Two Strong Convergence Theorems for a Proximal Method

in Reflexive Banach Spaces

Simeon Reich and Shoham Sabach

ABSTRACT. Two strong convergence theorems for a proximal method for find-
ing common zeroes of maximal monotone operators in reflexive Banach spaces
are established. Both theorems take into account possible computational er-

rors.

1. Introduction

In this paper X denotes a real reflexive Banach space with norm ||-|| and X*
stands for the (topological) dual of X endowed with the induced norm |-||,. We
denote the value of the functional £ € X* at € X by (£, x). An operator A : X —

2X" is said to be monotone if for any z,y € dom A, we have

f€cArandne Ay = ({—nz—y) >0

(Recall that the set dom A ={z € X : Ax # @} is called the effective domain of
such an operator A.) A monotone operator A is said to be mazimal if graph A, the
graph of A, is not a proper subset of the graph of any other monotone operator.
In this paper f : X — (—o0,+00] is always a proper, lower semicontinuous and
convex function, and f* : X* — (—o00,+00] is the Fenchel conjugate of f. The set
of nonnegative integers will be denoted by N.

The problem of finding an element z € X such that 0* € Ax is very important
in Optimization Theory and related fields. For example, if A is the subdifferential
Of of f, then A is a maximal monotone operator and the equation 0* € 9f (z) is
equivalent to the problem of minimizing f over X. One of the methods for solving
this problem in Hilbert space is the well-known proximal point algorithm. Let H
be a Hilbert space and let I denote the identity operator on H. The proximal point
algorithm generates, for any starting point zo = x € H, a sequence {x,}, oy in H
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by the rule
(1.1) Tng1 = T+ AA) 2, n=0,1,2,...,

where {A,}, oy iIs a given sequence of positive real numbers. Note that (1.1) is

equivalent to

1
An
This algorithm was first introduced by Martinet [28] and further developed by

0€ Azpi1 + — (Tpt1 —xn), n=0,1,2,....

Rockafellar [38], who proves that the sequence generated by (1.1) converges weakly
to an element of A~!(0) when A~!(0) is nonempty and liminf, ;e Ay > 0.
Furthermore, Rockafellar [38] asks if the sequence generated by (1.1) converges
strongly. This question was answered in the negative by Giiler [24], who presented
an example of a subdifferential for which the sequence generated by (1.1) converges
weakly but not strongly; see [7] for a more recent and simpler example. Quite
a few results regarding the proximal point algorithm and its extensions can be
found in the literature. See, for example, [5, 6, 7, 10, 11, 15, 16, 19, 21,
22, 25, 26, 29, 30, 32, 33, 35, 39, 41, 43]. We mention, in particular, the
seminal papers [41, 21, 5, 6]. These papers introduce a new paradigm which
has since led to many modifications. One such modification has been proposed by
Bauschke and Combettes [5] (see also Solodov and Svaiter [41]), who have modified
the proximal point algorithm in order to generate a strongly convergent sequence.
They introduce, for example, the following algorithm (see [5, Corollary 6.1 (ii), p.
258] for a single operator and A,, = 1/2):

rg € H,

Yn = R)\TLA (xn) 5

(1.2) Cn={2€H:|yn — 2| < ||zn — 2|I},
Qn={z€H:(xg—xpn,z—x,) <0},
ZTn+1 = Pc,na, (o), n=20,1,2,....

Here, for each x € H and each nonempty, closed and convex subset C' of H, the
mapping P¢ is defined by ||z — Poz| = inf {||x — z|| : z € C'}. This mapping is
called the metric projection of H onto C. The mapping Rya = (I + )\A)*1 is
the classical resolvent of the maximal monotone operator A. They prove that if
A~1(0) is nonempty and liminf,,_, ;oo A,, > 0, then the sequence generated by (1.2)
converges strongly to Pa-1¢p). Wei and Zhou [42] generalize this result to those

Banach spaces X which are both uniformly convex and uniformly smooth. They
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introduce the following algorithm:

xg € X,
Yn = JIx, (Tn)

(13) Cr= {2 € X 6(epm) < D (=)}
Qn=1{2z€X:{Jxyg—Jxpn,z—x,) <0},
Zn+1 = Qc,nq, (20), n=0,1,2,...,

where J is the normalized duality mapping of the space X, Jy (z) = (J + )\A)fl J
and ¢ (y,z) = ||yl|> — 2 (Jz,y) + ||=||>. Here, for each nonempty, closed and convex
subset C of X, Q¢ is a certain generalization of the metric projection Po in H.
They prove that if A=! (0*) is nonempty and lim inf,,_, ;o A, > 0, then the sequence
generated by (1.3) converges strongly to Q4-1(o-). In the present paper we extend
Algorithms (1.2) and (1.3) to general reflexive Banach spaces using a well chosen

convex function f. More precisely, we introduce the following algorithm:
rg € X,

Yn = Resf\nA (zn),

(1.4) Cn={2€ X :Dy(z,yn) < Ds(2,2,)},
Qn={2€X:(Vf(xg) —Vf(zn),z—ax,) <0},
Tpil :projéann(xo), n=20,1,2,...,

