Flight Center for use on the NGST, Hubble’s replacement. To recover the
phase, three diversity images shown in Figures 6b–6d are used, two out-of-focus and
one in-focus. From this example the advantage of choosing a pixel basis over some pa-
rameterization (for example, Zernike polynomials [133, 80, 14, 15]) is apparent. Most
obvious is the irregular shape of the pupil and the phase jumps across the separate
panels, which make it difficult to find an orthogonal parameterization [114]. Another
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Fig. 6 Aperture (a) and noiseless image data (b)–(d) for a segmented pupil on a 512 by 512 grid.
The three diversity images are the optical system’s response to a point source at focus and
plus/minus defocus, respectively.

advantage of the pixel basis is that it allows for the most accurate representation of
the domain without introducing any regularization implicit in less precise parameter-
izations. The noisy data shown in Figure 8 generated the results given in Figure 9.
Using a pixel basis the methods recover artifacts such as the Gibbs phenomenon as-
sociated with the filtering of the data. Issues surrounding filtering and regularization
of the data are independent of the numerical method and depend on the types of
observations being made [77].

Two projection algorithms are compared to line search and L-BFGS algorithms
for the least squares and extended least squares objectives (68) and (79). The first
projection algorithm is evenly averaged (γ(ν)

m = 1/4 for all ν and m = 0, . . . , 3) and
unrelaxed (αm = 1 for all ν and m = 0, . . . , 3) (algorithm (59)). This algorithm is
denoted AP for averaged projections. The second projection algorithm is an unre-
laxed implementation of algorithm (60), denoted SP for sequential projections. In
this implementation the pupil domain projection is computed at every second iterate.
This is consistent with higher end implementations that compute the pupil projec-
tion more often because it is less computationally expensive than the image domain
projections. The projection algorithms are compared to line search algorithms for the
evenly weighted least squares measure Eε (LS ) and the extended least squares reduced
objective Rε (ELS ). An additional comparison is made to an L-BFGS trust region
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Fig. 7 Real and imaginary parts, (a) and (b), respectively, of an aberrated wavefront for the seg-
mented pupil recovered from three noiseless diversity point source images on a 512 by 512
grid. The wavefront phase is unwrapped (c) and compared to the true phase. The wavefront
error (d) is in units of wavelength.

algorithm applied to the reduced objective Rε (L-BFGS ). See Algorithm 6.2 and Re-
mark 6.3. The value of the constants in Rε is taken to be cm = 1 for m = 0, . . . , 3.
For the limited memory implementation, a memory length of 4 was chosen.

The formulation of the projections in (58) is numerically unstable. There are
several sources of this instability, the most elementary being the possibility of division
by zero. In order to achieve a reasonable comparison of computational complexity
to line search methods applied to Eε or Rε, the projections are calculated naively
as prescribed by (54). We observe that about 6% of the projection runs are exited
due to divide-by-zero errors. A second source of instability arises when ΠQm [u] is
multivalued. This is easily remedied by taking a selection π[u;ψm, θ] given by (54).
While it is unlikely that an iterate will be exactly zero, how one interprets machine zero
in this context is an important consideration for numerical stability. In a neighborhood
of zero corresponding to machine precision, the phase and amplitude of the estimated
wavefront at a grid point u(xj) are not reliable. If at the same point the data ψm(xj)
is relatively large, then, even though the projection ΠQm [u] is single valued, the error
will be amplified. This error amplification could result in stagnation of projection
algorithms. About 6% of our trials with projection algorithms resulted in little or no
progress from the initial guess. Since the norm of the gradient of a slightly perturbed
E in these regions was found to be well away from zero, we attribute this outcome
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Fig. 8 Noisy point-spread function (a) for a segmented pupil on a 512 by 512 grid. The recovered
point-spread function (b) was first filtered with a Fourier window filter before processing by
the wavefront reconstruction algorithm. Frame (c) shows the true, unaberrated point-spread
function.

to the instability due to phase error amplification. Nonconvergence due to divide-by-
zero errors and possible phase error amplification was discounted from the averages
computed in Table 1. That is, approximately 12% of the runs for which the projection
algorithm fails are not included in Table 1. On the other hand, all of the runs for the
analytic algorithms converged and are included in the table.

The behavior of the squared set distance error for a sample run for each of the
algorithms is illustrated in Figure 10. Each of the algorithms behaves qualitatively
the same, as would be expected. Each spends the majority of time in a flat region
where little progress is made until a neighborhood of a solution is found, and error
reduction in all cases is rapid. In the flat region the gradient and curvature of the
objective are very small. This region corresponds to what is described in projection
methods as a “tunnel.” The notoriously slow convergence of projection methods is
easily understood in terms of the notoriously slow convergence of first-order methods.
The limited memory implementation does much better in the flat region, though it
too is slowed considerably.

