Interval exchange maps

Jean-Christophe Yoccoz

Collège de France, Paris

Göttingen, August 1-3, 2011

- < ∃ >

(ロ) (四) (注) (注) (注) [

(Standard)interval exchange maps

- 4 回 2 - 4 □ 2 - 4 □

æ

Jean-Christophe Yoccoz Interval exchange maps

(Standard)interval exchange maps

回 と く ヨ と く ヨ と

æ

Circle diffeomorphisms

Jean-Christophe Yoccoz Interval exchange maps

(Standard)interval exchange maps

Circle diffeomorphisms

Generalized interval exchange maps

個 と く ヨ と く ヨ と

Jean-Christophe Yoccoz Interval exchange maps

Standard interval exchange maps

Circle homeomorphisms and diffeomorphisms

Generalized interval exchange maps

Let $\mathbb{T} := \mathbb{R}/\mathbb{Z}$.

Jean-Christophe Yoccoz Interval exchange maps

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Let $\mathbb{T} := \mathbb{R}/\mathbb{Z}$. For $\alpha \in \mathbb{T}$, let R_{α} be the translation $x \mapsto x + \alpha$ on \mathbb{T} .

白 ト イヨト イヨト

伺 ト イヨト イヨト

Proposition:

白 と く ヨ と く ヨ と

Proposition:

1. If $\alpha = \frac{p}{q} \in \mathbb{Q}/\mathbb{Z}$ (with $q \ge 1$, $p \in (\mathbb{Z}/q\mathbb{Z})^*$), then every orbit of R_{α} is periodic of period q.

Proposition:

- 1. If $\alpha = \frac{p}{q} \in \mathbb{Q}/\mathbb{Z}$ (with $q \ge 1$, $p \in (\mathbb{Z}/q\mathbb{Z})^*$), then every orbit of R_{α} is periodic of period q.
- 2. If α is irrational, the transformation R_{α} is minimal, ergodic and uniquely ergodic.

伺 ト イミト イヨト

Definitions:

Jean-Christophe Yoccoz Interval exchange maps

・ロト ・回 ト ・ヨト ・ヨト

1. An homeomorphism of a compact metric space is *minimal* if every half-orbit is dense.

回 と く ヨ と く ヨ と

1. An homeomorphism of a compact metric space is *minimal* if every half-orbit is dense. Equivalently, there is no nontrivial closed invariant set.

< ∃⇒

- 1. An homeomorphism of a compact metric space is *minimal* if every half-orbit is dense. Equivalently, there is no nontrivial closed invariant set.
- 2. A measure-preserving transformation is *ergodic* if every measurable invariant set has zero or full measure.

- 1. An homeomorphism of a compact metric space is *minimal* if every half-orbit is dense. Equivalently, there is no nontrivial closed invariant set.
- 2. A measure-preserving transformation is *ergodic* if every measurable invariant set has zero or full measure.
- 3. An homeomorphism of a compact metric space is *uniquely ergodic* if it admits only one invariant probability measure.

- 1. An homeomorphism of a compact metric space is *minimal* if every half-orbit is dense. Equivalently, there is no nontrivial closed invariant set.
- 2. A measure-preserving transformation is *ergodic* if every measurable invariant set has zero or full measure.
- 3. An homeomorphism of a compact metric space is *uniquely ergodic* if it admits only one invariant probability measure. Then, it is ergodic w.r.t the unique invariant measure,

- 1. An homeomorphism of a compact metric space is *minimal* if every half-orbit is dense. Equivalently, there is no nontrivial closed invariant set.
- 2. A measure-preserving transformation is *ergodic* if every measurable invariant set has zero or full measure.
- 3. An homeomorphism of a compact metric space is *uniquely ergodic* if it admits only one invariant probability measure. Then, it is ergodic w.r.t the unique invariant measure, and the restriction to the support of the measure is minimal.

Proof of proposition

Jean-Christophe Yoccoz Interval exchange maps

・ロ・ ・ 日・ ・ 日・ ・ 日・

Proof of proposition

The first part is trivial.

- 4 回 2 - 4 □ 2 - 4 □

In the second part, it is sufficient to prove that R_{α} is uniquely ergodic for irrational α .

個 と く ヨ と く ヨ と

In the second part, it is sufficient to prove that R_{α} is uniquely ergodic for irrational α .

Consider a ${\it R}_{\alpha}\mbox{-invariant}$ probability measure μ and the Fourier coefficients

$$\widehat{\mu}(n) = \int_{\mathbb{T}} \exp(-2\pi i n x) d\mu(x).$$

通 と く ヨ と く ヨ と

In the second part, it is sufficient to prove that R_{α} is uniquely ergodic for irrational α .

Consider a ${\it R}_{\alpha}\mbox{-invariant}$ probability measure μ and the Fourier coefficients

$$\widehat{\mu}(n) = \int_{\mathbb{T}} \exp(-2\pi i n x) d\mu(x).$$

The invariance gives $\widehat{\mu}(n) = \widehat{\mu}(n) \exp(-2\pi i n \alpha)$ for all $n \in \mathbb{Z}$.

高 とう モン・ く ヨ と

In the second part, it is sufficient to prove that R_{α} is uniquely ergodic for irrational α .

Consider a ${\it R}_{\alpha}\mbox{-invariant}$ probability measure μ and the Fourier coefficients

$$\widehat{\mu}(n) = \int_{\mathbb{T}} \exp(-2\pi i n x) d\mu(x).$$

The invariance gives $\widehat{\mu}(n) = \widehat{\mu}(n) \exp(-2\pi i n \alpha)$ for all $n \in \mathbb{Z}$. As α is irrational, we have $\exp(-2\pi i n \alpha) \neq 1$ hence $\widehat{\mu}(n) = 0$ for $n \neq 0$.

回 と く ヨ と く ヨ と

In the second part, it is sufficient to prove that R_{α} is uniquely ergodic for irrational α .

Consider a ${\it R}_{\alpha}\mbox{-invariant}$ probability measure μ and the Fourier coefficients

$$\widehat{\mu}(n) = \int_{\mathbb{T}} \exp(-2\pi i n x) d\mu(x).$$

The invariance gives $\widehat{\mu}(n) = \widehat{\mu}(n) \exp(-2\pi i n \alpha)$ for all $n \in \mathbb{Z}$. As α is irrational, we have $\exp(-2\pi i n \alpha) \neq 1$ hence $\widehat{\mu}(n) = 0$ for $n \neq 0$. This implies that μ is equal to Lebesgue measure.

回 と く ヨ と く ヨ と

We use a finite alphabet \mathcal{A} (with $\#\mathcal{A} = d$) to label the d open subintervals exchanged by an i.e.m \mathcal{T} : we have

$$I = \bigsqcup_{\alpha \in \mathcal{A}} I_{\alpha}^{t} = \bigsqcup_{\alpha \in \mathcal{A}} I_{\alpha}^{b},$$

and the restriction of T to I_{α}^{t} is a translation (an homeomorphism if T is a generalized i.e.m) onto I_{α}^{b} .

We use a finite alphabet \mathcal{A} (with $\#\mathcal{A} = d$) to label the d open subintervals exchanged by an i.e.m \mathcal{T} : we have

$$I = \bigsqcup_{\alpha \in \mathcal{A}} I_{\alpha}^{t} = \bigsqcup_{\alpha \in \mathcal{A}} I_{\alpha}^{b},$$

and the restriction of T to I_{α}^{t} is a translation (an homeomorphism if T is a generalized i.e.m) onto I_{α}^{b} .

The combinatorial data of T, i.e the order in which the subintervals appear in the two partitions, are given by two bijections π_t, π_b from A onto $\{1, \ldots, d\}$ and represented by

$$\left(\begin{array}{ccc} \pi_t^{-1}(1) & \dots & \pi_t^{-1}(d) \\ \pi_b^{-1}(1) & \dots & \pi_b^{-1}(d) \end{array}\right).$$

$$\pi_t^{-1}(\{1,\ldots,k\}) \neq \pi_b^{-1}(\{1,\ldots,k\}).$$

同 ト く ヨ ト く ヨ ト

$$\pi_t^{-1}(\{1,\ldots,k\}) \neq \pi_b^{-1}(\{1,\ldots,k\}).$$

When its combinatorial data are not irreducible, T is a juxtaposition of two simpler i.e.m.

通 と く ほ と く ほ と

$$\pi_t^{-1}(\{1,\ldots,k\}) \neq \pi_b^{-1}(\{1,\ldots,k\}).$$

When its combinatorial data are not irreducible, T is a juxtaposition of two simpler i.e.m.

We will only consider irreducible combinatorial data.

• • = • • = •

$$\pi_t^{-1}(\{1,\ldots,k\}) \neq \pi_b^{-1}(\{1,\ldots,k\}).$$

When its combinatorial data are not irreducible, T is a juxtaposition of two simpler i.e.m.

We will only consider irreducible combinatorial data.

For d = 2, the only irreducible combinatorial data are (up to relabelling) $\begin{pmatrix} A & B \\ B & A \end{pmatrix}$.

ト < 臣 ト < 臣 ト</p>

$$\pi_t^{-1}(\{1,\ldots,k\}) \neq \pi_b^{-1}(\{1,\ldots,k\}).$$

When its combinatorial data are not irreducible, T is a juxtaposition of two simpler i.e.m.

We will only consider irreducible combinatorial data.

For d = 2, the only irreducible combinatorial data are (up to relabelling) $\begin{pmatrix} A & B \\ B & A \end{pmatrix}$. For d = 3, the only irreducible combinatorial data are (up to relabelling) $\begin{pmatrix} A & B & C \\ C & B & A \end{pmatrix}$, $\begin{pmatrix} A & B & C \\ C & A & B \end{pmatrix}$, $\begin{pmatrix} A & C & B \\ C & B & A \end{pmatrix}$.
$$\lambda_{\alpha} = |I_{\alpha}^t| = |I_{\alpha}^b|.$$

個 と く ヨ と く ヨ と …

æ

$$\lambda_{\alpha} = |I_{\alpha}^t| = |I_{\alpha}^b|.$$

We denote by $T_{\pi,\lambda}$ the standard i.e.m with combinatorial data π and length vector λ .

ヨット イヨット イヨッ

2

$$\lambda_{\alpha} = |I_{\alpha}^t| = |I_{\alpha}^b|.$$

We denote by $T_{\pi,\lambda}$ the standard i.e.m with combinatorial data π and length vector λ .

For given π , the parameter space is thus the open simplex $\mathbb{P}(\mathbb{R}^{\mathcal{A}}_{+})$.

直 とう きょう うちょう

$$\lambda_{\alpha} = |I_{\alpha}^t| = |I_{\alpha}^b|.$$

We denote by $T_{\pi,\lambda}$ the standard i.e.m with combinatorial data π and length vector λ .

For given π , the parameter space is thus the open simplex $\mathbb{P}(\mathbb{R}^{\mathcal{A}}_{+})$. The translation vector $\delta \in \mathbb{R}^{\mathcal{A}}$ is determined by

$$I_{\alpha}^{b} = I_{\alpha}^{t} + \delta_{\alpha}, \quad \alpha \in \mathcal{A}.$$

$$\Omega_{\alpha\beta} = \begin{cases} +1 & \text{if } \pi_t(\alpha) < \pi_t(\beta), \pi_b(\alpha) > \pi_b(\beta), \\ -1 & \text{if } \pi_t(\alpha) > \pi_t(\beta), \pi_b(\alpha) < \pi_b(\beta), \\ 0 & \text{otherwise.} \end{cases}$$

白 ト く ヨ ト く ヨ ト

$$\Omega_{\alpha\beta} = \begin{cases} +1 & \text{if } \pi_t(\alpha) < \pi_t(\beta), \pi_b(\alpha) > \pi_b(\beta), \\ -1 & \text{if } \pi_t(\alpha) > \pi_t(\beta), \pi_b(\alpha) < \pi_b(\beta), \\ 0 & \text{otherwise.} \end{cases}$$

One easily checks that $\delta = \Omega \lambda$.

• = • < = •</p>

$$\Omega_{\alpha\beta} = \begin{cases} +1 & \text{if } \pi_t(\alpha) < \pi_t(\beta), \pi_b(\alpha) > \pi_b(\beta), \\ -1 & \text{if } \pi_t(\alpha) > \pi_t(\beta), \pi_b(\alpha) < \pi_b(\beta), \\ 0 & \text{otherwise.} \end{cases}$$

One easily checks that $\delta = \Omega \lambda$.

The intersection matrix Ω is antisymmetric. Its rank $2g \leq d$ is therefore even. The integer g > 0 is the *genus* of any i.e.m T with combinatorial data π .

ヨット イヨット イヨッ

$$\Omega_{\alpha\beta} = \begin{cases} +1 & \text{if } \pi_t(\alpha) < \pi_t(\beta), \pi_b(\alpha) > \pi_b(\beta), \\ -1 & \text{if } \pi_t(\alpha) > \pi_t(\beta), \pi_b(\alpha) < \pi_b(\beta), \\ 0 & \text{otherwise.} \end{cases}$$

One easily checks that $\delta = \Omega \lambda$.

The intersection matrix Ω is antisymmetric. Its rank $2g \leq d$ is therefore even. The integer g > 0 is the *genus* of any i.e.m T with combinatorial data π .