where {\, }, oy is a given sequence of positive real numbers, Resf:1 is the resolvent
of A relative to f, introduced and studied in [4], V f is the gradient of f and projé
is the Bregman projection of X onto C' induced by f (see Section 2.4). Algorithm
(1.4) is more flexible than (1.3) because it leaves us the freedom of fitting the
function f to the nature of the operator A (especially when A is the subdifferential
of some function) and of the space X in ways which make the application of (1.4)
simpler than that of (1.3). It should be observed that if X is a Hilbert space H,
then using in (1.4) the function f (z) = (1/2) ||z||?, one obtains exactly Algorithm
(1.2). If X is not a Hilbert space, but still a uniformly convex and uniformly smooth
Banach space X, then setting f () = (1/2) ||z||* in (1.4), one obtains exactly (1.3).
We also note that the choice f (z) = (1/2) ||z||* in some Banach spaces may make
the computations in Algorithm (1.3) quite difficult. These computations can be
simplified by an appropriate choice of f. For instance, if X = ¢ or X = LP with
p € (1,00), and f (z) = (1/p) ||z||” in (1.4), then the computations become simpler
than those required in (1.3), which corresponds to f (z) = (1/2) ||z||°. As a matter
of fact, we propose two extensions of Algorithm (1.4) (see Algorithms (4.1) and
(4.4)) which approximate a common zero of several maximal monotone operators

and which allow computational errors. These algorithms are similar to but different
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from the one we have recently studied in [34]. They also differ from the algorithm
in [6] in the definition of the sets C, and in our taking into account possible
computational errors. Our main results (Theorems 1 and 2) are formulated and
proved in Section 4. The next section is devoted to several preliminary definitions
and results. In section 3 we prove two auxiliary results which are used in the proofs
of our main results in Section 4. The behavior of Algorithm (1.4) when the operator
A is zero free is analyzed in Section 5 (see Theorem 3). The sixth section contains
three corollaries of Theorems 1, 2 and 3. In the seventh and last section we present

an application of Theorems 1, 2 and 3.

2. Preliminaries

2.1. Some facts about Legendre functions. Legendre functions mapping
a general Banach space X into (—oo,+o0] are defined in [3]. According to [3,
Theorems 5.4 and 5.6], since X reflexive, the function f is Legendre if and only if
it satisfies the following two conditions:

(L1) The interior of the domain of f, int dom f, is nonempty, f is Gateaux

differentiable (see below) on int dom f, and
dom V f = intdom f;

(L2) The interior of the domain of f*,int dom f*, is nonempty, f* is Gateaux

differentiable on int dom f*, and
dom V f* = int dom f*.

Since X is reflexive, we always have (3f)"' = df* (see [8, p. 83]). This fact,

when combined with conditions (L1) and (L2), implies the following equalities:
V=V
ranVf = dom Vf* = int dom f*
and
ranVf* = dom Vf = int dom f.
Also, conditions (L1) and (L2), in conjunction with [3, Theorem 5.4], imply that the
functions f and f* are strictly convex on the interior of their respective domains.
Several interesting examples of Legendre functions are presented in [2] and [3].
Among them are the functions 1 [|-||* with s € (1,00), where the Banach space X
is smooth and strictly convex and, in particular, a Hilbert space.
The function f is called cofinite if dom f* = X*.

2.2. A property of gradients. For any convex f : X — (—o0,+00] we
denote by dom f the set {x € X : f (z) < 400}. For any € dom f and y € X, we
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denote by f°(x,y) the right-hand derivative of f at x in the direction y, that is,

o T f(I+ty)7f(‘T)
The function f is said to be Gdteaux differentiable at x if limy_,o (f(z + ty) — f(x)) /t
exists for any y. The function f is said to be Fréchet differentiable at x if this limit

is attained uniformly in ||y|| = 1. Finally, f is said to be uniformly Fréchet dif-
ferentiable on a subset E of X if the limit is attained uniformly for z € E and

ly]| = 1. We will need the following result.

Proposition 1 (¢f. [34, Proposition 2]). If f: X — R is uniformly Fréchet
differentiable and bounded on bounded subsets of X, then V[ is uniformly contin-
uous on bounded subsets of X from the strong topology of X to the strong topology
of X*.

2.3. Some facts about totally convex functions. Let f : X — (—o0, +0o0]

be convex. The function Dy : dom f X intdom f — [0, 400], defined by

(21) Df(yax) = f(y)—f(x)—fo(x,y—:r),

is called the Bregman distance with respect to f (cf. [18]). If f is a Gateaux differ-
entiable function, then the Bregman distance has the following important property,

called the three point identity: for any x,y, z € int dom f,

(2.2) Dy(x,y) + Dy(y, 2) = Dy(w,2) = (Vf(2) = Vf(y), 2 —y).

Recall that, according to [13, Section 1.2, p. 17] (see also [12]), the function f is
called totally convex at a point x € intdom f if its modulus of total convezity at x,
that is, the function vy : int dom f x [0, +00) — [0, 400], defined by

(2.3) vs(a,1) = inf {Dy(y,2) : y€dom f, |ly—al =1},

is positive whenever ¢ > 0. The function f is called totally conver when it is totally
convex at every point = € intdom f. In addition, the function f is called totally
convezx on bounded sets if vy(E,t) is positive for any nonempty bounded subset E
of X and for any ¢ > 0, where the modulus of total convexity of the function f on
the set E is the function vy : intdom f x [0,400) — [0, +00] defined by

vp(E,t) :=inf {vy(z,t) | x € ENdom f}.