The behavior of the algorithms varies considerably depending on the initializa-
tion, hence the average performance of the algorithms over 30 random initial guesses
is tabulated in Table 1. The initial guesses all have unit magnitude in the pupil do-
main with random phase uniformly distributed on [0, 2π]. In Table 1 average cpu
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Fig. 9 The real and imaginary parts, (a) and (b), respectively, of the aberrated wavefront for the
segmented pupil recovered from three filtered noisy diversity point source images on a 512
by 512 grid. The wavefront phase (c) is unwrapped and compared to the true phase. The
wavefront error (d) is in units of wavelength. The ridges in the wavefront error are due to
the Gibbs phenomenon associated with the noise filter.

Table 1 Relative cpu time of projection and analytic algorithms averaged over 30 random trials
with the least squares (LS) algorithm as baseline. Outliers are not included in the totals
for algorithms with a ∗.

No noise Noise
E ≤ 20e−9 E ≤ 0.05 E ≤ 0.0138

Mean Low High Mean Low High Mean Low High

LS 248 99 970 161 68 483 222 159 518

AP∗ 2.29 99 1680 2.7 126 1765 2.3 162 1808

SP∗ .96 72 591 1.19 35 746 — — —

ELS .66 74 365 .77 35 258 .84 76 304

L-BFGS .29 41 196 .44 37 159 .47 72 182

times, along with maxima and minima of the experiments, are compared using the
least squares (LS) algorithm as a baseline; the results for the other algorithms are
normalized by the least squares performance given at the far left of the table. The
standard deviations reflect the robustness of the algorithm and consistency of per-
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Fig. 10 Comparison of algorithms applied to the example shown in Figure 7. The algorithms have
different objectives, so we compare the behavior of the squared set distance error for each.

formance. Note that the averaged projections (AP) algorithm is analogous to taking
ε = 0 in the objective Eε defined by (68). The difference between this and a gradient
descent algorithm is that the step length is not optimized. Overflow problems and
instability aside, the difference between the performance of AP and least squares can
be regarded as a measure of the value of the step length in algorithm performance.
With the exception of the SP algorithm, on average each algorithm requires the same
number of function evaluations per iteration. The limiting calculation for this appli-
cation is the Fourier transform, which is accomplished with the fast Fourier transform
(FFT) algorithm. Each squared set distance error evaluation requires one FFT per
diversity image. Each gradient or projection calculation requires two FFTs per di-
versity image. The SP algorithm requires three fewer FFTs per iteration than the
line search or AP algorithms, since only one projection is calculated at each itera-
tion. Hence the per iteration cost of the SP algorithm is 0.6 times that of the other
algorithms. For L-BFGS and least squares implementations, when the trust region is
invoked or when backtracking is required to generate the proper step size, additional
function evaluations are needed. When the trust region is restricted, usually only
one restriction is necessary when the scaling (88) is used. For backtracking, usually
three backtracking steps are required. The added computational cost for implement-
ing limited memory methods is not noticeable in cpu time. The average time per
iteration for L-BFGS methods is 1.047 seconds for a 512× 512 image using a parallel
cluster of 16 processors, compared to 1.017 seconds for line search methods. There
is, however, a considerable difference in the memory requirements depending on how
many previous steps are stored.

The performance of the algorithms on apodized (i.e., filtered) noisy data shown in
Figure 8 is very similar in character to the noiseless experiments. Since the methods
use a pixel basis, all of the algorithms attempt to match the data exactly, including
the noise. Filtering for data analysis is treated as a separate issue from filtering for
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numerical efficiency or stability. While it has been noted that other noise models
are more appropriate [95], the noise in these experiments is additive and normally
distributed, consistent with the least squares performance measure. The squared set
distance error E = 0.050 is the outer edge of the neighborhood of the solution, i.e.,
the “knee” in the error reduction shown in Figure 10. Once inside this neighborhood,
error reduction is rapid in all cases. With the exception of the SP algorithm, error
reduction flattens out at E = 0.0138. In every trial the SP algorithm fails to reduce the
error below E = 0.02. In practice, however, this difference between the SP “solution”
and that of the other algorithms does not result in noticeable differences in the eyeball
norm for the phase estimate.

8. Conclusion. At their very best, projection methods will behave as well as com-
parable line search methods. Until now the relaxation parameters α

(ν)
m and weights

γ
(ν)
m for iterative transform algorithms such as (60) have been chosen in an ad hoc

manner independent of any performance criterion. Thus, traditional iterative trans-
form algorithms could behave much worse than line search methods for which suitable
parameters reinterpreted as λ(ν) and β

(ν)
m in (61) have been extensively studied.

