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We thank the contributors to the 35th issue of STAM Ac-
tivity Group on Optimization’s newsletter. The theme of
this issue is “optimization and imaging”, with an article on
phase retrieval by D. Russell Luke and nonnegative matrix
factorization by Nicolas Gillis. We hope you enjoy this latest
installment of Views and News.

Congratulations to the new officers for the SIAM Activity
Group on Optimization: Taméas Terlaky, Andreas Waechter,
Michael Friedlander, and James Luedtke. Thank you for
agreeing to serve our activity group for the next three years.

Many of you have written to opt for an electronic copy of
Views and News; for the others among you, please do not
hesitate to contact us to opt out of receiving physical copies.

As always, we welcome your feedback, (e-)mailed directly
to us or to siagoptnews@lists.mcs.anl.gov. Suggestions
for new issues, comments, and papers are always welcome!

Stefan Wild, Editor

Mathematics and Computer Science Division, Argonne Na-
tional Laboratory, USA, wild@anl.gov, http://www.mcs.
anl.gov/~wild

Jennifer Erway, Editor

Department of Mathematics, Wake Forest University, USA,
erwayjb@wfu.edu, http://www.wfu.edu/~erwayjb

Articles

Phase Retrieval, What’s New?
D. Russell Luke
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Ask an engineer to solve a problem and she will come back
in a day or so with something that seems to work well enough
most of the time. Ask a mathematician to solve the same
problem and he will return many months later with an exact
but unimplementable solution to a different problem. I'm
sure most readers of this newsletter have heard some varia-
tion of that joke. But a true story lies somewhere in there,
a story that is writ large with the phase retrieval problem.

The phase retrieval problem has been around for more than
a century, and it is solved tens of thousands of times each
second, mostly by physicists. Phase retrieval plays a cen-
tral role in the x-ray imaging experiments conducted by
researchers here in Goéttingen, where we are in the last 5-
year funding cycle of a 15-year collaborative research center
studying nanoscale photonic imaging (Deutsche Forschungs-
gemeinschaft CRC755). The center consists of experimental
physicists and biomolecular physicists building new instru-
ments and observation techniques (one of those techniques,
STED, won center participant Stefan Hell a Nobel Prize in
2014) as well as mathematicians studying algorithms, im-
age processing, and statistics. Phase retrieval is an applied
mathematician’s dream problem: it is central to many imag-
ing modalities, it is simple to state, numerical routines for
its solution abound, and it is mathematically interesting in
ways that solving systems of linear equations will never be.

Nick Trefethan wrote in his introduction to a 2002 STAM
Review article on phase retrieval that I wrote together with
Jim Burke and Rick Lyon [42], “A Google search of ‘phase re-
trieval’ returns 271, 000 records.” Almost fifteen years later,
a Google search returns 364, 000 records (with the safe search
on). A Web of Science™ database search back to 1945 yields
8,924 results, 7,189 of those since 2002, more than half of
those since 2011. A lot of new interest has been expressed
recently in particular within some corners of the statistics
and applied mathematics communities. Apparently, money
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also is at stake, as I learned in preparation for this article.
So, if the problem has been around for so long and peo-
ple are already solving it—-Hauptman and Karle won a Nobel
Prize in 1985 for solving the crystallographic phase retrieval
problem—what’s all the recent fuss about?

For those who don’t know what phase retrieval is, it is
simply stated as follows: Find z € C C C" such that
|(Fyz)|; = bjk, where for k = 1,2,..., K the mapping
F: C" = C™ is linear and b, € Ry forall j =1,2,...,m
and £k = 1,2,...,K. The classical problem comes from
diffraction imaging where the set C is some a priori con-
straint like support or nonnegativity, and the mapping F}, is
a Fourier transform of some kind. This includes the Fresnel
transform and some defocused or otherwise imperfect Fraun-
hofer transform. The structure of the model is simple: the
components of the vectors Fxz must lie on circles of a given
radius in the complex plane. Unfortunately, circles are not
convex (the sphere does not contain any line segment joining
any two points on the sphere), causing all sorts of problems,
both mathematical and practical. The first statement of the
phase problem that I could find goes back to a letter from J.
W. Strutt (Lord Rayleigh) to Michaelson in 1892 [53]. Lord
Rayleigh was pessimistic about the prospects of breaking the
phase barrier unless a priori information about symmetry
was known. A solution to the band-limited phase problem
is a zero of a related complex polynomial. T’ll come back
to the qualifier “band limited” in a moment, but ignore that
detail for now. In the 1950s Akutowicz [1, 2] showed that the
one-dimensional phase retrieval problem without any a pri-
ori constraints has many solutions, since by the fundamental
theorem of algebra, all 1D complex polynomials factor into
products of monomials. A lot of workarounds for the un-
constrained 1D phase retrieval problem have been developed
since the 1970s [17, 25, 31, 50, 52, 57, 58, 7], all of which
involve adding a constraint implicitly or explicitly. Some re-
cent progress on the 1D problem has come from initialization
techniques that land one in a neighborhood of the minimum
phase solution [30] where the usual nonlinear programming
techniques can perform reliably.