Examples of totally convex functions can be found, for example, in [13, 17]. The
following proposition summarizes some properties of the modulus of total convexity.
Proposition 2 (¢f. [13, Propostion 1.2.2, p. 18]). Let f be a proper, convex
and lower semicontinuous function. If x € intdom f, then
(i) The domain of v¢(z,-) is an interval of the form [0,7¢(x)) or [0,7¢(x)]
with 7¢(z) € (0, +o0].
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(i1) If c € [1,+00) and t > 0, then vs(z,ct) > cvs(z,t).

(111) The function vy(x,-) is superadditive, that is, for any s,t € [0, +00), we
have v¢(z,s+1t) > ve(z,s) + vf(x,t).

(iv) The function vs(x,-) is increasing; it is strictly increasing if and only if f
is totally convex at x.

The following proposition follows from [15, Proposition 2.3, p. 39] and [44,
Theorem 3.5.10, p. 164].

Proposition 3. If f is Fréchet differentiable and totally convex, then f is
cofinite.

The next proposition turns out to be very useful in the proof of our main
results.

Proposition 4 (¢f. [36, Proposition 2.2, p. 3]). If = € dom f, then the
following statements are equivalent:

(i) The function f is totally convezr at x;

(ii) For any sequence {yn},cn C dom f,

lim Dy (yn,2) =0= lim [y, — | =0.

n—-+o0o

Recall that the function f is called sequentially consistent (see [17]) if for any

two sequences {}, .y and {yn}, oy in X such that the first one is bounded,

lim Dy (yp,z,) =0= nglfoo llyn — xn|| = 0.

n—-4oo
Proposition 5 (¢f. [13, Lemma 2.1.2, p. 67]). If dom f contains at least
two points, then the function f is totally convex on bounded sets if and only if the
function f is sequentially consistent.
2.4. The resolvent of A relative to f. Let A: X — 2% be an operator

and assume that f Gateaux differentiable. The operator
Prt/ := (Vf4+A) 7" X* — 2%

is called the protoresolvent of A, or, more precisely, the protoresolvent of A relative
to f. This allows us to define the resolvent of A, or, more precisely, the resolvent of
A relative to f, introduced and studied in [4], as the operator Resfc4 : X — 2% given
by Resff1 = Prtfc4 oV f. This operator is single-valued when A is monotone and f is
strictly convex on int dom f. If A = Jp, where ¢ is a proper, lower semicontinuous

and convex function, then we denote

Proxi = Prtgw and prox£ = Resg(p.
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If C is a nonempty, closed and convex subset of X, then the indicator function ¢¢
of C, that is, the function

0 itreC
Lo (x) ::{

+oo ifz ¢ C

is proper, convex and lower semicontinuous, and therefore Jv¢ exists and is a maxi-
mal monotone operator with domain C. The operator prox; .. is called the Bregman
projection onto C with respect to f (cf. [9]) and we denote it by projé. Note that
if X is a Hilbert space and f(z) = § |||, then the Bregman projection of z onto
C, i.e., argmin{|ly — z| : y € C}, is the metric projection Pc.

Recall that the Bregman projection of x onto the nonempty, closed and convex

set K C dom f is the necessarily unique vector proj}l((a:) € K satisfying

Dy (proj{((a:),x) =inf{Dy (y,z):y € K}.

Similarly to the metric projection in Hilbert spaces, Bregman projections with
respect to totally convex and differentiable functions have a variational characteri-
zation.

Proposition 6 (cf. [17, Corollary 4.4, p. 23]). Suppose that f is totally convex
on intdom f. Let x € intdom f and let K C intdom f be a nonempty, closed and
conver set. If & € K, then the following conditions are equivalent:

(i) The vector & is the Bregman projection of x onto K with respect to f;

(ii) The vector & is the unique solution of the variational inequality
(Vf(x)=Vf(2),z—y) >0, Yy € K;
(iii) The vector & is the unique solution of the inequality
Dy (y,2) + Dy (z,x2) < Dy (y, ), Yy € K.

For the next technical result we need to define, for any A > 0, the Yosida

approximation of A by
Ay = (Vf — VfOReS§A> /A

We have the following properties of the Yosida approximation Ay.
Proposition 7: For any A > 0 and for any x € X, we have
(i) (Res{A (), Ax (1’)) € graph A;
(ii) 0* € Ax if and only if 0* € Ayx.
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Proof. (i) Indeed,
Res] , (z) = (Vf+ M) "o Vf(2) & Vf(z) € (Vf+ M) oRes! , (z)
(Vf VfoRes{,) (z) /A€ A (ResM( ))
o Ay (z) e A (Res)\A (q;))
(ii) Tndeed,
0"c Az © 0" € Mz < Vf(z) e (Vf+ M) (x)

sre(VI+A)  oVf(x) e Vf(x) eV (ResﬁA (m))
&0 € (fo VfoResf;A) (z) & 0% € Myz & 0F € Aya.

|
Now we can prove the following important property of the resolvent.

