A Strong Convergence Theorem for a Proximal-Type

Algorithm in Reflexive Banach Spaces

Simeon Reich and Shoham Sabach

ABSTRACT. We establish a strong convergence theorem for a proximal-type
algorithm which approximates (common) zeroes of maximal monotone opera-
tors in reflexive Banach spaces. This algorithm employs a well-chosen convex
function. The behavior of the algorithm in the presence of computational er-
rors and in the case of zero free operators is also analyzed. Finally, we mention

several corollaries, variations and applications.

1. Introduction

In this paper X denotes a real reflexive Banach space with norm ||-|| and X*
stands for the (topological) dual of X endowed with the induced norm |-||,. We
denote the value of the functional £ € X* at € X by (£, x). An operator A: X —

2X" is said to be monotone if for any z,y € dom A, we have

€Az andne Ay = ({—nz—y) >0.

(Recall that the set dom A = {x € X : Az # @} is called the effective domain of
such an operator A.) A monotone operator A is said to be mazimal if graph A, the
graph of A, is not a proper subset of the graph of any other monotone operator.

In this paper f : X — (—o0,+00] is always a proper, lower semicontinuous and
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convex function, and f* : X* — (—o00, 00| is the Fenchel conjugate of f. The set
of nonnegative integers will be denoted by N.

The problem of finding an element z € X such that 0* € Ax is very important
in Optimization Theory and related fields. For example, if A is the subdifferential
Of of f, then A is a maximal monotone operator and the equation 0* € df () is
equivalent to the problem of minimizing f over X. One of the methods for solving
this problem in Hilbert space is the well-known proximal point algorithm. Let H
be a Hilbert space and let I denote the identity operator on H. The proximal point
algorithm generates, for any starting point zo = = € H, a sequence {z,},y in H

by the rule
(1.1) Tng1 = T+ XA) "2, n=0,1,2,...,

where {A,},cy s a given sequence of positive real numbers. Note that (1.1) is
equivalent to

1
OEA:an—l—/\—(:an—a:n), n=20,1,2,....

This algorithm was first introduced by Martinet [26] and further developed by
Rockafellar [34], who proves that the sequence generated by (1.1) converges weakly
to an element of A~!(0) when A~!(0) is nonempty and liminf, . Ay > 0.
Furthermore, Rockafellar [34] asks if the sequence generated by (1.1) converges
strongly. This question was answered in the negative by Giiler [22], who presented
an example of a subdifferential for which the sequence generated by (1.1) converges
weakly but not strongly; see [6] for a more recent and simpler example. More
recently, Solodov and Svaiter [37] have modified the proximal point algorithm in
order to generate a strongly convergent sequence. They introduce the following

algorithm:
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xo € H,
0=+ 3= (Yn — n), vy, € Ayp,
(12) Hn = {Z € H: <Un727yn> S 0}7

Wp={2€H:{(xg—xn,2—2n) <0},

Tn+1 ZPHann(.To), n:O,l,Q,....

Here, for each x € H and each nonempty, closed and convex subset C of H, the
mapping P¢ is defined by || — Pez|| = inf{||x — 2| : z € C}. This mapping is
called the metric projection of H onto C. They prove that if A~1(0) is nonempty
and liminf, ;o A\n, > 0, then the sequence generated by (1.2) converges strongly
to P4-1(0). Kamimura and Takahashi [25] generalize this result to those Banach
spaces X which are both uniformly convex and uniformly smooth. They introduce

the following algorithm:

.’L'()EX,
0% = vp + 3= (Jyn — J25) vn € Ayn,

Wn:{zeX:<J.TO_J$7L3Z_:E’VL> SO}’

Tnt1 = QHT,,HWT,, (1’0), n= Oa 13 2, ey

where J is the normalized duality mapping of the space X. Here, for each nonempty,
closed and convex subset C of X, Q¢ is a certain generalization of the metric
projection Pc in H. They prove that if A=! (0*) is nonempty and liminf,, oo A, >
0, then the sequence generated by (1.3) converges strongly to Q4-1(p+). Other
developments regarding the proximal point algorithm can be found, for example,
in [4, 6, 9, 10, 14, 16, 18, 20, 23, 24, 27, 29, 30, 31, 35, 38].

