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Abstract

The vector Helmholtz equation, from a mathematical point of view,
provides a generalization of the time-harmonic Maxwell equations for
the propagation of time-harmonic electromagnetic waves. After re-
viewing some classic results on the two main exterior boundary value
problems for the vector Helmholtz equation, i.e., the so-called electric
boundary condition and the magnetic boundary condition, we prove
reciprocity results for scattering of plane waves and point sources.
Then we make use of them for obtaining uniqueness results for the in-
verse obstacle scattering problem to determine the shape of the scat-
terer from knowing the far field pattern of the scattered waves and
results on the so-called far field operator for the two scattering prob-
lems. These results are generalizations of corresponding results for the
Maxwell equations and analogues to results for the Dirichlet and Neu-
mann boundary condition for the scalar Helmholtz equation. We also
briefly consider the extension of the so-called DB boundary condition
from the Maxwell equations to the vector Helmholtz equation.

1 Introduction

About sixty years ago Werner [12] generalized the exterior boundary value
problem for scattering of time-harmonic electromagnetic waves from a perfect
conductor by replacing the time-harmonic Maxwell equations by the slightly
more general form of the vector Helmholtz equation which is obtained by
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elimination of either the magnetic field or the electric field from the Maxwell
equations. For a bounded set D that is the open complement of an un-
bounded domain of class C2 Werner introduced the exterior boundary value
problem to find a vector field E in R3 \D that is a radiating solution to the
vector Helmholtz equation

∆E + k2E = 0 in R3 \ D̄ (1.1)

with positive wave number k and satisfies the electric boundary condition

ν × E = c and divE = γ on ∂D (1.2)

where c is a given tangential field and γ a given scalar function on the bound-
ary ∂D and ν denotes the unit normal vector to ∂D directed into the exterior
of D. Here, a solution E to the vector Helmholtz equation whose domain of
definition contains the exterior of some sphere is called radiating if it satisfies
the Silver–Müller radiation condition

lim
|x|→∞

curlE(x)× x+ x divE(x)− ik|x|E(x) = 0 (1.3)

where the limit is assumed to hold uniformly in all directions x/|x|. We
note that the Silver–Müller radiation condition (1.3) for the vector field E
is equivalent to the Sommerfeld radiation condition for the Cartesian com-
ponents of E (see [2, Corollary 4.14]). As a main advantage the above re-
formulation clarifies the relationship between acoustic and electromagnetic
scattering more closely.

Partly based on previous work by Knauff and Kress [5], a complete ac-
count on existence and uniqueness of the solution to the boundary value
problem (1.1)–(1.3) via boundary integral equations in a classical Hölder
space setting was presented some fourty years ago by Colton and Kress in
their first monograph [3] together with the corresponding analysis for the
related problem with the magnetic boundary condition

ν × curlE = c and ν · E = γ on ∂D. (1.4)

Due to the vector identities div curl = 0 and curl curl = −∆ + grad div
for each solution E,H to the Maxwell equations

curlE − ikH = 0, curlH + ikE = 0 (1.5)
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both the electric field E and the magnetic field H are divergence free and
satisfy the vector Helmholtz equation. Conversely, for a divergence free so-
lution E of the vector Helmholtz equation the pair E, ikH := curlE solves
the Maxwell equations. The homogeneous form of the boundary condition
(1.2) corresponds to the homogeneous boundary condition for the electric
field in the case of scattering from a perfect conductor and therefore was
named electric boundary condition. Because of ν · curlE = −Div ν×E with
the surface divergence Div for the corresponding magnetic field H we have
ν ·H = 0 on ∂D and therefore the boundary condition (1.4) was named the
magnetic boundary condition. The choice of the two boundary conditions
(1.2) and (1.4) is further motivated through the occurrence of their left hand
sides in Green’s vector integral theorem∫

D

{E ·∆F − F ·∆E} dx

=

∫
∂D

{ν × E · curlF + ν · E divF − ν × F · curlE − ν · F divE} ds

(1.6)

for vector fields E,F ∈ C2(D) ∩ C1(D̄) in a bounded domain D of class
C1 with the unit normal vector ν to the boundary ∂D directed into the
exterior of D. It follows easily from the Gauß divergence integral theorem
applied to E × curlF +E divF and plays an important part in the analysis
of the vector Helmholtz equation. It also illustrates that the pair of the two
boundary conditions (1.2) and (1.4) can be considered as counterpart to the
pair given by the Dirichlet and the Neumann boundary conditions for the
scalar Helmholtz equation.

The purpose of this paper is to consider the inverse scattering problems
for the two boundary conditions with an emphasis on the question of unique-
ness. The plan of the paper is as follows. In Section 2 we shortly review the
basic results on the exterior electric and magnetic boundary value problems
from [2]. In Section 3 we will introduce the corresponding forward scattering
problems with plane waves and point sources as incident fields. In particular
we will prove a reciprocity relation for the interchange of the incident and
the observation direction for plane wave incidence and a mixed reciprocity
relation connecting plane wave and point source incidence. In the following
Section 4 we will establish some uniqueness results for the inverse scatter-
ing problem that extend corresponding results for the Maxwell equations. In
particular, this includes the extension of Karp’s theorem [4] as one of the rare
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explicit analytic solutions rather than approximate solutions for a nonlinear
inverse obstacle scattering problem. The final Section 5 is concerned with the
extension to the vector Helmholtz equation for the DB boundary condition,
that is, the boundary conditions for the normal component of both the elec-
tric and the magnetic field in case of the Maxwell equations. Here, it turns
out that considering the DB boundary condition for the vector Helmholtz
equation the case of scattering with plane wave incidence does not lead to a
generalization of the Maxwell case.