Proposition 8: Let A: X — 2X" be a mazimal monotone operator such that
A71(0*) # 2. Then

Dy (u, Resf\cA (a:)) + Dy (Res{A (x) ,1’) < Dy (u,x)

forall A\ >0,u€ A1 (0%) and x € X.
Proof. Let A >0, u € A~1(0*) and » € X be given. By the monotonicity of
A, the three point identity (2.2) and Proposition 7(i), we have

Dy (u,x) = Dy (u,Res{A (x)) + Dy (Res{A (),
<Vf RGSAA( )= Vf(z
= Dy (u Res)\A )

> Dy (U,RGS{A )

3. Auxiliary Results

In this section we prove two lemmata which are used in the proofs of our main
results in Section 4.

Lemma 1: Let f: X — R be a totally convex function. If {D¢(xn,x0)}
is bounded, then the sequence {,}, cy 15 bounded too.
nen 18 bounded, there exists M > 0
such that Dy(xy,z¢) < M for any n € N. Therefore the sequence

neN

Proof. Since the sequence {D;(zy,x0)}

{vs(zo, [z — 20l },,cn is bounded by M too, because from the definition of the
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modulus of total convexity (see (2.3)) we get that
(3.1) vi(zo, |zn — 20l]) < Df(xn,z0) < M.

Since the function f is totally convex, the function vy(x,-) is strictly increasing
and positive on (0,00) (¢f. Proposition 2(iv)). This implies, in particular, that
v¢(z,1) > 0 for all € X. Now suppose by way of contradiction that the sequence
{#n}, ey is not bounded. Then there exists a sequence {ng},y of positive real
numbers such that

I = +c0.
L, || = +oo

Consequently, limy_, oo ||n, — Zo|| = +00. This shows that the sequence
{vs(@o, |n — 20l)},,cry 18 nOt bounded. Indeed, there exists some ko > 0 such that
[|xn, — xo|| > 1 for any k > ko and then, by Proposition 2(ii), we see that

Vf(ZIJ(), ||xnk - xOH) > ”xnk - 130” ! Vf(an 1) — 400,

because, as noted above, v¢(xg,1) > 0. This contradicts (3.1). Hence the sequence
{#n},cn is indeed bounded, as claimed. O
Lemma 2: Let f : X — R be a totally conver function and let C be a
nonempty, closed and convex subset of X. Suppose that the sequence {wn}neN is
bounded and any weak subsequential limit of {xy}, oy belongs to C. If
Dy (zp,x0) < Dy (projé(mo),xo) for any n € N, then {x,}, oy converges strongly
to projé(a:o).
Proof. Denote projé(mo) = 4. The three point identity (see (2.2)) and the
assumption Dy (xy,,z0) < Dy (4, x0) yields

Dy (zn, @) = Dy (xn,20) + Dy (z0, @) — (V f(a) = V f(z0), 2n — 20)
< Dy (@, 20) + Dy (o, ) — (V (@) = Vf(x0), 2 — @0)
= (Vf(@) = Vf(z0),a — zo) = (Vf(@) = Vf(20), zn — o)
= (Vf(a) = Vf(z0),u— zn)

Since {2y, },cy is bounded there is a weakly convergent subsequence {xy, },;cy

and denote its weak limit by v. We know that v € C. It follows from Proposition
6(ii) that
lim sup Df (xma 71) < lim sup <Vf(7.~t) - Vf(xO)a u— xm>

1—+o00 1—+o00

= (Vf(a) = Vf(xo), 4 —v) <0.

Hence
lim Dy (xy,,a) = 0.

1——+o00
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Proposition 4 now implies that x,,, — @. It follows that the whole sequence {z,, },, .y

converges strongly to @ = projé(xo), as claimed. O

4. Two Strong Convergence Theorems
In this section we study the following algorithm when Z := ﬂiil A;l (0%) # @

To € X,
=€ (VIR - VS), €€ Agk,

i
n

wy, = VI (N, + V(@)

(4.1) Ci={z€X:Ds(24}) <Dy (z,wl)},
Cp =N Cy,
Qn={2€ X :(Vf(x0) = Vf(2n),z — xs) <0},
Tpy1 = projénﬁQn (z0), n=0,1,2,...,
Theorem 1: Let A; : X — 2X°, i =1,2,...,N, be N mazimal monotone

operators such that Z := ﬂfvzl A7H(0%) # @. Let f: X — R be a Legendre
function which is bounded, uniformly Fréchet differentiable and totally conver on
bounded subsets of X. Assume further that f* is bounded and uniformly Fréchet
differentiable on bounded subsets of X*. Then, for each xo € X, there are sequences
{an}, e which satisfy (4.1). If, for each i =1,2,...,N, liminf, 4 AL, >0, and
the sequences of errors {n;}neN C X* satisfy lim, 100’ = 0%, then each such
sequence {Ty},cy converges strongly to proj’;(xo) as n — +0oo.

Proof. Note that dom Vf = X because dom f = X and f is Legendre. Hence
it follows from [4, Corollary 3.14(ii), p. 606] that dom Resf\A = X. We begin with
the following claim.

Claim 1: There are sequences {y},cy which satisfy (4.1).

As a matter of fact, we will prove that, for each zy € X, there exists a sequence
{@n}, e Which is generated by (4.1) with n, = 0* foralli =1,2,...,N and n € N.