Example: For d = 2, 3, the genus is equal to 1.

ヨット イヨット イヨッ

$$\Omega_{\alpha\beta} = \begin{cases} +1 & \text{if } \pi_t(\alpha) < \pi_t(\beta), \pi_b(\alpha) > \pi_b(\beta), \\ -1 & \text{if } \pi_t(\alpha) > \pi_t(\beta), \pi_b(\alpha) < \pi_b(\beta), \\ 0 & \text{otherwise.} \end{cases}$$

One easily checks that $\delta = \Omega \lambda$.

The intersection matrix Ω is antisymmetric. Its rank $2g \leq d$ is therefore even. The integer g > 0 is the *genus* of any i.e.m T with combinatorial data π .

Example: For d = 2, 3, the genus is equal to 1. For $\pi = \begin{pmatrix} A & B & C & D \\ D & C & B & A \end{pmatrix}$, the rank is 4 and the genus is 2.

御 と く 思 と く 思 と

Suspension of i.e.m: The case d = 2

From a length vector $\lambda = (\lambda_A, \lambda_B)$ and a suspension vector $\tau = (\tau_A, \tau_B)$ with $\tau_A > 0 > \tau_B$, one constructs first a parallelogram with sides $\zeta_{\alpha} = (\lambda_{\alpha}, \tau_{\alpha})$ and then a flat torus by identifying parallel sides.

Suspension of i.e.m: The case d = 2

From a length vector $\lambda = (\lambda_A, \lambda_B)$ and a suspension vector $\tau = (\tau_A, \tau_B)$ with $\tau_A > 0 > \tau_B$, one constructs first a parallelogram with sides $\zeta_{\alpha} = (\lambda_{\alpha}, \tau_{\alpha})$ and then a flat torus by identifying parallel sides.

To suspend an i.e.m T with combinatorial data π , length vector λ , one also needs a suspension vector $\tau \in \mathbb{R}^{\mathcal{A}}$ satisfying the suspension conditions

$$(S) \qquad \sum_{\pi_t(\alpha) \leqslant k} \tau_\alpha > 0, \quad \sum_{\pi_b(\alpha) \leqslant k} \tau_\alpha < 0, \quad \forall 1 \leqslant k < d.$$

< ∃⇒

To suspend an i.e.m T with combinatorial data π , length vector λ , one also needs a suspension vector $\tau \in \mathbb{R}^{\mathcal{A}}$ satisfying the suspension conditions

$$(S) \qquad \sum_{\pi_t(\alpha)\leqslant k}\tau_\alpha>0, \quad \sum_{\pi_b(\alpha)\leqslant k}\tau_\alpha<0, \quad \forall 1\leqslant k< d.$$

From the vectors $\zeta_{\alpha} = (\lambda_{\alpha}, \tau_{\alpha})$, one first construct a polygon and then a flat surface $M = M(\pi, \lambda, \tau)$ by identification of parallel sides.

To suspend an i.e.m T with combinatorial data π , length vector λ , one also needs a suspension vector $\tau \in \mathbb{R}^{\mathcal{A}}$ satisfying the suspension conditions

$$(S) \qquad \sum_{\pi_t(\alpha)\leqslant k}\tau_\alpha>0, \quad \sum_{\pi_b(\alpha)\leqslant k}\tau_\alpha<0, \quad \forall 1\leqslant k< d.$$

From the vectors $\zeta_{\alpha} = (\lambda_{\alpha}, \tau_{\alpha})$, one first construct a polygon and then a flat surface $M = M(\pi, \lambda, \tau)$ by identification of parallel sides.

The vertices of the polygon correspond to singular points where the total angle is a multiple of 2π .

To suspend an i.e.m T with combinatorial data π , length vector λ , one also needs a suspension vector $\tau \in \mathbb{R}^{\mathcal{A}}$ satisfying the suspension conditions

$$(S) \qquad \sum_{\pi_t(\alpha)\leqslant k}\tau_\alpha>0, \quad \sum_{\pi_b(\alpha)\leqslant k}\tau_\alpha<0, \quad \forall 1\leqslant k< d.$$

From the vectors $\zeta_{\alpha} = (\lambda_{\alpha}, \tau_{\alpha})$, one first construct a polygon and then a flat surface $M = M(\pi, \lambda, \tau)$ by identification of parallel sides.

The vertices of the polygon correspond to singular points where the total angle is a multiple of 2π . The genus of *M* is *g*.

To suspend an i.e.m T with combinatorial data π , length vector λ , one also needs a suspension vector $\tau \in \mathbb{R}^{\mathcal{A}}$ satisfying the suspension conditions

$$(S) \qquad \sum_{\pi_t(\alpha)\leqslant k}\tau_\alpha>0, \quad \sum_{\pi_b(\alpha)\leqslant k}\tau_\alpha<0, \quad \forall 1\leqslant k< d.$$

From the vectors $\zeta_{\alpha} = (\lambda_{\alpha}, \tau_{\alpha})$, one first construct a polygon and then a flat surface $M = M(\pi, \lambda, \tau)$ by identification of parallel sides.

The vertices of the polygon correspond to singular points where the total angle is a multiple of 2π . The genus of M is g. The number s of singular points is related to g and d by

$$d=2g+s-1.$$

向下 イヨト イヨト

Suspension of an i.e.m with $\sum_{\alpha} \tau_{\alpha} = 0$

Suspension of an i.e.m in the general case: a problem ...

... and the way to solve it

► The singularities of T are the d − 1 points u₁^t < · · · < u_{d-1}^t separating the subintervals in the domain of T.

回 とう ほう うちょう

æ

- ► The singularities of T are the d − 1 points u₁^t < · · · < u_{d-1}^t separating the subintervals in the domain of T.
- ► The singularities of T⁻¹ are the d 1 points u₁^b < ··· < u_{d-1}^b separating the subintervals in the image of T.

向下 イヨト イヨト

- ► The singularities of T are the d − 1 points u₁^t < · · · < u_{d-1}^t separating the subintervals in the domain of T.
- ► The singularities of T⁻¹ are the d 1 points u₁^b < ··· < u_{d-1}^b separating the subintervals in the image of T.
- A connection is a relation $T^m(u_i^b) = u_j^t$ with $1 \le i, j < d$ and $m \ge 0$.

向下 イヨト イヨト

▲圖> ▲屋> ▲屋>

æ

Theorem (Keane) Let T be a **standard** *i.e.m.* If the length data are rationally independent, T has no connection.

向下 イヨト イヨト

If the length data are rationally independent, T has no connection. If T has no connection, T is minimal: every infinite half-orbit of T is dense.

If the length data are rationally independent, T has no connection. If T has no connection, T is minimal: every infinite half-orbit of T is dense.

Remark: For d = 2, T has no connection iff it is minimal iff its length data are rationally independent.

If the length data are rationally independent, T has no connection. If T has no connection, T is minimal: every infinite half-orbit of T is dense.

Remark: For d = 2, T has no connection iff it is minimal iff its length data are rationally independent. This is no longer true as soon as $d \ge 3$: There are minimal i.e.m T with connections, and i.e.m T with rationally dependent length data but no connection.

If the length data are rationally independent, T has no connection. If T has no connection, T is minimal: every infinite half-orbit of T is dense.

Remark: For d = 2, T has no connection iff it is minimal iff its length data are rationally independent. This is no longer true as soon as $d \ge 3$: There are minimal i.e.m T with connections, and i.e.m T with rationally dependent length data but no connection.

Definition: A **standard** i.e.m T is *irrational* if it has no connection.

Let T_0 be a standard **irrational** i.e.m with combinatorial data π and length data λ^0 , normalized by $\sum_{\alpha \in \mathcal{A}} \lambda_{\alpha}^0 = 1$.

伺 ト イヨト イヨト

æ

Let T_0 be a standard **irrational** i.e.m with combinatorial data π and length data λ^0 , normalized by $\sum_{\alpha \in \mathcal{A}} \lambda_{\alpha}^0 = 1$. Let $\mathcal{M}(T_0)$ be the compact convex set of T_0 -invariant probability measures on I = [0, 1].

白 とう きょう うちょう

Proposition: $\mathcal{M}(\mathcal{T}_0)$ and $\Lambda(\mathcal{T}_0)$ are closed simplices of the same dimension $\in [0, g - 1]$ in natural affine one-to-one correspondence.

同 と く ヨ と く ヨ と

Proposition: $\mathcal{M}(\mathcal{T}_0)$ and $\Lambda(\mathcal{T}_0)$ are closed simplices of the same dimension $\in [0, g - 1]$ in natural affine one-to-one correspondence.

Remark: T_0 is uniquely ergodic iff the dimension is 0, i.e $\Lambda(T_0) = \{\lambda^0\}.$

(本部) (本語) (本語) 三語

Proposition: $\mathcal{M}(\mathcal{T}_0)$ and $\Lambda(\mathcal{T}_0)$ are closed simplices of the same dimension $\in [0, g - 1]$ in natural affine one-to-one correspondence.

Remark: T_0 is uniquely ergodic iff the dimension is 0, i.e $\Lambda(T_0) = \{\lambda^0\}$. T_0 is ergodic w.r.t Lebesgue measure iff λ^0 is a vertex of $\Lambda(T_0)$.

< □ > < @ > < 注 > < 注 > ... 注

Elements of proof

► For $\lambda \in \Lambda(T_0)$, let h_{λ} be the homeomorphism of I s.t. $h_{\lambda} \circ T_{\pi,\lambda} = T_0 \circ h_{\lambda}$.

・日本 ・ モン・ ・ モン

æ

Elements of proof

► For $\lambda \in \Lambda(T_0)$, let h_{λ} be the homeomorphism of I s.t. $h_{\lambda} \circ T_{\pi,\lambda} = T_0 \circ h_{\lambda}$. Then $h_{\lambda*}(Leb) \in \mathcal{M}(T_0)$.

・日・ ・ ヨ・ ・ ヨ・

æ
- ► For $\lambda \in \Lambda(T_0)$, let h_{λ} be the homeomorphism of I s.t. $h_{\lambda} \circ T_{\pi,\lambda} = T_0 \circ h_{\lambda}$. Then $h_{\lambda*}(Leb) \in \mathcal{M}(T_0)$.
- ► As T₀ is minimal, every T₀-invariant probability has full support and no atoms.

・日・ ・ ヨ・ ・ ヨ・

2

- ► For $\lambda \in \Lambda(T_0)$, let h_{λ} be the homeomorphism of I s.t. $h_{\lambda} \circ T_{\pi,\lambda} = T_0 \circ h_{\lambda}$. Then $h_{\lambda*}(Leb) \in \mathcal{M}(T_0)$.
- As T₀ is minimal, every T₀-invariant probability has full support and no atoms.
- ▶ For $\mu \in \mathcal{M}(T_0)$, $\alpha \in \mathcal{A}$, let $\lambda_{\alpha} = \mu(I_{\alpha}^t) = \mu(I_{\alpha}^b)$; for $x \in I$, let

$$H_{\mu}(x) = \int_0^x d\mu(t).$$

回 と く ヨ と く ヨ と

- ► For $\lambda \in \Lambda(T_0)$, let h_{λ} be the homeomorphism of I s.t. $h_{\lambda} \circ T_{\pi,\lambda} = T_0 \circ h_{\lambda}$. Then $h_{\lambda*}(Leb) \in \mathcal{M}(T_0)$.
- As T₀ is minimal, every T₀-invariant probability has full support and no atoms.

▶ For $\mu \in \mathcal{M}(T_0)$, $\alpha \in \mathcal{A}$, let $\lambda_{\alpha} = \mu(I_{\alpha}^t) = \mu(I_{\alpha}^b)$; for $x \in I$, let

$$H_{\mu}(x) = \int_0^x d\mu(t).$$

Then H_{μ} is an orientation-preserving homeomorphism of I satisfying $H_{\mu} \circ T_0 = T_{\pi,\lambda} \circ H_{\mu}$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

- ► For $\lambda \in \Lambda(T_0)$, let h_{λ} be the homeomorphism of I s.t. $h_{\lambda} \circ T_{\pi,\lambda} = T_0 \circ h_{\lambda}$. Then $h_{\lambda*}(Leb) \in \mathcal{M}(T_0)$.
- As T₀ is minimal, every T₀-invariant probability has full support and no atoms.

▶ For $\mu \in \mathcal{M}(\mathcal{T}_0)$, $\alpha \in \mathcal{A}$, let $\lambda_{\alpha} = \mu(I_{\alpha}^t) = \mu(I_{\alpha}^b)$; for $x \in I$, let

$$H_{\mu}(x) = \int_0^x d\mu(t).$$

Then H_{μ} is an orientation-preserving homeomorphism of I satisfying $H_{\mu} \circ T_0 = T_{\pi,\lambda} \circ H_{\mu}$.

The maps M(T₀) → Λ(T₀) and Λ(T₀) → M(T₀) constructed above are affine and inverse to each other.

米部 シネヨシネヨシ 三日

- ► For $\lambda \in \Lambda(T_0)$, let h_{λ} be the homeomorphism of I s.t. $h_{\lambda} \circ T_{\pi,\lambda} = T_0 \circ h_{\lambda}$. Then $h_{\lambda*}(Leb) \in \mathcal{M}(T_0)$.
- As T₀ is minimal, every T₀-invariant probability has full support and no atoms.