2 Exterior boundary value problems

We begin our analysis by summarizing some basic facts on exterior boundary
value problems for the vector Helmholtz equation. Green’s vector integral
theorem (1.6) together with the Silver–Müller radiation condition (1.3) is the
main tool for proving the following representation theorem. In terms of the
fundamental solution to the scalar Helmholtz equation

Φ(x, y) :=
1

4π

eik|x−y|

|x− y|
, x 6= y,

and under the assumptions on D as introduced in connection with (1.1)–(1.4)
for radiating solutions E ∈ C2(R3\D̄)∩C1(R3\D) to the vector Helnmholtz
equation we have the Stratton–Chu formula

E(x) = curl

∫
∂D

ν(y)× E(y) Φ(x, y) ds(y)

− grad

∫
∂D

ν(y) · E(y) Φ(x, y) ds(y)

−
∫
∂D

[curlE(y)× ν(y) + ν(y) divE(y)] Φ(x, y) ds(y)

(2.1)

for x ∈ R3\D̄. For a proof we refer to [5] and [2, Theorem 4.13]. With the aid
of the asymptotic of the fundamental solution Φ from the representation (2.1)
we obtain that each radiating solution E to the vector Helmholtz equation
has the asymptotic form

E(x) =
eik|x|

|x|

{
E∞(x̂) +O

(
1

|x|

)}
, |x| → ∞, (2.2)
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uniformly in all directions x̂ = x/|x| where the vector field E∞ defined on
the unit sphere S2 is known as the far field pattern of E and given by

E∞(x̂) =
ik

4π

∫
∂D

[x̂× {ν(y)× E(y)} − x̂ ν(y) · E(y) ] e−ik x̂·yds(y)

− 1

4π

∫
∂D

[curlE(y)× ν(y) + ν(y) divE(y)] e−ik x̂·yds(y)

(2.3)

for x̂ ∈ S2. Since the Cartesian components of E∞ must coincide with
the scalar far field patterns of the Cartesian components of E∞ Rellich’s
lemma (see [3, Theorem 2.14]) for the scalar Helmholtz equations tells us
that E∞ = 0 on S2 implies that E = 0 in R3 \ D̄. In the sequel we will refer
to this one-to-one correspondence of far field patterns and radiating solutions
of the vector Helmholtz equation just as Rellich’s lemma.

From the Introduction we recall that both the electric and the magnetic
boundary value problem introduced by (1.1)–(1.4) are uniquely solvable un-
der the assumption that the right hand sides c and γ are Hölder continuous.
Although it is not stated explicitly in [2], from the existence analysis via the
Riesz theory for compact operators it follows that both problems are well
posed in the sense that the solutions depend continuously on the boundary
data in the Hölder space setting.

3 The scattering problems: reciprocity

Given a solution Ei to the vector Helmholtz equation that is defined in all
of R3 except possible singular points in R3 \ D̄ the direct scattering problem
is to find a solution E = Ei + Es to the Helmholtz equation in R3 \ D̄ such
that the scattered field Es satisfies the Silver–Müller radiation condition and
the total field E satisfies the homogeneous electric boundary condition

ν × E = 0 and divE = 0 on ∂D (3.1)

or the homogeneous magnetic boundary condition

ν × curlE = 0 and ν · E = 0 on ∂D. (3.2)

As particular incident fields we will consider plane waves and point sources.
The inverse scattering problem that we are considering then consists of de-
termining the boundary of the scatterer D from a knowledge of the far field
pattern for the scattering of both plane waves or point sources.
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Plane waves with incident direction d ∈ S2 and polarization vector p ∈ R3

are described by the matrix Ei(x, d) defined by its multiplication with the
polarization vector as

Ei(x, d)p := eik x·dp. (3.3)

Since the direct scattering problem is linear with respect to the incident field,
we can express the scattered wave by a matrix Es(x, d), the total wave by a
matrix E(x, d), and the far field pattern by a matrix E∞(x̂, d). They map
the polarization vector p onto the scattered wave Es(x, d)p, the total wave
E(x, d)p, and the far field pattern E∞(x̂, d)p, respectively.

Theorem 3.1 The far field pattern for the scattering of plane waves by a
scatterer with electric or magnetic boundary condition satisfies the reciprocity
relation

E∞(x̂, d) = [E∞(−d,−x̂)]>, x̂, d ∈ S2, (3.4)

for the interchange of the incident and the observation direction.