In section 3 of this work we provided a derivation of the optical phase retrieval
problem from first principles. In section 4 we reviewed geometric solution techniques,
among which are iterative transform techniques. Many fundamental questions re-
garding convergence of projection algorithms remain. When the intersection of even
convex constraints is empty, convergence is an open question. This is often the case
in image processing with noisy data. When algorithms stagnate it is impossible to
tell if the method has found a local solution or is stuck in what is often referred to
as a tunnel. We noted that extensions to projection algorithms have been proposed
to overcome stagnation [43]. These methods seem to be very robust and efficient in
practice [116]. Their success warrants precise mathematical analysis, which has yet
to be done. In section 5 we reviewed analytic perturbation approaches to the problem
and quantified their relationship to geometric methods. Two performance measures
were considered, and their associated optimization problems were formulated in (66)
and (79). The first measure is a perturbed weighted least squares measure. The sec-
ond is a new approach, which we call extended least squares. This objective allows us
to adaptively correct for the relative variability in the diversity measurements, ψm.
In section 6 we reviewed two numerical methods. The first was a standard line search
algorithm for which convergence to first-order necessary conditions for optimality was
proven for the perturbed least squares and extended least squares objectives. The
line search method is accelerated by a limited memory approach, which allows us to
efficiently approximate curvature information in large problems. The use of limited
memory techniques for phase retrieval and deconvolution has appeared in recent work
[76, 122]. The method is made robust with a novel use of explicit trust regions. The
trust region strategy also allows for precise scaling of the step size, thus avoiding costly
function evaluations that are common to more trial-and-error–type methods such as
implicit trust regions and backtracking. The resulting algorithm was given as Algo-
rithm 6.2. In section 7 we compared the performance of the different approaches on
noiseless and noisy data. The results indicate that while certain implementations of
iterative transform algorithms can be competitive (see the SP algorithm), their perfor-
mance varies more from one example to the next than the algorithms based on analytic
techniques. Other implementations of the iterative transform algorithm such as AP
are clearly not competitive approaches. Limited memory and trust region techniques
reduce the variability of performance without adding significant computational cost.
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Further cpu speed-up is possible with the introduction of multiresolution tech-
niques as discussed in [76, 75, 90]. These are similar to windowing techniques used
for noise filtering. In tests with MATLAB we have achieved 17-fold speed-up in time
to convergence with the use of these techniques. With optimal parallelization and
multiresolution techniques we expect that the per iteration cpu time for a cluster of
16 PCs with three 512× 512 diversity images could be brought down, conservatively,
to a tenth of a second.

The extended least squares approach presented in section 5.3 has great potential
for future research. In our implementations we chose the simplest possible regularizing
functional in (76), that is, Gm[u] = const. Even this simple choice had a dramatic
effect on the performance of the algorithms. This opens the door to a search for an
optimal Gm[u]. There are two different ways to interpret Gm[u]; the first and perhaps
most natural is statistical, the second is purely algorithmic. Under the statistical
interpretation, Gm[u] is viewed as the variance or spatial correlation of the data
sets. The method is very general and applies to a wide variety of observations and
statistical models. Under the algorithmic interpretation, Gm[u] is a regularizing term
in a penalty function and can be used to tackle the problem of algorithm stagnation
in the middle iterations (see Figure 10). The adaptive weighting strategy allows one
to include several different metrics in the same objective, one that is more effective
for the middle regions and one that is more effective near a local solution.

Other directions for research include partial function evaluation algorithms similar
to the SP algorithms discussed in section 4. The trust region methodology reviewed
in section 6.2 is a first step to stably implementing this strategy. Regularization tech-
niques are also central to numerical methods for solving the more general problem
of simultaneous wavefront reconstruction and deconvolution, known as the phase di-
versity problem. Here, both the wavefront aberration as well as the field source, or
object, are unknown. The theory developed here is intended as a starting point for
numerical solutions to both the phase retrieval problem and the more general phase
diversity problem.

Appendix A. Properties of Constraint Sets.
Proof of Property 4.1. First we show that the set Q0 is not convex. If u belongs

to Q0, then so does u′ = −u . Thus for any nontrivial convex combination of u
and u′,

u′′ ≡ λu+ (1− λ)u′ = (2λ− 1)u

for λ ∈ (0, 1) and the function u′′ does not belong to Q0 since

|u′′(x)| = |(2λ− 1)|ψ0(x) < ψ0(x) ∀ x such that ψ0(x) > 0 and λ ∈ (0, 1).

Next we show that Q0 is not weakly closed. Choose u ∈ Q0 and define the
sequence {un} by

un(x) = R∗(R(u(x)) exp[−2πin · x]),

where n = (n, n).
Clearly un ∈ Q0 for all n. Set

û = R∗[R[u]∧] and ûn = R∗[R[un]∧].

The transformed sequence {ûn} is related to the Fourier transform of R[u] by

R[ûn] = [R(u(x)) exp[−2πin · x]]∧ = R[û](ξ + n).
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For any u′ ∈ L2[R2,R2] the standard inner product in L2 yields

〈un,u′〉 = 〈R[u] exp[−2πin · x],R[u′]〉
= [R[u]R[u′]]∧(n).

By the Riemann–Lebesgue lemma [66, p. 297],

[R[u]R[u′]]∧(n)→ 0 as n →∞.

But for all n, ‖un‖ = ‖u‖ 	= 0.
The same properties also hold for the sets Qm for m = 1, 2, . . . , M , since Fm is a

unitary bounded linear operator.

Appendix B. Analytic Properties of the Perturbed Objective. In the
proofs that follow, it suffices to consider integral functionals of the form J given
in (70).

