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1. Introduction

In inverse problems one is concerned to reconstruct a quantity x € X out of noisy
measurements y° = y + 6§ of a quantity y € Y where X and ) are separable Hilbert
spaces and A : X — ) is a linear compact operator

Ax =y.

Because A is not continuously invertible we need to regularize. =~ Well known
regularization techniques are Spectral Cut-Off or Tikhonov regularization [1]. All
regularization procedures require a regularization parameter whose choice is crucial.

In the theory of inverse problems one has the result by Bakushinskii [2] telling that
without the knowledge of the noise level  one cannot choose a regularization operator
which guarantees a result with low error, neither absolutely nor in rate. However in
stochastics purely data driven methods like cross validation [1] exist which can be proven
in some non-inverse problems situations to return optimal solutions.

In practical situations normally we do not know the noise level and hence we
are bound to use parameter choice algorithms which are supposed to work without
this information. Examples are L-curve [3], Generalized Cross-Validation [4], Quasi-
Optimality [1, 5] or smoothing of the data and inverting without or with minor
regularization.

When one tries to prove parameter choice procedures similar to quasi-optimality
one encounters that one has a lack of inequalities for the error terms from below. These
inequalities seem to fail e.g. for regularization methods like Spectral Cut-Off if the
energy just concentrates in a small number of Fourier coefficients. For the L-curve
method there also exist very easy counter examples [6]. On the other hand in practice
a couple of these methods work rather well [3]. So the question is if one can, at least
in average, guarantee some lower bounds or to show that the counter examples to these
methods are rare exceptions.

The general approach we will present is in principle not new and can be considered
as a Bayesian framework. We will assume that the solution has some random structure,
i.e. is drawn according to some prior distribution [7]. However in contrary to [7] we will
not fix this prior but just assume that there is one with certain very general properties. In
some sense similar considerations have been made in the statistical community, however
not in the context of inverse problems, see e.g. [8, 9.

Using this assumption we will introduce several different optimality criteria which
we will prove to be equivalent under certain conditions. A particular interesting
additional result is that we can prove both the quasi-optimality criterion and smoothing
of the data along with the inversion of the unregularized operator to be valid and order
optimal regularization methods.
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2. Prior Assumptions

We will restrict ourselves for the ease of notation to self-adjoint problems right now.
The considerations would work using some more careful notation also in the general
setting, however by multiplying a linear operator equation Ax = y by A* we can always

get an operator equation A*Ax = A*y respectively \/ A Az = \/ A A A*y with a self
adjoint operator A*A.

2.1. Operator

Consider the bounded self-adjoint compact linear operator
A: X —- X

where X is a separable Hilbert space with inner product (-,-) and the corresponding
norm || - ||.

A bounded self-adjoint linear compact operator between separable Hilbert spaces
has a singular value decomposition

oo

Az = Z o (k) (z, ug) ug (1)

k=1

where {uy }ren is an orthonormal basis system of X’ (see e.g. [1]). o(+) is assumed to be
a continuous monotonously decreasing function o : Ry — Ry asymptotically going to
0, i.e. limy o o(k) =0.

The function ¢ should not decrease faster than exponentially, i.e. there is a positive
constant ¢, such that for all £ € INy it holds

olk+1) > coo(k)

2.2. Equation

We want to solve the equation

Axr =y. (2)

We cannot measure y but just a perturbed version y® = y + 6¢, where ¢ is a normalized
error element.

2.8. The Solution x

We assume to have the following stochastical prior for x. All Fourier coefficients (x, uy)
should be independently distributed with normal distribution A(0,v(k)?).
The function v : R§ — Ry is assumed to be monotonously decreasing and square

> (k)

k=1

sumable, i.e.
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Hence x fulfills the following relations for all k£ # [
E (z,ux) =0

E (z,u) (x,u;) =0

and
E (z,u)® = v(k)? (3)

The function v should not decrease faster than exponentially, i.e. there is a positive
constant ¢, such that for all k it holds

V(k+1) = ¢yy(k) (4)

