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1. Parabolic points

A parabolic point is a periodic point of a one dimensional complex dynamical
system with multiplier a root of unity.

For a local study, we may assume f is defined near the origin in C and f(z) =
ρz + . . . with |ρ| = 1:

ρ = e2πip/q

with p ∧ q = 1. Then

fq(z) = f ◦ · · · ◦ f(z) = z + . . . .

Lemma. If f is a polynomial or a rational map of degree > 2, or a transcendental
entire function, then fq 6= id in any neighborhood of 0.

Proof. For otherwise, by analytic continuation we would have fq = id everywhere,
contradicting the fact that the preimage of most points consists in more than one
point. �

We now assume that fq 6= id. Let Czk be the next term in the expansion of fq:

fq(z) = z + Czk + . . .

We define attracting axes as the k − 1 half lines whose union is the solution to

Czk/z ∈]−∞, 0[

and the repelling axes are for

Czk/z ∈]0,+∞[.

This notion is not invariant by conjugacy of f by a change of variable, but this
problem is solved by considering the axes as living in the tangent space to C at the
origin.
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Lemma. k = 1 +mq for some m > 0.

Proof. Analytic: Df0 permutes the attracting directions (because f and fq com-
mute). Algebraic: write f ◦ fq = fq ◦ f whence f + ρCzk + h.o.t. = f + Cρkzk +
h.o.t.. �

More about the dynamics:

fq(z) = z + s(z), where s may be called the (foot)step.

Here s(z) = O(z2) and there is a heuristic principle that if s(z) varies slowly enough
when z varis, then f is comparable to the vector field dz/dt = s(z). Of course this
has to be made more precise and depends on the situation. Here this serves as a
motivation to the following: since s(z) ≈ Czk, we will compare f to the vector field
dz/dt = Czk. Let

r = k − 1.

Then r ≥ 1 and the straightening coordinates of the latter v.f. are

u =
−1

rCzr
.

We can call u the prepared coordinates or the pre-Fatou coordinate. If

zn+1 = fq(zn)

and un = −1/rCzrn then

un+1 = un + 1 + o(|un|−1/r).

From this it is easy to construct traps: petals. (There is no unified definition of
petals.) For instance a right half-plane in the u coordinates, which I call small
petals. This builds r attracting petals for f . Repelling petals are constructed
similarly using f−1.

But one can draw bigger petals. For instance α-petals, which are sets whose
image by the change of variable u = −1/rCzr is a sector of angle α, and whose
bisector line is horizontal. There is also what I call big petals, whose image are
bounded by a curve with parabolic branches with horizontal asymptotic direction.
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The next picture, illustrates how big petals may overlap.

These definitions of petals are not invariant by conjugacy. An more canonical
definition of petals could fix their shape in Fatou coordinates (see below) but re-
quires Fatou coordinates to be already defined, which is not the choice made in this
mini-course.

In a petal, un ∼ n thus |zn| ∼
L

n1/r
with L =

∣∣∣∣ 1

rC

∣∣∣∣1/r and zn −→ 0 tangentially

to the corresponding attracting axis, as on the following picture showing four dif-
ferent orbits under fq for f(z) = e2πi/3z+ z2 attracted by the same petal and their
image in the prepared coordinate u.

Note also that:

Lemma. Any orbit tending to a parabolic point is captured by an attracting petal.

2. Fatou coordinates

There exists holomorphic injective maps φ− and φ+ defined on each petal that
“conjugate” fq to the translation T : z 7→ z + 1. One has to be a little careful
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because writing φ◦fq = T ◦φ would not be correct, as both sides have different sets
of definition, and thus are different as functions. What is true is that φ ◦ fq(z) =
T ◦ φ(z) holds for all z for which both sides are defined, or equivalently that φ

conjugates the bi-restriction fq
∣∣P
P

to the restriction of T to some open set.
Their asymptotics can be computed: in particular

φ(u) ∼ u.

Remark: In fact an asymptotic series expansion exists, of the form

φ(z) =
−1

rCzr
+
a−r+1

zr−1
+ · · ·+ a−1

z
+ a0 log z + c+ a1z + a2z

2 + · · · ,

which is asymptotically correct at all finite order (but divergent), and it is the same
for all petals (be it attracting or repelling).

A corollary of φ(u) ∼ u is the form of the image of the petal: it will not be too
small. For instance the image of a small petal contains sectors of angle α arbitrarily
close to π.