In the present paper we study an extension of algorithms (1.2) and (1.3) to all

reflexive Banach spaces using a well-chosen convex function f. More precisely, we
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consider the following algorithm introduced by Gérciga Otero and Svaiter [21]:

xg € X,
0" =&, + % (Vf(yn) = Vf(zn)), &n € Ayn,
(1.4) H,={ze€X:{&,z—yn) <0},

W,={2€ X :(Vf(xg) — Vf(zn),z—x,) <0},

Tl = proj};nmwn (x0), n=0,1,2,...,

where {A,}, oy is a given sequence of positive real numbers, Vf is the gradient
of f and projé is the Bregman projection (see Section 2.4) of X onto C induced
by f. Algorithm (1.4) is more flexible than (1.3) because it leaves us the freedom
of fitting the function f to the nature of the operator A (especially when A is
the subdifferential of some function) and of the space X in ways which make the
application of (1.4) simpler than that of (1.3). It should be observed that if X
is a Hilbert space H, then using in (1.4) the function f(z) = (1/2)|z|°, one
obtains exactly algorithm (1.2). If X is not a Hilbert space, but still a uniformly
convex and uniformly smooth Banach space X, then setting f (z) = (1/2) =/ in
(1.4), one obtains exactly (1.3). We also note that the choice f (z) = (1/2) ||z|” in
some Banach spaces may make the computations in algorithm (1.3) quite difficult.
These computations can be simplified by an appropriate choice of f. For instance,
if X =¢ or X = LP with p € (1,400), and f (z) = (1/p) ||z||” in (1.4), then the
computations become simpler than those required in (1.3), which corresponds to
f(x) = (1/2) ||z||*. We propose an extension of algorithm (1.4) (see algorithm (3.1))
which approximates a common zero of several maximal monotone operators and
which allows computational errors. Our main result (Theorem 1) is formulated and
proved in Section 3. The next section is devoted to several preliminary definitions
and results. The behavior of the algorithm when the operator A is zero free is
analyzed in Section 4 (see Theorem 2). The fifth section contains three corollaries
of Theorems 1 and 2. In the sixth and last section we present an application of

Theorems 1 and 2.
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2. Preliminaries

2.1. Some facts about Legendre functions. Legendre functions mapping
a general Banach space X into (—oo,+oco] are defined in [3]. According to [3,
Theorems 5.4 and 5.6], since X reflexive, the function f is Legendre if and only if
it satisfies the following two conditions:

(L1) The interior of the domain of f, int dom f, is nonempty, f is Gateaux

differentiable (see below) on int dom f and
domV f = intdom f;

(L2) The interior of the domain of f* int dom f*, is nonempty, f* is Gateaux

differentiable on int dom f* and
dom V f* = int dom f*.

Since X is reflexive, we always have (9f) " = f* (see [7, p. 83]). This fact,

when combined with conditions (L1) and (L2), implies the following equalities:
V=V,

ranVf = dom Vf* = intdom f*

and

ran Vf* = dom Vf = int dom f.

Also, conditions (L1) and (L2), in conjunction with [3, Theorem 5.4], imply that the

functions f and f* are strictly convex on the interior of their respective domains.
Several interesting examples of Legendre functions are presented in [2] and [3].

Among them are the functions 1 [|-|* with s € (1,00), where the Banach space X

is smooth and strictly convex and, in particular, a Hilbert space.

The function f is called cofinite if dom f* = X*.
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2.2. A property of gradients. For any convex f : X — (—o00,+00] we
denote by dom f the set {z € X : f (z) < +o00}. For any « € dom f and y € X, we

denote by f°(z,y) the right-hand derivative of f at x in the direction y, that is,

£o(ay) o=t LTI,

The function f is said to be Gateaux differentiable at x if limy_o (f(x + ty) — f(x)) /t
exists for any y. The function f is said to be Fréchet differentiable at x if this limit
is attained uniformly in ||y|| = 1. Finally, f is said to be uniformly Fréchet differen-
tiable on a subset E of X if the limit is attained uniformly for z € E and |Jy|| = 1.

We will need the following result.