Proof. The idea of the prove is the same as for the reciprocity relations in
acoustic scattering for the scalar Helmholtz equation and in electromagnetic
scattering for the Maxwell equation as provided in [3] and is based totally
on Green’s vector integral theorem. From the latter together with the vector
Helmholtz equation for the incident and the scattered fields and the radiation
condition for the scattered field we have∫
∂D

{
ν × Ei(· , d)p · curlEi(· ,−x̂)q + ν · Ei(· , d)p divEi(· ,−x̂)q

−ν × Ei(· ,−x̂)q · curlEi(· , d)p− ν · Ei(· ,−x̂)q divEi(· , d)p
}
ds = 0

and∫
∂D

{
ν × Es(· , d)p · curlEs(· ,−x̂)q + ν · Es(· , d)p divEs(· ,−x̂)q

−ν × Es(· ,−x̂)q · curlEs(· , d)p− ν · Es(· ,−x̂)q divEs(· , d)p
}
ds = 0

for all p, q ∈ R3. For the second integral we used the fact that for two
radiating solutions E and F of the vector Helmholtz equation for a sphere
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SR of radius R centered at the origin we have∫
SR

{ν × E · curlF + ν · E divF − ν × F · curlE − ν · F divE} ds

=
1

R

∫
|x|=R

{E(x) · [curlF (x)× x+ x divF (x)− ik|x|F (x)]

−F (x) · [curlE(x)× x+ x divE(x)− ik|x|E(x)]} ds(x)→ 0, R→∞.

Exploiting the fact that the triple vector product is unchanged under a cir-
cular shift of its three factors we note that

ν(y)× Es(y, d)p · curlEi(y,−x̂)q = ikq · {x̂× [ν(y)× Es(y, d)p]} e−ik x̂·y

ν(y) · Es(y, d)p divEi(y,−x̂)q = −ikq · {ν(y) · Es(y, d)p} e−ik x̂·y

ν(y)× Ei(y,−x̂)q · curlEs(y, d)p = q · {curlEs(y, d)p× ν(y)} e−ik x̂·y

ν(y) · Ei(y,−x̂)q divEs(y, d)p = q · ν(y) divEs(y, d)p e−ik x̂·y.

Using these relations in the far field representation (2.3) we find

4π q · E∞(x̂, d)p

=

∫
∂D

{
ν × Es(· , d)p · curlEi(· ,−x̂)q + ν · Es(· , d)p divEi(· ,−x̂)q

−ν × Ei(· ,−x̂)q · curlEs(· , d)p− ν · Ei(· ,−x̂)q divEs(· , d)p
}
ds.

(3.5)

From this by interchanging the roles of d and −x̂ and of p and q, respectively,
we obtain

4πp · E∞(−d,−x̂)q

=

∫
∂D

{
ν × Es(· ,−x̂)q · curlEi(· , d)p+ ν · Es(· ,−x̂)q divEi(· , d)p

−ν × Ei(· , d)p · curlEs(· ,−x̂)q − ν · Ei(· , d)p divEs(· ,−x̂)q
}
ds.
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We now subtract the last integral from the sum of the three preceding inte-
grals to obtain

4π
{
q · E∞(x̂, d)p− p · E∞(−d,−x̂)q

}
=

∫
∂D

{
ν × E(· ,−x̂)q · curlE(· , d)p+ ν · E(· ,−x̂)q divE(· , d)p

−ν × E(· , d)p · curlE(· ,−x̂)q − ν · E(· , d)p divE(· ,−x̂)q
}
ds.

(3.6)

From this the reciprocity relation (3.4) is obtained by

ν × E(· , d)p = ν × E(· ,−x̂)q = 0

and
divE(· , d)p = divE(· ,−x̂)q = 0

on ∂D in the case of the electric boundary condition and by

ν × curlE(· , d)p = ν × curlE(· ,−x̂)q = 0

and
ν · E(· , d)p = ν · E(· ,−x̂)q = 0

on ∂D in the case of the magnetic boundary condition. �

For the scattering of a point source

U i(x, z)p := Φ(x, z)p (3.7)

with a polarization vector p and a location z ∈ R3\D̄ we denote the scattered
wave by U s(x, z), the total wave by U(x, z), and the far field pattern of the
scattered wave by U s

∞(x̂, z). Note that as above for plane wave incidence all
three quantities are matrices.

Theorem 3.2 The scattering of point sources and of plane waves are related
by the mixed reciprocity relation

4πU s
∞(−d, z) = [Es(z, d)]>, z ∈ R3 \ D̄, d ∈ S2, (3.8)

for both the electric and the magnetic boundary condition.
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Proof. As in the proof of Theorem 3.1 from the Green’s vector integral the-
orem, the vector Helmholtz equation and the radiation condition we find∫

∂D

{
ν × U i(· , z)p · curlEi(· , d)q + ν · U i(· , z)p divEi(· , d)q

−ν × Ei(· , d)q · curlU i(· , z)p− ν · Ei(· , d)q divU i(· , z)p
}
ds = 0

and∫
∂D

{
ν × U s(· , z)p · curlEs(· , d)q + ν · U s(· , z)p divEs(· , d)q

−ν × Es(· , d)q · curlU s(· , z)p− ν · Es(· , d)q divU s(· , z)p
}
ds = 0

for all p, q ∈ R3 and z ∈ R3\D̄. From the far field representation (2.3), again
using the properties of the triple product, we find

4π q · U∞(−d, z)p

=

∫
∂D

{
ν × U s(· , z)p · curlEi(· , d)q + ν · U s(· , z)p divEi(· , d)q

−ν × Ei(· , d)q · curlU s(· , z)p− ν · Ei(· , d)q divU s(· , z)p
}
ds.

and from the Stratton-Chu formula (2.1) we have

p · Es(z, d)q

=

∫
∂D

{
ν × Es(· , d)q · curlU i(· , z)p+ ν · Es(· , d)q divU i(· , z)p

−ν × U i(· , z)p · curlEs(· , d)q − ν · U i(· , z)p divEs(· , d)q
}
ds.