▶ For $\mu \in \mathcal{M}(T_0)$, $\alpha \in \mathcal{A}$, let $\lambda_{\alpha} = \mu(I_{\alpha}^t) = \mu(I_{\alpha}^b)$; for $x \in I$, let

$$H_{\mu}(x) = \int_0^x d\mu(t).$$

Then H_{μ} is an orientation-preserving homeomorphism of I satisfying $H_{\mu} \circ T_0 = T_{\pi,\lambda} \circ H_{\mu}$.

- The maps M(T₀) → Λ(T₀) and Λ(T₀) → M(T₀) constructed above are affine and inverse to each other.
- As every probability in M(T₀) is a convex combination of ergodic T₀-invariant probability measures (extremal points of M(T₀)) in a unique way, M(T₀) is a simplex of dimension ∈ [0, d − 1].

個 と く ヨ と く ヨ と

æ

The maximal Farey intervals are the intervals (n, n + 1), $n \in \mathbb{Z}$. Any Farey interval is contained in a maximal Farey interval.

伺 ト イヨト イヨト

Definition: A Farey interval is an interval $(\frac{p}{q}, \frac{p'}{q'})$ with $p, p', q, q' \in \mathbb{Z}, q, q' \ge 1, p \land q = p' \land q' = 1, p'q - pq' = 1$. The maximal Farey intervals are the intervals $(n, n + 1), n \in \mathbb{Z}$. Any Farey interval is contained in a maximal Farey interval.

Proposition: Let $J = \left(\frac{p}{q}, \frac{p'}{q'}\right)$ be a Farey interval.

高 とう ヨン うまと

The maximal Farey intervals are the intervals (n, n + 1), $n \in \mathbb{Z}$. Any Farey interval is contained in a maximal Farey interval.

Proposition: Let $J = (\frac{p}{q}, \frac{p'}{q'})$ be a Farey interval. Then $\frac{p+p'}{q+q'}$ is the rational with smallest denominator contained in J.

向下 イヨト イヨト

The maximal Farey intervals are the intervals (n, n + 1), $n \in \mathbb{Z}$. Any Farey interval is contained in a maximal Farey interval.

Proposition: Let $J = (\frac{p}{q}, \frac{p'}{q'})$ be a Farey interval. Then $\frac{p+p'}{q+q'}$ is the rational with smallest denominator contained in J. Both $J_L := (\frac{p}{q}, \frac{p+p'}{q+q'})$ and $J_R := (\frac{p+p'}{q+q'}, \frac{p'}{q'})$ are Farey intervals.

伺 と く き と く き と

The maximal Farey intervals are the intervals (n, n + 1), $n \in \mathbb{Z}$. Any Farey interval is contained in a maximal Farey interval.

Proposition: Let $J = \left(\frac{p}{q}, \frac{p'}{q'}\right)$ be a Farey interval. Then $\frac{p+p'}{q+q'}$ is the rational with smallest denominator contained in J. Both $J_L := \left(\frac{p}{q}, \frac{p+p'}{q+q'}\right)$ and $J_R := \left(\frac{p+p'}{q+q'}, \frac{p'}{q'}\right)$ are Farey intervals. Any Farey interval strictly contained in J is contained in J_L or J_R .

★週 ▶ ★ 注 ▶ ★ 注 ▶

Given a pair $\lambda = (\lambda_L, \lambda_R)$ of **distinct** positive numbers, we set

$$\widetilde{\lambda} = \begin{cases} (\lambda_L, \lambda_R - \lambda_L) & \text{if } \lambda_L < \lambda_R, \\ (\lambda_L - \lambda_R, \lambda_R) & \text{if } \lambda_L > \lambda_R, \end{cases}$$

通 と く ほ と く ほ と

æ

Given a pair $\lambda = (\lambda_L, \lambda_R)$ of **distinct** positive numbers, we set

$$\widetilde{\lambda} = \begin{cases} (\lambda_L, \lambda_R - \lambda_L) & \text{if } \lambda_L < \lambda_R, \\ (\lambda_L - \lambda_R, \lambda_R) & \text{if } \lambda_L > \lambda_R, \end{cases}$$

Let $J = (\frac{p}{q}, \frac{p'}{q'})$ be a Farey interval, $\alpha \in J$, $\lambda_L = q\alpha - p$, $\lambda_R = p' - q'\alpha$.

Given a pair $\lambda = (\lambda_L, \lambda_R)$ of **distinct** positive numbers, we set

$$\widetilde{\lambda} = \begin{cases} (\lambda_L, \lambda_R - \lambda_L) & \text{if } \lambda_L < \lambda_R, \\ (\lambda_L - \lambda_R, \lambda_R) & \text{if } \lambda_L > \lambda_R, \end{cases}$$

Let
$$J = \left(\frac{p}{q}, \frac{p'}{q'}\right)$$
 be a Farey interval, $\alpha \in J$, $\lambda_L = q\alpha - p$,
 $\lambda_R = p' - q'\alpha$.
Then λ_L, λ_R are equal iff $\alpha = \frac{p+p'}{q+q'}$. Otherwise we have
 $\widetilde{\lambda} = \begin{cases} (q\alpha - p, (p+p') - (q+q')\alpha) & \text{if } \alpha \in J_L, \\ ((q+q')\alpha - (p+p'), p' - q'\alpha) & \text{if } \alpha \in J_R, \end{cases}$

通 と く ほ と く ほ と

æ

Given a pair $\lambda = (\lambda_L, \lambda_R)$ of **distinct** positive numbers, we set

$$\widetilde{\lambda} = \begin{cases} (\lambda_L, \lambda_R - \lambda_L) & \text{if } \lambda_L < \lambda_R, \\ (\lambda_L - \lambda_R, \lambda_R) & \text{if } \lambda_L > \lambda_R, \end{cases}$$

Let
$$J = \left(\frac{p}{q}, \frac{p'}{q'}\right)$$
 be a Farey interval, $\alpha \in J$, $\lambda_L = q\alpha - p$,
 $\lambda_R = p' - q'\alpha$.
Then λ_L, λ_R are equal iff $\alpha = \frac{p+p'}{q+q'}$. Otherwise we have
 $\widetilde{\lambda} = \begin{cases} (q\alpha - p, (p+p') - (q+q')\alpha) & \text{if } \alpha \in J_L, \\ ((q+q')\alpha - (p+p'), p' - q'\alpha) & \text{if } \alpha \in J_R, \end{cases}$

Let $\alpha \in (0,1)$, $\lambda_{start} = (\alpha, 1 - \alpha)$.

• • = • • = •

Given a pair $\lambda = (\lambda_L, \lambda_R)$ of **distinct** positive numbers, we set

$$\widetilde{\lambda} = \begin{cases} (\lambda_L, \lambda_R - \lambda_L) & \text{if } \lambda_L < \lambda_R, \\ (\lambda_L - \lambda_R, \lambda_R) & \text{if } \lambda_L > \lambda_R, \end{cases}$$

Let
$$J = \left(\frac{p}{q}, \frac{p'}{q'}\right)$$
 be a Farey interval, $\alpha \in J$, $\lambda_L = q\alpha - p$,
 $\lambda_R = p' - q'\alpha$.
Then λ_L, λ_R are equal iff $\alpha = \frac{p+p'}{q+q'}$. Otherwise we have
 $\widetilde{\lambda} = \begin{cases} (q\alpha - p, (p+p') - (q+q')\alpha) & \text{if } \alpha \in J_L, \\ ((q+q')\alpha - (p+p'), p' - q'\alpha) & \text{if } \alpha \in J_R, \end{cases}$

Let $\alpha \in (0, 1)$, $\lambda_{start} = (\alpha, 1 - \alpha)$. It is possible to iterate indefinitely the algorithm from λ_{start} iff α is irrational.

Given a pair $\lambda = (\lambda_L, \lambda_R)$ of **distinct** positive numbers, we set

$$\widetilde{\lambda} = \begin{cases} (\lambda_L, \lambda_R - \lambda_L) & \text{if } \lambda_L < \lambda_R, \\ (\lambda_L - \lambda_R, \lambda_R) & \text{if } \lambda_L > \lambda_R, \end{cases}$$

Let
$$J = \left(\frac{p}{q}, \frac{p'}{q'}\right)$$
 be a Farey interval, $\alpha \in J$, $\lambda_L = q\alpha - p$,
 $\lambda_R = p' - q'\alpha$.
Then λ_L, λ_R are equal iff $\alpha = \frac{p+p'}{q+q'}$. Otherwise we have
 $\widetilde{\lambda} = \begin{cases} (q\alpha - p, (p+p') - (q+q')\alpha) & \text{if } \alpha \in J_L, \\ ((q+q')\alpha - (p+p'), p' - q'\alpha) & \text{if } \alpha \in J_R, \end{cases}$

Let $\alpha \in (0, 1)$, $\lambda_{start} = (\alpha, 1 - \alpha)$. It is possible to iterate indefinitely the algorithm from λ_{start} iff α is irrational.

In any case, the algorithm determines the sequence of Farey intervals containing α (and thus α itself).

Jean-Christophe Yoccoz

Interval exchange maps

The usual (fast inhomogeneous) version of the continuous fraction algorithm

For $\alpha \in (0,1)$, we define the Gauss map by

 $G(\alpha) := \{\alpha^{-1}\} \in [0, 1).$

The usual (fast inhomogeneous) version of the continuous fraction algorithm

For $\alpha \in (0,1)$, we define the Gauss map by

$$G(\alpha) := \{\alpha^{-1}\} \in [0, 1).$$

Starting with $\alpha = \alpha_0 \in (0, 1)$, we define

$$\alpha_{n+1} := G(\alpha_n), \quad a_{n+1} = \lfloor \alpha_n^{-1} \rfloor$$

as long as $\alpha_n \neq 0$ and write

$$\alpha = [a_1, \ldots, a_n, \ldots].$$

One has, for $n \ge 0$

$$\alpha = \frac{p_n + p_{n-1}\alpha_n}{q_n + q_{n-1}\alpha_n}, \quad \alpha_n = -\frac{q_n\alpha - p_n}{q_{n-1}\alpha - p_{n-1}}$$

æ

One has, for $n \ge 0$

$$\alpha = \frac{p_n + p_{n-1}\alpha_n}{q_n + q_{n-1}\alpha_n}, \quad \alpha_n = -\frac{q_n\alpha - p_n}{q_{n-1}\alpha - p_{n-1}}$$

where the *convergents* $\frac{p_n}{q_n}$ satisfy the recurrence relations

$$p_{n+1} = a_{n+1}p_n + p_{n-1}, \quad q_{n+1} = a_{n+1}q_n + q_{n-1},$$

$$q_0 = p_{-1} = 1, \qquad p_0 = q_{-1} = 0.$$

A ►

∢ ≣⇒

Let $\alpha \in (0,1)$ be irrational.

白 ト イヨト イヨト

Let $\alpha \in (0,1)$ be irrational.

▶ For any $n \ge 0$, $0 < q < q_{n+1}$, $p \in \mathbb{Z}$, one has

$$|q_n\alpha-p_n|\leqslant |q\alpha-p|.$$

個 と く ヨ と く ヨ と

Let $\alpha \in (0, 1)$ be irrational.

▶ For any $n \ge 0$, $0 < q < q_{n+1}$, $p \in \mathbb{Z}$, one has

$$|q_n\alpha-p_n|\leqslant |q\alpha-p|.$$

For any $n \ge 0$, one has

$$q_{n+1}^{-1} > |q_n \alpha - p_n| = (q_{n+1} + q_n \alpha_{n+1})^{-1} > (q_{n+1} + q_n)^{-1}.$$

個 と く ヨ と く ヨ と

Relation between the two versions of the continuous fraction algorithm

Let us say than an iteration $\lambda \mapsto \widetilde{\lambda}$ of the slow algorithm is of *left type* if $\lambda_L > \lambda_R$, of *right type* if $\lambda_R > \lambda_L$.

Relation between the two versions of the continuous fraction algorithm

Let us say than an iteration $\lambda \mapsto \widetilde{\lambda}$ of the slow algorithm is of *left type* if $\lambda_L > \lambda_R$, of *right type* if $\lambda_R > \lambda_L$.

Concatenating operations of the same type correspond to Euclidean division with rest: for left type

$$\lambda = (\lambda_L, \lambda_R) \mapsto \widehat{\lambda} = (\widehat{\lambda}_L = \lambda_L - N\lambda_R, \lambda_R),$$

with $0 < \widehat{\lambda}_L < \lambda_R$.

Relation between the two versions of the continuous fraction algorithm

Let us say than an iteration $\lambda \mapsto \widetilde{\lambda}$ of the slow algorithm is of *left type* if $\lambda_L > \lambda_R$, of *right type* if $\lambda_R > \lambda_L$.