Remark
Although it seems unusual to impose such a condition on x there are several lines
of argumentation which support this. First of all source conditions can be seen
(asymptotically) as a bound from above such that (z,u;)> < ~v(k)2. What we do is
on the one hand relaxing this bound and on the other hand requiring that in average
(z,u,)? behaves like v(k)2. This means in particular that we do not just have something
like a bound from above but also from below without being strict in this sense.
Furthermore assume the case that we already know that x is in some space along the
Hilbert scale, e.g. |Atx| < oo or written differently © € Han . For any v < p the space
Hav is a meagre subset of Haun. This implies if we would draw an x out of Han with
probability zero x is also an element of Hav. Le. the Fourier coefficients are not likely
to decrease fast enough to support x in Hav. In order to have this behavior for allv <
it is a sensible assumption that the Fourier coefficients behave like described above. In
a non-functional analytic but stochastic setting one can find a similar argumentation in
[10, 8]

2.4. The Error element &

We assume that the normalized error element is randomly chosen and has the property
that the (formal) Fourier coefficients (¢, vy) are all independently distributed according
to the normal distribution A/(0,(k)?).

The function ¢ : R — R{ should fulfill the following properties:

e =0 ? pe{0,1} is a monotonous function
o limyooe(k)/(o(k)y(k)) — oo
Without the second property we do not have an ill-posed problem. It holds
E <€7 Uk‘) =0

E <£7vk> <§7 Ul> =0
and
E (&, v)* = e(k)? (5)
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The function e should not decrease or increase faster than exponentially, i.e. there is a
positive constant c¢. such that for all k it holds

cle(k) > e(k+1) > ce(k) (6)

€

2.5. Independence

In all cases we will assume that x and £ are independent. This means in particular that
for all combinations of £ and [ it holds

E (z,u) (¢,v) =0

This allows us in particular the following consideration. Let the operators A; : X — X
and 45 : X — X.
Then it holds

El| Az + Ast||* =E[| Arz||* + El| As8]|* + 2E (Ayz, As8) = El| Arz]|* + E[| Ax£*

The triangle inequality would just give us (apart from a factor of 2) the < sign. Actually,
the possibility to decompose (in average) the norms in this way keeping the equality
was one of the reasons to introduce the above conditions on x and &. Note that in order
to have this equality we just require that one of the two quantities x and ¢ is such a
random variable.

2.0. Regularization

Now we define the notion of a regularization family [11, 1]. This is a family of functions

-1

ntnew Which should replace the inversion operator . s +— s7! by a family of
g Yy y

bounded approximands. It fulfills the following properties: for all n < m and for all
s € R"

e 5¢,(s) monotonous
9n(8) < gm(s) and g, # gm
lim,, o Sgn(s) =1

> i1 gn(o(k))?e(k)? < o0

Examples of regularization families are

e Spectral Cut-Off:

e Tikhonov

for some 0 < ¢ <1
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3. First Considerations

Now we can do some calculations always assuming n < m. In order to reduce the
number of equations and furthermore to introduce interesting additional aspects we will
always consider vectors of the form APz. For p = 0 we have z, for p = 1 we have y.

3.1. Abbreviations

In order to have a simpler access to some quantities we will replace some sums which
we will have later on with easier expressions. Define the functions g, : R§ — Ry and
@, Rg — Ry by

0,(k)? = o(k)e(k)*gu(o(k))’ (7)

(k)?(k)? (1 = o (k)gu(a(k)))’ (8)

Gl
=
x5
e
I
[]¢
Q

where for any point k < [ < k + 1 the function is the straight line between the points
at k and k + 1.

Due to the fact that none of the functions o, v and ¢ is exhibiting behavior worse
than exponentially we have that neither g, nor , is exhibiting behavior worse than
exponentially. This means that there exist positive constants Cop and Cop such that

ok +1) = ¢, 0, (k) (10)

3.2. Expectations

Using the definitions of x and £ we can easily evaluate the following expectations.

oo

E|A%|* =) o (k)*y(k) = 5,(0)° (11)

Bl 4722 = 32 o (kP (k)Po(k20a(0 (k) = 5,07 ~7,(n)>  (12)

E||APZ)|)* = Z o (k) (y(k)?o(k)? + 6°c(k)?) gn(o(k))?
=5,(00> —=%,(n)? + 6°g,(n)? (13)
E[|A? (2n, — @) [|* = Z o (k) (k)20 (k)2 (gm(a(k)) — gu(o(k)))?

