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Abstract: For interpolation of scattered multivariate data by radial basis functions, an \un-certainty relation" between the attainable error and the condition of the interpolation ma-trices is proven. It states that the error and the condition number cannot both be keptsmall. Bounds on the Lebesgue constants are obtained as a byproduct. A variation of theNarcowich{Ward theory of upper bounds on the norm of the inverse of the interpolation ma-trix is presented in order to handle the whole set of radial basis functions that are currentlyin use.1 IntroductionInterpolation by \radial" basis functions requires a function � : IRd ! IR, a space IP dm ofd{variate polynomials of degree less than m, and interpolates data values y1; . . . ; yN 2 IR atdata locations (\centers") x1; . . . ; xN 2 IRd by solving the systemNXj=1 �j�(xj � xk) + QX̀=1 �`p`(xk) = yk; 1 � k � NNXj=1 �jpi(xj) + 0 = 0; 1 � i � Q (1:1)for a basis p1; . . . ; pQ of IP dm, where Q = �m� 1 + dd �. See Table 1 for the most commonlyused examples. In self{evident matrix formulation the system (1.1) reads as�A P TP 0 ���� � = � y0� ; (1:2)and solvability is usually guaranteed by the requirements rank (P ) = Q � N and�k�k22 � �TA� (1:3)for all � 2 IRN with P� = 0, where � is a positive constant. The latter condition is called\conditional positive de�niteness of order m" if it holds for a speci�c pair (m;�) and forarbitrary sets X = fx1; . . . ; xNg � IRd. The condition rank P = Q � N can be called \IP dm{nondegeneracy of X", because on such sets polynomials from IP dm are uniquely determinedby their values. Details can be found in review articles by M.J.D. Powell [14], N. Dyn [7]and M. Buhmann [5].If m = 0, then IP dm and P disappear. In this case kA�1k2 � ��1 holds in the spectral norm.More generally, as we shall see in the next section, the quantity ��1 controls the sensitivity ofthe solution vector � with respect to variations in the data vector y. Thus one is interestedin lower bounds on � that are as tight as possible. Such bounds were obtained by Ball [2],Narcowich and Ward [11], [12], [13], Ball, Sivakumar, and Ward [3], Baxter [4] and Sun [17],while lower bounds were supplied by Schaback [16]. If the data are values of a function f ,one usually considers a �xed function space F and evaluates the error of the interpolantsf = NXj=1 �j�(� � xj) + QXl=1 �`p` (1:4)1



de�ned by a solution of (1.1) with yk = f(xk). If F is de�ned via � itself in a natural way,the space F carries a speci�c seminorm j:jF and the bound for the error f(x)� sf (x) takesthe form jf(x)� sf (x)j � jf jF � P (x);where the power function P (x) just is the norm of the error functional on F evaluated at x.Note that P depends on x;X;�, and F , but not on f . For sake of completeness, we notethat F contains all functions f : IRd ! R withf(x) = (2�)�d ZIRd f̂ (!)ei!T xd!; x 2 IRdwhere f̂ is in L1(IRd) and jf j2F := ZIRd jf̂(!)j2'(!) d! <1:Here, ' denotes the d{variate generalized Fourier transform of �. It is assumed to be apositive continuous function on IRd n f0g satisfying a variational equationZIRd ZIRd v(x)v(y)�(x� y)dxdy = (2�)�d ZIRd '(!)jv(w)j2d! (1:5)for all test functions v in the Schwartz space of tempered functions that additionally satisfyv̂(�)(0) = 0 for all � 2 INd�0; j�j < m:Note that ' coincides in the sense of Jones [8] with the generalized Fourier transform of �in the context of tempered distributions. This approach goes back to W. Madych and S.A.Nelson [9], where (1.5) explicitly occurs. Table 2 contains the functions ' corresponding tothe various cases of �. If ' decays at least algebraically at in�nity, e.g.:0 < '(!) < C(1 + k!k)�k;then F contains Sobolew spaceW k2 (IRd) = �f ���� ZIRd jf̂ (!)j2(1 + k!k2)kd! <1� :However, if ' decays exponentially, e.g.: for �(x) = e��kxk2, then F consists of C1 functions.Further details can be found in W. Madych and S. Nelson [9], [10], N. Dyn [6], and R.Schaback [15].Numerical observations and theoretical results have revealed that the error and the sensitiv-ity, described by P (x) and ��1, seem to be intimately related. In particular, there is no caseknown where the error and the sensitivity are both reasonably small. There is a dichotomy:Either one goes for a small error and gets a bad sensitivity, or one wants a stable algorithmand has to take a comparably large error. This e�ect is reminiscent the Uncertainty Principlein quantum mechanics, and here it will take the very simple formP 2(x) � ��1(x) � 1 (1:6)where �(x) is de�ned via (1.3) for the matrix Ax that arises after adding an additional rowand column for A of (1.2) for the location x = x0. We shall prove (1.6) in section 2 anddraw several conclusions. 2