Concatenating operations of the same type correspond to Euclidean division with rest: for left type

$$\lambda = (\lambda_L, \lambda_R) \mapsto \widehat{\lambda} = (\widehat{\lambda}_L = \lambda_L - N\lambda_R, \lambda_R),$$

with $0 < \hat{\lambda}_L < \lambda_R$. Setting $\alpha(\lambda) = \min(\frac{\lambda_L}{\lambda_R}, \frac{\lambda_R}{\lambda_L})$, we have (in the case of left type)

$$\alpha(\widehat{\lambda}) = \frac{\widehat{\lambda}_L}{\lambda_R} = \frac{\lambda_L}{\lambda_R} - N = G(\alpha(\lambda)),$$

and similarly for right type.

Dynamical interpretation of the slow algorithm

Let $\lambda_A, \lambda_B > 0$, $\lambda^* = \lambda_A + \lambda_B$.

個 と く ヨ と く ヨ と …

æ

Dynamical interpretation of the slow algorithm

Let $\lambda_A, \lambda_B > 0$, $\lambda^* = \lambda_A + \lambda_B$. The i.e.m T on $I = (0, \lambda^*)$ with combinatorial data $\begin{pmatrix} A & B \\ B & A \end{pmatrix}$, length vector $\lambda := (\lambda_A, \lambda_B)$ can be viewed as the rotation by $\lambda_B = -\lambda_A$ on the circle $\mathbb{R}/\lambda^*\mathbb{Z}$.

Dynamical interpretation of the slow algorithm

Let $\lambda_A, \lambda_B > 0$, $\lambda^* = \lambda_A + \lambda_B$. The i.e.m T on $I = (0, \lambda^*)$ with combinatorial data $\begin{pmatrix} A & B \\ B & A \end{pmatrix}$, length vector $\lambda := (\lambda_A, \lambda_B)$ can be viewed as the rotation by $\lambda_B = -\lambda_A$ on the circle $\mathbb{R}/\lambda^*\mathbb{Z}$. Let $\tilde{\lambda}^* = \max(\lambda_A, \lambda_B)$, $\tilde{I} := (0, \tilde{\lambda}^*)$. Let $\lambda_A, \lambda_B > 0$, $\lambda^* = \lambda_A + \lambda_B$. The i.e.m T on $I = (0, \lambda^*)$ with combinatorial data $\begin{pmatrix} A & B \\ B & A \end{pmatrix}$, length vector $\lambda := (\lambda_A, \lambda_B)$ can be viewed as the rotation by $\lambda_B = -\lambda_A$ on the circle $\mathbb{R}/\lambda^*\mathbb{Z}$. Let $\tilde{\lambda}^* = \max(\lambda_A, \lambda_B)$, $\tilde{I} := (0, \tilde{\lambda}^*)$. The first return map of T on \tilde{I} is the i.e.m \tilde{T} with combinatorial data $\begin{pmatrix} A & B \\ B & A \end{pmatrix}$, length vector $\tilde{\lambda}$ given by Let $\lambda_A, \lambda_B > 0$, $\lambda^* = \lambda_A + \lambda_B$. The i.e.m T on $I = (0, \lambda^*)$ with combinatorial data $\begin{pmatrix} A & B \\ B & A \end{pmatrix}$, length vector $\lambda := (\lambda_A, \lambda_B)$ can be viewed as the rotation by $\lambda_B = -\lambda_A$ on the circle $\mathbb{R}/\lambda^*\mathbb{Z}$. Let $\tilde{\lambda}^* = \max(\lambda_A, \lambda_B)$, $\tilde{I} := (0, \tilde{\lambda}^*)$. The first return map of T on \tilde{I} is the i.e.m \tilde{T} with combinatorial data $\begin{pmatrix} A & B \\ B & A \end{pmatrix}$, length vector $\tilde{\lambda}$ given by

$$\widetilde{\lambda} = \begin{cases} (\lambda_A, \lambda_B - \lambda_A) & \text{if } \lambda_A < \lambda_B, \\ (\lambda_A - \lambda_B, \lambda_B) & \text{if } \lambda_A > \lambda_B. \end{cases}$$

(cf. formula of the slow algorithm).

白 と く ヨ と く ヨ と …

Proposition: The sequence $\frac{1}{n}(F^n(x) - x)$ converge when $n \to \pm \infty$ to a constant denoted $\rho(F)$ and called the *rotation number* of *F*.

Proposition: The sequence $\frac{1}{n}(F^n(x) - x)$ converge when $n \to \pm \infty$ to a constant denoted $\rho(F)$ and called the *rotation number* of F.

$$\blacktriangleright \ \rho(F \circ R_1) = \rho(F) + 1.$$

Proposition: The sequence $\frac{1}{n}(F^n(x) - x)$ converge when $n \to \pm \infty$ to a constant denoted $\rho(F)$ and called the *rotation number* of F.

ρ(F ∘ R₁) = ρ(F) + 1. This allows to define ρ(f) ∈ T as the image of ρ(F) in T.

御 と く ヨ と く ヨ と …
Proposition: The sequence $\frac{1}{n}(F^n(x) - x)$ converge when $n \to \pm \infty$ to a constant denoted $\rho(F)$ and called the *rotation number* of *F*.

ρ(F ∘ R₁) = ρ(F) + 1. This allows to define ρ(f) ∈ T as the image of ρ(F) in T.

$$\rho(F \circ G) = \rho(F) + \rho(G) \text{ if } F \circ G = G \circ F.$$

御 と く ヨ と く ヨ と …

Proposition: The sequence $\frac{1}{n}(F^n(x) - x)$ converge when $n \to \pm \infty$ to a constant denoted $\rho(F)$ and called the *rotation number* of *F*.

- ρ(F ∘ R₁) = ρ(F) + 1. This allows to define ρ(f) ∈ T as the image of ρ(F) in T.
- ρ(F ∘ G) = ρ(F) + ρ(G) if F ∘ G = G ∘ F. In particular, for m ∈ Z, ρ(F^m) = mρ(F).

<回> < E> < E> < E> = E

Proposition: The sequence $\frac{1}{n}(F^n(x) - x)$ converge when $n \to \pm \infty$ to a constant denoted $\rho(F)$ and called the *rotation number* of *F*.

- ρ(F ∘ R₁) = ρ(F) + 1. This allows to define ρ(f) ∈ T as the image of ρ(F) in T.
- ρ(F ∘ G) = ρ(F) + ρ(G) if F ∘ G = G ∘ F. In particular, for m ∈ Z, ρ(F^m) = mρ(F).

$$\blacktriangleright \ \rho(H \circ F \circ H^{-1}) = \rho(F).$$

<回> < E> < E> < E> = E

Proposition: The sequence $\frac{1}{n}(F^n(x) - x)$ converge when $n \to \pm \infty$ to a constant denoted $\rho(F)$ and called the *rotation number* of F.

- ρ(F ∘ R₁) = ρ(F) + 1. This allows to define ρ(f) ∈ T as the image of ρ(F) in T.
- ▶ $\rho(F \circ G) = \rho(F) + \rho(G)$ if $F \circ G = G \circ F$. In particular, for $m \in \mathbb{Z}$, $\rho(F^m) = m\rho(F)$.

$$\blacktriangleright \ \rho(H \circ F \circ H^{-1}) = \rho(F).$$

• If
$$F \leq G$$
, $\rho(F) \leq \rho(G)$.

<回> < E> < E> < E> = E

$$\blacktriangleright \rho(F) = \frac{p}{q} \iff \exists x_0, \ F^q(x_0) = x_0 + p.$$

▶
$$\rho(F) = \frac{p}{q} \iff \exists x_0, \ F^q(x_0) = x_0 + p.$$

▶ $\rho(F) < \frac{p}{q} \iff \forall x, \ F^q(x) < x + p.$

$$\rho(F) = \frac{p}{q} \iff \exists x_0, \ F^q(x_0) = x_0 + p.$$
 $\rho(F) < \frac{p}{q} \iff \forall x, \ F^q(x) < x + p.$
 $\rho(F) > \frac{p}{q} \iff \forall x, \ F^q(x) > x + p.$

The slow continuous fraction algorithm for circle homeomorphisms

Let f be an orientation-preserving circle homeomorphism with $f(0) \neq 0$, and F the lift of f with 0 < F(0) < 1. We have $0 \leq \rho(F) \leq 1$.

伺 ト イヨト イヨト

The slow continuous fraction algorithm for circle homeomorphisms

Let f be an orientation-preserving circle homeomorphism with $f(0) \neq 0$, and F the lift of f with 0 < F(0) < 1. We have $0 \leq \rho(F) \leq 1$. Let T_0 be the generalized i.e.m on $I^{(0)} = (0,1)$ equal to F on $I^{(0),t}_A := (0, F^{-1}(1))$ (with image $I^{(0),b}_A := (F(0),1)$) and to $R_{-1} \circ F$ on $I^{(0),t}_B := (F^{-1}(1),1)$ (with image $I^{(0),b}_B := (0, F(0))$).

向下 イヨト イヨト

The slow continuous fraction algorithm for circle homeomorphisms

Let f be an orientation-preserving circle homeomorphism with $f(0) \neq 0$, and F the lift of f with 0 < F(0) < 1. We have $0 \leq \rho(F) \leq 1$. Let T_0 be the generalized i.e.m on $I^{(0)} = (0, 1)$ equal to F on $I_A^{(0),t} := (0, F^{-1}(1))$ (with image $I_A^{(0),b} := (F(0), 1)$) and to $R_{-1} \circ F$ on $I_B^{(0),t} := (F^{-1}(1), 1)$ (with image $I_B^{(0),b} := (0, F(0))$). If $F(0) = F^{-1}(1)$, we have $F^2(0) = 1$ and $\rho(F) = \frac{1}{2}$.

御 と く き と く き と

Let f be an orientation-preserving circle homeomorphism with $f(0) \neq 0$, and F the lift of f with 0 < F(0) < 1. We have $0 \leq \rho(F) \leq 1.$ Let T_0 be the generalized i.e.m on $I^{(0)} = (0, 1)$ equal to F on $I_A^{(0),t} := (0, F^{-1}(1))$ (with image $I_A^{(0),b} := (F(0), 1)$) and to $R_{-1} \circ F$ on $I_{P}^{(0),t} := (F^{-1}(1), 1)$ (with image $I_{P}^{(0),b} := (0, F(0))$). If $F(0) = F^{-1}(1)$, we have $F^{2}(0) = 1$ and $\rho(F) = \frac{1}{2}$. Otherwise, we consider the first return map T_1 of T_0 on the interval $I^{(0)} = (0, \max(F(0), F^{-1}(1)))$. Observe that $1 \ge \rho(F) \ge \frac{1}{2}$ if $F(0) \ge F^{-1}(1)$ and $0 \le \rho(F) \le \frac{1}{2}$ if $F(0) \le F^{-1}(1)$.

(ロ) (同) (E) (E) (E)

At a later stage, we have determined that $\rho(F)$ belongs to a closed Farey interval $\left[\frac{p}{q}, \frac{p'}{q'}\right]$.

・回 ・ ・ ヨ ・ ・ ヨ ・

3

At a later stage, we have determined that $\rho(F)$ belongs to a closed Farey interval $\left[\frac{p}{q}, \frac{p'}{q'}\right]$.

We have a generalized i.e.m T_n on the interval $I^{(n)} := (0, R_{p'-p}F^{q-q'}(0))$ with with $T_n = R_{-p} \circ F^q$ on $(0, R_{p'}F^{-q'}(0))$ and $R_{-p'} \circ F^{q'}$ on $(R_{p'}F^{-q'}(0), R_{p'-p}F^{q-q'}(0))$.

4 B M 4 B M

• If
$$R_{p'}F^{-q'}(0) = R_{-p}F^{q}(0)$$
, then $F^{q+q'}(0) = p + p'$ and $\rho(F) = \frac{p+p'}{q+q'}$.

・ロト・(四ト・(川下・(日下・(日下)

• If
$$R_{p'}F^{-q'}(0) = R_{-p}F^{q}(0)$$
, then $F^{q+q'}(0) = p + p'$ and $\rho(F) = \frac{p+p'}{q+q'}$.

▶ If $R_{p'}F^{-q'}(0) > R_{-p}F^{q}(0)$, then $F^{q+q'}(0) and <math>\rho(F) \in [\frac{p}{q}, \frac{p+p'}{q+q'}]$. We consider next the first return map T_{n+1} on $I^{(n+1)} := (0, R_{p'}F^{-q'}(0))$ of T_n (or T_0).

回り くほり くほり ……ほ

• If
$$R_{p'}F^{-q'}(0) = R_{-p}F^{q}(0)$$
, then $F^{q+q'}(0) = p + p'$ and $\rho(F) = \frac{p+p'}{q+q'}$.

- ▶ If $R_{p'}F^{-q'}(0) > R_{-p}F^{q}(0)$, then $F^{q+q'}(0) and <math>\rho(F) \in [\frac{p}{q}, \frac{p+p'}{q+q'}]$. We consider next the first return map T_{n+1} on $I^{(n+1)} := (0, R_{p'}F^{-q'}(0))$ of T_n (or T_0).
- ▶ If $R_{p'}F^{-q'}(0)$ < $R_{-p}F^{q}(0)$, then $F^{q+q'}(0) > p + p'$ and $\rho(F) \in [\frac{p+p'}{q+q'}, \frac{p'}{q'}]$. We consider next the first return map T_{n+1} on $I^{(n+1)} := (0, R_{-p}F^{q}(0))$ of T_{n} (or T_{0}).