It is obvious that C? are closed and convex sets for any i = 1,2,..., N. Hence
C,, is also closed and convex. It is also obvious that @, is a closed and convex set.

Let u € Z. For any n € N we have from Proposition 8 that
Dy (u,ny) = Dy (uvResiizAiwqi'J < Dy (u,w;) )

which implies that u € C%. Since this holds for any i = 1,2,..., N, it follows
that u € C,,. Thus Z C C, for any n € N. On the other hand it is obvious that
7 C Qo= X. Thus Z C CyNQy, and therefore x; = projéonQO(:zro) is well defined.
Now suppose that Z € C,,_1 N Q,_1 for some n > 1. Then it follows that there
exists x,, € Cp,_1 N Q,_1 such that z,, = projénianil(mo) since C,,_1 N Qy_1 is



STRONG CONVERGENCE THEOREMS 11

a nonempty, closed and convex subset of X. So from Proposition 6(ii) we have

for any y € C,, N @,,. Hence we obtain that Z C @,. Therefore Z C C,, N Q,, and
hence z,,41 = projéan (x0) is well defined. Consequently, we see that Z C C,NQ,,
for any n € N. Thus the sequence we constructed is indeed well defined and satisfies
(4.1), as claimed.

From now on we fix an arbitrary sequence {z,},y satisfying (4.1). It is clear
from the proof of Claim 1 that Z C C,, N @,, for each n € N.

Claim 2: The sequence {xy}, oy 5 bounded.

It follows from the definition of @, and Proposition 6(ii) that projéw (xo) = zp.

Furthermore, by Proposition 6(iii), for each u € Z, we have

(4.2) Dy (zpn,x0) = Dy (projén (z0), x0>
< Dy (u,x0) — Dy (u, projl, ($0)>
S Df (u, 330) .

Hence the sequence {Dy(xn, o)}, cy is bounded by Dy(u, o) for any u € Z.
Therefore by Lemma 1 the sequence {x,}, .y is bounded too, as claimed.
nen belongs to Z.
It follows from the definition of @), and Proposition 6(ii) that projgn (z0) = zp.

Claim 3: Every weak subsequential limit of {x,}

Since Tp,+1 € @, it follows from Proposition 6(iii) that

Dy ($n+17pT0jén (fo)) + Dy (PrOjgn ($0)7$0> < Dy (Tn41,%0)

and hence
(4.3) D¢ (xnt1,25) + D (2n,0) < Dy (Tp41,%0) -

Therefore the sequence {Dy(zy,0)}, oy is increasing and since it is also bounded

(see Claim 2), lim,,—, 4o Dy (2, zo) exists. Thus from (4.3) it follows that

lim Dy (2ny1,2,) =0.

n—-+oo

Proposition 5 now implies that lim,, 1~ (zp+1 — ) = 0. Since
wy, =V (N, + V()

and Vf* is uniformly continuous on bounded subsets of X* by Proposition 1, it
follows that

i o =) =0
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for any ¢ =1,2,..., N, and hence

lim Dy (mn,w;) =0.

n—-+oo

For any i = 1,2,..., N, the three point identity (see (2.2)) implies that

Df ('rn-i‘l’w;) = Df ($n+17$7l) - Df (mna w’fl) + <Vf(mn) - vf(w’fb)"rn"l‘l - $n> .

Therefore
lim Dy (zn+1,w;) =0.

n—-+oo

Next, for any i = 1,2,..., N, it follows from the inclusion x,; € C? that
Df (xn-&-la y;) < Df (In-&-la ’UJ;) .

Hence lim,_, o Dy (mn+1, y}l) = 0. Proposition 5 now implies that

limy, 400 (yfl - :vnﬂ) = 0. Therefore, for any i = 1,2,..., N, we have
[, = @nl| < [lyn = znsa]| + llznss — zall = 0.

This means that the sequence {y;} is bounded for any ¢ = 1,2,...,N. Now

neN
let {y,} .\ be a weakly convergent subsequence of {2y}, cy and denote its weak

limit by v. Then {yﬁlJ } . also converges weakly to v for any ¢ = 1,2,..., N. Since
: i€ ,
liminf,, 4. A} > 0 and lim,,, 4 0}, = 0%, it follows from Proposition 1 that

€= L (Vi(en) = VL) + i — 0"

T
for any i = 1,2,..., N. Since &, € Ay’ and A; is monotone, it follows that
(N =&z —yn) 20
for all (z,7n) € graph (A;). This, in turn, implies that
(n,z2—v) 20

for all (z,m) € graph (4;). Therefore, using the maximal monotonicity of A;, we
now obtain that v € A;l (0*) for each i = 1,2,...,N. Thus v € Z and this proves
Claim 3.

Claim 4: The sequence {xy}, y converges strongly to projé(a:g).