=5,(n)* =B, (m)* (14)
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o0

E[A7 (2, — 3) |2 = 3 o(k)? (1(k)?0 (k) + 2(k)%) (gm0 (k) — gulo(k)))?

k=1

=5,(n)* = B,(m)* + 6, (m)* — 6°g,(n)* (15)

o0

B A7 (24— 2) |2 = 3 o (k) 0% (k)*ga(0(k))? = 6%, (n)? (16)

k=1
oo

E[A” (z = z,) [P = Y o(k)™y(k)* (1 = o (k)gn(0(K)))* = B, (n)° (17)

k=1
00

4. Spectral Cut-Off

First of all we will consider the spectral cut-off regularization scheme because it has the

advantage that

1 kE<n
gnlo(k))o(k) = -
(o(k))a(k) {0 -
And hence also the term (m > n) gets
0 kE<n
(gm(o(K)) = gn(o(k)))o(k) =41 n+1<k<m
0 E>m

Therefore the preceding sums (7) and (8) can be replaced by simpler versions, in

particular:
op(k)? = ) o(k)"e(k)*
k=1
op(k)? = Y a(k)™(k)?
k=n+1

4.1. Concentration

(19)

(20)

In order to gain more stochastical stability we will not consider all possible regularized

solutions but a much smaller number which will still yield, if appropriately chosen,

optimal rates. The function choosing the “right” regularized solutions will be called

concentration.

Definition 4.1 (Concentration) The function l, : IN — N s called concentration iff

there exist positive constants ¢y, and ¢ reglow aNd Kying, > 1 such that it holds
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0
o 1p)(1) = Kpiny
o ly(n+1)=1lp(n) = ly(n) —l(n—1)
op(lp(n + 1)) < ClQ,upr(lp(n))Q
o ©,(ly(n+ 1) > Clz,reglow‘Pp(lp(n))Q

Due to (9) and (10) concentrations always exist.

Definition 4.2 (Valid exponential concentrations) A concentration additionally
fulfilling for ¢jregup < 1 and cpiow > 1

Caow 2p(1p(1))* < 0p(lp(n + 1))* < 1,0 (Ip(n))? (21)
and
Clz,reglowgpp(lp(n + 1))2 S Qpp(lp(n))Q S Ciregup@p(lp(n + 1))2 (22)

is called to be exponentially valid.

4.2. Optimality Criteria

We have four different optimality criteria. We will show that they are equivalent in
certain cases and guarantee that we have an optimal rate solution.

Definition 4.3 (Norm criterion) The parameter m € IN fulfills the norm criterion
w.r.t. pif it holds

E||AP (z —20) ||> < ¢ mlnEHAp (z—22)|? (23)

other

Definition 4.4 (Sum criterion) A parameter m € R™ fulfills the sum criterion w.r.t.
p if it holds
Crin®p(m)” < 0%0,(m)* < € peipp(m)? (24)

Definition 4.5 (Integral criterion) A parameter m € RT fulfills the integral
criterion w.r.t. p if it holds

[ " o(@)o(2)(2)dr < / " ()i (o) < 2, / " o(@)o(2)(2)da
(25)

Definition 4.6 (Intersection criterion) A parameter m € R* fulfills the intersec-
tion criterion if it holds

Cmin@(M)*y(m)* < 0%2(m)* < o0 (m)*y(m)* (26)

min — — I

This is the only definition which is not depending on p.
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4.8. Optimal Solutions

According to the above definitions we define

Definition 4.7 (Norm optimal parameter) The parameter npom € IN is called
norm optimal w.r.t. p if it holds

E| AP (x — ) I = fféiﬂ%]E”Ap (x - xfl) I& (27)

Mnorm

This criterion is also known under the name oracle inequality.