To explain the latter, we have to introduce some additional notation. First, the known upperbounds for P (x) take the form P 2(x) � F (h(x)) (1:7)where F : IR>0 ! IR>0 is decreasing andh(x) := maxky�xk2�� min1�j�N ky � xjk2 (1:8)measures the density of centers xj from X around x. Note that h(x) depends on X and� > 0 (which is kept �xed), but not on �. Equation (1.7) holds uniformly for all points xand sets X such that h(x) � h0;the positive constant h0 being dependent on d;m; �, and �. It requires no additional hy-potheses on � exceeding those we made so far. The function F is dependent on the decay ofthe generalized Fourier transform ' of � at in�nity. This is equivalent to being dependenton the smoothness of �. See the references in Table 1 for details concerning the constructionof F .Second, the known lower bounds for �(x) take the analogous form�(x) � G(q(x));where q(x) is the separation distance within the set X [ fxg, i.e.:q(x) = 12 min0�j<k�N kxj � xkk (1:9)where we set x0 := x again. Table 1 contains references to some special instances; section 3will provide a general theory based on previous work by Narcowich and Ward. No additionalhypotheses on � are required. As h(x), the quantity q(x) depends on X and x, but there is amajor di�erence between the two: if h(x) is small then there is a ball around x packed withcenters from X of mutual distance at most h(x), while a small value of q(x) may possiblybe attained for kxj �xkk=2 with xj and xk far away from x. This di�erence is quite natural,because one cannot expect P (x) to be boundable from above in terms of q(x), nor can �(x)in general be bounded from below by h(x). See De�nition 2.2 below for a situation wheresuch a bound exists.Now our assertion (1.6) leads to a two{sided inclusionG(q(x)) � �(x) � P 2(x) � F (h(x))that serves to provide new upper bounds on �(x) and new lower bounds on P (x). In addition,we now have an easy possibility to check how tight the bounds from the literature are in caseof centers on the grid hZZd. Then q(x) = h2 + pdh is possible, and both �(x) and P 2(x)should �t between G(h) � F (hpd);and we shall see that F and G indeed di�er only by a constant factor in case of thin{platesplines. In other cases, there are additional powers of � that make a gap betweenG(�) = c � �k � F (�) � F (� � pd); � ! 0; k > 0which leaves room for further research. 3



For the reader's convenience, we list the known examples for functions F and G in Table 1.�(x) = �(r); r = kxk2 F (h) G(h)r�; � 2 IR>0 n 2IN h� h�[2]: d = � = 1thin{plate splines [18] [3], pg. 419: � 2 (0; 2)[13], x VI: � = m� d=2; d odd(�1)1+�=2r� log r; � 2 2IN h� h�thin{plate splines [18] [13], x VI: � = m� d=2; d even(
2 + r2)�=2; � 2 IR n 2IN�0 e� �h h2e� 6h2 [11], pg. 90: 
 = 1 = �; d = 2,Multiquadrics � > 0. he� 2dh [3], pgs. 422{423: 
 = 1 = �[10] h� exp(�12:76
d=h)e��r2; � > 0 e� �h2 h�de� 
h2 [13], pg. 90: � = 1Gaussians � > 0 [10] h�d exp(�40:71d2=(�h2))2�d=2�(k) Kk�d=2(r)(r=2)k�d=2 h2k�d h2k�d2k > d, as in [18]Sobolev splinesTable 1: All entries are modulo factors that are independent of r and h, but possiblydependent on parameters of �. Unreferenced cases for G are treated in section 3, wherewe included the constants.Another useful result of our analysis will be a bound on the Lagrange functions u1(x); . . . ; uN(x)corresponding to interpolation by (1.1) on X = fx1; . . . ; xNg. In the above context, we get1 + NXj=1 u2j (x) � P 2(x)�(x) � F (h(x))G(q(x)) ;and this serves to prove that the Lagrange functions cannot grow too badly in regions wherethere are su�ciently many regularly distributed centers.2 Basic resultsFirst we assert that ��1 of (1.3) controls the sensitivity of the solution vector � 2 IRN of(1.2) with respect to perturbations of the data vector y 2 IRN . In fact,�TA� = �Ty4