御 と く ヨ と く ヨ と … ヨ

• If
$$R_{p'}F^{-q'}(0) = R_{-p}F^{q}(0)$$
, then $F^{q+q'}(0) = p + p'$ and $\rho(F) = \frac{p+p'}{q+q'}$.

▶ If
$$R_{p'}F^{-q'}(0) > R_{-p}F^{q}(0)$$
, then $F^{q+q'}(0) and $\rho(F) \in [\frac{p}{q}, \frac{p+p'}{q+q'}]$. We consider next the first return map T_{n+1} on $I^{(n+1)} := (0, R_{p'}F^{-q'}(0))$ of T_n (or T_0).$

▶ If
$$R_{p'}F^{-q'}(0)$$
 < $R_{-p}F^{q}(0)$, then $F^{q+q'}(0) > p + p'$ and $\rho(F) \in [\frac{p+p'}{q+q'}, \frac{p'}{q'}]$. We consider next the first return map T_{n+1} on $I^{(n+1)} := (0, R_{-p}F^{q}(0))$ of T_{n} (or T_{0}).

In the last two cases, T_{n+1} has the same properties than T_n and we can iterate the algorithm.

• If
$$R_{p'}F^{-q'}(0) = R_{-p}F^{q}(0)$$
, then $F^{q+q'}(0) = p + p'$ and $\rho(F) = \frac{p+p'}{q+q'}$.

▶ If
$$R_{p'}F^{-q'}(0) > R_{-p}F^{q}(0)$$
, then $F^{q+q'}(0) and $\rho(F) \in [\frac{p}{q}, \frac{p+p'}{q+q'}]$. We consider next the first return map T_{n+1} on $I^{(n+1)} := (0, R_{p'}F^{-q'}(0))$ of T_n (or T_0).$

▶ If
$$R_{p'}F^{-q'}(0)$$
 < $R_{-p}F^{q}(0)$, then $F^{q+q'}(0) > p + p'$ and $\rho(F) \in [\frac{p+p'}{q+q'}, \frac{p'}{q'}]$. We consider next the first return map T_{n+1} on $I^{(n+1)} := (0, R_{-p}F^{q}(0))$ of T_{n} (or T_{0}).

In the last two cases, T_{n+1} has the same properties than T_n and we can iterate the algorithm. We determine in this way the sequence of Farey intervals containing $\rho(F)$.

▲□ → ▲ □ → ▲ □ → …

æ

Let T be a generalized i.e.m on an interval $I = (u_0, u_d)$ with no connection.

白 ト く ヨ ト く ヨ ト

æ

Let T be a generalized i.e.m on an interval $I = (u_0, u_d)$ with no connection.

In particular, we have $u_{d-1}^t \neq u_{d-1}^b$.

個 と く ヨ と く ヨ と …

æ

Let T be a generalized i.e.m on an interval $I = (u_0, u_d)$ with no connection.

In particular, we have $u_{d-1}^t \neq u_{d-1}^b$.

The first return map \widehat{T} of T on $\widehat{I} := (u_0, \max(u_{d-1}^t, u_{d-1}^b))$ is again a generalized i.e.m on d intervals.

Let T be a generalized i.e.m on an interval $I = (u_0, u_d)$ with no connection.

In particular, we have $u_{d-1}^t \neq u_{d-1}^b$.

The first return map \hat{T} of T on $\hat{I} := (u_0, \max(u_{d-1}^t, u_{d-1}^b))$ is again a generalized i.e.m on d intervals. The i.e.m \hat{T} is standard if T is. Let T be a generalized i.e.m on an interval $I = (u_0, u_d)$ with no connection.

In particular, we have $u_{d-1}^t \neq u_{d-1}^b$.

The first return map \widehat{T} of T on $\widehat{I} := (u_0, \max(u_{d-1}^t, u_{d-1}^b))$ is again a generalized i.e.m on d intervals.

The i.e.m \hat{T} is standard if T is.

The i.e.m \widehat{T} has no connection; thus it is possible to iterate indefinitely the elementary step $T \to \widehat{T}$.

回 と く ヨ と く ヨ と

Let T be a generalized i.e.m on an interval $I = (u_0, u_d)$ with no connection.

In particular, we have $u_{d-1}^t \neq u_{d-1}^b$.

The first return map \widehat{T} of T on $\widehat{I} := (u_0, \max(u_{d-1}^t, u_{d-1}^b))$ is again a generalized i.e.m on d intervals.

The i.e.m \hat{T} is standard if T is.

The i.e.m \widehat{T} has no connection; thus it is possible to iterate indefinitely the elementary step $T \to \widehat{T}$.

The step $T \to \hat{T}$ is of **top** type if $u_{d-1}^t < u_{d-1}^b$, of **bottom** type if $u_{d-1}^t > u_{d-1}^b$.

(本部) (本語) (本語) (語)

The elementary step of the Rauzy-Veech algorithm: Example for top type

Jean-Christophe Yoccoz

Interval exchange maps

The elementary step of the Rauzy-Veech algorithm: Example for bottom type

Jean-Christophe Yoccoz Interval exchange maps

The combinatorial data $\widehat{\pi}$ for \widehat{T} depends only on the combinatorial data π of T and on the type of the step $T \to \widehat{T}$.

コン・ション・ション

The combinatorial data $\widehat{\pi}$ for \widehat{T} depends only on the combinatorial data π of T and on the type of the step $T \to \widehat{T}$.

In the case of top type, denoting by α_t the last letter in the top line (the letter of \mathcal{A} s.t. $\pi_t(\alpha_t) = d$), we have $\hat{\pi}_t = \pi_t$ and

$$\widehat{\pi}_b(\alpha) = \begin{cases} \pi_b(\alpha) & \text{if } \pi_b(\alpha) \leqslant \pi_b(\alpha_t), \\ \pi_b(\alpha) + 1 & \text{if } \pi_b(\alpha_t) < \pi_b(\alpha) < d, \\ \pi_b(\alpha_t) + 1 & \text{if } \pi_b(\alpha) = d. \end{cases}$$

The combinatorial data $\widehat{\pi}$ for \widehat{T} depends only on the combinatorial data π of T and on the type of the step $T \to \widehat{T}$.

In the case of top type, denoting by α_t the last letter in the top line (the letter of \mathcal{A} s.t. $\pi_t(\alpha_t) = d$), we have $\hat{\pi}_t = \pi_t$ and

$$\widehat{\pi}_b(\alpha) = \begin{cases} \pi_b(\alpha) & \text{if } \pi_b(\alpha) \leqslant \pi_b(\alpha_t), \\ \pi_b(\alpha) + 1 & \text{if } \pi_b(\alpha_t) < \pi_b(\alpha) < d, \\ \pi_b(\alpha_t) + 1 & \text{if } \pi_b(\alpha) = d. \end{cases}$$

The formulas in the case of bottom type are symmetric.

Two combinatorial data π , π' are *R*-equivalent if there exists a sequence of elementary steps from π to π' .

回 と く ヨ と く ヨ と

- ∢ ⊒ →

Rauzy diagrams have as vertices the elements of a Rauzy class and as arrows the transitions given by the elementary steps of the Rauzy-Veech algorithm.

Rauzy diagrams have as vertices the elements of a Rauzy class and as arrows the transitions given by the elementary steps of the Rauzy-Veech algorithm.

Each vertex is the origin and the endpoint of two arrows, one of each type.

(E)

Rauzy diagrams have as vertices the elements of a Rauzy class and as arrows the transitions given by the elementary steps of the Rauzy-Veech algorithm.

Each vertex is the origin and the endpoint of two arrows, one of each type.

Iterating the Rauzy-Veech algorithm for a generalized i.e.m T with combinatorial data π and no connection produces an infinite path $\rho(T)$ starting at π in the Rauzy diagram having π as a vertex.
The Rauzy diagram for d = 2

d=2, g=1, s=1

白 ト イヨト イヨト

個 と く ヨ と く ヨ と …

d=4, g=2, s=1

・ 母 と ・ ヨ と ・ ヨ と

æ

The other Rauzy diagram for d = 4

A (1) > A (1) > A

- < ∃ >

The *winner* of an arrow in a Rauzy diagram is the index of the subinterval that has been shortened in the corresponding elementary step of the Rauzy-Veech algorithm.

The *winner* of an arrow in a Rauzy diagram is the index of the subinterval that has been shortened in the corresponding elementary step of the Rauzy-Veech algorithm.

Thus, it is the last letter of the top (resp. bottom) line for an arrow of top (resp. bottom) type.

The *winner* of an arrow in a Rauzy diagram is the index of the subinterval that has been shortened in the corresponding elementary step of the Rauzy-Veech algorithm.

- Thus, it is the last letter of the top (resp. bottom) line for an arrow of top (resp. bottom) type.
- The last letter of the bottom (resp.top) line is the *loser* for an arrow of top (resp. bottom) type.

The *winner* of an arrow in a Rauzy diagram is the index of the subinterval that has been shortened in the corresponding elementary step of the Rauzy-Veech algorithm.

- Thus, it is the last letter of the top (resp. bottom) line for an arrow of top (resp. bottom) type.
- The last letter of the bottom (resp.top) line is the *loser* for an arrow of top (resp. bottom) type.

Winners in the Rauzy diagram for d = 3

個 と く ヨ と く ヨ と …

Winners in the first Rauzy diagram for d = 4

d=4, g=2, s=1

A⊒ ▶ ∢ ∃

∃ >

Winners in the second Rauzy diagram for d = 4

d=4, g=1, s=3

-≣->

Definition: A (finite) path γ in a Rauzy diagram is *complete* if every letter of A is the winner of an arrow of γ .

向下 イヨト イヨト

Definition: A (finite) path γ in a Rauzy diagram is *complete* if every letter of \mathcal{A} is the winner of an arrow of γ .

An infinite path ρ in \mathcal{D} is ∞ -complete if every index is the winner of infinitely many arrows of ρ .

Definition: A (finite) path γ in a Rauzy diagram is *complete* if every letter of \mathcal{A} is the winner of an arrow of γ .

An infinite path ρ in \mathcal{D} is ∞ -complete if every index is the winner of infinitely many arrows of ρ . Equivalently, ρ is an infinite concatenation of complete paths.

Definition: A (finite) path γ in a Rauzy diagram is *complete* if every letter of \mathcal{A} is the winner of an arrow of γ .

An infinite path ρ in \mathcal{D} is ∞ -complete if every index is the winner of infinitely many arrows of ρ . Equivalently, ρ is an infinite concatenation of complete paths.

Theorem An infinite path is the path $\rho(T)$ associated to a standard irrational *i.e.m* T iff it is ∞ -complete.

伺 ト イヨト イヨト

Let ${\mathcal D}$ be the Rauzy diagram associated to a Rauzy class ${\mathcal R}.$

回 と く ヨ と く ヨ と

æ

Let \mathcal{D} be the Rauzy diagram associated to a Rauzy class \mathcal{R} . Let $\mathcal{NC}(\mathcal{D})$ the subset of $\mathcal{R} \times \mathbb{P}(\mathbb{R}^{\mathcal{A}}_+)$ formed by the (π, λ) s.t. $T_{\pi, \lambda}$ has no connection.

伺 ト イヨト イヨト

Let \mathcal{D} be the Rauzy diagram associated to a Rauzy class \mathcal{R} . Let $\mathcal{NC}(\mathcal{D})$ the subset of $\mathcal{R} \times \mathbb{P}(\mathbb{R}^{\mathcal{A}}_+)$ formed by the (π, λ) s.t. $T_{\pi, \lambda}$ has no connection. It is a full measure G_{δ} -dense subset of $\mathcal{R} \times \mathbb{P}(\mathbb{R}^{\mathcal{A}}_+)$.

伺 ト イヨト イヨト

Let \mathcal{D} be the Rauzy diagram associated to a Rauzy class \mathcal{R} . Let $\mathcal{NC}(\mathcal{D})$ the subset of $\mathcal{R} \times \mathbb{P}(\mathbb{R}^{\mathcal{A}}_+)$ formed by the (π, λ) s.t. $T_{\pi, \lambda}$ has no connection. It is a full measure G_{δ} -dense subset of $\mathcal{R} \times \mathbb{P}(\mathbb{R}^{\mathcal{A}}_+)$.

A single iteration of the Rauzy-Veech algorithm defines a two-to-one map V from $\mathcal{NC}(\mathcal{D})$ to itself.

白 と く ヨ と く ヨ と

Let \mathcal{D} be the Rauzy diagram associated to a Rauzy class \mathcal{R} . Let $\mathcal{NC}(\mathcal{D})$ the subset of $\mathcal{R} \times \mathbb{P}(\mathbb{R}^{\mathcal{A}}_+)$ formed by the (π, λ) s.t. $\mathcal{T}_{\pi, \lambda}$ has no connection. It is a full measure G_{δ} -dense subset of $\mathcal{R} \times \mathbb{P}(\mathbb{R}^{\mathcal{A}}_+)$.

A single iteration of the Rauzy-Veech algorithm defines a two-to-one map V from $\mathcal{NC}(\mathcal{D})$ to itself.