Definition 4.8 (Sum optimal parameter) The parameter rie.. € R*Y is called
continuous sum optimal if it holds

Pp(Tsum)” = 0% 0p(7oum)? (28)
It is called sum optimal if
Nsum = | T'sum | (29)
A concentrated version is
Fsum = min{l(k) 2 Ngum } (30)

Definition 4.9 (Integral criterion) The parameter ry,, € RT is called continuous
integral optimal if it holds

/ o ()20 (2)y () dz = / " o (2)78% (x) e (31)
It is called integral optimal if

Nint = (Tint—l (32)

Definition 4.10 (Intersection optimal parameter) The parameter rie., € RT is
called continuous intersection optimal if it holds

U(Tisect)27<risect)2 - 525(Tisect)2 (33)
It is called intersection optimal if
Nisect = (Tisect—‘ (34)

Lemma 4.1 Assume m fulfills the sum criterion and that | is a concentration with
(k) <m <Il(k+1). Then (k) and l(k + 1) fulfill the sum criterion.

Proof

Using the monotonicity of g, and ¢, together with the inequalities o,(l,(n 4+ 1))* <
G up0p(lp(n))? and (1, (0 +1))% > ¢ epionp(lp(n))? of the definition of a concentration
the result is straightforward.
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4.4. Requirements

Definition 4.11 (Valid p) The parameter p is called valid if
o o(k)*6%0 (k) %e(k)? is increasing
o o(k)*y(k)? is decreasing.
Remark
This means in particular that also o, is increasing and ¢, is decreasing. This property

makes that the problem we consider actually behaves in the way we expect from an inverse
problem.

Definition 4.12 (Lower Equal Behavior) Two real valued functions f(k) and g(k)
are called to fulfill the lower equal behavior condition, if either
e Both of them can be bounded from below by a positive polynomial in k

e Both of them can be bounded from below by a positive exponential function in k

Definition 4.13 (Equal Behavior) Two real valued functions f(k) and g(k) are
called to fulfill the equal behavior condition, if either

e Both of them can be bounded from below by a positive polynomial and above by a
polynomial in k
e Both of them can be bounded from below by a positive exponential function and

above by an exponential function in k

Remark
Please note that this behavior condition trivially transfers to p,(k)? and 6*¢,(k)* and
vice versa as long as we have a valid p.

4.5. Results without additional assumptions

Now we will show step by step a theorem which will be the key part of the later
considerations.

Theorem 4.2 Assume that p is valid. Then the following diagram holds

Intersection criterion

4

Norm criterion(p) <= Sum criterion(p) < Integral criterion(p)

Lemma 4.3 (Sum criterion(p) < Integral criterion(p)) Let p be valid. Then the
sum and the integral criterion are equivalent.

Proof
Trivial consequence of the monotonicity of o(k)*%c (k) 2(k)? and o(k)*~(k)* and
their property of not changing faster than exponentially.
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Lemma 4.4 (Sum criterion(p) = Norm criterion(p)) Assume that p is valid and
form e N

Crzninsap(/nrl)2 S 529p(m)2 S CIQnaXSOP<m)2

Then it holds for nyom

E| AP (m—x ) 1? < (1+max{c )EHAP (m—x6 ) &

max’ mln Mnorm

Proof
There are two cases to consider
Case 1: m < Nyorm

Due to g, increasing it holds

E||A? (z —a3,) || =g, (m)* + 6% 0,(m)?

(1 + Cmax) 52@1)( )2

(1 + Cmax) 52@1) (nnorm)2
(14 o) ENA? (2 — 28 )7

Mnorm

IN N INA

Case 2: m > Nyorm
It holds due to ¢, decreasing

E| A7 (z = ap,) [ =pp(m)? + 6% (m)

©p
(1+ ciin) @p(m)°
(1 + ) #p(Pnorm)”
(1

min) EIIA” (2 — a7, ) 17

Tnorm

IANIN A

+c
+c

Hence the above inequality holds.