follows from (1.2) and implies k�k2 � ��1kyk2;if (1.3) holds. Similarly, an upper bound�TA� � �k�k22; � > 0 (2:1)of the quadratic form induced by A yields��1kyk2 � k�k2and in case of a perturbation y +�y of y that leads to a perturbation �+�� of �, we getthe condition{type estimate k��k2k�k2 � �� k�yk2kyk2 :Since the determination of the other solution vector � 2 IRQ of (1.2) can be viewed as aproblem of polynomial interpolation, the main part of the sensitivity analysis of \radial"basis function interpolation problems consists in �nding good bounds for � and �.We now turn to the function P (x). Due to the special choice of the space F and the seminormj:jF , the function P 2(x) can be explicitly written asP 2(x) = �(0) � 2 NXj=1 uj(x)�(xj � x)+ NXj=1 NXk=1 uj(x)uk(x)�(xj � xk);where u1(x); . . . ; uN(x) are the Lagrange basis functions for interpolation, i.e. (1.6) equalssf = NXj=1 f(xj)uj(see e.g. Schaback [15]). We now set x0 := x and add a �rst row and column to the N �Nmatrix A in (1.2) to get a (N + 1)� (N + 1) matrix Ax. Withux := (1;�u1(x); . . . ;�uN(x))T 2 IRN+1we then have P 2(x) = uTxAxuxand simply use (1.3) for Ax in the form�(x)k
k22 � 
TAx
 for all 
 2 IRN+1to get �(x) 1 + NXj=1 u2j(x)! � P 2(x): (2:2)If we take (2.1) for A replaced by Ax, then�(x) � P 2(x)1 + NXj=1 u2j(x) � �(x):We now can read o� a series of statements: 5



Theorem 2.1 For any IP dm{nondegenerate set X = fx1; . . . ; xNg and all x 2 IRd n X wehave 1 � 1 + NXj=1 u2j (x) � P 2(x)��1(x):If � corresponds to A in (1.3), then� � min�P 2j (xj) �� X n fxjg is IP dm{nondegenerate; 1 � j � N	where Pj is the power function for X n fxjg. 2In all practically relevant cases we have bounds of the formP 2(x) � F (h(x))�(x) � G(q(x)) (2:3)with continuous and decreasing functions F and G for small arguments. The relation betweenq(x) and h(x), as de�ned in (1.9) and (1.8), is2q(x) � min1�j�N kx� xjk � h(x); (2:4)but in order to relate the bounds in (2.3) we have to look at conditions under which h(x)can be bounded from above in terms of q(x).De�nition 2.2 We call a set of centers X = fx1; . . . ; xNg quasi{uniform for a compact set
 � IRd, if there are � > 0 and h > 0 such thata) h(x) � h for all x 2 
b) 2q = min1�j<k�N kxj � xkk2 � h � �,c) each set X n fxjg; 1 � j � N , is IP dm{nondegenerate.Then we call h the density and � the uniformity of X with respect to 
.Note that necessarily 0 < � � 1 due to (2.4), and that there are plenty of such sets if h issmall enough.Theorem 2.3 For quasi{uniform sets of centers with density h and quasi{uniformity � wehave two{sided bounds G(12 h") � �(x) � P 2(x) � F (h) (2:5)for all x 2 
 with q(x) � 12 h � ". Furthermore, if (2.3) holds for arguments � 2h in F andG, and if 2h � � for � in (1.8), thenG(12 h�) � � � F (2h): (2:6)Finally, F and G always satisfy G(h) � F �hpd�for su�ciently small arguments. 6