A closely related map is the two-to-one shift map \overline{V} from the set $\mathcal{C}_{\infty}(\mathcal{D})$ of ∞ -complete paths in \mathcal{D} to itself.

高 とう モン・ く ヨ と

Let \mathcal{D} be the Rauzy diagram associated to a Rauzy class \mathcal{R} . Let $\mathcal{NC}(\mathcal{D})$ the subset of $\mathcal{R} \times \mathbb{P}(\mathbb{R}^{\mathcal{A}}_+)$ formed by the (π, λ) s.t. $T_{\pi, \lambda}$ has no connection. It is a full measure G_{δ} -dense subset of $\mathcal{R} \times \mathbb{P}(\mathbb{R}^{\mathcal{A}}_+)$.

A single iteration of the Rauzy-Veech algorithm defines a two-to-one map V from $\mathcal{NC}(\mathcal{D})$ to itself.

A closely related map is the two-to-one shift map \overline{V} from the set $\mathcal{C}_{\infty}(\mathcal{D})$ of ∞ -complete paths in \mathcal{D} to itself. Indeed, the map $\rho: \mathcal{T} \mapsto \rho_{\mathcal{T}}$ from $\mathcal{NC}(\mathcal{D})$ to $\mathcal{C}_{\infty}(\mathcal{D})$ is onto and is a semiconjugacy between V and \overline{V} .

白 ト イヨト イヨト

To each arrow γ in a Rauzy diagram, with winner α_w , loser α_ℓ , we associate the matrix $B_\gamma \in SL(\mathbb{Z}^A)$ defined by

$$B_{\gamma} := \mathbf{1} + E_{\alpha_{\ell}\alpha_{w}},$$

where $E_{\alpha_{\ell}\alpha_{w}}$ is the elementary matrix having a single nonzero entry equal to 1 in position $\alpha_{\ell}\alpha_{w}$.

To each arrow γ in a Rauzy diagram, with winner α_w , loser α_ℓ , we associate the matrix $B_{\gamma} \in SL(\mathbb{Z}^{\mathcal{A}})$ defined by

$$B_{\gamma} := \mathbf{1} + E_{\alpha_{\ell}\alpha_{w}},$$

where $E_{\alpha_{\ell}\alpha_{w}}$ is the elementary matrix having a single nonzero entry equal to 1 in position $\alpha_{\ell}\alpha_{w}$.

For a path $\underline{\gamma}$ made of the successive arrows $\gamma_1, \ldots, \gamma_m$, we define

$$B_{\underline{\gamma}} := B_{\gamma_m} \dots B_{\gamma_1}.$$

To each arrow γ in a Rauzy diagram, with winner α_w , loser α_ℓ , we associate the matrix $B_{\gamma} \in SL(\mathbb{Z}^{\mathcal{A}})$ defined by

$$B_{\gamma} := \mathbf{1} + E_{\alpha_{\ell}\alpha_{w}},$$

where $E_{\alpha_{\ell}\alpha_{w}}$ is the elementary matrix having a single nonzero entry equal to 1 in position $\alpha_{\ell}\alpha_{w}$.

For a path $\underline{\gamma}$ made of the successive arrows $\gamma_1, \ldots, \gamma_m$, we define

$$B_{\underline{\gamma}} := B_{\gamma_m} \dots B_{\gamma_1}.$$

The matrices $B_{\underline{\gamma}}$ belong to $SL(\mathbb{Z}^{\mathcal{A}})$ and have nonnegative coefficients.

To each arrow γ in a Rauzy diagram, with winner α_w , loser α_ℓ , we associate the matrix $B_\gamma \in SL(\mathbb{Z}^A)$ defined by

$$B_{\gamma} := \mathbf{1} + E_{\alpha_{\ell}\alpha_{w}},$$

where $E_{\alpha_{\ell}\alpha_{w}}$ is the elementary matrix having a single nonzero entry equal to 1 in position $\alpha_{\ell}\alpha_{w}$.

For a path $\underline{\gamma}$ made of the successive arrows $\gamma_1, \ldots, \gamma_m$, we define

$$B_{\underline{\gamma}} := B_{\gamma_m} \dots B_{\gamma_1}.$$

The matrices $B_{\underline{\gamma}}$ belong to $SL(\mathbb{Z}^{\mathcal{A}})$ and have nonnegative coefficients.

For an elementary step $T_{\pi,\lambda} \to T_{\widehat{\pi},\widehat{\lambda}}$ of the algorithm associated to the arrow $\gamma: \pi \to \widehat{\pi}$, one has

$$\lambda = {}^{t}B_{\gamma}\widehat{\lambda}, \quad \widehat{\delta} = B_{\gamma}\delta.$$

・ロト ・回ト ・ヨト ・ヨト

$$(\pi, \lambda, \mathbf{v}) \mapsto (\widehat{\pi}, \widehat{\lambda}, B_{\gamma}\mathbf{v}),$$

with γ as above and $\mathbf{v} \in \mathbb{R}^{\mathcal{A}}$.

・ 回 と ・ ヨ と ・ ヨ と …

æ

$$(\pi, \lambda, \mathbf{v}) \mapsto (\widehat{\pi}, \widehat{\lambda}, B_{\gamma}\mathbf{v}),$$

with γ as above and $v \in \mathbb{R}^{\mathcal{A}}$.

Let $T_0 = T_{\pi,\lambda_0}$ be a normalized standard i.e.m. with no connection. Recall that $\Lambda(T_0)$ is the set of length vectors λ , normalized by $\sum_{\alpha \in \mathcal{A}} \lambda_{\alpha} = 1$, such that $T_{\pi,\lambda}$ is topologically conjugated to T_0 by an orientation-preserving homeomorphism of I = [0, 1].

回 と く ヨ と く ヨ と

$$(\pi, \lambda, \mathbf{v}) \mapsto (\widehat{\pi}, \widehat{\lambda}, B_{\gamma} \mathbf{v}),$$

with γ as above and $v \in \mathbb{R}^{\mathcal{A}}$.

Let $T_0 = T_{\pi,\lambda_0}$ be a normalized standard i.e.m. with no connection. Recall that $\Lambda(T_0)$ is the set of length vectors λ , normalized by $\sum_{\alpha \in \mathcal{A}} \lambda_{\alpha} = 1$, such that $T_{\pi,\lambda}$ is topologically conjugated to T_0 by an orientation-preserving homeomorphism of I = [0, 1].

Let $\rho(T_0) = (\gamma_1, \ldots, \gamma_m, \ldots)$ be the infinite path associated to T_0 . For $m \ge 0$, let B_m be the matrix $B_{\gamma_m} \ldots B_{\gamma_1}$ associated to the initial part of $\rho(T_0)$.

▲圖 ▶ ★ 国 ▶ ★ 国 ▶

$$(\pi, \lambda, \mathbf{v}) \mapsto (\widehat{\pi}, \widehat{\lambda}, B_{\gamma}\mathbf{v}),$$

with γ as above and $v \in \mathbb{R}^{\mathcal{A}}$.

Let $T_0 = T_{\pi,\lambda_0}$ be a normalized standard i.e.m. with no connection. Recall that $\Lambda(T_0)$ is the set of length vectors λ , normalized by $\sum_{\alpha \in \mathcal{A}} \lambda_{\alpha} = 1$, such that $T_{\pi,\lambda}$ is topologically conjugated to T_0 by an orientation-preserving homeomorphism of l = [0, 1].

Let $\rho(T_0) = (\gamma_1, \ldots, \gamma_m, \ldots)$ be the infinite path associated to T_0 . For $m \ge 0$, let B_m be the matrix $B_{\gamma_m} \ldots B_{\gamma_1}$ associated to the initial part of $\rho(T_0)$.

Proposition: The closed simplex $\Lambda(T_0)$ is equal to the set of normalized standard irrational i.e.m T with $\rho(T) = \rho(T_0)$, i.e to the intersection of $\bigcap_{m \ge 0} {}^t B_m(\mathbb{R}^A_+)$ with the normalizing hyperplane $\sum_{\alpha \in \mathcal{A}} \lambda_\alpha = 1$.

▲祠 ▶ ★ 注 ▶ ★ 注 ▶

Proposition: Let $\underline{\gamma}$ be a path which is the concatenation of 2d - 3 complete subpaths. Then all coefficients of $B_{\underline{\gamma}}$ are nonzero (positive).

白 ト く ヨ ト く ヨ ト

Let $\gamma:\pi\mapsto\widehat{\pi}$ be an arrow in a Rauzy diagram.

白 ト く ヨ ト く ヨ ト

• • = • • = •

 $B_{\gamma}\Omega_{\pi} {}^{t}B_{\gamma} = \Omega_{\pi'}.$

白 ト く ヨ ト く ヨ ト

$$B_{\gamma}\Omega_{\pi} {}^{t}B_{\gamma} = \Omega_{\pi'}.$$

$$\blacktriangleright B_{\gamma}(\mathrm{Im}\Omega_{\pi}) = \mathrm{Im}\Omega_{\pi'}.$$

(3)

$$B_{\gamma}\Omega_{\pi} {}^{t}B_{\gamma} = \Omega_{\pi'}.$$

$$\blacktriangleright B_{\gamma}(\mathrm{Im}\Omega_{\pi}) = \mathrm{Im}\Omega_{\pi'}.$$

The restriction of B_γ to ImΩ_π is symplectic w.r.t the symplectic forms induced by Ω_π on ImΩ_π, Ω_π on ImΩ_π.

$$B_{\gamma}\Omega_{\pi} {}^{t}B_{\gamma} = \Omega_{\pi'}.$$

$$\blacktriangleright B_{\gamma}(\mathrm{Im}\Omega_{\pi}) = \mathrm{Im}\Omega_{\pi'}.$$

- The restriction of B_γ to ImΩ_π is symplectic w.r.t the symplectic forms induced by Ω_π on ImΩ_π, Ω_π on ImΩ_π.
- Proof of the upper bound for the dimension of $\Lambda(T_0)$.
For any $g \ge 1$, there exists T_0 of genus g s.t. $\Lambda(T_0)$ has dimension g - 1 (cf. Keane, Keynes-Newton).

白 ト く ヨ ト く ヨ ト

For any $g \ge 1$, there exists T_0 of genus g s.t. $\Lambda(T_0)$ has dimension g - 1 (cf. Keane, Keynes-Newton).

Theorem (Masur, Veech) For any irreducible combinatorial data π , almost every length vector $\lambda \in \mathbb{R}_+^A$, the standard i.e.m $T_{\pi,\lambda}$ is uniquely ergodic: normalized Lebesgue measure is the unique invariant probability measure.

Let \mathcal{D} be a Rauzy diagram. Recall that a single iteration of the Rauzy-Veech algorithm defines a two-to-one map V from $\mathcal{NC}(\mathcal{D})$ to itself. Let V_Z be the map deduced from V by concatenating in a single step successive steps of the same type.

Let \mathcal{D} be a Rauzy diagram. Recall that a single iteration of the Rauzy-Veech algorithm defines a two-to-one map V from $\mathcal{NC}(\mathcal{D})$ to itself. Let V_Z be the map deduced from V by concatenating in a single step successive steps of the same type. **Remark:** ∞ -completeness implies that the type alternates infinitely many times. Otherwise, the winner would be the same from some point on.

Let \mathcal{D} be a Rauzy diagram. Recall that a single iteration of the Rauzy-Veech algorithm defines a two-to-one map V from $\mathcal{NC}(\mathcal{D})$ to itself. Let V_Z be the map deduced from V by concatenating in a single step successive steps of the same type. **Remark:** ∞ -completeness implies that the type alternates infinitely many times. Otherwise, the winner would be the same

from some point on.

Theorem (Zorich) There exists a unique probability measure on $\mathcal{R} \times \mathbb{P}(\mathbb{R}^{\mathcal{A}}_+)$ which is V_Z -invariant and equivalent to Lebesgue measure.

Let \mathcal{D} be a Rauzy diagram. Recall that a single iteration of the Rauzy-Veech algorithm defines a two-to-one map V from $\mathcal{NC}(\mathcal{D})$ to itself. Let V_Z be the map deduced from V by concatenating in a single step successive steps of the same type.

Remark: ∞ -completeness implies that the type alternates infinitely many times. Otherwise, the winner would be the same from some point on.

Theorem (Zorich) There exists a unique probability measure on $\mathcal{R} \times \mathbb{P}(\mathbb{R}^{\mathcal{A}}_+)$ which is V_Z -invariant and equivalent to Lebesgue measure.

Remark : Veech had earlier shown that there exists a unique measure on $\mathcal{R} \times \mathbb{P}(\mathbb{R}^{\mathcal{A}}_{+})$ which is *V*-invariant and equivalent to Lebesgue measure.

Let \mathcal{D} be a Rauzy diagram. Recall that a single iteration of the Rauzy-Veech algorithm defines a two-to-one map V from $\mathcal{NC}(\mathcal{D})$ to itself. Let V_Z be the map deduced from V by concatenating in a single step successive steps of the same type.

Remark: ∞ -completeness implies that the type alternates infinitely many times. Otherwise, the winner would be the same from some point on.

Theorem (Zorich) There exists a unique probability measure on $\mathcal{R} \times \mathbb{P}(\mathbb{R}^{\mathcal{A}}_+)$ which is V_Z -invariant and equivalent to Lebesgue measure.

