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Abstract

Magnetic Resonance Imaging with parallel data acquisition requires algorithms for
reconstructing the patient’s image from a small number of measured k-space lines.

In contrast to well-known algorithms like SENSE and GRAPPA and its flavors we
consider the problem as a non-linear inverse problem. Fast computation algorithms
for the necessary Fréchet derivative and reconstruction algorithms are given.

1 Introduction
Magnetic resonance imaging (MR imaging, MRI) routinely relies on critical sampling
in the three-dimensional spatial frequency space (Fourier domain, k-space) for spatial
encoding. A fairly recent development allows to replace some of the time-consuming
sequential steps of phase encoding by switched magnetic gradient fields, so-called k-space
lines, by parallel acquisition with an array of detector elements with a manifold of non-
uniform spatial sensitivities. This partially parallel imaging (PPI) has been proposed
in many forms and colorful acronyms such as SMASH [1], SENSE [2], GRAPPA [3],
SPACE-RIP [4], etc. In short, PPI allows to reconstruct images from k-space data sets
with limited support.

All the known methods have in common that they work in two distinct steps: a
calibration step, in which a separately acquired data set, or part of the undersampled
data set is used to extract information about or related to the sensitivity characteristics
of the detector array, and a reconstruction step, in which the undersampled data set is
either completed, or an artifact-free image is synthesized from the undersampled data
and the sensitivity information.
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A popular concept in PPI is called autocalibration, and works by acquisition of a
regularly undersampled k-space grid plus a few k-space lines near the center of k-space,
i.e., in the low spatial frequency range.

It should be noted that, although the sensitivity characteristics of the array detector
elements are unknown and vary with the patient specific detector placement and choice of
diagnosis protocol, the noise characteristics of the detector array can easily be measured
with high accuracy.

There is today no method available which performs the image reconstruction in a
single process which takes into account both the undersampled imaging data and the
extra imaging data or the extra calibration data. Also, there is today no optimality
criterion for the quality of the image reconstruction, except for those methods which
assume perfect knowledge of the spatial sensitivity profiles of the array detector elements,
which is of course not achievable in practice.

In this paper we will show how one can reconstruct both the image and the sensitivity
out of the data simultaneously. To this end we will reinterpret this problem as a non-
linear inverse problem, see e.g. [5, 6] and the references therein. These have received
great attention in the recent times in all areas of non-destructive testing. A specific
property of inverse problems is their intrinsic instability which is also an explanation for
many effects observed in the practice of PPI. The advantage of the methods which we
will introduce here is that we can actually guarantee the optimal order of accuracy in
our solutions. In general and without additional information it is not possible to beat
these methods apart from a constant factor.

The paper is organized as follows. First we describe the specific model we use and
introduce notation. In the second part we will give an explicit calculation of the Fréchet
derivative which is an essential part of the later considerations. We will give some
considerations to reduce the number of necessary operations. Afterwards we will present
different possibilities to solve the non-linear inverse problem including some explicit
algorithmic parts. The last sections presents a short numerical experiment using the
presented algorithms.

2 The Model
In the following we will describe the model we consider for the whole paper. As we can
just measure at discrete positions we will not consider a continuous model right now.
However most considerations would carry over to an infinite dimensional setting.

2.1 Fourier Transforms

Later on we will largely need two dimensional Fourier transforms. We will denote the
fast Fourier transform by FFT and the inverse fast Fourier transform by FFT. The
Fourier transform roughly costs the number of elements inverted times its logarithm.

Many quantities will have later on a matrix and a vector interpretation. Whenever
we apply the Fourier transform we automatically assume that this is applied on the
matrix interpretation.
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2.2 Matrix Multiplications

We will need two forms of matrix multiplications. The standard one will be denoted by
no point. A second kind of multiplication will be denoted by ×. It holds

{aik}1≤i≤n,1≤k≤m × {bik}1≤i≤n,1≤k≤m = {aikbik}1≤i≤n,1≤k≤m

Computing this quantity costs n ·m Operations.