Proof: The bounds in (2.5) and the left part of (2.6) readily follow from the de�nition ofquasi{uniformity, while for the right{hand part of (2.6) we have to provemin1�j�N hj(xj) � 2h (2:7)if hj is de�ned as hj(x) := supky�xk�� min1�k�Nk 6=j ky � xkklike (1.8) after deletion of xj from X = fx1; . . . ; xNg. For this, �rst take y 2 IRd withh < ky � xjk � �. Then there is some xk 2 X with k 6= j and ky � xkk � h � 2h, proving(2.7) in this case. If, however, y 2 IRd satis�es ky � xjk � h � �, then we can �nd az" 2 IRd with kz" � xjk = h+ " for an arbitrarily small " 2 (0; h] such that y lies on the linebetween xj and z". Then there is some k 2 f1; . . . ; Ng; k 6= j, such that kz" � xkk � h, andconsequently ky � xkk � ky � z"k+ kz" � xkk � h+ "+ h;proving (2.7) for this case, too. The last assertion follows from the fact that for a uniformgrid hZZd one has points x with h(x) = hpd2 = pdq(x);and thus G(h=2) = G(q(x)) � �(x) � P 2(x) � F (h(x)) = F �h � pd2 � : 2The applications of these results can be read o� Table 1. For thin{plate splines, the boundsin terms of F and G are of the same order, and the L2 Lebesgue function 1+PNj=1 u2j (x) willbe bounded independent of N for x inside sets of su�ciently dense centers. Upper boundsof P 2(x) and lower bounds of �(x) are best possible in terms of the order �. The results ofthe literature do not cover the full range of �, and this is why we add a section on lowerbounds for �(x).The other cases show certain discrepancies between F (� � pd) and G(�) by factors �k thatmay or may not be consequences of insu�cient proof techniques. But since in these casesthe bounds decay exponentially anyway, one should rather look at the constants in theexponential in order to sharpen the bounds. As long as these constants are not known, onecannot say whether the L2 Lebesgue functions are exponentially increasing, decreasing orconstant.3 Lower bounds for �In this section we generalize the technique of Narcowich and Ward [11], [12], to provideTable 1 with a full set of examples for the G function. The main di�erence will be that weintroduce Fourier transforms right from the start, which makes it much easier to treat largevalues of m, the order of conditional positive de�niteness of �.7



The starting point is that any function � of Table 1 satis�es a relationNXj=1 NXk=1 �j�k�(xj � xk) = (2�)�d ZIRd '(!) ����� NXj=1 �jeixTj !�����2 d! (3:1)for all IP dm{nondegenerate sets X = fx1; . . . ; xNg and all vectors � 2 IRN satisfying thesecond set of equations in (1.1). Note that (3.1) can be derived from (1.5), as was shown byMadych and Nelson [9].The left{hand side of (3.1) is the quantity �TA� that we want to bound from below, andwe can do this by any minorant  on IRd n f0g of ' that satis�es'(!) �  (!) � 0 on IRd n f0g (3:2)and that itself leads to a similar quadratic formNXj=1 NXk=1 �j�k	(xj � xk) = (2�)�d ZIRd  (!) ����� NXj=1 �jeixTj !�����2 d! (3:3)for another \radial" basis function 	 and a weaker (or none) constraint on � 2 IRN . Fur-thermore, there should be an easy lower bound�TB� � �k�k22for the left{hand side �TB� of (3.3). Then clearly for all � 2 IRN that are admissible,�TA� � �TB� � �k�k22; (3:4)as required. The basic trick of Narcowich and Ward now is to make B diagonally dominant,while  is obtained by chopping o� ' appropriately. Before we proceed any further, here isthe main result:Theorem 3.1 With the function '0(r) := infk!k2�2r '(!) (3:5)we have � � 12 '0(M)��d2 + 1� � M4p� �d (3:6)for any M > 0 satisfying M � 12q 0@��2 �d2 + 1�9 1A 1d + 1 (3:7)or, a fortiori, M � 6:38 dq : (3:8)8