At the end of the 1970s Bruck and Sodin [10] pointed out
that the fundamental barrier to unconstrained 1D phase re-
trieval does not apply in higher dimensions since, magically,
polynomials of dimension two or more almost never factor.
This conformed nicely with the unreasonable success of the
simple Gerchberg-Saxton [23] and HIO [21] algorithms for 2D
phase retrieval proposed a few years earlier. Shortly there-
after Hayes [24] proved that for band-limited signals, the 2D
phase retrieval problem has unique solutions, almost surely,
up to rotations, shifts, and reflections. One might conclude
that the book on phase retrieval was closed a long time ago,
except that the theory didn’t quite match up with practice
as nicely as one would hope. The first hint that the story
is more complicated came from the algorithms themselves.
They worked fairly well a lot of the time, but one of the more
popular approaches, HIO, never worked in the usual sense of
convergence to a fixed point. Still today, people continue to
apply HIO according to the following recipe: run 10-40 itera-

tions of HIO; then apply several passes of Gerchberg-Saxton
to clean up the image; publish.

I have the fortune of being coauthor with Heinz Bauschke
and Patrick Combettes of a paper on phase retrieval algo-
rithms that gets a steady stream of citations [3]. Unfortu-
nately, fewer people read it than cite it. We started from
the premise that really only a handful of good first-order
algorithms exist and that anything that works is probably
a tweak of one of those. It was known before our paper
that Gerchberg-Saxton and the error reduction algorithm
[21] are simply alternating projections (one of the handful
of good algorithms). We were able partially to identify HIO
for the case of a support constraint alone by showing the
correspondence between this procedure and the now ubig-
uitous Douglas-Rachford algorithm. In a follow-up paper
[4] we showed that HIO with a support and nonnegativity
constraint becomes a different fixed-point iteration, what we
called the hybrid projection reflection (HPR) method (not
one of the handful). This fundamental change in the fixed-
point mapping by a seemingly minor change in the constraint
structure is not obvious when the algorithms are written in
the format favored in the optics literature. At the same time
the HPR method was presented, Veit Elser introduced his
difference map [19], which for certain parameter values coin-
cides with the Douglas-Rachford and HPR algorithms, again
depending on the constraint structure [38]. The instabilities
of these algorithms together with the insight provided by
the more mathematical prescription of the algorithms led me
to propose a relaxation of the Douglas-Rachford algorithm,
which T called RAAR, that has fixed points when Douglas-
Rachford does not [39]. At that time, alternating projec-
tions, Douglas-Rachford, HPR, and RAAR algorithms were
understood only for convex problems. In the convex set-
ting Douglas-Rachford can be identified with the alternating
directions method of multipliers [22], which is currently pop-
ular for large-scale problems. For nonconvex problems, how-
ever, our understanding of Douglas-Rachford and even alter-
nating projections, and hence everything else close to these,
pretty much evaporated. Since then a lot of quiet, patient
work has been done in the variational analysis community
to develop the theory of first-order methods for nonconvex
problems, and much of the missing theory behind the success
of these algorithms for phase retrieval is in place. But I get
ahead of myself.

Almost any article on phase retrieval in the applied math-
ematics literature will start with a statement like “The phase
retrieval problem is found in many different areas of sci-
ence and engineering, such as x-ray crystallography, astron-
omy, diffraction imaging, and more.” So I contacted several
physicists and astronomers to find out from them what is
new in phase retrieval. One place where efficient solutions
to the phase retrieval problem is of vital importance is the
W. M. Keck Observatory. The Keck instruments need to
correct for random aberrations in the Earth’s atmosphere
in order to compete with instruments such as the Hubble
Space Telescope. The shape of the atmosphere is encoded
in the phase of the observations. Sam Ragland, an adap-
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tive optics scientist at Keck, told me that their instruments
use Shack-Hartmann sensors to measure the phase directly.
This is a hardware solution to the phase problem. Keck’s
wavefront controllers operate at a rate of 2 kHz, 1 kHz in
practice. Ragland did say that they were testing a computa-
tional phase-diversity algorithm (phase retrieval with several
defocused images), for which they are at the moment using
just the Gerchberg-Saxton algorithm.