Now the proof can be completed as for the previous theorem. �

These reciprocity principles can be used for the analysis of the inverse
scattering problem for the vector Helmholtz equation as in the cases of the
scalar Helmholtz equation or the Maxwell equations. We demonstrate this
by some analysis on the far field operator which is defined as an operator on
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the space of L2 vector fields on S2. Analogous to the notion of Herglotz wave
functions and Herglotz pairs in [3] we call fields of the form

E(x) =

∫
S2
eik x·dg(d) ds(d), x ∈ R3, (3.9)

with some g ∈ L2(S2) a Herglotz field with kernel g. Clearly, a field is a
Herglotz wave field if and only if its Cartesian components are Herglotz wave
functions. For the basic properties of Herglotz wave functions we refer to [3,
Section 3.4].

Theorem 3.3 For both the electric or magnetic boundary condition the far
field operator F : L2(S2)→ L2(S2) defined by

(Fg)(x̂) :=

∫
S2
E∞(x̂, d)g(d) ds(d), x̂ ∈ S2, (3.10)

is injective and has dense range if and only if there does not exist a solution
E of the vector Helmholtz equation in D which satisfies the corresponding
homogeneous boundary condition on ∂D which is a Herglotz wave field.

Proof. We begin by noting the following consequence of the linearity and well-
posedness of the scattering problem for both boundary conditions (see [3,
Lemma 3.28]). For g ∈ L2(S2) the solution to the scattering problem for the
incident wave

Ẽi(x) :=

∫
S2
Ei(x, d)g(d) ds(d), x ∈ R3,

is given by

Ẽs(x) =

∫
S2
Es(x, d)g(d) ds(d)

for x ∈ R3 \D and has the far field pattern

Ẽ∞(x̂) =

∫
S2
E∞(x̂, d)g(d) ds(d) = (Fg)(x̂)

for x̂ ∈ S2.
From the reciprocity relation (3.4) it follows that the L2 adjoint F ∗ :

L2(S2)→ L2(S2) of F is given by

F ∗g = RFRḡ, (3.11)
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where R : L2(S2)→ L2(S2) is defined by (Rg)(d) := g(−d). Now the proof is
analogous to that of Theorem 3.30 in [3]. �

For an example of a domain for which the far field operator is not injective,
let SR be a sphere of radius R centered at the origin and consider the spherical
wave function

un(x) := jn(k|x|)Yn
(
x

|x|

)
, x ∈ R3,

where jn is a spherical Bessel function and Yn a spherical harmonic of order
n. By the Funk–Hecke formula (see [3, p. 36]) un is a Herglotz wave func-
tion. Since derivatives of Herglotz wave functions again are Herglotz wave
functions, the field

En := gradun

is a Herglotz wave field. It satisfies the homogeneous electric boundary con-
dition ν × En = 0 and divEn = 0 on SR if kR is equal to a zero of jn.

The spherical vector wave functions

Mn(x) := curl {xun(x)} , x ∈ R3,

and Nn := curlMn both solve the vector Helmholtz equation and are Herglotz
wave fields (see [3, p. 264]). For x ∈ SR we have x = Rν(x) and consequently

ν(x)×Mn(x) = ν(x)× {gradun(x)× x} = RGradun(x) (3.12)

with the surface gradient Grad. This means that the divergence free Herglotz
wave field Mn also satisfies the homogeneous electric boundary condition on
SR if kR is equal to a zero of jn.

From (3.12) it follows that on SR we have

ν ·Nn = ν · curlMn = −Div{ν ×Mn} = −RDiv Gradun

and, in view of curlNn = curl curlMn = −∆Mn = k2Mn, also

ν × curlNn = k2RGradun.

Therefore if kR is equal to a zero of jn the Herglotz wave field Nn satisfies
the homogeneous magnetic boundary condition on SR.

We will conclude our considerations on the far field operator by showing
that it is a normal operator. To this end, let Ei

g and Ei
h be the Herglotz
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wave fields with kernels g, h ∈ L2(S2) and let Eg = Ei
g + Es

g and Eh =
Ei
h + Es

h be the corresponding solutions to the scattering problem with Ei
g

and Ei
h as incident fields, respectively. By Eg,∞ and Eh,∞ we denote the far

field patterns of Es
g and Es

h, respectively. Proceeding as in the proof of the
reciprocity relation in Theorem 3.1 from Green’s vector integral theorem and
the radiation condition for the scattered fields we obtain that∫
∂D

{
ν×Ei

g · curlEi
h +ν ·Ei

g divEi
h−ν×Ei

h · curlEi
g−ν ·Ei

h divEi
g

}
ds = 0

and∫
∂D

{
ν × Es

g · curlEs
h + ν · Es

g divEs
h − ν × Es

h · curlEs
g − ν · Es

h divEs
g

}
ds

= −2ik

∫
S2
Eg,∞Eh,∞ ds = −2ik (Fg, Fh)

where (·, ·) denotes the inner product in L2(S2). Using (3.5) and interchang-
ing the order of integration we find that

4π(Fg, h) = 4π

∫
S2
h(x̂) ·

∫
S2
E∞(x̂, d)g(d) ds(d) ds(x̂)

=

∫
∂D

{
ν × Es

g · curlEi
h + ν · Es

g divEi
h − ν × Ei

h · curlEs
g − ν · Ei

h divEs
g

}
ds.