Theorem B.1. Let f : Rn × Rm → R satisfy the following:
(1) f(·, u(·)) is integrable on Rn for all u(·) ∈ L2[Rn,Rm];
(2) for all x ∈ Rn, f(x, u) is Gâteaux differentiable with respect to u as a function

on Rn × Rm with Gâteaux derivative denoted by

Duf(x, u);

(3) there exists a K such that for all x, Duf(x, ·) is globally Lipschitz on Rm with
Lipschitz constant K.

Define the integral functional J : L2[Rn,Rm]→ R by

J [u] =
∫
Rn

f(x, u(x)) dx.

Then J [u] is Fréchet differentiable as a function on L2[Rn,Rm] with Fréchet derivative

(89) J ′[u][w] =
∫
Rn

Duf(x, u(x))(w(x))dx.

Moreover, the Fréchet derivative J ′ is Lipschitz continuous on L2[Rn,Rm] with con-
stant K.

Proof.∣∣∣∣J [u + w]− J [u]−
∫
Rn

Duf(x, u(x))(w(x))dx

∣∣∣∣
≤
∫
Rn
|f(x, u(x) + w(x))− f(x, u(x))−Duf(x, u(x))(w(x))| dx.

For fixed x,

|f(x, u(x) + w(x))− f(x, u(x))−Duf(x, u(x))(w(x))|

≤
∫ 1

0
|Duf(x, u(x) + τw(x))(w(x))−Duf(x, u(x))(w(x))| dτ

≤
∫ 1

0
|Duf(x, u(x) + τw(x))−Duf(x, u(x))| |w(x)| dτ.
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Since Duf is globally Lipschitz continuous with constant K, for all u and x

|Duf(x, u(x) + τw(x))−Duf(x, u(x))| ≤ Kτ |w(x)| ,

thus∫ 1

0
|Duf(x, u(x) + τw(x))(w(x))−Duf(x, u(x))(w(x))| dτ ≤

∫ 1

0
Kτ |w(x)|2dτ

=
K

2
|w(x)|2,

and hence∣∣∣∣J [u + w]− J [u]−
∫
Rn

Duf(x, u(x))(w(x))dx

∣∣∣∣ ≤ ∫
Rn

K

2
|w(x)|2dx

=
K

2
‖w‖2.

Consequently, J is Fréchet differentiable with J ′[u][w] given by (89).
Since L2 is a Hilbert space, the kernel of the integral operator J ′[u] is equal to

Duf(·, u(·)). Thus if Duf(x, u(x)) is globally Lipschitz with respect to u with constant
K for all x, then J ′[u] is globally Lipschitz with constant K.

Remark B.2. Conditions (2) and (3) in Theorem B.1 imply that, for all x ∈
Rn, the integrand f(x, u) is Fréchet differentiable with respect to u as a function
on Rn × Rm. It is not true in general that Gâteaux differentiability implies Fréchet
differentiability. See [27, Ex. 1.11.20] for a counterexample. Moreover, it is not true
in general that a Fréchet differentiable function has a globally Lipschitz continuous
Fréchet derivative. We state Theorem B.1 in terms of Gâteaux differentiable functions
instead of Fréchet differentiable functions because it is often easier to show Gâteaux
differentiability than it is to show Fréchet differentiability.

Remark B.3. Since L2[Rn,Rm] is a Hilbert space, the derivative of J [u] also
belongs to L2[Rn,Rm]. We denote this mapping by ∇J [u] = Duf(·, u(·)).

Denote the space of linear mappings from R2 to R by L(R2,R). From elementary
vector calculus, the function r2(u; b, ε) defined by (69) is Gâteaux differentiable with
respect to u for ε > 0. In fact, r2(u; b, ε) is analytic. The derivative is given by

(90) Dur2(u; b, ε) ≡ 2r(u; b, ε)Dur(u; b, ε),

where

(91) Dur(u; b, ε) =
|u|2 + 2ε2

(|u|2 + ε2)3/2u
T .

The next lemma shows that Dur2(u; b, ε) is globally Lipschitz continuous.
Lemma B.4. The derivative Dur2 for r defined by (69) is globally Lipschitz

continuous on R2 with global Lipschitz constant

(92) K = 16 +
12
ε
|b|.
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Proof. The setting here is finite dimensional. The finite-dimensional norm is
assumed to be the 2-norm and is denoted by | · |. From (90)–(91), for u,v ∈ R2 ,

D(r2(u; b, ε)) = 2

(
|u|2 + 2ε2

)
r(u; b, ε)

(|u|2 + ε2)3/2 u

= 2
[
|u|2u
|u|2 + ε2 + ε2 |u|2u

(|u|2 + ε2)2 −
bu

(|u|2 + ε2)1/2 − ε2 bu

(|u|2 + ε2)3/2

]
.

(93)

We proceed by calculating the Lipschitz constant for each of the terms in (93). Each
of these terms takes the form

|u|pu
(|u|2 + ε2)q

.