Another is that the quotient of the petal by identification of z and fq(z) is a
bi-infinite cylinder, i.e. isomorphic to C/Z as a Riemann surface. From this one
can prove the uniqueness of Fatou coordinates up to addition of a constant. (More
precisely: call admissible all forward invariant open set whose points all have fq-
orbits captured by the petal and such that all points in the petal have an orbit
captured by the set. Then the intersection of two admissible sets is admissible, a
petal is admissible, and any two Fatou coordinates on admissible sets differ by a
constant.) The choice of one is called a normalization.

Let us extend φ− to the whole basin of the petal under fq, such that

φ− ◦ fq = T ◦ φ−

here the domains of definition are the same. There is a unique map doing this. It
is not as easy to extend φ+ so

(1) one solution is to restrict to a neighborhood of 0 where fq is bijective and
to work with f−1

(2) the other solution is to work with the reciprocal of φ+

Let the map ψ+ = φ−1
+ and extend it the same way as φ−, i.e. so that

fq ◦ ψ+ = ψ+ ◦ T

where the domains of definition are required to be the same. Again the solution is
unique. If f is entire or rational, then dom(ψ+) = C.

Then consider an adjacent pair of repelling and attracting petals, and define
the map h = ψ+ ◦ φ−. This is the extended horn map associated to this pair. It
commutes with T , its domain of definition is invariant by T and contains an upper
or a lower half plane (both if q = 1) on which it is injective and satisfies h(z) ∼ z as
Im (z)→ ±∞. If q 6= 1 its domain of definition is disjoint from some lower or upper
half plane. All this can be deduced from the fact that φ(u) ∼ u on big petals.

Points w where h is defined correspond to those bi-infinite orbits of fq (i.e.
sequences zn indexed by Z and such that ∀n ∈ Z, zn ∈ dom(fq) and zn+1 = fq(zn))
which tend to 0 in the chosen attracting petal as n → +∞ and tend to 0 in the
chosen repelling petal as n → −∞: given w let zn = ψ+(w + n), and conversely
given zn let w = φ+(zn)−n for n close enough to −∞. Moreover v = h(w) implies
that for n close enough to −∞, zn is in the repelling petal and its repelling Fatou
coordinate φ+(zn) is equal to w modulo Z and that for n close enough to +∞,
zn is in the attracting petal and its (unextended) attracting Fatou coordinate is
equal to v modulo Z. This is illustrated on the next picture, where the upper
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part represents a finite portion of some bi-orbit and the lower part its image in the
prepared coordinates u = −1/rCzr. Note also that

We may identify the cylinder C/Z with C∗ by means of the map E : z 7→ ei2πz.

This and the inclusion C∗ ⊂ Ĉ = C ∪ {∞} allows to extend the Riemann surface
C/Z into a compact Riemann surface: this adds two points to the cylinder, called
the upper end and the lower end.

π E ⊃

C C/Z Ĉ C

The map h commutes with T hence it induces a quotient map h̃ defined on an

open subset of the cylinder and mapping to the cylinder: h̃◦π = π ◦h. Let us work
with the case dom(h) contains an upper half plane, the other case being similar.

From h(z) ∼ z as Im (z) −→ +∞ it follows that h̃ has a removable singularity

at the upper end of the cylinder. In the C∗ coordinates, E ◦ h̃ ◦ E−1 has thus a
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Laurent series expansion of the form
∑
k≥k0

akz
k with k0 ∈ Z and ak0 6= 0. This

implies that for |Im z| big enough, h(z) has the form h(z) = k0z + g(e±2πiz) where
g is holomorphic in a neighborhood of 0. Whence h ◦ T = Tk0 ◦ h. Thus k0 = 1.

Thus the extension of h̃ fixes the upper end and has a non-vanishing derivative
there.

If q > 1 there are 2r horn maps, because there are 2r pairs of adjacent petals,
half of them give horn maps with an extension at the upper end, half at the lower
end.

down
down

down

up

up

up

The effect of a change of normalization of the 2r Fatou coordinates is to post
and pre compose these horn maps by 2r translations, in correspondence with the
definition of the horn maps. Be careful: changing one Fatou coordinate will change
two horn maps. Details are left to the reader.

The germs of these 2r maps h̃ at their respective end of the cylinder, modulo
post and pre composition by translations are invariant by conjugacy of f under a
change of variable. But better can be said: a complete conjugacy invariant is given
by the data of the 2r “germs of lifts” h, modulo the action of 2r translations by pre
and post conjugacy, in correspondence with the definition of the horn maps. By

germ of lift, we mean an equivalence class of map of the form z +
∑
n≥0

ane
±n2πiz.