.

Interchanging the roles of g and h in the last equation and taking complex
conjugates we obtain

4π(g, Fh)

=

∫
∂D

{
ν × Es

h · curlEi
g + ν · Es

h divEi
g − ν × Ei

g · curlEs
h − ν · E

i
g divEs

h

}
ds.

.

Subtracting the last equation from the sum of the three preceding equations
we finally arrive at

−2ik (Fg, Fh) + 4π(Fg, h)− 4π(g, Fh)

=

∫
∂D

{
ν × Eg · curlEh + ν · Eg divEh − ν × Eh · curlEg − ν · Eh divEg

}
ds

.
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and from this for both boundary conditions we obtain that

−2ik (Fg, Fh) + 4π(Fg, h)− 4π(g, Fh) = 0.

Using this together with (3.11) the proof of the following theorem is com-
pletely analogous to that for the corresponding result in acoustic scattering,
that is, for Theorem 3.32 in [3].

Theorem 3.4 The far field operator F is compact and normal, that is,
FF ∗ = F ∗F and has an infinite number of eigenvalues.

4 Inverse scattering: uniqueness

Theorem 4.1 Assume that D1 and D2 are two scatterers with either electric
or magnetic boundary condition such that for a fixed wave number k for all
plane waves of the form (3.3) the far field patterns for both scatterers coincide
for all incident directions d ∈ S2 and all polarizations p ∈ R3 (that means
for three linearly independent polarizations p ∈ R3). Then D1 = D2.

Proof. Our proof follows the ideas of the proof of Theorem 5.6 in [3] for the
corresponding uniqueness result in inverse acoustic scattering. We denote
the scattered waves for D1 and D2 for point source incidence by U s

1 and U s
2 ,

respectively. In a first step by two applications of Rellichs’s lemma together
with the mixed reciprocity principle of Theorem 3.2 from the coincidence of
the far field patterns for all incident directions d we conclude that the scat-
tered waves for point source incidence coincide in the unbounded component
G of the complement of D̄1 ∪ D̄2, that is,

U s
1 (x, z) = U s

2 (x, z) (4.1)

for all x, z ∈ G.
Then in the second step assuming that D1 6= D2 (and without loss of

generality that D1 \ (D̄1∩ D̄2) is nonempty), we will arrive at a contradiction
by letting the source location z tend to a boundary point of ∂D1 which does
not belong to D̄2. Without loss of generality we assume there exists x∗ ∈ ∂G
such that x∗ ∈ ∂D1 and x∗ 6∈ D̄2. Then we can choose h > 0 such that the
sequence

xm := x∗ +
h

m
ν(x∗), m = 1, 2, . . . , (4.2)
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is contained in G. Consider the fields in (3.7) with z replaced by xm and
polarization p such that p × ν(x∗) 6= 0. Since x∗ 6∈ D̄2, for scattering from
D2 we have

‖ν × [U i(·, xm)p]− ν × [U i(·, x∗)p]‖C0,α(∂D2)

= ‖ν × p {Φ(·, xm)− Φ(·, x∗)} ‖C0,α(∂D2) → 0, m→∞.

Therefore, by the well-posedness of the direct scattering problem with electric
boundary condition we have that

lim
m→∞

ν(x∗)× [U s
2 (x∗, xm)p] = ν(x∗)× [U s

2 (x∗, x∗)p]. (4.3)

On the other hand, from the boundary condition corresponding to the ob-
stacle D1 we find that

|ν(x∗)× [U s
1 (x∗, xm)p]| = |Φ(x∗, xm)ν(x∗)× p| = |ν(x∗)× p|

4π|x∗ − xm|
→ ∞

as m → ∞. This is a contradiction to (4.1) and (4.3). Therefore D1 = D2

and the proof is complete for the electric boundary condition. The proof for
the magnetic boundary condition is obtained in the same way by considering
the boundary condition for the normal component of the scattered field and
p = ν(x∗). �

In addition to this uniqueness result for one wave number it is also possible
to prove a uniqueness theorem for fixed incident direction and polarization.

Theorem 4.2 Assume that D1 and D2 are two scatterers with electric or
magnetic boundary condition such that for plane waves with one fixed incident
direction and polarization the far field patterns of both scatterers coincide for
all wave numbers contained in some open interval in (0,∞). Then D1 = D2.

The proof is the same as that for the corresponding result on the perfect
conductor boundary condition in [3, Theorem 7.2]. For uniqueness with only
a few waves we have the following result.