Proposition 1. If f: X — R is uniformly Fréchet differentiable and bounded
on bounded subsets of X, then Vf is uniformly continuous on bounded subsets of

X from the strong topology of X to the strong topology of X*.

Proof. If this result were not true, there would be bounded sequences {z,}, .y

and {yn },cy, and a positive number ¢ such that |z, — y,| — 0 and
(Vf(zn) = Vf(yn),wn) > 2, where {wy,},y is a sequence in X with ||w,|| =1
for each n € N. Since f is uniformly Fréchet differentiable, there is a positive

number § such that

(W +twn) — f(yn) —t(Vf (yn) ,wn) < et

for all 0 <t < § and n € N. We also have

(VI (zn), (yn +twn) —x0) < f (Yo +twn) — f(zn), neN.

In other words,

t(Vf (@n) wn) < f(yn +twn) — f(yn) £V (@0), 20 — yn) + f (Yn) — f(20).
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Hence

2et <t (Vf(2n) = VI (Yn),wn) <[f (Yn +twn) = f (yn) = LV f (yn) , wn)]
+(Vf(@n) s Zn = Yn) + [ (Yn) — [ (0)

Set+ <Vf (xn) y Tp — yn> +f (yn) —f (xn) .

Since Vf is bounded on bounded subsets of X (see [12, Proposition 1.1.11, p. 17]),
it follows that (V f (), Tn — yn) converges to zero, while f (y,)— f (x,,) — 0 since
f is uniformly continuous on bounded subsets (see [1, Theorem 1.8, p. 13]). But

this would yield that 2¢t < et, a contradiction. (]

2.3. Some facts about totally convex functions. Let f : X — (—o0, +0o0]

be convex. The function Dy : dom f x intdom f — [0, +o00] defined by

Df(y,fli) = f(y)—f(a:)—fo(x,y—x),

is called the Bregman distance with respect to f (cf. [17]). If f is a Gateaux differ-
entiable function, then the Bregman distance has the following important property,

called the three point identity: for any x,y, z € intdom f,

(2.1) Dy(z,y) + Df(y,2) — Dy(x,2) = (VI (2) = V(y),x = y) .

Recall that, according to [12, Section 1.2, p. 17] (see also [11]), the function f is
called totally convex at a point x € intdom f if its modulus of total convexity at x,

that is, the function vy : intdom f X [0, +00) — [0, 4+00], defined by
(2.2) v t) = inf {Dy(y,2) © y € dom f, |}y -] =1},

is positive whenever ¢ > 0. The function f is called totally convexr when it is totally
convex at every point = € intdom f. In addition, the function f is called totally
convex on bounded sets if vy(E,t) is positive for any nonempty bounded subset E

of X and for any ¢ > 0, where the modulus of total convexity of the function f on
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the set E is the function vy : intdom f x [0, 4+00) — [0, +00] defined by
vf(E,t) == inf {vs(z,t) | x € ENdom f}.

Examples of totally convex functions can be found, for example, in [12, 15]. The

following proposition summarizes some properties of the modulus of total convexity.

Proposition 2 (¢f. [12, Propostion 1.2.2, p. 18]). Let f be a proper, convex
and lower semicontinuous function. If = € intdom f, then

(i) The domain of v¢(z,-) is an interval of the form [0,7¢(x)) or [0, 7¢(x)]
with 7¢(z) € (0, +o0].

(i1) If c € [1,+00) and t > 0, then vi(z,ct) > cvy(z,t).

(111) The function vs(zx,-) is superadditive, that is, for any s,t € [0,+00), we
have vy(z,s+t) > vi(z,s) + vs(x,t).

(iv) The function vy(x,-) is increasing; it is strictly increasing if and only if f

is totally convex at x.

The following proposition follows from [14, Proposition 2.3, p. 39] and [39,
Theorem 3.5.10, p. 164].

Proposition 3. If f is Fréchet differentiable and totally convex, then f is

cofinite.

The next proposition turns out to be very useful in the proof of our main result.

