
Exercises for the Lecture on Computational Number Theory

Preda Mihăilescu

Exercise 1 ( Primality ).

In this exercise n is a large integer.

a) Suppose that there is an integer F =
∏k
i=1 p

ei
i with known primes pi and ei > 0

such that F |(n − 1) and F >
√
N . Let R = (n − 1)/F and assume that for each

i there is an integer ai such that the following conditions hold: aRFi ≡ 1 mod n

and (a
R(F/pi)
i − 1, n) = 1. Show that Z/(n ·Z)× contains a primitive F−th root of

unity and conclude that n is prime.
b) Let N = Z/(n · Z) and s >

√
n be an integer with t = ords(n) the order of

n mod s. Let Φs(X) ∈ Z[X] be the s−th cyclotomic polynomial, i.e. the minimal

polynomial of a primitive s−th root of units, e.g. e2πı/s. Assume that there is a
polynomial Ψ ∈ N [X] of degree t such that
(i) Ψ(X) divides Φs(X) over N .

(ii) Let ζ = X + (Ψ(X)) ∈ N [X]/(Ψ(X)). Then Ψ(ζn
i
) = 0 for i = 1, 2, . . . , t.

Then r|n iff r ≡ ni mod s for some i ∈ {1, 2, . . . , t}.

Exercise 2 ( Points on elliptic curves ).

a) Consider the equation cY 2 = dX3 + aX + b. Using multiplication by c3d2 on both
sides of the equation, show that one obtains, after an adequate change of variables,
the equation of an elliptic curve in Weierstrass normal form.

Use this fact in order to show that given a prime p, one can construct an elliptic
curve E(Fp) together with a point P = (X, y) ∈ E without taking square roots.
Hint: Start with X and an arbitrary elliptic curve, such that cY 2 = X3 + aX + b
and then use the previous construction.

b) Let n be a large integer and E : Y 2 = X3 + aX + b and let P = (X,Y ) satisfy
the equation modulo n (note that n needs not be a prime). Assuming that p|n
is a prime factor such that m = |E(Fp)| is divisible only by primes r ≤ B, for a
given bound B ∈ Z>0 we construct the value Q = [B!] ∈ Z/(n ·Z)2 as follows: use
the formal expression for repeated addition and doubling on the elliptic curve E
and reduce the results at each step modulo n. The inversion will be performed by
means of the Euclidean Algorithm.

Prove that in the process of computing Q one will in general encounter an
expression of the type [2]Q′ = A/B or Q′ ⊕ Q′′ = A/B, with (B,n) = p; here
Q′, Q′′ are intermediate “points” in the given addition chain.

Show that this fact can be used for factoring integers and explain the case in
which the GCD (B,n) = n. This is the core idea of the Elliptic Curve Factoring
Method - ECM, descovered by H. Lenstra Jr. in 1984.
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Exercise 3 ( Polynomial reduction ). Let D be an integral ring and f ∈ D[X] with
f(0) = 1 have degree m.

a) Use the Newton algorithm for finding a polynomial g ∈ D[X] with f ·g ≡ 1 mod xl.

Hint: Construct recursively a sequence gi ∈ D[X] with fgi ≡ 1 mod x2
i
.

b) Let a, b ∈ D[X] be two polynomials. We give here an algorithm for computing the
euclidean division a = qb+r using only multiplications and truncations. We denote
by revm(b) = Xmb(1/X); if m = deg(b), we simply write rev(b) = Xdeg(b)b(1/X).
Show that the following algorithm computes the euclidean quotient and remainder
for a, b:
1. If deg(a) < deg(b) then q = 0 and r = a, return.
2. Let m = deg(a) − deg(b) and compute h = rev(b)−1 using the algorithm in

the previous point.
3. Let q∗ = rev(a) · hremxm+1.
4. Let q = revm(q∗), r = a− qb and return.

Comment upon the computational advantages of this algorithm.

Exercise 4 ( Multiplication on elliptic curves ).