Theorem 4.3 A convex polyhedron with electric or magnetic boundary con-
dition is uniquely determined by the electric far field patterns for two incident
plane waves of the same wave number with two incident directions d1, d2 and
two linearly independent polarizations p1, p2.
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The proof idea is the same as that for the corresponding result on sound soft
acoustic scattering in [3, Theorem 5.5]. The condition of the theorem ensures
that for each plane P in R3 at least one of the two plane waves Ei(·; d1)p1
and Ei(·; d2)p2 has nonzero tangential component on P in the case of the
electric boundary condition. In the case of the magnetic boundary condi-
tion it ensures that for each plane P in R3 for at least one of the two plane
waves curlEi(·, d1)p1 and curlEi(·, d2)p2 has nonzero tangential component
on P . �

For scattering of time-harmonic acoustic plane waves from a ball centered
at the origin the far field pattern depends only on the angle between the
incident and the observation direction. By a result due to Karp [4] from
1962 the converse of this property is also true and provides an example for an
explicit analytic solution for a nonlinear inverse obstacle scattering problem.

In the case of the vector Helmholtz equation with the electric or magnetic
boundary condition if the scatterer D is a ball centered at the origin, it is
obvious from symmetry considerations that the far field pattern for incoming
plane waves of the form (3.3) satisfies

E∞(Qx̂,Qd)Qp = QE∞(x̂, d)p (4.4)

for all x̂, d ∈ S2, all p ∈ R3 and all rotations Q, i.e., for all real orthogonal
matrices Q with detQ = 1. We will show that the converse of this statement
is also true. This result extends the corresponding result by Colton and
Kress [1] for the Maxwell equations for scattering from a perfect conductor.
The proof partly follows the proof of the latter result in [3] and makes it
more concise.

Theorem 4.4 Assume that the far field pattern for the scattering problem
with plane wave incidence for the vector Helmholtz equation with electric or
magnetic boundary condition satisfies the symmetry relation (4.4). Then the
scatterer is a ball centered at the origin.

Proof. Choosing a fixed but arbitrary vector p ∈ R3 and using the Funk–
Hecke formula (see [3, p. 36])∫

S2
eik x·dds(d) = 4π

sin k|x|
k|x|
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we consider the superposition of incident plane waves given by

Ẽi(x, p) :=

∫
S2
Ei(x, d)p ds(d) = 4π

sin k|x|
k|x|

p. (4.5)

Then, as in the beginning of the proof of Theorem 3.3, the far field pattern
of the corresponding scattered wave Ẽs is given by the superposition of the
far field patterns

Ẽ∞(x̂, p) =

∫
S2
E∞(x̂, d)p ds(d).

The symmetry condition (4.4) implies that

Ẽ∞(Qx̂,Qp) = QẼ∞(x̂, p) (4.6)

for all x̂ ∈ S2, all p ∈ R3 and all rotations Q.
The vectors p, p× x̂ and x̂ form a basis in R3 provided p× x̂ 6= 0. Hence

we can write

Ẽ∞(x̂, p) = γ1(x̂, p) p+ γ2(x̂, p) p× x̂+ γ3(x̂, p) x̂ (4.7)

with well defined scalar functions γ1, γ2 and γ3 depending on x̂ and p. Since
the solution to the scattering problem and correspondingly the far field pat-
tern Ẽ∞ depends linearly on the polarization p the functions γ1 and γ2 do not
depend on p and the function γ3 must be linear in p, that is, γ3(x̂, p) = γ̃3(x̂)·p
with some vector function γ̃3. Finally, the symmetry condition (4.6) implies
that γ1, γ2 and γ̃3 are constants and the representation (4.7) simplifies to

Ẽ∞(x̂, p) = c1 p+ c2 p× x̂+ c3 · p x̂ (4.8)

with constant scalars c1, c2 and a constant vector c3 for all x̂ ∈ S2 and p ∈ R3

with p × x̂ 6= 0. Because of the linear dependence of Ẽ on the polarization
p the equation (4.8) is actually valid for all x̂ ∈ S2 and p ∈ R3 without
restriction.

So far we have only exploited the symmetry relation (4.4) and only now
will start to make use of the boundary conditions. Since by Rellich’s lemma
the far field pattern uniquely determines the scattered field, from (4.8) we
observe that

Ẽs(x, p) = c1
eik|x|

|x|
p+

ic2
k

curl p
eik|x|

|x|
+
c3 · p
ik

grad
eik|x|

|x|
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for all x ∈ R3 \ D̄ and all p ∈ R3. Consequently, in view of (4.5), for the total

field Ẽ = Ẽi + Ẽs we have that

Ẽ(x, p) =
1

k
ψ(|x|) p+

ic2
k

curlϕ(|x|)p+
c3 · p
ik

gradϕ(|x|) (4.9)

for all x ∈ R3 \ D̄ and p ∈ R3 where we have set

ϕ(t) :=
eikt

t
, t > 0,

and
ψ(t) := 4π Imϕ(t) + c1kϕ(t), t > 0,

with the imaginary part Imϕ of ϕ. From this we conclude that

div Ẽ(x, p) =
1

k|x|
ψ′(|x|) p · x+ ikc3 · pϕ(|x|) (4.10)

and

curl Ẽ(x, p) =
ψ′(|x|)
k|x|

[x× p] +
ic2
k

[
k2ϕ(|x|) +

ϕ′(|x|)
|x|

]
p

+
ic2
k

|x|ϕ′′(|x|)− ϕ′(|x|)
|x|3

p · x x

(4.11)

for all x ∈ R3 \ D̄ and p ∈ R3.

