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ABSTRACT

The state of the art for solving the phase retrieval problem
in two dimensions relies heavily on the algorithms proposed
by Gerchberg, Saxton, and Fienup. Despite the widespread
use of these algorithms, current mathematical theory can-
not explain their remarkable success. It is already known
that the Gerchberg-Saxton algorithm is a nonconvex ver-
sion of method of alternating projections. In this paper,
we show that two other prominent phase retrieval methods
also have well known counterparts in the world of convex
optimization algorithms: Fienup’s basic input-output algo-
rithm corresponds to Dykstra’s algorithm, and Fienup’s hy-
brid input-output algorithm can be viewed as an instance
of the Douglas-Rachford algorithm. This work provides a
theoretical framework to better understand and, potentially,
improve existing phase recovery algorithms.

1. INTRODUCTION

Thephase retrieval problemconsists of estimating the phase
of a complex-valued function from measurements of its
modulus and additionala priori information. It is of fun-
damental importance in numerous areas of applied physics
and engineering, and it has been studied for over forty years.

As in many inverse problems, a common formulation
of the phase retrieval problem is to seek as a solution any
function that is consistent with the measurements as well as
with a priori constraints. The original Gerchberg-Saxton al-
gorithm [8] and its descendent the error reduction algorithm
[7] were the first widely used numerical scheme to solve
this type of problem. While its intrinsic mechanism is clear
physically — it consists of alternating back-substitutions of
known information in the spatial and Fourier domains —
it was not initially understood mathematically. In partic-
ular, failure of convergence and stagnation of the iterates
away from solution points were observed from the outset
but lacked a sound mathematical explanation.

In the early 1980s, with the work of Youla [14] and oth-
ers, the application of Bregman’s method of successive pro-
jections [3] to the recovery a signal described by convex

constraints generated considerable interest in the signal re-
covery community [4, 6, 13]. Attempts were then made to
extend this successful framework to a nonconvex setting in
order to formalize a wider range of signal recovery schemes
[4]. In [10], the error reduction algorithm was revealed
to be a method of alternating projections between a vector
subspace (support constraint) and a nonconvex set (Fourier
modulus constraint). This study gave insightful geometrical
interpretations of the stagnation problem as well as of other
aspects of the error reduction iterative procedure.

In his seminal 1982 paper [7], Fienup introduced a broad
framework for iterative algorithms. Three main classes of
algorithms were presented: error reduction, Basic Input-
Output (BIO), and Hybrid Input-Output (HIO). These algo-
rithms still constitute the state of the art in phase retrieval.

While well-known in the field, the BIO and HIO algo-
rithms lack a proper mathematical framework. The aim of
this paper is to show that, just like the error reduction al-
gorithm, the BIO and HIO algorithms also have powerful
counterparts in the world of convex projection methods.

The paper is organized as follows. In Section 2, the
phase retrieval problem is posed as a feasibility problem.
Section 3 supplies the necessary review of nonlinear analy-
sis. In Section 4, the classical phase retrieval methods are
presented and new connections with convex optimization al-
gorithms are established. Concluding remarks are formu-
lated in Section 5.

2. PHASE RETRIEVAL AND FEASIBILITY

In its general form, the signal recovery problem is to esti-
mate the original form of a signalx in a functional space
L from the measurements of physically related signals and
a priori information [6, 13]. In phase retrieval problems,
the measurements consist of the modulusm of the Fourier
transformx̂ of x. In other words, the imaging model is de-
scribed by the relationship

|x̂| = m, (1)

andx is commonly referred to as theobjector input of the
imaging model [12].



A general signal space that appropriately models the un-
derlying physics is the complex Hilbert space

L = L2[RN , C]. (2)

Hence, a signalx in L is a square-integrable function map-
ping a continuous variablet ∈ RN to a complex number
x(t) ∈ C. The set of signals that satisfy theFourier domain
constraint(1) is

M =
{
y ∈ L : |ŷ| = m a.e.

}
. (3)

In addition to the imaging model, an important piece
of information that is typically available in phase retrieval
problems is that the support ofx is contained in some set
D ⊂ RN . If we let 1E denote the characteristic function of
a setE ⊂ RN and{E its complement, thisobject domain
constraintconfinesx to the set

S =
{
y ∈ L : y · 1{D = 0

}
. (4)

The phase retrieval problem can be posed as that of finding a
functionx ∈ L that satisfies these two constraints, namely,

find x ∈ S ∩M. (5)

This formulation exhibits the phase retrieval problem as a
problem of finding a point in the intersection of constraint
sets, i.e., aset theoretic estimation problemin the sense of
[4]. In mathematics (especially in optimization) problems
of this kind are calledfeasibility problems. In this paper we
shall restrict our attention to the case when (5) is consistent,
i.e.,S ∩M 6= Ø.

3. FUNDAMENTALS OF NUMERICAL THEORY

We review here the necessary mathematical background.H
denotes a general Hilbert space with scalar product〈·, ·〉,
norm‖ · ‖, and distanced.