The cost of the Shack-Hartmann sensors is photons, which
are in short supply in more modern x-ray imaging set-ups.
The dominant approach here is computational phase re-
trieval, although recent proposals involve adding random
masks to the imaging systems in order to avoid nonunique-
ness in the numerical reconstructions. With regard to al-
gorithms for phase retrieval, Elser, an expert in diffraction
x-ray imaging at Cornell University, has seen “nothing sig-
nificant” in the past 5 years. He is even more dismissive of
the impact of random masks: “The integrity of those phase
masks has to be established at the same resolution as their in-
tended application — and for that you need a phasing system
that works at that resolution!” This is a fundamental chal-
lenge for nanoscale (i.e., x-ray) imaging. Pierre Thibault,
an expert in blind ptychography (the second worst phase
retrieval problem one can encounter) at the University of
Southampton, is more circumspect. Algorithms such as al-
ternating projections, HPR, Douglas-Rachford, RAAR, and
the difference map work just fine, according to Thibault; “the
biggest bottleneck is hardware.” While Thibault has found
no use for random masks in his work, he would not discount
the possibility that the idea of randomly generated data
could have unforeseen applications. One such possibility he
mentioned was Fourier ptychographic microscopy, which iter-
atively stitches together a number of variably (i.e., randomly)
illuminated, low-resolution intensity images in Fourier space
to produce a wide-field, high-resolution complex sample im-
age [56, 59]. The idea that more Fourier measurements can
improve the performance of phase retrieval algorithms has
been around for a while. For crystallographic phase retrieval
there is only so much information you can get out of the
intensity measurements. But in the early 2000s it was rec-
ognized that for noncrystallographic measurements one is
not limited to sampling on a fixed lattice and that oversam-
pling dramatically improves numerical reconstructions [45].
Unfortunately, this improved performance is attributed to
some form of uniqueness. This is curious since a few mo-
ments of reflection on elementary Fourier analysis is all that
is needed to be convinced that oversampling has nothing to
do with uniqueness. Increased, but still finite, sampling in
the Fourier domain just pushes the error created by trying to
reconstruct a compactly supported object from finitely many
Fourier measurements to some level below either numerical
or experimental precision.

The oversampling justification is just one example of a
fixation on uniqueness that has overshadowed the most ob-
vious structural problem for phase retrieval: existence. Re-
member the “band-limited” qualifier in Hayes’ result cited
earlier. What that means is a compactly supported Fourier

transform. And, what that means is that the object must
be periodic. At this point many people retreat to the dis-
crete Fourier transform, which is a unitary linear operator,
about the best kind of operator one can have — except that
the best physical model we have for describing what we mea-
sure in any physical experiment is a sample of the continuous
Fourier transform. And when you implement phase retrieval
on a computer, you cannot avoid implicitly setting the val-
ues of the part of the Fourier spectrum that you do not mea-
sure to zero. So almost any constraint—in particular compact
support—that you place on the object whose Fourier trans-
form you sample will be inconsistent with the measurement.
One exception is crystallography, where (perfect) crystals are
indeed periodic and the Fourier transform can be assumed
reasonably to be band limited. The most exciting and dif-
ficult imaging challenges today, however, are in noncrystal-
lographic “single-shot” x-ray imaging [48, 20]. I mentioned
that blind ptychography is the second hardest type of phase
retrieval problem you might encounter. Blind ptychography
[26, 55, 44, 29] is akin to reading a fragment of an ancient
text in a script you have never seen, with a pair of glasses
borrowed from someone you have never met, and being asked
to reconstruct simultaneously the script and the prescription
of the glasses. For single-shot x-ray imaging the script con-
sists of 3D figurines floating randomly in midair and of which
you get only brief flashes from a strobe light. Phase retrieval
is the easy part for reconstructions from single-shot data -
the challenging part is the tomographic reconstruction of the
Fourier data. Unfortunately, for much of the more recent
mathematical work directed at phase retrieval to have any
traction, uniqueness is essential; but for these more modern
applications even existence of a solution to the model equa-
tions together with qualitative constraints cannot be taken
for granted.