Proposition 4 (¢f. [32, Proposition 2.2, p. 3]). If = € dom f, then the

following statements are equivalent:

(i) The function f is totally convex at x;

(it) For any sequence {yn}, oy C dom f,

ne

im Dy (yn,z) =0= lim |y, —zl| =0.

n—-—+00 n—-+00
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Recall that the function f is called sequentially consistent (see [15]) if for any

two sequences {, }, cy and {yn}, oy in X such that the first one is bounded,

lim Dy (yn,zn) =0=

Proposition 5 (¢f. [12, Lemma 2.1.2, p. 67]). If dom f contains at least
two points, then the function f is totally convex on bounded sets if and only if the

function f is sequentially consistent.

2.4. The resolvent of A relative to f. Let A : X — 2X" be an operator

and assume that f Gateaux differentiable. The operator
Prtf; = (Vf+A) X —2¥

is called the protoresolvent of A, or, more precisely, the protoresolvent of A relative
to f. This allows us to define the resolvent of A, or, more precisely, the resolvent of
A relative to f, introduced and studied in [5], as the operator Resfi1 : X — 2% given
by Resfﬁ1 = Prtg oV f. This operator is single-valued when A is monotone and f is
strictly convex on int dom f. If A = dp, where ¢ is a proper, lower semicontinuous

and convex function, then we denote
Proxi = Prtgw and proxg; = Resgw.

If C is a nonempty, closed and convex subset of X, then the indicator function ¢¢

of C, that is, the function

0 ifredC
Lo (x) =
+oo ifzxgC

is proper, convex and lower semicontinuous, and therefore dv¢o exists and is a maxi-
mal monotone operator with domain C. The operator prox; .. is called the Bregman

projection onto C' with respect to f (¢f. [8]) and we denote it by projé. Note that

if X is a Hilbert space and f(z) = 3 []|?, then the Bregman projection of & onto

C, i.e., argmin {|ly — z|| : y € C}, is the metric projection P¢.
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Recall that the Bregman projection of z onto the nonempty, closed and convex

set K C dom f, is the necessarily unique vector proj{((a:) € K satisfying
Dy (proj{((ac),x) =inf{Dy (y,z):y € K}.

Similarly to the metric projection in Hilbert spaces, Bregman projections with
respect to totally convex and differentiable functions have variational characteriza-

tions.

Proposition 6 (¢f. [15, Corollary 4.4, p. 23]). Suppose that f is totally convex
on intdom f. Let x € intdom f and let K C intdom f be a nonempty, closed and

conver set. If & € K, then the following conditions are equivalent:

(i) The vector & is the Bregman projection of x onto K with respect to f;

(ii) The vector & is the unique solution of the variational inequality
(Vf(x)=Vf(z),z=y) 20, VyekK;
(iii) The vector & is the unique solution of the inequality
D¢ (y,2) + Df (z,x) < Dy (y,z), vy € K.

3. A Strong Convergence Theorem for a Proximal-Type Algorithm

In this section we study the following algorithm when Z := ﬂfil A7H(0%) # @

.’E()GX,

=&+ 5 (V@) = Vi), &€ A,
H)={zeX:(g,z—yl) <0},

(3.1)

H, =nN H:

n’

W, = {Z € X: <Vf(a:0) - Vf(:zn),z *In> < 0}7

Tpyl = proj];Iann (z0), n=20,1,2,...,
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where, for each i = 1,2,..., N, {AL }, _ is a given sequence of positive real numbers
and {nfL}n cN is the sequence of errors corresponding to the approximate solutions

of the resolvent equation. Note that if !, = 0, then

yi = Res{a 4, (@n).

Theorem 1. Let A; : X — 2%, i =1,2,...,N, be N mazimal monotone
operators such that Z := ﬂf\il A7N(0%) # @. Let f: X — R be a Legendre
function which is bounded, uniformly Fréchet differentiable and totally convexr on
bounded subsets of X. Then, for each xo € X, there are sequences {xn}, cyy which
satisfy (3.1). If, for each i =1,2,..., N, liminf, . A}, > 0, and the sequences of
errors {n;}neN C X* satisfy lim, 400 Ainf = 0 and limsup,_ o (%, y5) <0,

then each such sequence {,}, c converges strongly to proj’;(xo) as n — —+0oo.

Proof. Note that dom V f = X because dom f = X and f is Legendre. Hence
it follows from [5, Corollary 3.14(ii), p. 606] that dom Resf\A = X. We begin with

the following claim.
Claim 1: There are sequences {xn}, oy which satisfy (3.1).