3.1. Projections

If Y is a nonempty set inH, then the distance fromx to Y
is d(x, Y ) = infy∈Y ‖x−y‖. The set of points inY nearest
to a pointx ∈ H, namely{

y ∈ Y : ‖x− y‖ = d(x, Y )
}
, (6)

is denotedPY (x) and called theprojection of x onto Y .
The induced operatorPY is called theprojection operator
or projectorontoY . If Y is closed and convex, thenPY (x)
is always a singleton{y} and it is common practice to sim-
ply write PY (x) = y, a slight abuse of notation.

3.2. Projections for the phase retrieval problem

In the setting of the phase retrieval problem, the abstract
Hilbert spaceH is simply the function spaceL of (2). The
most common approach for solving the phase retrieval prob-
lem is to enforce the known object domain and Fourier do-
main constraints in some alternating fashion. Thus, given
a signalx, the support constraint is naturally enforced by
settingx equal to zero outside the given domainD, via the
transformationx 7→ x · 1{D. This simple operation is actu-
ally a projection (see [1] for a formal proof):

Example 3.1 (support constraint) SupposeD is a mea-
surable set inRN and fix x ∈ L. Then the projection of
x onto the setS of (4) isPS(x) = x · 1D.

The same observation is true for the Fourier modulus
constraint. Approaches to enforce it are described below;
again, these operations turn out to be projections (see [1]
for details).

Example 3.2 (Fourier modulus constraint) Let m be a
nonnegative function inL and fixx ∈ L. Then the setM
of (3) is closed and nonconvex (unlessm ≡ 0). Moreover,
y ∈ L belongs to the projectionPM (x) of x ontoM if and
only if it satisfies a.e.

ŷ(ω) =

{
m(ω) x̂(ω)

|x̂(ω)| , if x̂(ω) 6= 0;

m(ω) exp[iϕ(ω)], otherwise,
(7)

for some measurable functionϕ : RN → R .

Example 3.2 shows that every functiony ∈ PM (x) sat-
isfies

d(x̂(ω),m(ω)S) = d(x̂(ω), ŷ(ω)) a.e. onRN , (8)

wherem(ω)S = {u ∈ C : |u| = m(ω)} denotes a circle
in the complex plane, with radiusm(ω) and centered at the
origin. Themulti-valuednessof the projection is now evi-
dent: whenever̂x(ω) = 0, any phaseϕ will work.

In practice, one picks theparticular selectiony0 ∈
PM (x) corresponding to zero phaseϕ ≡ 0:

ŷ0 (ω) =

{
m(ω) x̂(ω)

|x̂(ω)| , if x̂(ω) 6= 0;

m(ω), otherwise.
(9)

Ultimately, the difficulty of the phase retrieval problem is
caused by the lack of convexity of the Fourier domain con-
straint and the lack of good convex approximations to it.

4. CLASSICAL ALGORITHMS AND
CONNECTIONS

We discuss three popular algorithms designed for solving
the phase retrieval problem (5). We follow Fienup’s frame-
work [7]. To bring out the results as clearly as possible,



we set Fienup’s parameterβ equal to 1 and assume that the
object domain constraint is only a support constraint. More-
over, we identify the set-valued operatorPM with its selec-
tion defined in (9) and therefore regard it as a single-valued
operator.

4.1. Error reduction algorithm

The error reduction algorithm, updates a current iteratexn

via

xn+1(t) =

{(
PM (xn)

)
(t), if t ∈ D;

0, otherwise.
(10)

Hencexn+1 = 1D ·PM (xn); equivalently, by Example 3.1,

xn+1 = (PSPM )(xn). (11)

4.2. Fienup’s basic input-output (BIO) algorithm

The updatexn+1 in the BIO algorithm is obtained fromxn

by setting

xn+1(t) =

{
xn(t), if t ∈ D;

xn(t)−
(
PM (xn)

)
(t), otherwise.

(12)

Note thatxn+1 = 1D · xn + 1{D ·
(
xn − PM (xn)

)
=

xn − (1− 1D) · PM (xn), which we rewrite as [1]

xn+1 = (PSPM + I − PM )(xn). (13)

4.3. Fienup’s hybrid input-output (HIO) algorithm

The HIO algorithm constructs the successor ofxn via

xn+1(t) =

{(
PM (xn)

)
(t), if t ∈ D;

xn(t)−
(
PM (xn)

)
(t), otherwise.

(14)

Thusxn+1 = 1D ·PM (xn) + 1{D · (xn −PM (xn)), which
can be rewritten as [1]

xn+1 =
1
2
(
(2PS − I)(2PM − I) + I

)
(xn). (15)

4.4. Main results

We are now ready to establish the formal correspondence
between classical algorithms for solving (5) and their coun-
terparts for solving a two-set convex feasibility problem.