Remark : Veech had earlier shown that there exists a unique measure on $\mathcal{R} \times \mathbb{P}(\mathbb{R}^{\mathcal{A}}_+)$ which is *V*-invariant and equivalent to Lebesgue measure. This measure is infinite but conservative (i.e Poincaré Recurrence theorem holds).

Let \mathcal{D} be a Rauzy diagram. Recall that a single iteration of the Rauzy-Veech algorithm defines a two-to-one map V from $\mathcal{NC}(\mathcal{D})$ to itself. Let V_Z be the map deduced from V by concatenating in a single step successive steps of the same type.

Remark: ∞ -completeness implies that the type alternates infinitely many times. Otherwise, the winner would be the same from some point on.

Theorem (Zorich) There exists a unique probability measure on $\mathcal{R} \times \mathbb{P}(\mathbb{R}^{\mathcal{A}}_+)$ which is V_Z -invariant and equivalent to Lebesgue measure.

Remark : Veech had earlier shown that there exists a unique measure on $\mathcal{R} \times \mathbb{P}(\mathbb{R}^{\mathcal{A}}_{+})$ which is *V*-invariant and equivalent to Lebesgue measure. This measure is infinite but conservative (i.e Poincaré Recurrence theorem holds).

Almost sure recurrence is the basis of the proof of the Masur-Veech theorem.

Then every orbit of f is cyclically ordered as every orbit of the rotation R_{α} .

Then every orbit of f is cyclically ordered as every orbit of the rotation R_{α} .

More precisely, there exists a unique monotone continuous degree one map $h: \mathbb{T} \to \mathbb{T}$ such that

$$h \circ f = R_{\alpha} \circ h$$

and h(0) = 0.

Then every orbit of f is cyclically ordered as every orbit of the rotation R_{α} .

More precisely, there exists a unique monotone continuous degree one map $h: \mathbb{T} \to \mathbb{T}$ such that

$$h \circ f = R_{\alpha} \circ h$$

and h(0) = 0. Corollary: Such an f is uniquely ergodic. **Proposition** Let T be a generalized i.e.m on an interval I with no connection. Assume that the infinite path $\rho(T)$ is ∞ -complete.

Proposition Let *T* be a generalized i.e.m on an interval *I* with no connection. Assume that the infinite path $\rho(T)$ is ∞ -complete. Let T_0 be a standard i.e.m (on an interval I_0) with no connection s.t. $\rho(T_0) = \rho(T)$.

伺 ト イヨト イヨト

Proposition Let *T* be a generalized i.e.m on an interval *I* with no connection. Assume that the infinite path $\rho(T)$ is ∞ -complete. Let T_0 be a standard i.e.m (on an interval I_0) with no connection s.t. $\rho(T_0) = \rho(T)$. Then *T* is semiconjugated to T_0 :

Proposition Let *T* be a generalized i.e.m on an interval *I* with no connection. Assume that the infinite path $\rho(T)$ is ∞ -complete. Let T_0 be a standard i.e.m (on an interval I_0) with no connection s.t. $\rho(T_0) = \rho(T)$. Then *T* is semiconjugated to T_0 : there exists a (unique) continuous monotone increasing map h from *I* onto I_0 such that

 $h \circ T = T_0 \circ h$

Proposition Let *T* be a generalized i.e.m on an interval *I* with no connection. Assume that the infinite path $\rho(T)$ is ∞ -complete. Let T_0 be a standard i.e.m (on an interval I_0) with no connection s.t. $\rho(T_0) = \rho(T)$. Then *T* is semiconjugated to T_0 : there exists a (unique) continuous monotone increasing map h from *I* onto I_0 such that

$$h \circ T = T_0 \circ h$$

Corollary: If T_0 is uniquely ergodic (i.e uniquely defined up to scaling by T), then so is T.

同 と く ヨ と く ヨ と

Let $u_1^t < \ldots < u_{d-1}^t$, $u_1^b < \ldots < u_{d-1}^b$ be the respective singularities of T, T^{-1} and let similarly $v_1^t < \ldots < v_{d-1}^t$, $v_1^b < \ldots < v_{d-1}^b$ be the respective singularities of T_0 , T_0^{-1} .

回 と く ヨ と く ヨ と …

Let
$$u_1^t < ... < u_{d-1}^t$$
, $u_1^b < ... < u_{d-1}^b$ be the respective
singularities of T , T^{-1} and let similarly $v_1^t < ... < v_{d-1}^t$,
 $v_1^b < ... < v_{d-1}^b$ be the respective singularities of T_0 , T_0^{-1} . Define
 $Z := \{T^m(u_i^b), 0 < i < d, m \ge 0\} \bigcup \{T^{-n}(u_j^b), 0 < j < d, n \ge 0\}$
 $Z_0 := \{T_0^m(v_i^b), 0 < i < d, m \ge 0\} \bigcup \{T_0^{-n}(v_j^b), 0 < j < d, n \ge 0\}.$

□ > 《 E > 《 E >

Let
$$u_1^t < \ldots < u_{d-1}^t$$
, $u_1^b < \ldots < u_{d-1}^b$ be the respective
singularities of T , T^{-1} and let similarly $v_1^t < \ldots < v_{d-1}^t$,
 $v_1^b < \ldots < v_{d-1}^b$ be the respective singularities of T_0 , T_0^{-1} . Define
 $Z := \{T^m(u_i^b), 0 < i < d, m \ge 0\} \bigcup \{T^{-n}(u_j^b), 0 < j < d, n \ge 0\}$
 $Z_0 := \{T_0^m(v_i^b), 0 < i < d, m \ge 0\} \bigcup \{T_0^{-n}(v_j^b), 0 < j < d, n \ge 0\}$.
As T , T_0 have no connection, the points in the definition of Z , Z_0
are distinct.

□ > 《 E > 《 E >

Therefore, there exists a one-to-one map h from Z onto Z_0 sending $T^m(u_i^b)$ to $T_0^m(v_i^b)$, and $T^{-n}(u_j^b)$ to $T_0^{-n}(v_j^b)$ for all m, n, i, j.

母 と く ヨ と く ヨ と

Therefore, there exists a one-to-one map h from Z onto Z_0 sending $T^m(u_i^b)$ to $T_0^m(v_i^b)$, and $T^{-n}(u_j^b)$ to $T_0^{-n}(v_j^b)$ for all m, n, i, j. As $\rho(T) = \rho(T_0)$, the map h is order-preserving (Exercise!).

向下 イヨト イヨト

3

向下 イヨト イヨト

3

Therefore, there exists a unique extension of h to I (with values in \mathbb{R}) which is monotone increasing.

向下 イヨト イヨト

Therefore, there exists a unique extension of h to I (with values in \mathbb{R}) which is monotone increasing.

This extension is automatically continuous.

向下 イヨト イヨト

Therefore, there exists a unique extension of h to I (with values in \mathbb{R}) which is monotone increasing.

This extension is automatically continuous.

The relation $h \circ T = T_0 \circ h$ holds on Z, and therefore on all of I.

伺い イヨト イヨト 三日

Let f be an orientation-preserving circle homeomorphism with no periodic orbit.

Let f be an orientation-preserving circle homeomorphism with no periodic orbit. Let h be the semiconjugacy between f and $R_{\rho(f)}$.

Let f be an orientation-preserving circle homeomorphism with no periodic orbit. Let h be the semiconjugacy between f and $R_{\rho(f)}$.

► The inverse image h⁻¹(x₀) of a point is either a point or a nontrivial interval J of T.

Let f be an orientation-preserving circle homeomorphism with no periodic orbit. Let h be the semiconjugacy between f and $R_{\rho(f)}$.

- ► The inverse image h⁻¹(x₀) of a point is either a point or a nontrivial interval J of T.
- ▶ In the last case, *J* is a *wandering interval*: one has $f^m(J) \cap f^n(J) = \emptyset$ for distinct $m, n \in \mathbb{Z}$.

Let f be an orientation-preserving circle homeomorphism with no periodic orbit. Let h be the semiconjugacy between f and $R_{\rho(f)}$.

- ► The inverse image h⁻¹(x₀) of a point is either a point or a nontrivial interval J of T.
- In the last case, J is a wandering interval: one has f^m(J) ∩ fⁿ(J) = Ø for distinct m, n ∈ Z.
 There are at most a countable number of maximal wandering intervals.

Let f be an orientation-preserving circle homeomorphism with no periodic orbit. Let h be the semiconjugacy between f and $R_{\rho(f)}$.

- ► The inverse image h⁻¹(x₀) of a point is either a point or a nontrivial interval J of T.
- ▶ In the last case, *J* is a *wandering interval*: one has $f^m(J) \cap f^n(J) = \emptyset$ for distinct $m, n \in \mathbb{Z}$.

There are at most a countable number of maximal wandering intervals.

The complement of the interior of the wandering intervals is an invariant Cantor set which is the limit set of every half-orbit of f.

同 と く き と く き と

Let f be an orientation-preserving circle homeomorphism with no periodic orbit. Let h be the semiconjugacy between f and $R_{\rho(f)}$.

- ► The inverse image h⁻¹(x₀) of a point is either a point or a nontrivial interval J of T.
- ▶ In the last case, *J* is a *wandering interval*: one has $f^m(J) \cap f^n(J) = \emptyset$ for distinct $m, n \in \mathbb{Z}$.

There are at most a countable number of maximal wandering intervals.

The complement of the interior of the wandering intervals is an invariant Cantor set which is the limit set of every half-orbit of f.

If there is no wandering interval, h is a homeomorphism and f is minimal.

・ロン ・回 と ・ ヨン ・ ヨン

Theorem (Denjoy)

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Theorem (Denjoy)

1. For every irrational α , there exists a diffeomorphism $f \in \bigcap_{r<2} Diff_{+}^{r}(\mathbb{T})$ with rotation number α and wandering intervals.

æ

▲ 聞 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Theorem (Denjoy)

- 1. For every irrational α , there exists a diffeomorphism $f \in \bigcap_{r<2} Diff_{+}^{r}(\mathbb{T})$ with rotation number α and wandering intervals.
- Let f be a piecewise-C¹ diffeomorphism of T with irrational rotation number α. If the derivative Df has bounded variation, f does not have wandering intervals: every orbit of f is dense in T and f is C⁰-conjugated to the rotation R_α.
Theorem (Denjoy)

- 1. For every irrational α , there exists a diffeomorphism $f \in \bigcap_{r<2} Diff_{+}^{r}(\mathbb{T})$ with rotation number α and wandering intervals.
- Let f be a piecewise-C¹ diffeomorphism of T with irrational rotation number α. If the derivative Df has bounded variation, f does not have wandering intervals: every orbit of f is dense in T and f is C⁰-conjugated to the rotation R_α.

In particular, a piecewise- C^2 diffeomorphism (for instance a piecewise-affine homeomorphism) with no periodic orbit is C^0 -conjugated to an irrational rotation.

向下 イヨト イヨト

Let T be a generalized i.e.m on an interval I with no connection, s.t the infinite path $\rho(T)$ is ∞ -complete.

Let T be a generalized i.e.m on an interval I with no connection, s.t the infinite path $\rho(T)$ is ∞ -complete. Let $h: I \to I_0$ be the semiconjugacy from T to a standard irrational i.e.m T_0 (on an interval I_0).

Let T be a generalized i.e.m on an interval I with no connection, s.t the infinite path $\rho(T)$ is ∞ -complete. Let $h: I \to I_0$ be the semiconjugacy from T to a standard irrational i.e.m T_0 (on an interval I_0).

For each $x_0 \in I_0$, the inverse image is either a point or a *wandering* interval J.

Let T be a generalized i.e.m on an interval I with no connection, s.t the infinite path $\rho(T)$ is ∞ -complete. Let $h: I \to I_0$ be the semiconjugacy from T to a standard irrational i.e.m T_0 (on an interval I_0).

For each $x_0 \in I_0$, the inverse image is either a point or a *wandering interval J*. There are at most countably many wandering intervals.

Let T be a generalized i.e.m on an interval I with no connection, s.t the infinite path $\rho(T)$ is ∞ -complete. Let $h: I \to I_0$ be the semiconjugacy from T to a standard irrational i.e.m T_0 (on an interval I_0).

For each $x_0 \in I_0$, the inverse image is either a point or a *wandering interval J*. There are at most countably many wandering intervals. If there is no wandering interval, then h is a homeomorphism.

Let T be a generalized i.e.m, let $I = \bigsqcup I_{\alpha}^{t} = \bigsqcup I_{\alpha}^{b}$ be the associated partitions, so that the restriction of T to I_{α}^{t} is an orientation-preserving homeomorphism onto I_{α}^{b} .