Corollary 4.5 Let p be valid. It holds that there is a positive constant Coiper independent
of 0 such that

E| AP (:p nsum) ||2 < 2 E|| AP (m — ) ||2

other Mnorm

and

E| AP (x ) I? < o Bl AP (x — ) &

other Mnorm

Proof
On the one hand we have by definition

@p(nsum)2 S 62@;} (nsum)2

and on the other hand
Qpp(nsum - 1>2 > 52Qp(nsum - 1)2
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Using 6?0, (1sum — 1)* > ¢,50p (Nsum)? and ¢p(ngum)? > ¢ 0p(nsum — 1) we get
‘Pp<”sum> > prCQQ(SQQp(HSum)Q

This means in particular that we are in the situation of the last theorem and hence
the proposition holds for the first equation. The second can be shown using the same
arguments and the equivalence of the sum and the integral criterion.

Lemma 4.6 (Intersection criterion = Norm criterion(p)) Let p be valid. As-
sume for m € IN

G im0 (M)A(m)* < 8e(m)’ < &0 (m)y(m)?

min — — “max

Then it holds for nyorm

E[|A? (z — 29,) [|> < max{cZ x, Cmia JE| A7 (z — 20 |7

max’ IIllIl nnorm

Proof
Again, there are two cases to consider:
Case 1: m < Nyorm

For all m < k < nyorm it holds:

6%e(k)? > 6%(m)* > &

(M
8
g

S
2
—~
3

N

\%
o

o
=
=

Sy
~

N
)
—
=

N

Hence we have

Y Fo(k)Po(k)Pe(k)’ =y > o(k)Po(k) (k)
k=m+1 k=m+1

and so

E||A? (z —a3,) |I> =) o(k)?0 (k) *e(k)?

k=1
- o(k)Py(k) + Y o(k)™y(k)?
k=m+1 k=nnorm—+1
<> o(k)750 (k) Pe(k)’ + ey Y 00 (k)Po(k) e (k)?
k=1 k=m+1
+ Y o(k)Py(k)?
k=nnorm+1
mln]E| AP (.T - xinorn]) H2

Case 2: m > Nporm
For all m > k > nyomm it holds:

0%e(k)* < 6%e(m)* < s (m)*y(m)* < cq a0 (k)*y (k)
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Hence we have

> Fo(k)Po(k)Pe(k)’ < e Y o(k)Po(k)*y(k)?
k=m+1 k=m+1
and so
BIA? (z —20,) ||* =) o(k)*0%a(k) (k) + Y o(k)*6%c(k) (k)
k=1 k=m+1
D SRR GReTOh
k=nnorm—+1
ZO_ 2p52 2€<k)2
k=1
+ G > ok)Py(R)*+ > o (k)Py(k)
k=m+1 k=Nnorm—+1

maxEHAp (:I:_xflnonn) ||2

Hence the inequality holds.

Lemma 4.7 (Intersection criterion = Sum criterion(p)) Letp be valid. Assume
form e N

Then it holds
0120w80p<m>2 S 52917( ) < Cupgop( )2

Proof
The same line of arguments as in the last theorem works in this case.

4.6. Results with behavior assumptions

Now we will use the equal behavior assumptions to show step by step

Theorem 4.8 Assume that p is valid. Assume furthermore that for p we have the same
behavior condition. Then the following diagram holds

Norm criterion(p) < Sum criterion(p) < Integral criterion(p)

0

Intersection criterion

Due to Theorem 4.2 we can restrict our attention to Norm criterion(p) =
Sum criterion(p) and Integral criterion(p) = Intersection criterion. As far as we can see
the only way to prove these two results is making use of the equal behavior conditions
which will insure that the points described by the different optimality criteria and the
real intersection point are not too far away from each other.
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Lemma 4.9 (Polynomial behavior) Assume that we have functions f : RT — R*
decreasing and g : Rt — RT increasing. Let f(1) = g(1) = 1 and for a variable z > 1
we know that it holds g(x) < Cother-

Assume furthermore that f and g exhibit lower polynomial behavior, i.e. there are
positive constants Cuin, Cmax Such that for all y > 1

—Cmax lny S ln.f<y)

and
Cmin Iy < Ing(y)

Then it holds that there is a positive constant c just depending on Cother, Cmin NG Crax
such that

g(x)/ f(z) < c
Proof

We have
cmin D < Ing(z) < InCopner

and hence
hl X S (hl Cother) /Cmin
Therefore we have
In f(I) Z - (Cmax In Cother) /Cmin
and so
f(l') 2 eXp<_ (Cmax ln Cother) /Cmin>

which yields the proposition.