Let E : Y 2 = X3 + aX + B be an elliptic curve. We define the division polynomials
ψm ∈ Z[X,Y, a, b] by the following recursion:

ψ0 = 0, ψ1 = 1, ψ2 = y,

ψ3 = 3X4 + 6aX2 + 12bX − a2 ψ4 = 4Y (X6 + 5aX4 + 20bX3 − 5a2X2 − 4abX − 8b2 − a3),
ψ2m+1 = ψm+2ψ

3
m − ψm−1ψ3

m+1 for m ≥ 2,

ψ2m =
ψm
2Y
·
(
ψm+2ψ

2
m−1 − ψm−2ψ2

m+1

)
for m ≥ 2.

Furthermore, we define φm = Xψ2
m − ψm+1ψm−1 and ωm =

ψm+2ψ2
m−1−ψm−2ψ2

m+1

4Y .

a) Assuming that Y 2 = X3 + aX + b, show that ψn, φn, ωn ∈ Z[X, a, b] ∪ Y Z[X, a, b]
and distinguish when the polynomials are divisible by Y and when not.

b) Prove that if P = (X,Y ) ∈ E, then

[n]P =

(
φn(X)

ψn(X)2
,
ωn(X,Y )

ψn(X,Y )3

)
.

Comment upon the appearance of Y . (The proof is involved and uses knowledge
of the Weierstraß ℘-function.)

c) Deduce that P ∈ E[n] is an n-torsion point iff ψn(Px) = 0.



Exercise 5 ( Deriving the torsion polynomials ).

Let ℘(nz) = Rn(℘(z)) for Rn ∈ C(X). We have seen that

(℘(nz), ℘′(nz)) = (Rn(℘(z)),
1

n
℘′(z)R′n(℘(z)).

We aim to compute recursively Rn(x) and then identify terms in the above equation.

a) Show that there is an elliptic function verifying

f2n(z) = n2 ·
∏

06=u∈(C/L)[n]

(℘(z)− ℘(u)).

For odd n, we have fn = Pn(℘) with deg(Pn) = n2−1
2 and leading coefficient being

n.
For even n, we have fn = ℘′Pn(℘) with deg(Pn) = n2−4

2 and leading coefficient
being n/2.

The zeroes of fn are simple zeroes at the points 0 6= u ∈ (C/L)[n] and the
expantion at 0 is

fn(z) =
(−1)n+1n

zn2−1 +O(z−n
2+2).

b) For n ≥ 2 we have

℘(nz) = ℘(z)− fn−1(z)fn+1(z)

f2n(z)
.

Hint: Use expansions at 0.

c) Prove the identities

f2n+1 = fn+2f
3
n − f3n+1fn−1,

℘′f2n+1 = fn · (fn+2f
2
n−1 − fn−2f2n+1).

d) For all n ≥ 1, we have

fn(z) = ψn ·
(
℘(z),

1

2
℘′(z)

)
.

Hint: Use the induction for the definition of ψn and the identities for fn derived
above.

e) Prove

℘′(nz) = f2n(z)/f4n(z).

f) Use the above identities for proving that for all n ≥ 1 we have indeed

n(X,Y ) =

(
φn(X,Y )

ψ2
n(X,Y )

,
ωn(X,Y )

ψ3
n(X,Y )

)
.

Exercise 6 ( Complex multiplication ).

Let L be a lattice which has complex multiplication by α ∈ C, i.e. αL ⊂ L.



a) Prove that α ∈ K := Q[
√
−n] for some n ∈ N.

b) Show that there is an order O ⊂ O(K) containing α and such that L has complex
multiplication by all β ∈ O.

c) Show that there are two polynomials A,B ∈ C[X] with ℘(αz) = A(℘(z))
B(℘(z) and

deg(A) = deg(B) + 1 = [L : αL] = N(α).

Exercise 7 ( Schoof’s algorithm ).

Let E : Y 2 = f(X) = X3 + aX + b be an ordinary elliptic curve over the prime finite field
Fp with p 6= 2, 3. Let ` 6= p be an odd prime and g(X) = ψ`(X,Y ); show that f does
indeed only depend upon X, using the fact that ` is odd.

a) Show that T := Fp[X,Y ]/(g(X), Y 2−f(X)) is a galois algebra. What is the degree

of its maximal subfield? Let P = (X̂, Ŷ ) = (X + g(X), Y + (Y 2 − f(X))) ∈ T be
the generic `-torsion point.

b) Let Φ : T→ T be the map X̂ 7→ X̂p, Ŷ 7→ Ŷ p. Show that there is a representation
ρ : 〈Φ〉 → GL(2,F`).