As a matter of fact, we will prove that, for each zy € X, there exists a sequence
{#n}, cn which is generated by (3.1) with nt,=0foralli=1,2,...,N and n € N.

It is obvious that H! are closed and convex sets for any i = 1,2,..., N. Hence
H,, is also closed and convex. It is also obvious that W,, is a closed and convex
set. Let u € Z. Since dom Res{aA = X, there exists (y("),gé) € X x X™ such that
0=¢& + %6 (VI() — V f(xo)) (yé = Resf\tgAi (mo)) and & € A;yi. Since A; is
monotone, it follows that

<£(1)ayg) - u> 2 0>

which implies that u € HE. Since this holds for any i = 1,2,..., N, it follows that
u € Hy. It is also obvious that w € Wy = X. Thus v € Hy N Wy, and therefore

T = proijﬁm,VO (z9) is well defined. Now suppose that v € H,,_1 N W,,_1 for some
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n > 1. Let z, = projy; _ ~y.  (z0). Again, there exists (i, &) € X x X* such

that 0 = & + &

= (Vf(yh) — Vf(z,)) and &, € Ayl,. The monotonicity of A; implies

that u € HY. Since this holds for any i = 1,2,..., N, it follows that v € H,,. Now

it follows from Proposition 6(ii) that

(Vf(xo) = Vf(zn),u—2n)
— (Vo) = V£ (proify, ,aw,_, (@0)) 1= projly ., (w0))

<0,

which implies that u € W,,. Therefore u € H,,NW,,, and hence z, 11 = proj{{"mwn (zo)
is well defined. Thus the sequence we constructed is indeed well defined and satisfies

(3.1), as claimed.

From now on we fix an arbitrary sequence {x,}, o satisfying (3.1). It is clear

from the proof of Claim 1 that Z C H, N W, for each n € N.

Claim 2: The sequence {xy},,cy 5 bounded.

It follows from the definition of W,, and Proposition 6(ii) that projévn (x0) = .

Furthermore, by Proposition 6(iii), for each v € Z, we have

(3.2) Dy (xy,x0) = Dy (proj{,cvn (xo),x())
< Dy (u,z09) — Dy (u,proj{jvn (zo))

< Dy (u, o) .

Hence the sequence {Dy(xn,%0)}, oy is bounded by Dy(u, o) for any u € Z.

Therefore the sequence {vy(zo, ||z, — zol|)} is bounded by Dy (u, o), because

neN
from the definition of the modulus of total convexity (see (2.2)) and from (3.2) we

get that

(3-3) vi(@o, [[2n = xol) < Dy(@n,z0) < Dy(u, o).
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Since the function f is totally convex, the function vy(x,-) is strictly increasing
and positive on (0,00) (¢f. Proposition 2(iv)). This implies, in particular, that
vi(z,1) > 0 for all z € X. Now suppose by way of contradiction that the sequence
{#n}, ey is not bounded. Then there exists a sequence {ng},y of positive real

numbers such that

i, | = +oc.
Consequently, limy_, 4 o ||Zn, — Zo|| = 4+00. This shows that the sequence

{vs(@o, |n — 20l])},,cry 18 nOt bounded. Indeed, there exists some ko > 0 such that

|zn, — xo|| > 1 for any k > ko and then, by Proposition 2(ii), we see that
Vf(x()? ||xnk - xOH) 2 ||"E7lk - .13()” . l/f(.Z‘o, 1) — +00,

because, as noted above, v¢(xg,1) > 0. This contradicts (3.3). Hence the sequence

{zn}, ey is indeed bounded, as claimed.

Claim 3: Every weak subsequential limit of {x,} belongs to Z.

neN

It follows from the definition of W, and Proposition 6(ii) that projévn (x0) = .