Let @ = projé(mo). Since x, 41 = projéan (o) and Z is contained in C,, N @y,
we have Dy (Zp41,20) < Dy (1, x0). Therefore Lemma 2 implies that {z,}

neN
converges strongly to u = projé(zo), as claimed. This completes the proof of
Theorem 1. O

We now present another result which is similar to Theorem 1, but with a

different type of errors. More precisely, we study the following algorithm when
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— NN A-1(p* .
Zi= Y, A7 (0) £ &
To € X,
Yl = Res];iLA (xn, + €),

i

C’f,l: {ZEX:Df (z,yfl) < Dy (z,aanLeﬁL)},

(4.4) '
Cn:=nN, Ct,
@Qn=A{z€ X :(Vf(xo) = Vf(zn), 2z —zn) <0},
Tpal = proijmW” (o), n=20,1,2,...,
Theorem 2: Let A; : X — 2X°, i =1,2,...,N, be N mazimal monotone

operators such that Z := ﬂiil A7N(0%) # @. Let f: X — R be a Legendre
function which is bounded, uniformly Fréchet differentiable and totally conver on
bounded subsets of X. Then, for each xo € X, there are sequences {xn}, cy which
satisfy (4.4). If, for each i = 1,2,..., N, liminf, . A}, > 0, and the sequences
of errors {eﬁl}neN C X satisfy lim,,_, 1 €', = 0, then each such sequence {xn}neN
converges strongly to projé(xo) as n — +oo.

Proof. Note that dom Vf = X because dom f = X and f is Legendre. Hence
it follows from [4, Corollary 3.14(ii), p. 606] that dom Res{\A = X. We begin with
the following claim.

Claim 1: There are sequences {Ty}, oy which satisfy (4.4).

As a matter of fact, we will prove that, for each xy € X, there exists a sequence
{@n}, e which is generated by (4.4) with e}, =0 for alli =1,2,..., N and n € N.

It is obvious that C? are closed and convex sets for any i = 1,2,..., N. Hence
C,, is also closed and convex. It is also obvious that @, is a closed and convex set.

Let u € Z. For any n € N, we obtain from Proposition 8 that

Dy (u,yl,) = Dy (u,Resf\cilA (xn + e%)) < Dy (u,z, +€),

which implies that « € C?. Since this holds for any i = 1,2,..., N, it follows
that u € C,,. Thus Z C C, for any n € N. On the other hand it is obvious that
Z C Qop=X. Thus Z C CyNQyg, and therefore z; = projéomQO (z0) is well defined.
Now suppose that Z C Cp,_1 N Q,_1 for some n > 1. The it follows that there
exists x,, € Cp,_1 N Q,_1 such that z,, = projén_an_l(xo) since C,,_1 N Qy_1 is
a nonempty, closed and convex subset of X. So from Proposition 6(ii) we have

for any y € C,, N @,,. Hence we obtain that Z C @,. Therefore Z C C,, N Q,, and
hence z,,41 = projéan (z0) is well defined. Consequently, we see that Z C C,,NQ.,
for any n € N. Thus the sequence we constructed is indeed well defined and satisfies
(4.4), as claimed.
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From now on we fix an arbitrary sequence {z, }, .y satisfying (4.4). It is clear
from the proof of Claim 1 that Z C C,, N @,, for each n € N.

Claim 2: The sequence {2y}, oy 5 bounded.

It follows from the definition of @, and Proposition 6(ii) that projgn (xo) = zp.
Furthermore, by Proposition 6(iii), for each u € Z, we have

(4.5) Dy (2, x0) = Dy (projén (z0), x0>
< Dy (u,z0) — Dy (U, Projgn (%))
S Df (u, .730) .

Hence the sequence {Dy(2n,%0)},, oy is bounded by Dy (u,xq) for any u € Z.
Therefore by Lemma 1 the sequence {x,}, oy is bounded too, as claimed.

Claim 3: Every weak subsequential limit of {xn}, .y belongs to Z.

It follows from the definition of @,, and Proposition 6(ii) that projé” (x0) = zp.

Since Tp,+1 € @, it follows from Proposition 6(iii) that

Dy (xn“,projg" (xo)) + Dy (projgn (xo),xo) < Dy (Tn+1,T0)
and hence
(4.6) Dy (zpt1,%n) + Dy (2, 20) < Dy (Tpt1,%0) -

Therefore the sequence {Dy(zy,0)}, oy is increasing and since it is also bounded

(see Claim 2), lim,,—, 4o Dy (2, zo) exists. Thus from (4.6) it follows that

(4.7 ngrfoo D¢ (pt1,2n) = 0.
Proposition 5 now implies that lim,,— 4o (zp+1 — ) = 0. Forany i = 1,2,..., N,

it follows from the definition of the Bregman distance (see (2.1)) that
Dy (2n, zn + e;) = f(zn) — [ (zn+ e;) —(Vf(zn+ el xy — (zn + e%)) =
f@n) = fzn+eh) +{(Vflzn+el)e).
The function f is bounded on bounded subsets of X and therefore V f is bounded
on bounded subsets of X (see [13, Proposition 1.1.11, p. 17]). In addition, f is

uniformly Fréchet differentiable and therefore f is uniformly continuous on bounded

subsets (see [1, Theorem 1.8, p. 13]). Hence, since lim,,_,; « €, = 0, it follows that

(4.8) lim Dy (@, 2, +€),) =0.

n——+oo
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For any i = 1,2,..., N, it follows from the three point identity (see (2.2)) that

Dy (xn+17xn + efl) = D (zp41,2n) + Dy (:L‘n,(En + e;)
+ (VS (2n) = VI (@ + €4), Tnp1 — 7).