The Lipschitz constant is obtained by bounding terms of the form∣∣∣∣ |u|pu
(|u|2 + ε2)q

− |v|pv
(|v|2 + ε2)q

∣∣∣∣ .
Add and subtract |v|pu

(|v|2+ε2)q to obtain∣∣∣∣ |u|pu
(|u|2 + ε2)q

− |v|pv
(|v|2 + ε2)q

∣∣∣∣ = ∣∣∣∣( |u|p
(|u|2 + ε2)q

− |v|p
(|v|2 + ε2)q

)
u+

|v|p
(|v|2 + ε2)q

(u− v)
∣∣∣∣

≤
∣∣∣∣ |u|p(|v|2 + ε2)q − |v|p(|u|2 + ε2)q

(|u|2 + ε2)q(|v|2 + ε2)q
u

∣∣∣∣+ |v|p
(|v|2 + ε2)q

|v − u|.

Unfortunately this general form must be analyzed case by case. We examine three
different cases.

Case 1. p = 2, q = 1:

∣∣∣∣ |u|2u
|u|2 + ε2 −

|v|2v
|v|2 + ε2

∣∣∣∣ ≤ ∣∣∣∣ |u|2(|v|2 + ε2)− |v|2(|u|2 + ε2)
(|u|2 + ε2)(|v|2 + ε2)

u

∣∣∣∣+ |v|2
|v|2 + ε2 |v − u|

≤ ε2
∣∣∣∣ |u|2 − |v|2
(|u|2 + ε2)1/2(|v|2 + ε2)

∣∣∣∣+ |u− v|,
where we have used the inequality

(94)

∣∣∣∣∣ u

(|u|2 + ε2)1/2

∣∣∣∣∣ ≤ 1.

Without loss of generality assume that |v| ≤ |u|. Then

(95) |u|2 − |v|2 ≤ 2|u| |v − u| for |v| ≤ |u|.

Using this, inequality (94), and

(96)
1

|v|2 + ε2 ≤
1
ε2
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yields the bound∣∣∣∣ |u|2u
|u|2 + ε2 −

|v|2v
|v|2 + ε2

∣∣∣∣ ≤ (
2|u|ε2

(|u|2 + ε2)1/2(|v|2 + ε2)
+ 1

)
|v − u|

≤ 3|v − u|.(97)

Case 2. p = 2, q = 2: As in case 1, assume without loss of generality that
|v| ≤ |u|. Then the inequalities (94)–(96) yield∣∣∣∣ |u|2u
(|u|2 + ε2)2 −

|v|2v
(|v|2 + ε2)2

∣∣∣∣ ≤ ∣∣∣∣ |u|2(|v|2 + ε2)2 − |v|2(|u|2 + ε2)2

(|u|2 + ε2)2(|v|2 + ε2)2 u

∣∣∣∣+ |v|2
(|v|2 + ε2)2 |v − u|

=
∣∣∣∣ (|u|2|v|2 − ε4)(|v|2 − |u|2)

(|u|2 + ε2)2(|v|2 + ε2)2 u

∣∣∣∣+ |v|2
(|v|2 + ε2)2 |v − u|

≤
(

2|u|2
(
|u|2|v|2 + ε2

)
(|u|2 + ε2)2(|v|2 + ε2)2 +

1
ε2

)
|v − u|

≤
(

2
ε2

(
|u|2|v|2 + ε2

)
(|u|2 + ε2)(|v|2 + ε2)

+
1
ε2

)
|v − u|

≤ 5
ε2 |v − u|.(98)

Case 3. p = 0, q = n/2:∣∣∣∣∣ u

(|u|2 + ε2)n/2
− v

(|v|2 + ε2)n/2

∣∣∣∣∣
≤
∣∣∣∣ (|v|2 + ε2)n/2 − (|u|2 + ε2)n/2

(|u|2 + ε2)n/2(|v|2 + ε2)n/2
u

∣∣∣∣+ 1

(|v|2 + ε2)n/2
|u− v|

≤
∣∣∣∣∣
(
|v|2 + ε2

)n/2 − (
|u|2 + ε2

)n/2
(|u|2 + ε2)(n−1)/2 (|v|2 + ε2)n/2

∣∣∣∣∣+ 1
εn
|u− v| .

The last expression uses inequalities (94) and (96). By the mean value theorem there
exists a w ∈ [|v|, |u|] such that(

|v|2 + ε2)n/2 − (
|u|2 + ε2)n/2 = nw

(
w2 + ε2)n/2−1

(|v| − |u|)

and so ∣∣∣(|v|2 + ε2)n/2 − (
|u|2 + ε2)n/2∣∣∣ ≤ nw

(
w2 + ε2)n/2−1 |v − u|

≤ n
(
w2 + ε

)(n−1)/2 |v − u|.

This yields∣∣∣∣∣
(
|v|2 + ε2

)n/2 − (
|u|2 + ε2

)n/2
(|u|2 + ε2)(n−1)/2 (|v|2 + ε2)n/2

∣∣∣∣∣ ≤
∣∣∣∣∣ n|v − u|

(
w2 + ε

)(n−1)/2

(|u|2 + ε2)(n−1)/2(|v|2 + ε2)n/2

∣∣∣∣∣
≤ n

εn
|v − u|.
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Finally,

(99)

∣∣∣∣∣ u

(|u|2 + ε2)n/2
− v

(|v|2 + ε2)n/2

∣∣∣∣∣ ≤ n + 1
εn

|v − u|.