Since x, 1 € W, it follows from Proposition 6(iii) that

Dy (xnﬂ,proj&,n (zo)> + Dy (proj{jvn (:co),:co) < Dy (Tnt1,T0)
and hence
(3.4) D¢ (xpt1,2n) + Dy (2n,20) < Dy (Tpt1,20) -

Therefore the sequence {D(zy,x0)} is increasing and since it is also bounded

neN

(see Claim 2), limy, .y Df(xy,zo) exists. Thus from (3.4) it follows that

(3.5) lim Dy (2yy1,2,) =0.

n—-+o0o
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Proposition 5 now implies that lim, o (€ny1 — @,) = 0. Forany i =1,2,..., N,

it follows from the three point identity (see (2.1)) that

Dy (zn41,2n) — Dy (y;,acn)
= Ds (2ns1,55) + (VI (@) = VI(Y) s, — Tnt1)
Z <Vf(x’ﬂ) - Vf(y;)ay% - $n+1> = <A:L (f; - 77:1) ,y; — .I‘n+1>

= )‘iL <§:zay; - $n+1> - >‘7;L <77'1;L7yil - l‘n+1> > 7)\; <7]:L7y:l - $n+1>

because 41 € H,’L ‘We now have

Df (y;, mn) < Df (xn+17xn) + <>\27ﬁuy% - xn+1>

= Dy (@n41,2n) + Xy (0, k) — (Nonh, @)

< Dy (Tpy1,Tn) + )‘fz <77;wy;> + H)‘:ﬂﬁl " Znt1ll -

Hence

lim sup Dy (y;,xn) <limsup Df (n41,Zn)

n—-+o0o n—-+o0o

+ limsup A}, (n},y%) + lim sup H)\ZT]ZH* lzns]l -
n—-+o0o

n—-+oo

Since limy,— 100 Aon%, = 0, limsup,, o (n4,v%) <0, and limy,—, o0 Dy (Tpp1, p) =
0 (by (3.5)), we see that limsup,, . Dy (v, z,) < 0. Hence lim,,—, y oo Dy (3, 0)

= 0. Proposition 5 now implies that lim,_, (yfl — xn) = 0. Now let {a?nj}

JEN

be a weakly convergent subsequence of {z,}, .y and denote its weak limit by

v. Then {y;]} also converges weakly to v for any ¢ = 1,2,..., N. Since
jEN

liminf, 4o AL > 0 and lim,, o 0% = 0, it follows from Proposition 1 that

(3.6) i L

for any i = 1,2,..., N. Since & € Ay} and A; is monotone, it follows that

<77_§'fuz_y’2> 2 0
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for all (z,7) € graph (A;). This, in turn, implies that
(nz=v)=0

for all (z,n) € graph (4;). Therefore, using the maximal monotonicity of A;, we
now obtain that v € Ai_1 (0*) for each 4 = 1,2,..., N. Thus v € Z and this proves

Claim 3.

Claim 4: The sequence {xy}, y converges strongly to projé(zo).

Let o = projé(mo). Since zp41 = proijann (o) and Z is contained in H, N

Wy, we have Dy (2p41,%0) < Dy (@, zo). The three point identity (see (2.1)) yields

Dy (2, @) = Dy (#n, x0) + Dy (x0,@) — (Vf(@) = V f(20), 2n — @0)
< Df (ﬂ" 'TO) + Df (3;‘0,12) - <Vf(1~l) - Vf(xO)amn - xO)
= (Vf(@) = Vf(zo),u = zo) = (Vf(a) = V(20), 2n — 20)

= (Vf(a) = Vf(zo), & — zp) .

Now let {xn, },.y be a weakly convergent subsequence of {x,}, .y and denote
its weak limit by v. We already know (see Claim 3) that v € Z. It follows from
Proposition 6(ii) that

lim sup Dy (2, @) < (Vf (i) — V{(x0),i — v) < 0.

11— 400
Hence

lim Dy (z,,, 1) = 0.

1——+00
Proposition 4 now implies that x,,, — 4. It follows that the whole sequence {z,,}

converges strongly to u = pI‘Ojé(:Eo), as claimed. This completes the proof of

neN

Theorem 1. O
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4. Zero Free Operators

Suppose now that the operators A;, i = 1,2,..., N, have no common zero. If
{#n},cn is a sequence satisfying (3.1), then lim,, ., « |7, || = +o00. This is because
if {}, cn Were to have a bounded subsequence, then it would follow from Claim
3 in the proof of Theorem 1 that the operators A;, i = 1,2,..., N, did share a
common zero. In the case of a single zero free operator A, we can prove that such
a sequence always exists.