It is equivalent to the data of a sequence an ∈ C such that
∑
anz

n has positive
radius of convergence. Note that since f commutes with fq, the horn maps are not
independent. The interested reader should work out the details.

Conversely, given such “germs of lifts”, one reconstructs a map with a parabolic
fixed point whose horn maps correspond to these germs: as illustrated above, con-
sider r copies of an open set, call them attracting regions, union of an upper a lower
and a right half plane, and r copies of another open set, call them repelling regions,
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union of an upper, a lower and a left half plane. Now glue them together using
the germs of to be horn maps, as illustrated. This gives a Riemann surface, and it
can be shown to be isomorphic to a bounded open subset U of C with the origin
removed, the latter corresponding to infinity in the regions. Consider on them the
dynamical system given by the translation by 1: since the horn maps commute
with T , it is well defined and yields on U a dynamical system with a removable
singularity at the origin. One can prove that the origin is parabolic with r petals
and that its horn maps have the germs we started from. This map has rotation
number 0. To get a map with a different rotation number, one must modify the
construction: permute the copies according to a rotation of angle p/q and on one
repelling region only and one attracting region only, compose this with T .

3. Perturbation of parabolic points

Let f belong to an analytically varying family of analytic maps fε with ε ∈ C
close to 0, such that f = f0.

We will assume in the rest of the article that

m = 1

i.e. r = q. Then it is easier to describe the explosion of the fixed point and the
phase portrait of the dynamical system, which is still comparable to a vector field.

This situation is generic. Moreover, using:

Theorem (Fatou). If f is a rational map, each cycle of petal must attract a critical
point.

Proof. Otherwise, prove that φ− is a bijection from the immediate basin of any
petal in this cycle, to C, which is impossible since the basin is disjoint from the
Julia set which is bigger than a single point. �

we get that for degree 2 polynomials, we necessarily have m = 1.
Since fq(z) − z has a multiple zero at the origin, with multiplicity 1 + q, this

implies that fε will also have 1 + q zeros counted with multiplicity near the origin
by Hurwitz’s theorem. We now need to distinguish two cases:

Case q > 1:

A fixed point of an analytic family of holmorphic maps can be locally holomor-
phically followed as soon as its multiplier is 6= 1. This can be proved using the
implict function theorem on the equation fε(z) − z = 0. One needs to check that
the partial derivative ∂/∂z does not vanish at the considered point (z, ε) solution
of the equation, and this quantity is precisely equal there to the multiplier minus
one.

This is the case here for (z, ε) = (0, 0) because q > 1. Call aε the corresponding
fixed point of fε and ρε its multiplier.

We now make the supplementary asumption that ρε is not constant, so that aε
is a simple root of fqε (z)− z for ε 6= 0 small enough. Since fε is close to a rotation
of angle p/q, it follows that the other q roots will form a cycle of period q, that sits
approximately on a regular q-gon centered on aε.

0 aε

ε varies fε

aε
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The distance of this cycle to aε is equivalent to
∣∣∣ 1−ρqεC

∣∣∣1/q when ε −→ 0.

Proof. Compute

∫
(z − aε)q

fε(z)− z
dz and

∫
1

fε(z)− z
dz around a small circle. �

So generically, this distance is ∼ cst |ε|1/q.

Case q = 1:

If q = 1 then the double fixed point 0 of fε usually splits into two fixed points.
We will make the assumption that this is the case. These points separate at some
speed, generically ∼ cst |ε|1/2.

Note: the assumptions made in the case q > 1 or in the case q = 1 can often be
proved to hold: for instance if one considers a parabolic periodic point in the familly
Pc(z) = z2 + c (for which we recall that we always have m = 1), with period k, and
let fε(z) = P kc0+ε(z0 + z) − z0 then it can be proved that the multiple fixed point
is not persistent if q = 1 and that the multiplier of the holomorphically followable
fixed point aε varies if q > 1. The proof consists in realizing that when c is big
enough, all periodic points are repelling, and in making use of analytic continuation
in the algebraic variety defined by P kc (z)−z = 0. It is also interesting to know that
for the family Pc(z) = z2 + c, the cycle explodes at the generic speed (∼ cst |ε|1/q
if q > 1, ∼ cst |ε|1/2 if q = 1). However the proof is more complicated. See [O].

In both cases we can reduce to the study of a family of the form

fε = ρ(ε)z + . . .

Indeed: If q > 1 it is easy by a translation on z by −aλ. If q = 1 it is still possible
but we may need to change the parameter: ε = η2 (this will change the speed of
explosion of the double fixed point). Recall that we are assuming m = 1.