ヨット イヨット イヨッ

Let T be a generalized i.e.m, let $I = \bigsqcup I_{\alpha}^{t} = \bigsqcup I_{\alpha}^{b}$ be the associated partitions, so that the restriction of T to I_{α}^{t} is an orientation-preserving homeomorphism onto I_{α}^{b} . We say that T is of class C^{r} if , for each $\alpha \in \mathcal{A}$, the restriction of T to I_{α}^{t} extends to a C^{r} -diffeomorphism from the closure of I_{α}^{t} onto the closure of I_{α}^{b} . Let T be a generalized i.e.m, let $I = \bigsqcup I_{\alpha}^{t} = \bigsqcup I_{\alpha}^{b}$ be the associated partitions, so that the restriction of T to I_{α}^{t} is an orientation-preserving homeomorphism onto I_{α}^{b} . We say that T is of class C^{r} if , for each $\alpha \in \mathcal{A}$, the restriction of T to I_{α}^{t} extends to a C^{r} -diffeomorphism from the closure of I_{α}^{t} onto the closure of I_{α}^{b} .

Proposition Let T be a generalized i.e.m of genus 1 of class C^2 with no connection.

Let T be a generalized i.e.m, let $I = \bigsqcup I_{\alpha}^{t} = \bigsqcup I_{\alpha}^{b}$ be the associated partitions, so that the restriction of T to I_{α}^{t} is an orientation-preserving homeomorphism onto I_{α}^{b} . We say that T is of class C^{r} if , for each $\alpha \in \mathcal{A}$, the restriction of T to I_{α}^{t} extends to a C^{r} -diffeomorphism from the closure of I_{α}^{t} onto the closure of I_{α}^{b} .

Proposition Let T be a generalized i.e.m of genus 1 of class C^2 with no connection.

If T has no periodic orbit, then T has no wandering interval.

向下 イヨト イヨト

Let T be a generalized i.e.m, let $I = \bigsqcup I_{\alpha}^{t} = \bigsqcup I_{\alpha}^{b}$ be the associated partitions, so that the restriction of T to I_{α}^{t} is an orientation-preserving homeomorphism onto I_{α}^{b} . We say that T is of class C^{r} if , for each $\alpha \in \mathcal{A}$, the restriction of T to I_{α}^{t} extends to a C^{r} -diffeomorphism from the closure of I_{α}^{t} onto the closure of I_{α}^{b} .

Proposition Let T be a generalized i.e.m of genus 1 of class C^2 with no connection.

If T has no periodic orbit, then T has no wandering interval. **Proof = Exercise: Hint** Any infinite path in a Rauzy diagram of genus 1 has to go infinitely many times through *rotation-like* vertices, i.e combinatorial data π such that, for some 0 < k < d,one has $\pi_t(\alpha) = \pi_b(\alpha) + k \mod d \quad \forall \alpha \in \mathcal{A}.$

★週 ▶ ★ 注 ▶ ★ 注 ▶

(4回) (4回) (4回)

The other Rauzy diagram for d = 4

d=4, g=1, s=3

A⊒ ▶ ∢ ∃

-≣->

Definition: A generalized i.e.m T is affine if the restriction of T to each I_{α}^{t} is affine. The *log-slope vector* $w \in \mathbb{R}^{\mathcal{A}}$ is s.t. the slope of T on I_{α}^{t} is exp w_{α} .

∃ >

Definition: A generalized i.e.m *T* is affine if the restriction of *T* to each I_{α}^{t} is affine. The *log-slope vector* $w \in \mathbb{R}^{\mathcal{A}}$ is s.t. the slope of *T* on I_{α}^{t} is exp w_{α} . Thus, for each given combinatorial data, an affine i.e.m is determined by the lengths of the I_{α}^{t} and the I_{α}^{b} (with $\sum_{\alpha} |I_{\alpha}^{t}| = \sum_{\alpha} |I_{\alpha}^{b}|$).

伺 ト イヨト イヨト

Definition: A generalized i.e.m T is affine if the restriction of T to each I_{α}^{t} is affine. The *log-slope vector* $w \in \mathbb{R}^{\mathcal{A}}$ is s.t. the slope of T on I_{α}^{t} is exp w_{α} . Thus, for each given combinatorial data, an affine i.e.m is

determined by the lengths of the I_{α}^{t} and the I_{α}^{b} (with $\sum_{\alpha} |I_{\alpha}^{t}| = \sum_{\alpha} |I_{\alpha}^{b}|$).

The parameter space is thus 2d - 2-dimensional.

伺 ト イヨト イヨト

A result of Denjoy

The following result was proved by Denjoy for circle diffeomorphisms. His proof generalizes to i.e.m.

< ≣ >

< ∃⇒

A result of Denjoy

The following result was proved by Denjoy for circle diffeomorphisms. His proof generalizes to i.e.m.

Proposition: Let T be a uniquely ergodic generalized i.e.m of class C^1 . Then

$$\int \log DT \quad d\mu = 0,$$

where μ is the *T*-invariant probability measure.

The following result was proved by Denjoy for circle diffeomorphisms. His proof generalizes to i.e.m.

Proposition: Let T be a uniquely ergodic generalized i.e.m of class C^1 . Then

$$\int \log DT \quad d\mu = 0,$$

where μ is the *T*-invariant probability measure.

Corollary: Let T_0 be a standard irrational uniquely ergodic i.e.m. Let $w \in \mathbb{R}^A$. Then there exists an affine i.e.m T with log-slope vector w and $\rho(T) = \rho(T_0)$ iff

$$\sum_{\alpha} w_{\alpha} \lambda_{\alpha}^{\mathbf{0}} = \mathbf{0}$$

where λ^0 is the length vector of T_0 .

Theorem: (Marmi-Moussa-Y.) data of genus ≥ 2 .

Let π be combinatorial

個 と く ヨ と く ヨ と

Theorem: (Marmi-Moussa-Y.) Let π be combinatorial data of genus ≥ 2 . For almost every length vector λ^0 , there exists a codimension 1 subspace $E(\lambda^0)$ of the hyperplane $H(\lambda^0) := \{\sum_{\alpha} w_{\alpha} \lambda_{\alpha}^0 = 0\}$ s.t.,

ヨット イヨット イヨッ

Wandering intervals for affine i.e.m

Theorem: (Marmi-Moussa-Y.) Let π be combinatorial data of genus ≥ 2 . For almost every length vector λ^0 , there exists a codimension 1 subspace $E(\lambda^0)$ of the hyperplane $H(\lambda^0) := \{\sum_{\alpha} w_{\alpha} \lambda_{\alpha}^0 = 0\}$ s.t., for $w \in H(\lambda^0) - E(\lambda^0)$,

(3)

Conjecturally, there exists exactly one such T.

Conjecturally, there exists exactly one such T.

The subspaces $\mathbb{R}^{\mathcal{A}} \supset H(\lambda^0) \supset E(\lambda^0)$ are associated to the Lyapunov exponents of the KZ-cocycle.

個 ト く ヨ ト く ヨ ト 二 ヨ

Conjecturally, there exists exactly one such T.

The subspaces $\mathbb{R}^{\mathcal{A}} \supset H(\lambda^0) \supset E(\lambda^0)$ are associated to the Lyapunov exponents of the KZ-cocycle.

Previous results by Levitt, Camelier-Gutierez, Bressaud-Hubert-Maass.

個 と く き と く き と … き

An irrational number α is of Roth type if, for every τ > 0, there exists C = C(τ) such that

$$|q\alpha - p| \ge Cq^{-1-\tau}$$

holds for all $q \ge 1$, $p \in \mathbb{Z}$.

白 ト く ヨ ト く ヨ ト

æ

An irrational number α is of Roth type if, for every τ > 0, there exists C = C(τ) such that

$$|q\alpha - p| \ge Cq^{-1-\tau}$$

holds for all $q \ge 1$, $p \in \mathbb{Z}$.

Every algebraic irrational is of Roth type (Roth's theorem).

回 と く ヨ と く ヨ と

An irrational number α is of Roth type if, for every τ > 0, there exists C = C(τ) such that

$$|q\alpha - p| \ge Cq^{-1-\tau}$$

holds for all $q \ge 1$, $p \in \mathbb{Z}$.

- Every algebraic irrational is of Roth type (Roth's theorem).
- Almost every α is of Roth type.

伺 ト イヨト イヨト

Theorem (Arnold; Herman; Y.; Khanin-Sinai; Katznelson-Ornstein) Let f be an orientation preserving diffeomorphism of \mathbb{T} of class C^r , r > 2, having an irrational rotation number α of Roth type. Then the conjugacy h between fand R_{α} is a diffeomorphism of class C^s for all s < r - 1. **Theorem** (Arnold; Herman; Y.; Khanin-Sinai; Katznelson-Ornstein) Let f be an orientation preserving diffeomorphism of \mathbb{T} of class C^r , r > 2, having an irrational rotation number α of Roth type. Then the conjugacy h between fand R_{α} is a diffeomorphism of class C^s for all s < r - 1.

On the other hand, if α is of Liouville type (for every τ , there exists $q \ge 1$, $p \in \mathbb{Z}$ with $|q\alpha - p| < q^{-1-\tau}$), there exists $f \in Diff^{\infty}_{+}(\mathbb{T})$ with rotation number α such that the conjugacy h is not of class C^{1} (Herman).

Definition: A generalized i.e.m T is a *simple* C^r *deformation* of a standard i.e.m T_0 if

個 と く ヨ と く ヨ と

Definition: A generalized i.e.m T is a simple C^r deformation of a standard i.e.m T_0 if

• The partitions for T and T_0 are the same;

(3)

Definition: A generalized i.e.m T is a simple C^r deformation of a standard i.e.m T_0 if

- The partitions for T and T_0 are the same;
- ► T is of class C^r;

伺 ト イヨト イヨト

Definition: A generalized i.e.m T is a simple C^r deformation of a standard i.e.m T_0 if

- The partitions for T and T_0 are the same;
- T is of class C^r;
- $T T_0 \equiv 0$ near the endpoints of the top partition.

ヨット イヨット イヨッ

Definition: A generalized i.e.m T is a simple C^r deformation of a standard i.e.m T_0 if

- The partitions for T and T_0 are the same;
- T is of class C^r;
- $T T_0 \equiv 0$ near the endpoints of the top partition.

ヨット イヨット イヨッ

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

Theorem (Marmi-Moussa-Y.) Let π be combinatorial data, g the associated genus, s the number of marked points.

Theorem (Marmi-Moussa-Y.) Let π be combinatorial data, g the associated genus, s the number of marked points. For almost every standard i.e.m T_0 with combinatorial data π , for any integer $r \ge 2$,

Theorem (Marmi-Moussa-Y.) Let π be combinatorial data, g the associated genus, s the number of marked points. For almost every standard i.e.m T_0 with combinatorial data π , for any integer $r \ge 2$, amongst the C^{r+3} simple deformations of T_0 , those which are C^r -conjugated to T_0 by a diffeomorphism C^r -close to the identity form a C^1 -submanifold of codimension (2r + 1)(g - 1) + s.

In genus 1, and only on genus 1, the codimension is independent of r.

白 ト イヨト イヨト

æ

- In genus 1, and only on genus 1, the codimension is independent of r.
- The statement is conjecturally also true for r = 1, but the method of proof does not adapt to this case.

- In genus 1, and only on genus 1, the codimension is independent of r.
- The statement is conjecturally also true for r = 1, but the method of proof does not adapt to this case.
- The space of standard (normalized) i.e.m with combinatorial data π has dimension d − 1 = 2(g − 1) + s.

白 ト イヨト イヨト

- In genus 1, and only on genus 1, the codimension is independent of r.
- The statement is conjecturally also true for r = 1, but the method of proof does not adapt to this case.
- The space of standard (normalized) i.e.m with combinatorial data π has dimension d − 1 = 2(g − 1) + s. Therefore one expects (!?!) that the set of simple deformations of T₀ with the same rotation number than T₀ to have "codimension" 2(g − 1) + s.

白 ト イヨ ト イヨ ト

- In genus 1, and only on genus 1, the codimension is independent of r.
- The statement is conjecturally also true for r = 1, but the method of proof does not adapt to this case.
- The space of standard (normalized) i.e.m with combinatorial data π has dimension d − 1 = 2(g − 1) + s. Therefore one expects (!?!) that the set of simple deformations of T₀ with the same rotation number than T₀ to have "codimension" 2(g − 1) + s.
- Question: Is the C⁰-conjugacy class of T₀ equal to the C¹-conjugacy class for almost all T₀?

回 と く ヨ と く ヨ と

- In genus 1, and only on genus 1, the codimension is independent of r.
- The statement is conjecturally also true for r = 1, but the method of proof does not adapt to this case.
- The space of standard (normalized) i.e.m with combinatorial data π has dimension d − 1 = 2(g − 1) + s. Therefore one expects (!?!) that the set of simple deformations of T₀ with the same rotation number than T₀ to have "codimension" 2(g − 1) + s.
- Question: Is the C⁰-conjugacy class of T₀ equal to the C¹-conjugacy class for almost all T₀?
- The "almost all T₀" in the statement of the theorem corresponds to a diophantine condition on the rotation number of T₀ (called *restricted Roth type*) which coincides for g = 1 with the Roth type condition seen earlier for circle diffeomorphisms.

J-C.Y. Interval exchange maps and Translation surfaces, p.1-71, in Homogeneous flows, Moduli spaces and Arithmetics, Einsiedler and al. eds, Proceedings of the Clay Summer School, Pisa 2007, Clay Math. Proceedings, Vol. 10 (2009)

These notes contain a full set of references. A preliminary version can be downloaded from my page on the Collège de France website.

(3)