To this end, we first recall the duality mapping of the space X, i.e., the mapping
J: X — 2X" which is defined by

Jo={ee X (g.a) = ol = ¢I2}
We continue with the following lemma.

Lemma 1. If A: X — 2X" is a mazimal monotone operator with a bounded

effective domain, then A='(0*) # @.

Proof. Let {¢,} be a sequence of positive numbers which converges to zero.

neN
The operator A+ ¢, J is surjective for any n € N because A is a maximal monotone
operator (see [19, Theorem 3.11, p. 166]). Therefore, for any n € N, there exists
x, € dom A such that 0* € (A+¢,J) z,. Consequently, for any n € N, there are

&, € Az, and 1, € Jx, such that &, + ,1, = 0*. Therefore we have

1€nll, = enlmnll, = en llznl — 0

because {2y, }, oy is a bounded sequence. Hence there exists a subsequence {xn, },cy

of {xy, },cn Which converges weakly to some xp € X. Since A is monotone we have
(4.1) ((—&np,v—Tp,) >0, keN

for any (v,() € graph A. Letting k — 400 in (4.1), we obtain ({,v — zg) > 0 for
all (v,¢) € graph A and from the maximality of A it follows that zo € A~!(0*).

Hence A~1 (0%) # @, as claimed. O
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Theorem 2. Let A : X — 2% be a mazimal monotone operator. Let
f X — R be a Legendre function which is bounded, uniformly Fréchet differen-
tiable and totally conver on bounded subsets of X. Then, for each xo € X, there are
sequences {xn}neN which satisfy (3.1). If liminf, o0 A\ > 0, and the sequence of
errors {nn},cny C X* satisfies limy, 4 oo Anfn = 0 and limsup,, . (M, yn) <0,
then either A™'(0*) # @ and each such sequence {xn},cy converges strongly
to projﬁ,l(o*)(mo) or A71(0*) = @ and each such sequence {xn}, o satisfies

limy, 1 oo ||n || = +o00.

Proof. In view of Theorem 1, we only need to consider the case where
A~1(0*) = @. First of all we prove that in this case, for each zy € X, there
is a sequence {x,},y which satisfies (3.1) with 7, = 0 for all n € N.

We prove this by induction. We first check that the initial step (n = 0) is well
defined. The problem

0" € Az + 1 (Vf(z) ~ V(o))
0

always has a solution (yg, &o) because it is equivalent to the problem
T :Resf\coA (z0) and this problem does have a solution since dom ResJ;A = X (see
Proposition 3 and [5, Theorem 3.13(iv), p. 606]). Now note that Wy = X. Since Hy
cannot be empty, the next iterate £ can be generated; it is the Bregman projection
of zg onto Hy = Wy N Hy.

Note that whenever z,, is generated, y, and &, can further be obtained because
the proximal subproblems always have solutions. Suppose now that x,, and (y,,&,)
have already been defined for n = 0,...,7. We have to prove that x;41 is also well

defined. To this end, take any zg € dom A and define
p=max{||y, — 20|l : n=0,...,70}

and

0, T— 2| <p+1
) - Iz = z0ll < p

+00, otherwise.
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Then h : X — (—00,400] is a proper, convex and lower semicontinuous function,

its subdifferential Oh is maximal monotone (see [28, Theorem 2.13, p. 124]), and
A=A+ 0h
is also maximal monotone (see [33]). Furthermore,
A'(z)=A(z) forall ||z — 2z <p+1.

Therefore &, € A'y,, for n =0, ...,7n. We conclude that x,, and (y,,&,) also satisfy
the conditions of Theorem 1 applied to the problem 0* € A’ (x). Since A’ has a
bounded effective domain, this problem has a solution by Lemma 1. Thus it follows
from Claim 1 in the proof of Theorem 1 that x;41 is well defined. Hence the whole
sequence {x,},y is well defined, as asserted.

If {x,},cy Were to have a bounded subsequence, then it would follow from
Claim 3 in the proof of Theorem 1 that A had a zero. Therefore if A= (0*) = @,

then lim,, o ||Zn]| = +00, as asserted. O

Remark 1. In both Theorems 1 and 2 we can replace the assumptions that
liminf, 4o A, > 0 and f is uniformly Fréchet differentiable on bounded subsets
of X with the assumption that lim,,_, . A, = +00. This is because in this case

{Vf(wn) = Vf(yn)},en is bounded and therefore (3.6) continues to hold.