4. Persistence of Fatou coordinates: passing through the eggbeater

Remark. From now on these notes take a more expository form.

Assume that

fε = ρεz + . . .

(it is still assumed analytically varying with ε). The dynamics is comparable to the
vector field

dz/dt = f(z)− z
which is itself comparable to

dz/dt = (ρq − 1)z + Czq+1.

On the next pictures, we illustrate the direction field of the latter vector field, for
ρ varying along a small circle centered on ρ = 1.
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The ideal vector field dz/dt = (ρq − 1)z + Czq+1 is is the pull back by zq of a
simpler vector field: if v = zq then dv/dt = qv(ρq − 1 + Cv), which has only two
fixed points: 0 and another one v0 = (1 − ρq)/C. A further change of coordinates
w = v/(v − v0) transforms this vector field into the very simple:

dw/dt = λw

with λ = q(ρq − 1). From this, one easily understands the dynamics of the ideal
vector field. This is left as an exercise. The following picture shows field lines in
the case Re (ρq−1) = 0. The black curves are those who join infinity in finite time.

Recomposition of the dynamics of fε by translation bands and gluings:

The description of the local dynamics of small perturbations depends on the
argument of ρqε − 1 ∼ q(ρε − 1). Here we will avoid that ρε −→ 1 tangen-
tially to the real axis. So we will assume ρε close to 1 but arg(ρε − 1) not
too close to 0 or π. This means ε is close to 0 but avoids a finite number of
small sectors. Another case, largely overlapping the first one, is when arg(ρε −
1) is not too close to π/2 or −π/2. However we will only treat the first case.
The treatment of the second one similar, with everything rotated 90 degrees.
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ρε ε

Example where ρε and ε must avoid the gray regions.
The dashed line represents |ρ| = 1

Then fε is conjugated to a model consisting of vertical bands plus tabs, on which f
is a tranlsation and that are glued along the tabs by maps close to the horn maps,
as on the following picture:

hε,1 hε,2

hε,3

hε,4 hε,5 hε,6

T

There is an inverse Fatou coord ψε on the bands, mapping them to a heart
shaped set, tending to a pair of adjacent small petals as ε −→ 0, avoiding the bad
sectors. See the next picture.

As ε −→ 0, avoiding the bad sectors, the width of the bands tends to +∞ there
are complex numbers a(ε) and b(ε), which depend which band is concerned, such
that

ψε(z − a(ε)) −→ φ−1
− (z)

ψε(z − b(ε)) −→ φ−1
+ (z)

b(ε)− a(ε) =
ε→0

2πi

ρ′ε − 1
+ cst +o(1)

This is valid for Im(ρ) > 0, otherwise the sign in the last equation should be the
opposite. The constant depends on the normalization of the Fatou coordinates.
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The gluings are not exactly those on the former picture but almost: they are
given by

z + a(ε) ∼ hε(z + b(ε))

for 2r different maps hε and the functions a and b of the corresponding bands being
glued together (here we omit the indices on a, b, and hε indicating which one these
are). Each map hε commutes with T1 an tends uniformly to the corresponding horn
map h.

Now
2πi

ρq − 1
+ q

2πi

ρ′ − 1
−→ 2iπA

where A =
1

2πi

∫
dz

fq(z)− z
is called the holomorphic index. Therefore

b(ε)− a(ε) =
ε→0
− 2πi/q

ρq − 1
+ cst +o(1)

(use the opposite sign if Im(ρ) < 0).

5. Lavaurs theorem

Under the same asumptions, choose a sign for Im(ρ), choose an attracting petal
and the adjacent repelling petal corresponding to the chosen sign of Im(ρ). Consider
the corresponding extended Fatou coordinates φ− and ψ+. Let

gσ = ψ+ ◦ Tσ ◦ φ−.
It is called the Lavaurs map.

Consider the following non-commutative diagram. Here, S is the Riemann sur-

face on which the dynamical system takes place. This could be Ĉ for a rational
map, or C for an entire map, or something else.

S

C C

φ−

Tσ

ψ+

The map gσ consists in turning once around the diagram, starting from the top.
Let εn −→ 0 and denote fn = fεn , ρn = ρεn , etc. . . Consider the following

quantity, called the phase1

σn
def
=

2iπ/q

1− ρqn
1the definition of the phase may differ in other works
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(take the opposite complex number if Im (ρ) < 0). Assume that the σn has a real
part tending to +∞ but converges modulo Z. So

σn =
n→+∞

Nn + σ + o(1)

for some integer sequence Nn −→ +∞.