The bounds (97)–(98) and the bound (99) for n = 1, 3 yield the following global
bound, which completes the proof:∣∣Dr2(u; b, ε)−Dr2(v; b, ε)

∣∣ ≤ (
16 +

12
ε
|b|
)
|u− v|.

The constant K given in (92) is the pointwise Lipschitz constant for the Gâteaux
derivative of the functional r2(u(x); b(x), ε). If b ∈ L∞, then for all x

(100)
∣∣Dur2(u(x); b(x), ε)−Dur2(v(x); b(x), ε)

∣∣ ≤ (
16 +

12
ε
‖b‖∞

)
|u(x)− v(x)|.

We can therefore apply Theorem B.1 to the integral operator J defined by (70) for
ε > 0 to obtain the Fréchet derivative

J ′[u; b, ε][w] =
∫
R2

(
Dur2(u(x); b(x), ε), w(x)

)
dx,

where (·, ·) denotes the standard finite-dimensional inner product. Equations (69),
(90), and (91) yield the gradient of J at u

(101) ∇J [u; b, ε] = 2

(
|u|2

(|u|2 + ε2)1/2 − b

)
|u|2 + 2ε2

(|u|2 + ε2)3/2u.

By Lemma B.4, (100), and Theorem B.1, ∇J [u; b, ε] is globally Lipschitz continuous
with global Lipschitz constant

(102) K∇J =
(
16 +

12
ε
‖b‖∞

)
.

The preceding results extend immediately to the perturbed squared set distance
error Eε[u] defined by (71). Since Fm[u] defined by (47) and (48) is a linear operator
on L2, it is Fréchet differentiable there with Fréchet derivative given by

Fm[u]′[w] = Fm[w].

For u and ψm satisfying Hypothesis 3.1, Theorem B.1 together with the chain rule
for Fréchet differentiable functions and (101) yields (73):

(J [·;ψm, ε] ◦ Fm[u])′ [w] = J ′[Fm[u];ψm, ε][F ′m[u][w]]

= 〈∇J [Fm[u];ψm, ε],Fm[w]〉

= 2

〈
F∗m

[
r[Fm[u];ψm, ε]

|Fm[u]|2 + 2ε2

(|Fm[u]|2 + ε2)3/2Fm[u]

]
, w

〉
for m = 0, . . . , M . Thus

(103) ∇ (J [·;ψm, ε] ◦ Fm[u]) = 2F∗
[
r[Fm[u];ψm, ε]

|Fm[u]|2 + 2ε2

(|Fm[u]|2 + ε2)3/2Fm[u]

]
.
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Extending this to Eε[u] we have

E′ε[u][w] = 〈∇Eε[u], w〉 ,

where, by (72) and (103),

∇Eε[u] =
M∑
m=0

βm
2
∇ (J [·;ψm, ε] ◦ Fm) [u],

which yields (74). By Parseval’s relation, (102), and the triangle inequality, the global
Lipschitz constant K∇Eε for ∇Eε[u] is

K∇Eε =
M∑
m=0

βm

(
8 +

6‖ψm‖∞
ε

)
.

Similarly, the extended least squares objective Rε[u] defined by (78) is Fréchet
differentiable with derivative given by

R′ε[u][w] =
M∑
m=0

(J [Fm[u];ψm, ε] + cm)−1 (J [·;ψm, ε] ◦ Fm)′ [u][w].

And so, by (73), for ∇ (J [·;ψm, ε] ◦ Fm) [u] given by (103),

∇Rε[u] =
M∑
m=0

((J [·;ψm, ε] ◦ Fm) [u] + cm)−1∇ (J [·;ψm, ε] ◦ Fm) [u],

which yields (80). Together with the fact that ln(x + cm) has a derivative bounded
by 1/cm on R+, (102) yields the global Lipschitz constant K∇Rε for ∇Rε,

K∇Rε =
M∑
m=0

1
cm

(
16 +

12‖ψm‖∞
ε

)
.

Theorem 5.1 gives a bound on the distance between the projection and the gra-
dient of the perturbed objective in the phase retrieval problem. But first, we prove
that the perturbed objective is a continuous function of ε.

Lemma B.5. Let u ∈ L2[R2,R2] and b ∈ U+ defined in Hypothesis 3.1. The
integral functional J [u; b, ε] defined by (70) is a continuous function of ε.

Proof. Let u ∈ L2[R2,R2], b ∈ U+. From (70)–(69),

lim
ε→0

J [u; b, ε] = lim
ε→0

∫
R2

r2(u(x); b(x), ε)dx.

Since u and b satisfy Hypothesis 3.1, by Hölder’s inequality for all ε,∣∣r2(u(x); b(x), ε)
∣∣ ≤ |u(x)|2 + 2b(x)|u(x)|+ b2(x) ∈ L1.

For fixed x, u(x) ∈ R2, b(x) ∈ R+, and r(·; ·, ε) is continuous in ε. Thus by Lebesgue’s
dominated convergence theorem, J [u; b, ε] is a continuous function of ε with

lim
ε→0

J [u; b, ε] = J [u, b; 0].
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Proof of Theorem 5.1. The theorem follows from careful splitting of the norm and
repeated application of Lebesgue’s dominated convergence theorem. Define

Gm = supp(Fm[u]), m = 0, 1, . . . .