4.4.1. The convex feasibility problem

AssumeA andB are two closed convex sets in a real Hilbert
spaceH. The associatedconvex feasibility problemis to

find x ∈ A ∩B. (16)

We now revisit the three classical algorithms for solving the
phase retrieval problem described above. It will turn out
that each algorithm corresponds to a classical algorithm for
solving (16).

4.4.2. Error reduction algorithm and POCS

The method of alternatingprojections onto convex sets
(POCS)generates, for the present setting of two constraints,
sequences(an) and(bn) as follows: pick an arbitrary start-
ing pointa0 ∈ H, then update forn ≥ 0 via

bn = PB(an) and an+1 = PA(bn). (17)

The following basic result shows that POCS does find a
solution of (16):

Fact 4.1 [3] If A ∩ B 6= Ø, then(an) and(bn) converge
weakly to a point inA ∩B.

Observation 4.2 Replace the setA with the (convex) ob-
ject domain constraint setS and the setB with the (noncon-
vex) Fourier domain constraint setM . Then the sequence
(an) generated by (17) corresponds to the sequence(xn)
generated by the error reduction algorithm (11). This con-
nection was established by Levi and Stark [10] in 1984.

4.4.3. Fienup’s BIO algorithm and Dykstra’s algorithm

For two closed convex setsA andB, Dykstra’s algorithm
[2] produces four sequences(an), (bn), (pn), and(qn) as
follows. Fix a starting pointa0, setq−1 = 0 = p0, and
update forn ≥ 0 via

bn = PB(an + qn−1);
qn = (I − PB)(an + qn−1) = an + qn−1 − bn;
an+1 = PA(bn + pn);
pn+1 = (I − PA)(bn + pn) = bn + pn − an+1.

Clearly, Dykstra’s algorithm is more involved than
POCS and is more demanding in terms of storage; however,
its convergence properties are superior.

Fact 4.3 [2] SupposeA ∩ B 6= Ø. Then both sequences
(an) and(bn) converge in norm toPA∩B(a0), the point in
A ∩B closest toa0.

Fact 4.3 is quite remarkable because the sequences con-
verge in norm, and their limit is explicitly identified as the
nearest feasible point to the starting point. For applications
of Dykstra’s algorithm to signal recovery, see [5].

For the rest of this subsection, we assume additionally
thatA is aclosed linear subspace. Then(pn) lies entirely in
A⊥, the orthogonal complement ofA, and the computation
of an+1 becomesan+1 = PAbn + PApn = PAbn. Thus,
the sequence(pn) is not needed, and Dykstra’s algorithm
simplifies to:

bn = PB(an + qn−1);
qn = (I − PB)(an + qn−1);
an+1 = PA(bn).

(18)



The next observation identifies the BIO algorithm as a non-
convex Dykstra algorithm.

Observation 4.4 [1] Replace the setA with the (convex)
object domain constraint setS and the setB with the (non-
convex) Fourier domain constraint setM . Then the se-
quence(an + qn−1) generated by (18) corresponds to the
sequence(xn) generated by Fienup’s BIO algorithm (13).

Remark 4.5 Even whenA ∩ B 6= Ø, it is possible that the
sequences(pn) and(qn) generated by Dykstra’s algorithm
(in its general form) are bothunbounded; see [9]. This sug-
gests the pertinent sequence to monitor in Fienup’s BIO al-
gorithm is

(
PM (xn)

)
, rather than(xn).

4.4.4. Fienup’s HIO algorithm and the Douglas-
Rachford algorithm

When specialized to the convex feasibility problem (16),
theDouglas-Rachford algorithmgenerates a sequence(xn),
from an arbitrary starting pointx0, by

xn+1 =
1
2
(
RARB + I

)
(xn), (19)

whereRA = 2PA− I is thereflectorwith respect toA (and
RB is defined likewise).

Fact 4.6 [11] SupposeA∩B 6= Ø. Then the sequence(xn)
converges weakly to some fixed pointx of T andPB(x) ∈
A ∩B. Moreover, the sequence

(
PB(xn)

)
is bounded, and

every weak cluster point of
(
PB(xn)

)
lies inA∩B. If H is

finite-dimensional, thenxn → x andPB(xn) → PB(x) ∈
A ∩B.

The following connection identifies the HIO algorithm
as a nonconvex Douglas-Rachford algorithm.

Observation 4.7 [1] Replace the setA with the (convex)
object domain constraint setS and the setB with the (non-
convex) Fourier domain constraint setM . Then the se-
quence generated by the Douglas-Rachford algorithm (19)
corresponds to the sequence generated by the HIO algo-
rithm (15).

5. DISCUSSION

In this paper, new connections have been established be-
tween some classical phase retrieval methods and some
standard convex optimization algorithms. While the math-
ematical theory remains unable to completely analyze the
convergence behavior of these algorithms in nonconvex set-
tings, the analogies drawn here open the door for experi-
mentation with variations that are well understood in con-
vex settings. We believe that the convex-analytical view-
point adopted in this paper can be exploited further in order
to develop alternative phase retrieval schemes.
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