Since limy, s 1 oo (Zn41 — Z5) = 0 and V f is bounded on bounded subsets of X, (4.7)
and (4.8) imply that
lim Dy (znq1,2n +el,) = 0.

n—-+00

For any i = 1,2,..., N, it follows from the inclusion x,; € C? that

Dy ($n+17yil) < Dy (Tpi1, 20 + 6;) .

Hence lim,,—, 0 Df (2n1,y5) = 0. Proposition 5 now implies that

limy, 4 o0 (yﬁl — $n+1) = 0. Therefore, for any i = 1,2,..., N, we have
[, = @nll < [lyn — znsa]| + [@ns1 — @nll = 0.

This means that the sequence {yfl} is bounded for any ¢ = 1,2,..., N. Now

neN
let {xnj }j N be a weakly convergent subsequence of {z,},.y and denote its weak

limit by v. Then {yf%} also converges weakly to v for any ¢« = 1,2,...,N.
. . ©Jj€EN . .
Let &, € Ay, since liminf,, oA} > 0 and lim,_, €}, = 0, it follows from

Proposition 1 that

. 1 . .
6 = o (Vi(an +6) ~ V) 0"
for any i = 1,2,..., N. Since &, € Ay’ and A; is monotone, it also follows that

(n=&,2=yh) >0
for all (z,7n) € graph (A;). This, in turn, implies that
<777 Z = U) Z 0

for all (z,n) € graph (4;). Therefore, using the maximal monotonicity of A4;, we
now obtain that v € Ai_1 (0*) for each i = 1,2,..., N. Thus v € Z and this proves
Claim 3.

Claim 4: The sequence {xy,}, oy converges strongly to projé(xo).

Let 4 = projé(xo). Since 41 = projéan (o) and Z is contained in C,, N @y,
we have Dy (zpy1,20) < Dy (1, 70). Therefore Lemma 2 implies that {z,},cy
converges strongly to u = projé(xo), as claimed. This completes the proof of
Theorem 2. (]
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5. Zero Free Operators

This section concerns the case where our two algorithms are applied to a single

zero free operator A. In this case both our algorithms take the form

T € X,
M =&+ 5 (V) = Vi(@a)), & € Ay,
- wa = VI Ot + V(@)
Cn={2€ X :Dj(2,yn) < Dy (z,2a)},
@Qn ={z€ X :(Vf(x0) = Vf(zn), 2 — xn) < 0},
Tpy1 = projéann (z0), n=0,1,2,...,
and
To € X,
Yn = Resf\an(xn +en),
(5.2) Cn={2€X:Df(z,yn) <Dy (z,xy+e€n)},
Qn ={z2 € X : (Vf(xo) = Vf(zn), 2z —zn) <0},
T+l :projéann($0)7 n=20,1,2,...,

We first recall the following lemma (see [34, Lemma 1]):

Lemma 3: If A: X — 2% is a mazimal monotone operator with bounded
domain, then A= (0*) # @.

Now we can prove that the generation of an infinite sequence by Algorithm
(5.1) or (5.2) does not depend on the zero set A~1 (0*) of A being not empty.

Theorem 3. Let A : X — 2% be a mazimal monotone operator. Let f :
X — R be a Legendre function which is bounded, uniformly Fréchet differentiable
and totally convex on bounded subsets of X. In case of Algorithm (5.1) assume,
i addition, that f* is bounded and uniformly Fréchet differentiable on bounded
subsets of X*. Then, for each xog € X, there are sequences {xn},y which satisfy
either (5.1) or (5.2). If liminf, o\, > 0, and either the sequence of errors
{Mtnen C X satisfies limy, oo nn = 0% or the sequence of errors {en},cn C
X satisfies lim,, 1 €, = 0, then either A= (0%) # @ and each such sequence
{®n},en converges strongly to proji,l(o*)(:co) or A=Y (0*) = @ and each such
sequence {Tn}, oy satisfies lim, oo [|2n]| = +o00.

Proof. In view of Theorem 1 and Theorem 2, we only need to consider the
case where A~ (0*) = @. First of all we prove that in this case, for each zg € X,
there is a sequence {z,},y Which satisfies either (5.1) with 7, = 0 or (5.2) with
e, = 0 for all n € N.
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We prove this by induction. We first check that the initial step (n = 0) is well
defined. Indeed, the problem

0* € Az + % (VF(z) — V(zo)
0

always has a solution (yg, &) because it is equivalent to the problem

x :Resf\c0 4 (z0) and this problem does have a solution since dom Res) , = X (sce
Proposition 3 and [4, Theorem 3.13(iv), p. 606]). Now note that Qo = X. Since Cy
cannot be empty (yo € Cp), the next iterate z1 can be generated; it is the Bregman
projection of zg onto Cy = Qg N Cy.

Note that whenever z,, is generated, y,, and &, can further be obtained because
the proximal subproblems always have solutions. Suppose now that z,, and (y,, &)
have already been defined for n = 0, ..., 7. We have to prove that x;1 is also well
defined. To this end, take any zg € dom A and define

p=max{||y, — 20|l :n=0,...,0}

and

0 -2z <p+1
~+o00, otherwise.
Then h : X — (—o00,400] is a proper, convex and lower semicontinuous function,

its subdifferential Oh is maximal monotone (see [31, Theorem 2.13, p. 124]), and
A=A+ 0h
is also maximal monotone (see [37]). Furthermore,
A'(z)=A(z) forall ||z — 2z <p+1.