The recent work in applied mathematics on phase retrieval
has its roots in a series of now-famous papers by Candes and
Tao [14, 13], which showed that under certain conditions
on the matrix generating an affine subspace of R™ (called
the restricted isometry property in the literature), there is
a unique sparsest point in the subspace and, moreover, this
point is the point with smallest ¢1-norm. When the space is
a space of matrices, the uniqueness is up to orbits, and the
elements of the orbits have smallest nuclear norm. This has
sparked a wave of papers on convex (and even nonconvex)
relaxation in the signal processing community since finding
a point in an affine subspace with minimum norm is a con-
vex optimization problem while the problem of minimizing
the counting function subject to an affine constraint is non-
convex and NP-hard [47]. Bloomensath and Davies [8, 9]
ran against the current, however, and examined a simple
forward-backward prox-algorithm, iterative hard threshold-
ing, for solving a slightly different problem of minimizing
the norm of the residual in the image space subject to a
sparsity inequality constraint in the domain. They showed
that under an asymmetric generalization of the restricted
isometry conditions required for the correspondence of the
nonconvex sparsity optimization problem and its convex re-
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laxation, iterative hard thresholding converges globally to
the global solution of the sparsity-constrained residual mini-
mization problem. Their work inspired me and my students
Robert Hesse and Patrick Neumann to show that the same,
or similar, conditions also guarantee global linear conver-
gence of alternating projections for the problem of finding
the intersection of an affine subspace and the set of vectors
with sparsity less than a given value [28]. We also showed
that the asymmetric restricted isometry conditions for global
convergence of alternating projections imply transversality of
the range of the transpose of the matrix generating the affine
subspace and the orthogonal complement of all subspaces of
dimension twice the dimension of the sparsest element. A
consequence, which has not been much explored, is that there
cannot be any locally optimal solutions for this nonconvex
problem other than the unique global minimum. Apparently,
convex relaxations are not even needed for problems with this
structure.

The connection to phase retrieval, pointed out first by
Candés, Eldar, Strohmer, and Voroninski [12], uses a well-
known trick from conic programming for turning a quadratic
function on R™ into a linear function on the space of nxn ma-
trices. The price to pay for this is in going from a problem
with n unknowns to a problem with n? unknowns. Struc-
turally, however, the problem in the space of matrices is the
same as the spasity optimization problem above. There was
some hope that this would lead to a breakthrough in phase
retrieval by solving a convex problem in the space of matri-
ces. But the prospect of squaring the number of unknowns
should have given pause to even the most ardent booster of
Moore’s law. Phase lift, as this idea is called in the litera-
ture, has not proven to be a reasonable computational strat-
egy. In the past two years there has been some backing away
from phase lift as an algorithm, and more direct nonconvex
methods are again being proposed (see [32] and references
therein). No one from the applications side that I spoke to
for this article was aware of these newer methods, however.
One reason could be that none of the newer methods has
been compared with the methods favored in the optics com-
munity. Reference to methods such as Gerchberg-Saxton and
HIO and the identification with classical algorithms made in
[3] seems to be obligatory in recent articles, but they appeal
to missing theory behind these methods in to order avoid
direct comparisons.

I’'m happy to report that we actually now know quite a bit
about the classical algorithms for the phase retrieval prob-
lem. I mentioned in the beginning that only a handful of
good first-order algorithms exist. Among these are steep-
est descent (which includes averaged projections, the Mis-
ell algorithm for phase diversity, and many of the schemes
proposed in the past few years), forward-backward prox
schemes (which include projected gradients, hard- and soft-
thresholding, and accelerations), backward-backward prox
schemes (which include alternating projections and hence
Gerchberg-Saxton), and Douglas-Rachford (to which cate-
gory I assign HIO, RAAR, and the difference map). The
standard “old” algorithms for phase retrieval are all based

on projectors that are composed and averaged in some fash-
ion. Implicit in this is a feasibility formulation of the phase
problem, that is, to find some point in the intersection of
the set of points satisfying the constraints implied by the
data measurements and the set of points satisfying qualita-
tive constraints such as support and nonnegativity. This is
an extremely powerful modeling approach since it is easy to
introduce new constraints without changing one’s algorith-
mic approach. It also lays bare the success and failure of
various methods.

When one settles on a feasibility model for a problem,
uniqueness is almost irrelevant. The two important cases
for feasibility are consistent and inconsistent. In the con-
sistent case the sets have at least one point in common; in
the inconsistent case, the sets have no point in common.
Most of the progress on the nonconvex convergence theory for
the good algorithms above has been for the consistent case.
Based on a series of papers exposing the structure of alter-
nating projections in increasingly inhospitable environments
[15, 35, 34, 40, 5, 18, 49, 27], we know now that alternating
projections applied to consistent phase retrieval problems is
locally linearly convergent at points of intersection except
in the unlikely case that the constraints are tangential. The
nonconvex theory of the Douglas-Rachford algorithm for con-
sistent problems is also fairly well understood in settings that
cover phase retrieval [27, 51].