c) Let Φ2 + tΦ + p = 0 be the characteristic equation of the Frobenius in End(E).
Show that Tr(ρ(Φ)) ≡ t mod `.

d) The polynomial g(X) factors over Fp and its irreducible factors will be orbits of X̂
under the action of Frobenius. Recall that E[`] ∼= F2

` and use the diagonalization
of ρ(Φ) over F` or F`2 in order to determine the factorzation pattern of g(X) in
dependence on its eigenvalues.

d) Show that if the Legendre symbol
(
t2−4p
`

)
= 1, then g(X) allows at least two

factors g1(X), g2(X) ∈ Fp[X] of degree `−1
2 . These factors need not be irreducible.

e) Show that if the Legendre symbol
(
t2−4p
`

)
= −1, then g(X), all the irreducible

factors of g(X) have the same degree and deduce this degree in function of the
roots of the characteristic polynomial of the Frobenius over F`.

f) Show that if the Legendre symbol
(
t2−4p
`

)
= 0, then either g(X) factors in poly-

nomials of equal degree dividing `−1
2 , or it has a factor of degree `.

Exercise 8 ( Elkies’ variant of Schoof’s algorithm ).

Let E, `, p be like in the previous exercise and let G(X)|g(X) be any polynomial dividing
g(X) over Fp. Define T := Fp[X,Y ]/(G(X), Y 2−f(X)) and show that it is a galois algebra
too.

a) Define T := Fp[X,Y ]/(G(X), Y 2 − f(X)) and show that it is a galois algebra too.

b) Show that (Φ2(P ) + pΦ(P ))x = t`Φ(P ) for some t` ∈ {0, 1, . . . , `−12 } with t` ≡
±t mod `.

c) Use the above to prove the existence of an improved variant of Schoof’s algorithm,
provided the knowledge of a polynomial G|g.



Projects for the Lecture on Computational Number Theory

Preda Mihăilescu

Exercise 1 ( Schoof-Elkies ).

Implement the Schoof-Elkies algorithm on a computer, using some Symbolic Computation
package of your choice (Magma, PARI, Mathematica, MAPLE, etc.). For determining the
polynomial G(X) in exercise 8, you need not use automorphic functions (but those who
do are welcome!). You can instead construct the division polynomials ψ` recursively, let

X̂ = X + (ψ`) and h(X) ≡ Xp mod ψ`(X). Then retrieve the gcd (h(X), ψ`(X)). Explain
why this approach works and provide a description of the implementation. The algorithm
should be first tested on some small primes p, and then compute E(Fp) for some curves
over fields with characteristic of, say, 1000 binary digits.

Exercise 2 ( Division Polynomials ). Give a complete solution of exercises 4 and 5.

Exercise 3 ( Complex multiplication ). It was mentioned that if the lattice L has CM
by α, then there are polynomials A(X), B(X) with deg(A) = deg(B) + 1 = N(α) such

that ℘(αz) = A(℘(z))
B(z) .

1. Choose three CM curves and complex multiplyers and determine the respective
polynomial A,B (the α-division polynomials.

2. Attempt to find a general solution using induction, like for the case of integer
multiplication. Hint: Do some literature research before attempting to solve this
part of the problem.

Exercise 4 ( Kronecker’s Jugendtraum ).

For this Project you are advised to use Cox’s book given in the reference. The solutions
should reflect your understanding of the subject, so it should contain more than a list of
references to results proved in a book. Think of it as a small essay (Cambridge style, not
literature!).

Let L = [1, τ ] ⊂ C be a CM - lattice with αL ⊂ L,α ∈ C \ Z

1. Show that there is an imaginary quadratic extension K = Q[
√
−d] such that τ, α ∈

K.
2. Let O ⊂ O(K) be the smallest subring with α ∈ O. Show that βL ⊂ L for all

β ∈ O.
3. Show that there is a proper fractional ideal a ⊂ O such that the Z-module [1, τ ] ⊂
O is equal to a. Conclude that the j-function parametrizes the group of classes of
proper ideals in O.

4. Prove that j(a) = j(τ) is an algebraic number. Hint: Use the modular equation.
5. Prove that H = K[j(a)] is the class field of the group of classes of proper ideals (ring

class group) of O. This is the first step in the proof of Kronecker’s Jugendtraum.
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