Lemma 4.10 (Exponential behavior) Assume that we have functions f : R — R*
decreasing and g : R — RT increasing. Let f(0) = g(0) = 1 and for a variable x > 0
we know that it holds g(z) < Cotner-

Assume furthermore that f and g exhibit lower exponential behavior, i.e. there are
positive constants Cuin, Cmax Such that for all y > 1

—Cmax¥y S In f(y)

and
Cminy < Ing(y)

Then it holds that there is a positive constant ¢ just depending on Cother, Cmin ANA Crax
such that

g9(x)/f(z) < c
Proof
Exactly the same as last proof when replacing Inz by .
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Theorem 4.11 Assume that we have functions f : RT™ — R™ decreasing and g : RT —
R* increasing intersecting at a point z, i.e. f(z) = g(z). Assume that for a variable
x > z we know that it holds g(x) < Cotnerg(2).

Assume furthermore that f and g fulfill the lower equal behavior condition.

Then it holds that there is a positive constant ¢ just depending on the behavior of
f and g but not on the intersection point z or the value of g(z) such that

g9(x)/f(z) <c
Proof
This is a trivial consequence of the two preceding lemmas doing a rescaleing to z and
9(2).
Remark

By mirroring and exchanging f and g we also get the same results for the values smaller
than the intersection point.

Theorem 4.12 (Norm criterion(p) = Sum criterion(p)) Assume that p is valid
and that @, and o, fulfill the lower equal behavior condition.
Assume that for m € IN

E| AP (:1:' - :cil) I? < o Ell AP (:1: — ) I?

other Nsum

Then it holds
0120w90p(m>2 < 529p(m)2 < Cip@p(m)2
Proof
Like beforehand, two cases:

Case 1: m < Ngum
It holds trivially

0%0p(m)* < pp(m)?
The other side of the inequality gets

ep(m)* < Cper (‘»Op(nsum>2 + 529p<nsum>2) < Cother (1 + c¢;209;2> p(N5um)?

Using Theorem 4.11 we get our result.
Case 2: m > ngum
Exactly the same as the last case.

Theorem 4.13 (Integral criterion(p) = Intersection criterion) Assume that p
is valid and that o(x)*Po(x)?v(x)? and o(x)**6%e(x)? fulfill the equal behavior condition,
that they intersect and that we know:

G [ oleProlafwpis < [

m 1

m o0

o(x)?P6%(z)?dr < c?nax/ o(x)?Po(z)?y(x)*dr

m

Then it also holds
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Proof

As the proposition is equivalent to
Clow0 ()P (m)*y(m)? < o(2)?d%(m)* < ey 0 (2)*o(m)*y(m)*

we can rewrite to the following problem:

o | 1@itr < [ gt <y [ fla)da

m m
where f : Rt — R* is decreasing, g : RT™ — RT increasing, [ and ¢ intersecting and
both exhibiting the same behavior (either polynomial or exponential). We need to show
that there exist cjow and c,p such that

Ciowef (M) < g(m) < 7, f(m)

Obviously we have that also the primitives F(-) = [* f(z)dz and G(-) = [ g(x)dz of f
and g respectively exhibit the same behavior as f and g. Furthermore F' is decreasing,
(G increasing.

Now there is a unique point r for which

F(r)+G(r) = /TOO f(z)dz + /; g(x)dx

is minimal due to f and ¢ intersecting and it obviously holds f(r) = g(r). Due to the
lower equal behavior condition we can argue along the lines of the last proof that there
is a positive constant such that

c'F(r) < G(r) < cF(r)

We need to distinguish two cases:
Case 1: r <m
Obviously f(m) < g(m). Furthermore it holds

G(m) <, F(im) <, F(r) <, cGr)

max max max
Using that GG, f and g exhibit the same behavior we get the assertion as in the supporting
lemmas of Theorem 4.11.
Case 2: r >m

The same argumentation as for the last case, just f and g exchanged.