Denote the complements of these sets by G̃m. Denote the norm over the domain
Ω ⊂ R2 by

‖ · ‖Ω ≡ ‖ · XΩ‖,

where XΩ is the indicator function for Ω defined by (20). Let vm ∈ ΠQm [u], m =
0, 1, 2, . . . , and let v =

∑M
m=0 βm(u− vm). Then

‖∇Eε[u]− v‖ ≤
M∑
m=0

∥∥∥∥βm
2
∇J [Fm[u];ψm, ε]− βm(u− vm)

∥∥∥∥
=

M∑
m=0

βm ‖F∗m [r [Fm[u];ψm, ε]∇r [Fm[u];ψm, ε]Fm[u]]− (u− vm)‖

=
M∑
m=0

βm ‖r [Fm[u];ψm, ε]∇r [Fm[u];ψm, ε]Fm[u]−Fm[u− vm]‖

=
M∑
m=0

βm ‖r [Fm[u];ψm, ε]∇r [Fm[u];ψm, ε]Fm[u]−Fm[u− vm]‖Gm

+βm‖Fm[vm]‖
G̃m

.

Now, by the definition ofQm (50), |Fm[vm]| = ψm. Also, on Gm[u] we have Fm[vm] =
Fm[u]
|Fm[u]|ψm, which yields the inequality

‖∇Eε[u]− v‖ ≤
M∑
m=0

βm ‖r [Fm[u];ψm, ε]∇r [Fm[u];ψm, ε] |Fm[u]|

− (|Fm[u]| − ψm)‖Gm + βm‖ψm‖G̃m .(104)

Note that this bound is achieved for any vm ∈ ΠQm [u], m = 0, 1, 2, . . . .
Now, by assumption E < δ, which yields the following bound on the rightmost

term of (104):

M∑
m=0

βm
2
‖ψm‖2

G̃m
< δ

=⇒ βm
2
‖ψm‖2

G̃m
< δ

=⇒ ‖ψm‖G̃m <

√
2

βm
δ

=⇒
M∑
m=0

βm‖ψm‖G̃m < (2δ)1/2
M∑
m=0

β1/2
m .(105)
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For the remaining terms of (104) consider any a ∈ L2[R2,R+] and b ∈ U+ satis-
fying ‖a− b‖2

< δ. Let

G = supp(a) and Gε =
{
x
∣∣ a(x) >

√
ε
}

.

The remaining norms in (104) take the form∥∥∥∥∥
(

a2

(a2 + ε2)1/2 − b

)
a3 + 2aε2

(a2 + ε2)3/2 + (b− a)

∥∥∥∥∥
G

≤
∥∥∥∥∥ aε4

(a2 + ε2)2

∥∥∥∥∥ +

∥∥∥∥∥
(

1− a3 + 2aε2

(a2 + ε2)3/2

)
b

∥∥∥∥∥
G

.(106)

Consider the first norm on the right-hand side of (106):∥∥∥∥∥ aε4

(a2 + ε2)2

∥∥∥∥∥ ≤
∥∥∥∥∥ aε4

(a2 + ε2)2

∥∥∥∥∥
B( 1√

ε
)

+

∥∥∥∥∥ aε4

(a2 + ε2)2

∥∥∥∥∥
B̃( 1√

ε
)

,

where B( 1√
ε
) is the ball of radius 1√

ε
. The argument of the norm over the interior of

B( 1√
ε
) is bounded by aε4

(a2+ε2)2 ≤ ε, thus∥∥∥∥∥ aε4

(a2 + ε2)2

∥∥∥∥∥
B( 1√

ε
)

≤
√

πε.

The norm over the complement B̃( 1√
ε
) cannot be bounded by ε without an additional

assumption that a has compact support. However, since a ∈ L2 the norm can be made
arbitrarily small, i.e., given ε′ there is an ε0 > 0 such that∥∥∥∥∥ aε4

(a2 + ε2)2

∥∥∥∥∥
B̃( 1√

ε
)

≤ ε′ ∀ε ≥ ε0.

Thus

(107)

∥∥∥∥∥ aε4

(a2 + ε2)2

∥∥∥∥∥ ≤ √πε + ε′ ∀ε ≥ ε0.

Next consider the rightmost norm of (106). Rearranging terms yields

a3 + 2aε2

(a2 + ε2)3/2 =
a

(a2 + ε2)1/2

(
1 +

ε2

a2 + ε2

)
.

From this it is clear that for all a and ε,

0 ≤ a2

a2 + ε2 ≤
a3 + 2aε2

(a2 + ε2)3/2 ≤
(
1 +

ε2

a2 + ε2

)2

≤ 2.