Proof: We start with any M > 0 and the characteristic function�M(x) = ( 1 kxk2 �M0 else )of the L2 ball with radius M . Then we de�ne (!) :=  M(!) := '0(M)��d2 + 1�2dMd �d=2 (�M � �M)(!)and use the calculations of [13] to get (3.2) viasupp ( M ) = �x 2 IRd : kxk2 � 2M	 =: C2M(0)k�M � �Mk1 � vol(CM(0)) =Md 2d�d=2��d2 + 1� :The radial basis function 	M corresponding to  M is obtained via the inverse Fourier trans-form ��M(x) = � M2�kxk2 �d=2 Jd=2(M � kxk2)and the Convolution Theorem as	M(x) = '0(M)��d2 + 1�2dMd �d=2 (�M � �M)_(x)= '0(M)��d2 + 1�2d�d=2 kxk�d2 J2d=2(M � kxk2)with J� denoting the Bessel function, satisfyingJ2d=2(z) � 2d+2�z ; z > 0limz!0 z�dJ2d=2(z) = 12d�2 �d2 + 1� (3:9)as was proven in [13]. The second formula yields	M (0) = '0(M)��d2 + 1� � M4p� �dand we assert diagonal dominance of the quadratic form in (3.3) by a suitable choice of M .We have �TB� � k�k220B@	M(0) � max1�j�N NXk=1k 6=j 	M (xj � xk)1CA9



by Gerschgorin's theorem, and the �nal bound will be of the form� � 12 	M(0) = '0(M)2��d2 + 1� � M4p� �d ; (3:10)because we shall choose M such thatmax1�j�NXk=1k 6=j 	M (xj � xk) � 12 	M (0): (3:11)This is done by a tricky summation argument of Narcowich and Ward [13] that proves (3.11)for M satisfying (3.7). It remains to show that (3.8) implies (3.7). We use a variation ofStirling's formula in the form�(1 + x) � p2�xxxe�xe1=12x; x > 0to get �9 �2 �d2 + 1� � �29 dd+1(2e)�de1=3d;��9 �2 �d2 + 1�� 1d + 1 � d � ��29 � 1d + 1 � (2e)� dd + 1 e 13d(d + 1)� d �3p2e � e1=6 � d � 0:531such that M � 6:38q dis satisfactory for all cases. 2Note that this technique completely ignores the additional conditions on � that might leadto a larger lower bound. The advantage is that the result is fairly general and can be appliedin all of the cases. We incorporated the results into Table 1 to supply a number of missingcases. This was done by application of Theorem 3.1 to the entries in Table 2. To keepthe formulae short, we used (3.8) instead of (3.7), which would yield sharper, but muchmore complicated bounds. To treat multiquadrics as a speci�c example, we have to evaluate'0(M) via '1(R) := inf0<r�RK�(r) � r�� ; R > 0; � = d + �2 :We use equation 9.6.23 of Abramowitz and Stegun [1] to get��� + 12 �K�(r)p�(r=2)� = Z 11 e�rt(t2 � 1)��1=2dt� Z 11 e�rt(t� 1)2��1dt= e�r Z 10 e�rss2��1ds= �(2�)e�r � r�2�10



and '1(R) � �(2�)��� + 12 � p�2� e�R �R�2� :By the doubling formula for the � function this can be simpli�ed to'1(R) � 2��1�(�)R�2�e�R:Then we have '0(M) = 2�d=2����2 � (2
2)�'1(2
M)� 2�d=2����2 � (2
2)�2��1�(�)e�2
M (2
M)�2�= �d=2�(�)M�2�e�2
M����2 �and � � 122d+1 � ��d + �2 �����2 ���d2 + 1� M�� exp(�2
M)as incorporated into Table 2 with M = 6:38d=q. For � < 0 and large values of q there is abetter choice of M , but we leave this exotic case to the reader. Similar tricks can be donein the Gaussian and Sobolev cases.Acknowledgement: The author thanks the referees for a series of helpful remarksand suggestions.
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Blatt bitte entfernen. Liegt nur bei, damit die Referenzierung fuer Tabelle 2 (die ja extragedruckt wird) klappt.Table 2: These table entries explicitly contain the relevant constants.
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