4.7. Considerations

Definition 4.14 (Qualification) A regularization family is called qualified for p if
there is a valid concentration | for which we have

o(k)**0%e(k)*gn(0(k))* < craxgp(1(n))?

NE

Cmin€p((n))* <

b
Il

1

o (k) (k)* (1 = o (k)ga(0(K)))* < chppp(l(n))?

NE

Clowp(1(n))* <

>
Il
—
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Remark
The spectral cut-off scheme is trivially qualified.

Remark

Looking through the proofs of the last section we can remark two things. First of all
they will work even if we would use concentrations which are valid and we get the same
rates. Furthermore if a reqularization family is qualified for p it exhibits the same rate
behavior as the associated concentrated spectral cut-off scheme.

Therefore we can put the results together and get

Theorem 4.14 Assume that p and q are valid. Assume furthermore that for p we have
the same behavior condition and the reqularization family {g,}nen is qualified for both
p and q.

Then the following diagram holds

Norm criterion(p) < Sum criterion(p) < Integral criterion(p)

)

Intersection criterion

4

Norm criterion(q) < Sum criterion(q) < Integral criterion(q)

This has very interesting and important consequences. It tells that it will be sufficient to
regularize in one space along the Hilbert scale which fulfills the same behavior condition
and that we get a good regularization for all other spaces along the Hilbert scale for
free.

This means in particular that if the noise is bad enough smoothing in the data
space and then inverting the operator without any kind of regularization is a valid
regularization method. In the other direction we can conclude that a good regularized
solution in the original space also yields a rate optimal approximation to the data.

5. Stopping Strategies

Now we will analyze a stopping strategy which neither requires a tuning parameter nor
the knowledge of 9.

Definition 5.1 Assume that | is a valid exponential concentration and p is valid.
Assume furthermore that x : RT™ — R is function which fulfills that

p(l(n))*x(1(n))?

is exponentially decreasing and

op(1(n))*x(U(n))*

is exponentially increasing.
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The parameter naig,, s called minimum difference regularization parameter if
K = aymin {EJ|A” () — ) [P0} (35)
and
Ndiff,x = l(kdiff,x)

Theorem 5.1 There is a positive constant Copner Such that

EA” (0.~ 2) I2 < e BIlA? (28, — @) |

Nisect

Proof
It holds

|| A (21 — i) 17 = @p(1(k))* = 01k +1))* + 6% 0, (I(k + 1))* — 6% 0, (1(K))?

and hence using the exponential behavior of both ¢, and g, there are positive constants
Cmin aNd Cpax such that

Conin (o (L(K))? + 0%, (1(K))?) < EIAP (i 11) — 2i)) II* < hoa (90 (1K) + 0% 0,(1(K))?)

Using the same line of arguments as in the Theorem 4.11 and its supporting lemmas we
get

Clowep(L(R))* < 0%y (I(K))* < clpipp(U(k))*

Hence we get the above result. The multiplication with x(I(n))? does not change the
proof because it does not change the principal behavior of ¢, and g,.

The above result just holds in expectation, i.e. in particular just with the expected
regularization parameter. For real world situations we can just formulate the following
conjecture right now:

Conjecture 5.1 Define according to the last definition the reqularization parameter

Kaie = aigﬁ%n {HAp (x?(k—&-l) - I?(k)) ||2x(l(n))2}

—_~—

Ndiff,x = l(kdiff,x)

Then it holds analogously to the last theorem

Nisect

E|| AP (:ﬁ

I(kait,x)

— ) | < o BIlAY (2], — ) |

For the choice of x(I(n))? there seem to be basically two good choices:
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e y=1,p=0
In this case the parameter choice procedure is very similar two the quasi-optimality
principle. The only difference is that it is formulated for concentrated Spectral
Cut-Off right now and not for Tikhonov regularization [1, 12]. In experiments this
choice lacks for a wrong choice of the concentration statistical stability, i.e. at
least some assumptions on the concentration have to be made in order to fulfill
Conjecture 5.1.

o x(I(n))*=o(i(n))~, p=0
In this case we are at some point in an intermediate situation between the Lepskij-
type balancing principle as proposed in [11] and the quasi-optimality.
This choice has in comparison to the quasi-optimality the advantage that we can
guarantee for both the increasing and decreasing part a minimum speed which
results in practice in slightly worse constants but much higher stochastical stability.
Methods like the one presented in [13] remind remotely to this kind of parameter
choice rule.