As T argued above, however, the real-world phase retrieval
problem is hopelessly inconsistent. This inconsistency can be
observed by simply running the Douglas-Rachford algorithm
on your favorite experimental data set. You will observe
the iterates moving around seemingly chaotically, sometimes
looking like something well structured before wandering off
to nonsense. This behavior is a consequence of the fact that
the Douglas-Rachford mapping applied to inconsistent feasi-
bility has no fixed points. For convex problems this is not
a serious issue since the shadow sequence of the iterates can
be shown to converge [6]. For nonconvex problems, however,
all bets are off, and this explains the instability of the HIO
algorithm for phase retrieval.

Figure 1: Representative iterate of a noisy JWST test wavefront
recovered with the Douglas-Rachford algorithm. For a movie
showing instability of the algorithm, go to http://num.math.
uni-goettingen.de/proxtoolbox

The RAAR algorithm [38, 39] is a relaxation of the
Douglas-Rachford algorithm that is guaranteed to have fixed
points for a strong enough relaxation. One can easily ver-
ify [29, 40] that the regularity of the RAAR mapping for
feasibility-based phase retrieval satisfies one of two condi-
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tions that together are sufficient to guarantee local linear
convergence developed in [51], namely, that the constraint
sets are superregular. What remains to be shown in order
to guarantee that the RAAR algorithm is locally linearly
convergent for phase retrieval is that the RAAR fixed-point
mapping is metrically reqular[33] (in some appropriate sense)
at fixed points. Abstract formulas for showing metric reg-
ularity exist and rely on computing the coderivative of the
fixed-point operator [16, 46], but executing these calculations
and verifying the conditions for phase retrieval is compli-
cated.

Another way to understand the RAAR algorithm outlined
in [39] is as the Douglas-Rachford algorithm applied not to
the problem of minimizing the sum of two indicator functions
but rather to the problem of minimizing the weighted sum
of the squared distance to one of the sets plus the indicator
of the other set. Loock and Plonka [36, 37] took this idea
further to apply the RAAR algorithm not to the squared
distance to a set but rather to the ¢;-norm of the wavelet
transform of the object to be recovered. They were able to
show that the iterates of the RAAR algorithm in this setting
are at least bounded. I am optimistic that the remaining
open issues concerning the convergence of the RAAR algo-
rithm for phase retrieval will soon be resolved. As pointed
out in [39], the power of Douglas-Rachford and its relax-
ations in the context of feasibility is that it can be tuned
to have far fewer fixed points (i.e., locally optimal points),
than algorithms such as alternating projections or steepest
descents.

For the alternating projections algorithm applied to phase
retrieval, the picture is fairly complete. The results are lo-
cal, as one can expect from any nonconvex problem. For
practical, inconsistent phase retrieval, recent work with Matt
Tam and Thao Nguyen shows that alternating projections
must converge locally linearly to local best approximation
points except in rare degenerate cases [43, Theorem 5.10
and Example 5.16]. This result allows for error bounds as
stopping criteria for this algorithm. What we cannot say
is whether the fixed points of the algorithm are good, and
this has been the main point of criticism. But let us re-
turn to the observation that under conditions similar to, al-
beit stronger than, those used to justify convex relaxations
in sparsity optimization, alternating projections converges
globally linearly to a unique global solution in that setting.
We can then conjecture that alternating projections for phase
retrieval with enough measurements converges globally lin-
early to a globally optimal best approximation point. A nice
opportunity exists here for the two strands of analysis that
have been picking away at the phase retrieval problem—one
from the variational analysis side and the other from spar-
sity optimization—to merge productively. A strength of the
theory sparked by [14, 13] is that it can say something about
how much information is needed before one can reasonably
expect nice things to happen on a global scale, and this has
nothing to do with convexity or the quantitative local anal-
ysis.

The algorithms and phenomena discussed here can be ex-

plored in the ProxToolbox [41], which is a slowly growing
collection of demonstrations of simple first-order methods
built on prox-operators. Following the example of Buckheit
and Donoho [11] and more recent calls for reproducible re-
search [54], we are trying to make available all numerical
demonstrations that have supported our publications. This
effort will expand to data and algorithms from the broader
Nanoscale Photonic Imaging Collaborative Research Center
at Gottingen. Phase Focus Limited of Sheffield, UK, claims
intellectual property rights on iterative routines for ptychog-
raphy and has sued researchers. No academic researcher has
the means to challenge such assertions and this has put a chill
on efforts to disseminate information, but it does not appear
to be an outright barrier. In this age of increased suspicion
of science and the scientific method, it is all the more im-
portant to make our work as transparent and accessible as
possible.
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