Define

g(α, ε) =

∣∣∣∣∣1− α3 + 2αε2

(α2 + ε2)3/2

∣∣∣∣∣ .
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For all (α, ε), we have 0 ≤ g(α, ε) ≤ 1. Indeed, for all (α, ε),

g(α, ε) ≤ max

[
1− α2

α2 + ε2 ,

(
1 +

ε2

a2 + ε2

)2

− 1

]

= max
[

ε2

α2 + ε2 ,
ε2

α2 + ε2

(
2α2 + 3ε2

a2 + ε2

)]

≤ 5
ε2

α2 + ε2 .

On the interval α ∈ [
√

ε,∞) we have ε2

α2+ε2 ≤
ε2

ε+ε2 ≤ ε and

g(α, ε) ≤ 5ε ∀ α ∈ [
√

ε,∞).

Thus, given ε′ > 0, there is an ε > 0 such that

(108)

∥∥∥∥∥
(

1− a3 + 2aε2

(a2 + ε2)3/2

)
b

∥∥∥∥∥
Gε

≤ 5ε‖b‖ ≤ ε′.

On G̃ε ∩G, from the above, we have that∥∥∥∥∥
(

1− a3 + 2aε2

(a2 + ε2)3/2

)
b

∥∥∥∥∥
G̃ε∩G

≤ ‖b‖
G̃ε∩G .

Since ‖a− b‖2 < δ,

‖b‖
G̃ε∩G < ‖a‖

G̃ε∩G + δ1/2 = ‖aX
G̃ε∩G‖+ δ1/2.

Since the function aX
G̃ε∩G converges pointwise to zero as ε → 0, we obtain from the

Lebesgue dominated convergence theorem that

lim
ε→0

‖a‖
G̃ε∩G = lim

ε→0
‖aX

G̃ε∩G‖ = 0.

Hence there exists an ε′ > 0 such that for all ε ∈ [0, ε′],

(109) ‖b‖
G̃ε∩G < δ1/2.

Without applying additional constraints on a the bound of (109) cannot be made
tighter.

Letting ε′ = δ1/2 in (107)–(108) and substituting the bounds (105)–(109) into
(104) completes the proof.

Proof of Corollary 5.3. The single-valuedness G[u] follows directly from the defi-
nition of the projections. To prove the next statement of the corollary, note that the
only terms on the right-hand side of (104) that could not be made arbitrarily small
were the terms with bounds (105) and (109). With the assumptions of the corollary,
these bounds are much tighter. Indeed, since the support of ψm is contained in the
support of Fm[u], the bound in (105) is zero since

‖ψm‖G̃m = 0.
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For the bound (109), define

Gm,ε =
{
ξ
∣∣ |Fm[u]|(ξ) >

√
ε
}

.

As usual, denote the complement of this set by G̃m,ε. Since ψ̃m ∈ L∞[R2,R+] with
ψ̃m = ψm

|Fm[u]|Xψm , then

‖ψm‖G̃m,ε∩Gm =
∥∥∥ψ̃m|Fm[u]|

∥∥∥
G̃m,ε∩Gm

≤
∥∥∥ψ̃mXG̃m,ε

∥∥∥
∞
‖Fm[u]‖

G̃m,ε∩Gm .

As in the proof of the bound (109), we have that

lim
ε→0

‖Fm[u]‖
G̃m,ε∩Gm = lim

ε→0
‖Fm[u]X

G̃m,ε∩Gm‖ = 0.

Hence there exists an ε such that for any δ > 0,

‖ψm‖G̃m,ε∩Gm < δ.

All the pieces are in place now to prove Theorem 6.1.
Proof of Theorem 6.1. The proof is by contradiction. Suppose there is a subse-

quence K ⊂ N such that supK
〈
∇F (ν),w(ν)

〉
< β < 0. Since F is bounded below,

F (ν) ↘ F∗ ∈ R, and so (F (ν+1) − F (ν))→ 0. By the choice of λ(ν) in Step 2 we have
that

λ(ν)
〈
∇F (ν), w(ν)

〉
→ 0.

Therefore λ(ν) →
K

0 and so, without loss of generality, λ(ν) < 1 for all ν ∈ K. Hence,

(110) ηλ(ν)γ−1〈∇F (ν), w(ν)〉 < F [u(ν) + λ(ν)γ−1w(ν)]− F (ν)

for all ν ∈ K. Let K be the global Lipschitz constant for ∇F . Then

(111) F [u(ν)+λ(ν)γ−1w(ν)]−F (ν) ≤ λ(ν)γ−1
[
〈∇F (ν), w(ν)〉+ K(λ(ν)γ−1‖w(ν)‖)

]
.

Together, (110)–(111) yield

0 < (1− η)β + K(λ(ν)γ−1‖w(ν)‖).

Taking limits over ν ∈ K,

λ(ν)γ−1‖w(ν)‖ → 0 =⇒ K(λ(ν)γ−1‖w(ν)‖)→ 0,

which yields the contradiction 0 < (1− η)β < 0.
We next show convergence of the norm of the gradient to zero for w(ν) =

− c̃
‖∇F (ν)‖∇F (ν), where 0 < c̃ ≤ c. This is a direction of descent lying within cB.

Thus, for this choice of w(ν),〈
∇F (ν), w(ν)

〉
= −c̃‖∇F (ν)‖ → 0.
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