6. Numerics

In order to test the described method we have set up the following example problem:

e A is a diagonal operator with 200 elements and Eigenvalue decay k3.

e Solution z is a Gaussian random vector with Fourier coefficients decaying as k=2
along the Eigen spaces.

e The noise was chosen as a Gaussian random vector with error level § = 107
e We generate 50 different solutions and for each of them we also generate 10 different
noisy input vectors. So we were treating 500 different problems for each case.

As regularization methods we used

e Exponentially concentrated spectral-cut-off as used in the proofs; figure 1.

e Tikhonov regularization; figure 2.
As parameter choice methods we used

e A tuned version of the balancing principle with x = 0.5, see [14]; grey bars.

e The intermediate stopping procedure between balancing principle and quasi-
optimality, i.e. x(I(n))? = o(I(n))~!; black bars.

e Quasi-optimality; white bars.

As we “knew” the real solution in our experiment we could also generate the optimal
possible regularized solution with respect to the chosen regularization scheme. This was
used for comparison purposes.

In the left half of the diagrams we displayed a bar plot showing the chosen
regularization parameter minus the optimal possible one. This means in particular
that numbers smaller than 0 mean oversmoothing. In the right half of the diagrams we
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displayed a barplot showing the ratio between chosen solution and the norm optimal
one. This means in particular that the ratio cannot get smaller than 1.

Regularization parameter compared to the optimal one Regularization error compared to the optimal one
T T T T T

300 T 250 T T
[Lepskij Stopping Index [ JLepskij Stopping Indesx
I H:rdened Lepskij Stop. Ind I Hardened Lepskij Stop. Ind.
:Quaswromwma\ity I:|Guasi—0mimahly
280 B
200 |
200 1
150 - ]
180 B
100+ =
100 - 1
s0F A
S0 B
il 1 — - il rﬂrﬂ 1 1l
-3 -2 -1 0 1 if 12 1.4 16 18 2 4 30 huge
Mean: 0656 /-0637-1.15 ; Median: -1/-1/-1 Mean: 11621 /11641 /1.2919 ; Median: 1.0945 /1.0729 / 1.2036
Figure 1. Experiment for expoentially concentrated cut-off
Regularization parameter compared to the optimal one Regularization errar compared to the optimal ane
350 T T T T T 180 T T T T
[ | epskij Stopping Index [ L epski] Stopping Index
I Hardened Lepskij Stop. Ind I H:rdened Lepskij Stop. Ind
[ Jauasi-Optimality @bk [ Jawasi-Optimality i
a0} g I
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00 I B
il | | ; Ioa...
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Figure 2. Experiment for Tikhonov
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We observe that the proposed methods perform statistically seen very stable and
are in average better than the balancing principle. In fact we performed this type of
experiment with very many different setups for the operator behavior, smoothness of
the solution, type (Gaussian or heavy tails) of the noise and color of the noise.

In all situations covered by the proof the quasi-optimality performed very well, in
the ones which are not covered it sometimes worked very well and sometimes not at all.
In comparison the mixture between balancing and quasi-optimality performed very well
in all situations we tested, in particular it coped very well with heavy tails in the noise
and situations where the equal behavior condition was violated.

7. Conclusion

It is clearly questionable if it is sensible to impose a prior condition on the quantity we
search for. There are not very many situations where one can definitely say that such or
an equivalent condition holds. However, as we have more or less complete freedom for
the function describing the smoothness of x and the fact that we just use it formally but
do not require the knowledge in methods like the one presented this approach has merely
the property that it qualifies the situations for which one can construct counterexamples
along the Bakushinskii veto [2] as very rare and hence possible to ignore in reality.

In practice quite a lot of methods which lack of thorough foundation are in use, e.g.
quasi-optimality. We hope that the proposed approach can help to explain why these
parameter choice heuristics work in certain situations and not in others. Furthermore
one can use these tools to design new heuristics which can be proven to work at least
in a very special case.
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