From (4.10) and the electric boundary condition div Ẽ = 0 on ∂D we find
that

ψ′(|x|) p · x+ ik2c3 · p |x|ϕ(|x|) = 0 (4.12)

for all x ∈ ∂D and p ∈ R3. If c3 6= 0 for a fixed but arbitrary x ∈ ∂D in (4.12)
we may choose p such that c3 · p 6= 0 and p · x = 0 to obtain that ϕ(|x|) = 0
for all x ∈ ∂D. Since ϕ is analytic and does not vanish identically it has
only discrete zeros and consequently |x| must be constant on ∂D. Hence, D
must be a ball centered at the origin. If c3 = 0 then from (4.12) we obtain
ψ′(|x|) = 0 and the analyticity of ψ again implies that D is a ball centered
at the origin.
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From (4.11) and the magnetic boundary condition ν × curl Ẽ = 0 on ∂D
we obtain

ψ′(|x|) ν(x)× [x× p] + ic2|x|
[
k2ϕ(|x|) +

ϕ′(|x|)
|x|

]
ν(x)× p

+ic2
|x|ϕ′′(|x|)− ϕ′(|x|)

|x|2
p · x ν(x)× x = 0

(4.13)

for all x ∈ ∂D and all p ∈ R3. For a fixed but arbitrary x ∈ ∂D we choose
p = ν(x) and take the scalar product of (4.13) with x to find that{

|x|2 − [ν(x) · x]2
}
ψ′(|x|) = 0 (4.14)

for all x ∈ ∂D. From (4.9) we observe that the origin x = 0 belongs to D.
We assume that there are two points x1 and x2 in ∂D such that |x1| 6= |x2|.
Then there exists an open subset Ω of ∂D such that for all x ∈ Ω we have
that x is not perpendicular to the tangent plane at ∂D in x, i.e., x and
ν(x) form an angle different from zero. Therefore, by the Cauchy–Schwarz
inequality we have that |x|2− [ν(x) ·x]2 > 0 for all x ∈ Ω. Consequently from
(4.14) it follows that ψ′(|x|) = 0 for all x ∈ Ω. Then by the analyticity of ψ′

as above we conclude that Ω is a subset of a sphere centered at the origin.
This is a contradiction to our assumption on Ω and completes the proof of
the theorem for the magnetic boundary condition. �

5 The DB boundary condition

For the Maxwell equations in 1956 Rumsey [11], in addition to the classical
boundary value problems for perfect conductors, suggested to consider the
problem of finding a solution E,H to (1.5) in R3 \ D̄ satisfying the Silver–
Müller radiation condition (1.3) and the boundary condition of the form

ν · E = f, ν ·H = g on ∂D (5.1)

with given scalar functions f and g on the boundary ∂D. For simplicity we
only consider the case of a simply connected D. (In the case of a multiply
connected D with nonzero topological genus for uniqueness of the solution
circulations of E and H with respect to a basis of the first homology group
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of R3 \ D̄ must be prescribed.) We note that by the Maxwell equations and
Stokes integral theorem f and g have to satisfy∫

∂D

f ds =

∫
∂D

g ds = 0 (5.2)

as necessary solvability conditions. Uniqueness of a solution was settled
in 1970 by Yee [13]. Existence of a solution was established via Hilbert
space variational methods by Picard [10] and by boundary integral equation
methods in 1986 by the author [6]. For the type (5.1) of boundary conditions
more recently for brevity the term DB boundary conditions was introduced by
Lindell and Sihvola [8, 9] who also investigated its relations to metamaterials.

Now in the spirit of this paper the exterior DB boundary value problem
for the vector Helmholtz equation is to find a radiating solution E in R3 \ D̄
satisfying the boundary conditions

ν · E = f, ν · curlE = g, divE = h on ∂D (5.3)

for given scalar functions f, g and h in C0,α(∂D). divE = 0 on ∂D implies
divE = 0 in R3 \ D̄ by the uniqueness for the exterior Dirichlet problem for
the scalar Helmholtz equation. Therefore the pair E, ikH := curlE solves the
Maxwell equation. Hence uniqueness for the DB boundary value problem for
the Maxwell equation (see [6, 7, 13]) implies uniqueness for the DB boundary
value problem for the vector Helmholtz equation.

Clearly, by Stokes’ integral theorem g has to satisfy∫
∂D

g ds = 0 (5.4)

as necessary solvability condition. However, it turns out that as in the
Maxwell case the condition ∫

∂D

f ds = 0 (5.5)

is also necessary for solvability. We first briefly sketch an existence proof for
the case when both (5.4) and (5.5) are satisfied and then show the necessity
of (5.5).

For existence we follow [6] and require the knowledge of a tangential
vector c ∈ C1,α(∂D) such that Div c = −g which can be constructed in
a straightforward manner. Then we consider an auxiliary problem to find a
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vector field W and a scalar function u both satisfying the Helmholtz equation
in R3 \ D̄ and the boundary condition

ν ×W = c,

ν ·W +
∂u

∂ν
+

∫
∂D

u ds = f,

divW − k2u = h

on ∂D together with the Silver–Müller radiation condition for W and the
Sommerfeld radiation condition for u. Uniqueness and existence of a solution
to this problem has been established in [6] by an integral equation approach.
(In [6] the problem is formulated only for the homogeneous case h = 0 but it
is obvious that the inhomogeneous case is also solvable by the Riesz theory for
compact operators.) Then E := W +gradu solves the exterior DB boundary
value problem.