Therefore &, € A'y,, for n =0, ...,7n. We conclude that x,, and (y,, &, ) also satisfy
the conditions of Theorems 1 and 2 applied to the problem 0* € A’ (z). Since A’
has a bounded effective domain, this problem has a solution by Lemma 3. Thus it
follows from Claim 1 in the proofs of Theorems 1 and 2 that x;41 is well defined in
both Algorithms (5.1) and (5.2). Hence the whole sequence {x,}, o\ is well defined,
as asserted.

If {x,},cy Were to have a bounded subsequence, then it would follow from
Claim 3 in the proofs of Theorems 1 and 2 that A had a zero. Therefore if A~ (0*) =

&, then lim,,_, 4 ||z, || = +00, as asserted. O

6. Consequences of the Strong Convergence Theorems

Algorithm (1.4) is a special case of Algorithm (5.1) when 7, =0 for all n € N,
and a special case of Algorithm (5.2) when e,, =0 for all n € N. Hence as a direct

consequence of Theorems 1, 2 and 3 we obtain the following result:



18 SIMEON REICH AND SHOHAM SABACH

Corollary 1. Let A : X — 2X" be a mazimal monotone operator. Let f :
X — R be a Legendre function which is bounded, uniformly Fréchet differentiable
and totally convex on bounded subsets of X, and suppose that liminf,,_, ., A, > 0.
Then for each xo € X, the sequence {wn}, cy generated by (1.4) is well defined,
and either A1 (0*) # @ and {x,}, oy converges strongly to projz_l(o*)(xg) as
n— 400, or A7H(0*) =@ and lim, o || 2n| = +oc.

Notable corollaries of Theorems 1, 2 and 3 occur when the space X is both
uniformly smooth and uniformly convex. In this case the function f(z) = 3 [El&
is Legendre (c¢f. [3, Lemma 6.2, p. 24]) and uniformly Fréchet differentiable on
bounded subsets of X. According to [14, Corollary 1(ii), p. 325], f is sequentially
consistent since X is uniformly convex and hence f is totally convex on bounded
subsets of X. Therefore Theorems 1, 2 and 3 hold in this context and lead us to the
following two results which, in some sense, complement Theorem 3.1 in [42] (see
also Theorem 3.5 in [29]).

Corollary 2. Let X be a uniformly smooth and uniformly convex Banach space
and let A : X — 2% be a mazimal monotone operator. Then, for each xo € X, the
nen generated by (1.3) is well defined. If liminf, . Ap > 0, then
either A~ (0%) # @ and {xn}, oy converges strongly to Qa-1(o+)(zo) as n — +0o0,

sequence {x,}

or A71(0*) = @ and lim,_ 4 ||z, || = +o0.

Corollary 3. Let X be a Hilbert space and let A : X — 2% be a mazi-
mal monotone operator. Then, for each xo € X, the sequence {x,}, . generated
by (1.2) is well defined. If liminf, , o A, > 0, then either A=1(0) # @ and
{xn},en converges strongly to Pa-1(gy(z0) as n — 400, or A7 (0) = @ and
limy, s 1 oo ||n|| = +00.

These corollaries also hold in the presence of computational errors as in Theo-

rems 1, 2 and 3.

7. An Application of the Strong Convergence Theorems

Let g : X — (—00, +00] be a proper, convex and lower semicontinuous function.
Recall that the subdifferential dg of g is defined for any z € X by

dg(x) :={e X" ({,y—x)<g(y) —g(x) VyeX}.

Applying Theorems 1, 2 and 3 to the subdifferential of g, we obtain an algorithm
for finding minimizers of g.

Proposition 9. Let g: X — (—o0,+0o0] be a proper, convex and lower semi-
continuous function which attains its minimum over X. If f: X — R is a Legendre
function which is bounded, uniformly Fréchet differentiable, and totally convex on

bounded subsets of X, and {\,} N 18 a positive sequence with liminf, | o Ay, > 0,

ne
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then, for each xo € X, the sequence {x,}, oy generated by

T € X,

0 =&+ 5 (Vfyn) = VI(zn), & €3g(yn),
Cn={2€ X : Dy (z,yn) < Dy (z,70)},

Qn={z€ X :(Vf(x0) = Vf(zn), 2 — zn) <0},

Tny1 = projéann (1170)7 n = 07 1, 2, RN

converges strongly to a minimizer of g as n — +oo.
If g does not attain its minimum over X, then lim,_, 1 ||Zn| = +o00.

Proof. The subdifferential dg of ¢ is a maximal monotone operator because g
is a proper, convex and lower semicontinuous function (see [31, Theorem 2.13, p.
124]). Since the zero set of g coincides with the set of minimizers of g, Proposition

9 follows immediately from Theorems 1, 2 and 3. (]

Note that in this case

. 1
Yn = arg 22}1{1 {g (x) + )\—Df (aamn)}

is equivalent to
1
0% € 89 (yn) + 1= (VF(yn) = Vf(zn)).
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