5. Consequences of the Strong Convergence Theorem

Algorithm (1.4) is a special case of algorithm (3.1) when N =1 and 7, = 0
for all n € N. Hence as a direct consequence of Theorem 1 we obtain the following

result (cf. [21]).

Corollary 1. Let A : X — 2X" be a mazimal monotone operator. Let f :
X — R be a Legendre function which is bounded, uniformly Fréchet differentiable
and totally convex on bounded subsets of X, and suppose that liminf,,_, ., A, > 0.

Then for each xg € X, the sequence {x,} generated by (1.4) is well defined,

neN
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and either A7 (0*) # @ and {x,}, oy converges strongly to proji_l(o*)(zo) as

n — 400, or A1 (0%) =@ and lim,_ 1 ||zn] = +o0.

Notable corollaries of Theorems 1 and 2 occur when the space X is both uni-
formly smooth and uniformly convex. In this case the function f(z) = 3 El
is Legendre (¢f. [3, Lemma 6.2, p.24]) and uniformly Fréchet differentiable on
bounded subsets of X. According to [13, Corollary 1(ii), p. 325], f is sequentially
consistent since X is uniformly convex and hence f is totally convex on bounded
subsets of X. Therefore Theorems 1 and 2 hold in this context and lead us to the

following two results which, in some sense, complement Theorem 8 in [25] (see also

Theorem 1 in [37]).

Corollary 2. Let X be a uniformly smooth and uniformly convex Banach space
and let A : X — 2X7 be a mazimal monotone operator. Then, for each xy € X,
the sequence {,}, oy generated by (1.3) is well defined. If liminf, ., o A, > 0,
then either A™' (0%) # & and {xn},cy converges strongly to projf;,l(o*)(xo) as

n — 400, or A7} (0%) = @ and lim,, ., o |2 || = +o0.

Corollary 3. Let X be a Hilbert space and let A : X — 2X be a mazi-
mal monotone operator. Then, for each xo € X, the sequence {xn}, .y generated
by (1.2) is well defined. If liminf, .o A\, > 0, then either A=1(0) # @ and
{zn},en converges strongly to Pa-1(gy(z0) as n — 400, or A7 (0) = @ and

limy, 4 oo ||n|| = +o00.

These corollaries also hold, of course, in the presence of computational errors

as in Theorems 1 and 2.

6. An Application of the Strong Convergence Theorem

Let g : X — (—o00, +00] be a proper, convex and lower semicontinuous function.

Recall that the subdifferential dg of g is defined for any x € X by

dg(z) :={{e X" : ({,y—2)<g(y) —g(x) VyeX}.
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Using Theorem 1 and the subdifferential of g, we obtain an algorithm for finding a

minimizer of g.

Proposition 7. Let g: X — (—o0,+00] be a proper, convex and lower semi-
continuous function which attains its minimum over X. If f: X — R is a Legendre
function which is bounded, uniformly Fréchet differentiable, and totally convex on
bounded subsets of X, and {)\”}nEN is a positive sequence with liminf,, o A, > 0,

then, for each xo € X, the sequence {x,} generated by

neN
To € X,

0= gn + ﬁ (vf(yn) - Vf(xn)), gn S ag (yn)v
H,={z€ X :{,z2—yn) <0},

W, ={z2¢€ X :(Vf(zo) = Vf(zn),z—z,) <0},

Tyl :proj};nmwn(mo), n=0,1,2,...,

converges strongly to a minimizer of g as n — +0o0.

If g does not attain its minimum over X, then lim,_,  ||zn| = +oo.

Proof. The subdifferential dg of ¢g is a maximal monotone operator since g
is a proper, convex and lower semicontinuous function (see [28, Theorem 2.13, p.
124]). Since the zero set of dg coincides with the set of minimizers of g, Proposition

7 follows immediately from Theorems 1 and 2. ]

Note that in this case

1
Yn = argiréi)rg {g () + EDf (a@mn)}

is equivalent to

0 € dg (y) + % (Vf () — V() -
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