Now assume that for a triple of functions f, g and h with
∫
∂D
f ds 6= 0

the DB boundary value problem has a solution E1. We set

f0 := f − 1

|∂D|

∫
∂D

f ds

and observe that f0 satisfies (5.5). Therefore we also have a solution E0

to the DB problem with boundary values f0, g and h. Then the difference
E := E1 − E0 satisfies divE = 0 on ∂D. As in the above uniqueness proof
this implies that the pair E, ikH := curlE solves the Maxwell DB boundary
value problem with boundary values

ν · E =
1

|∂D|

∫
∂D

f ds 6= 0

which is a contradiction to the necessary solvability condition (5.2) in the
case of the Maxwell equations.

Hence the condition (5.5) is necessary also in the case of the vector
Helmholtz equation. This now means that for scattering of plane waves
as considered in the two previous sections in order to fulfill (5.5) the polar-
ization p and the propagation d have to be orthogonal. This means we are
back to the Maxwell case and this ends our consideration of the DB boundary
condition for the vector Helmholtz equation. For results on inverse scattering
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for the Maxwell equation with DB boundary condition analogous to those of
Sections 3 and 4 we refer to [7], except Karp’s theorem. Therefore we will
finish our analysis by briefly discussing the latter since we have most of the
necessary tools already available in Section 4.

For the Maxwell equations incident plane waves are divergence free only
if the propagation direction and the polarization are orthogonal. Therefore
as in [1, 3] we consider plane waves of the form

Ei(x, d)p :=
i

k
curl curl eik x·dp = ik (d× p)× d eik x·d (5.6)

with d ∈ S2 and p ∈ R3 and the related superposition

Ẽi(x, p) =

∫
S2
Ei(x, d)p ds(d) =

4πi

k2
curl curl

sin k|x|
|x|

p. (5.7)

We also need to modify the basis vectors for R3 from the proof of Theorem 4.4
into the three vectors x̂, p × x̂ and x̂ × (p × x̂) such that p× x̂ 6= 0. Hence,
since the far field pattern for radiating solutions to the Maxwell equation is
orthogonal to x̂ (see [3, Theorem 6.9]), we can write

Ẽ∞(x̂, p) = c1(x̂, p) p× x̂+ c2(x̂, p) x̂× (p× x̂) (5.8)

with well defined scalar functions c1 and c2 depending on x̂ and p. As in the
proof of Theorem 4.4 from linearity in the polarization p and the symmetry
relation (4.4) it follows that c1 and c2 are constants again and consequently

Ẽ∞(x̂, p) = c1 p× x̂+ c2x̂× (p× x̂)

for all x̂ ∈ S2 and p ∈ R3. This in turn implies

Ẽ(x, p) = curl pψ(|x|) + curl curl pχ(|x|) (5.9)

for all x ∈ R3 \ D̄ and all p ∈ R3 where

ψ(t) :=
ic1
k

eikt

t
and χ(t) :=

4πi

k2
sin kt

t
+
c2
k2

eikt

t
.

From this we find that

ν(x) · Ẽ(x, p) =
ψ′(|x|)
|x|

[x× p] · ν(x) +

[
k2χ(|x|) +

χ′(|x|)
|x|

]
p · ν(x)

+
|x|χ′′(|x|)− χ′(|x|)

|x|3
p · x x · ν(x).
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for all x ∈ ∂D and all p ∈ R3 and inserting p = ν(x) yields

ν(x) · Ẽ(x, p) =
1

k2
[
χ′′(|x|) + k2χ(|x|)

]
x · ν(x)

for all x ∈ ∂D. This way from the DB boundary condition we obtain that[
χ′′(|x|) + k2χ(|x|)

]
x · ν(x) = 0

for all x ∈ ∂D. By the Helmholtz equation in polar coordinates this implies

χ′(|x|)x · ν(x) = 0 (5.10)

for all x ∈ ∂D.
From the Gauß divergence theorem we have∫

∂D

x · ν(x) ds(x) = 3

∫
D

dx > 0

and therefore the open subset

Ω := {x ∈ ∂D : x · ν(x) > 0}

it not empty. Let Γ ⊂ Ω be a nonempty connected component. Since χ′

as a function of one variable is analytic and does not vanish identically it
can have only discrete zeros. Consequently in view of (5.10) we have that
|x| = const for all x ∈ Γ, i.e., Γ is a subset of a sphere with center at the
origin and positive radius R > 0. For x0 ∈ Γ we have a sequence (xn) in Γ
with xn → x0 as n→∞, that is, by continuity we have x0 · ν(x0) = R > 0.
Therefore the subset Γ ⊂ ∂D is also closed whence Γ = ∂D and the proof
for the following final theorem is complete.

Theorem 5.1 Assume that the far field pattern for the scattering problem
with plane wave incidence for the Maxwell equations with DB boundary condi-
tion satisfies the symmetry relation (4.4). Then the scatterer is a ball centered
at the origin.
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