Theorem (Lavaurs). Then

fqNn
n −→ gσ+σ0

uniformly on compact subsets of the basin of attraction of the petal for fq, where
σ0 depends on the normalizations of the Fatou coordinates.

To simplify notations, let us now choose the normalization so that σ0 = 0.
Example of consequence:

Theorem. If f0 and the fn are polynomials of the same degree then

lim inf J(fn) ⊃ J(f0, gσ)

lim supK(fn) ⊂ K(f0, gσ)

where K(fn) is the complement of the basin of infinity A(fn), J(fn) = ∂K(fn) is
the Julia set, K(f0, gσ) is the complement of the union over n of g−nσ (A(f0)) and
J(f0, gσ) = ∂K(f0, gσ). They are called the enriched Julia sets. We have

J(f0) ( J(f0, gσ)

K(f0, gσ) ( K(f0)

As an illustration, here is the Julia set J of z2 + 1/4 in black, with the interior
of K in gray:

And here is what is obtained with z2 + 1/4 + ε with ε positive and small and
then the enriched Julia set limit for some particular sequence (εn > 0) −→ 0.
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Here is another enriched Julia set for the same example z2 + 1/4, together with
a Julia set tending to it:

Other consequences include:

• the roots in M are landing points of external rays (Douady-Hubbard-
Sentenac)

• fine study of the size of Siegel disks (Buff-Chéritat)
• dimH ∂M = 2 (Shishikura)

6. Parabolic renormalization: emergence of the horn map as a limit
dynamical system

Consider the non-commutative diagram again:
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S

C C

φ−

Tσ

ψ+

The map gσ was defined by following the arrows from the upper corner bact to
it. Let us define the map hσ in a similar way, but starting from the lower right
corner (the repelling Fatou coordinates). Then hσ = Tσ ◦ h.

The dynamics of hσ and gσ somehow reflect each other: indeed the maps hσ and
gσ are semi-conjugated in at least two ways as can be seen on the diagram: ψ+

semi-conjugates hσ to gσ and Tσ ◦ φ− semi-conjugates gσ to hσ.
Note that hσ = Tσ ◦ h0. It is maybe better to change variable and map C/Z

to C∗ via z 7→ e2πiz. Then hσ gets conjugated to a family of map `σ = e2iπσ`0
that fix the origin and such that `′0(z) 6= 0. The quantity `′σ(0) is called the virtual
multiplier of gσ at the upper end.

For instance on the left part of the next picture, we show an enriched Julia set
with a virtual Siegel disk. More precisely σ is chose so that `σ has at the origin
an indifferent fixed point of rotation number the Golden mean. In this case the
origin is necessarily linearizable for the dynamics of `σ, and its maximal domain on
which the map is conjugated to a rotation is called a Siegel disk. The maps hσ and
gσ do not have a Siegel disk, but instead a domain on which the dynamics of the
map and that of f are conjugated to two horizontal translations on the upper half
plane, whose vectors are respectively an irrational equal to the rotation number of
the Siegel disk modulo Z, and 1. For gσ this region is that of the two symmetric
biggest gray regions that lies on the upper right. On the right part of the picture,
we showed the Julia set of e2πiθnz + z2 for θn being the irrational with continued
fraction expansion = [0;n, 1, 1, 1, . . .] and n = 20. It can be shown that the right
figure converges to the left figure as n −→ +∞.

Remark. A priori the horn map h, is not a dynamical system but a conjugacy
invariant. However, Lavaurs’ theorem explains us that the dynamics of hσ tells us
something about the dynamics of perturbations of f .
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There is a unique σ modulo Z such that `′σ(0) = 1 and we let the parabolic
renormalization of f0 be this map `σ or rather its class modulo conjugacy by a linear
map: R(f0). This new map is parabolic at the origin and we may want to look
at its parabolic renormalization, and so on. . . This will enrich further the original
dynamical system, and these enriched objects are limits of well chosen perturbations
of the original map. It has recently proved very useful to understand what happens
when parabolic renormalization is iterated, starting from a polynomial of degree 2,
and to control deviations from this situation when near parabolic renormalization
is done (but this goes far beyond the scope of this survey) see [IS].

Remark: Lavaurs extended theorems of Fatou regarding the link between non

repelling cycles and critical points, to horn maps h̃ of polynomials. Adam Epstein
extended them to the much wider class of maps called finite type maps, of which
these renormalizations are a particular case, and to towers of these objects.
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