2.3 Image

We want to reconstruct an image. The image P is considered to be a function

P : B = {1, . . . ,Phor} × {1, . . . ,Pver} → C

In this discrete case there is a canonical presentation of P as member of the matrix space
CPhor×Pver = CPnum with Pnum = PhorPver. However later on it will be more sensible
to consider this as a vector. In order to guarantee a unified access we will use the x as
member of the actual base space B, i.e. P(x) is always well defined.

In standard applications one normally finds Phor = Pver = 256 i.e. we have to
reconstruct 65536 variables simultaniously.

2.4 Receiver Sensitivities

We assume to have several receivers R numbered from 1 to Rnum. Due to physical
properties of the receivers R, their spatial configuration and other properties we do not
get an exact image but a multiplied one with the sensitivity kernel

SR : B→ C

2.5 Measurements

We can just measure in the k-space (Fourier transformed space of the image). There we
do not want to measure everything but a selected number of lines. I.e we have a subset
M ⊂ B. The projection operator to this subspace shall be denoted by

P : B→M

The number of elements in M is denoted by Pproj. The measurement is defined as a
receiver dependant function

MR :M→ C

While measuring we have the following relation:

MR = PFFT (P × SR)
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2.6 Sensitivity Kernel

We assume that the sensitivity kernels can be described by a small number of basis
functions, i.e. there is a set {Bn}n∈{1,...,Bnum} such that there are coefficients bR,n with

SR =
Bnum∑
n=1

bR,nBn

Without loss of generality we assume that we can use the same set of basis functions for
each of the different receivers. I.e. for each measurement we have using the linearity of
the operators

MR =
Bnum∑
n=1

bR,nP (FFT (P × Bn))

The vector of coefficients for the receiver R will be denoted by bR

3 Calculations
Later on we will see that we need three quantities simultaneously for which we need fast
evaluation procedures for the forward operator, the Fréchet derivative and the Fréchet
derivative times its adjoint

As a short notation of
(
P b1 . . . bRnum

)
we will use X .

3.1 Forward Operator

This is actually already the low-cost forward operator computation with O(ln(Pnum) ∗
Pnum ∗ Rnum):

F


P
b1
...

bRnum

 =


∑Bnum

n=1 b1,n P (FFT (P × Bn))
...∑Bnum

n=1 bRRnum ,nP (FFT (P × Bn))


or shorter if we denote

FFT(P,B) =
(
FFT (P × B1) · · · FFT (P × BBnum)

)
then

F


P
b1
...

bRnum

 =

 PFFT(P,B)b1
...

PFFT(P,B)bRnum

 =

 PFFT(P,S1)
...

PFFT(P,SRnum)


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3.2 Fréchet Derivative

For the Fréchet derivative we have to reinterpret FFT as a matrix, i.e.

FFT(P) =

 f1,1 . . . f1,Pnum
... . . . ...

fPnum,1 . . . fPnum,Pnum


 P1

...
PPnum

 =


∑Pnum

i=1 fi,nPi
...∑Pnum

i=1 fPnum,iPi


Restricting our attention to the receiver R first and denoting the entries of SR by SR,i,
we have:

FR(X ) = P (FFT (P × SR)) = P


∑Pnum

i=1 f1,i SR,iPi
...∑Pnum

i=1 fPnum,iSR,iPi


Hence we have

∂

∂bR,n
F[X ] = P (FFT (P × Bn))

and

∂

∂Pk
FR[X ] =P

f1,k SR,k
...

fPnum,iSR,k

 = P (FFT(1k))SR,k

where 1k denotes the image with just position k is 1 and all others 0. Hence we have

FFT(1k) =

 f1,k
...

fPnum,k


Now, if the whole collection of FFT(1k) is called FFT(1) we get

FR[X ]′ =
(
P (FFT(1))× SR P (FFT (P × B1)) · · · P (FFT (P × BBnum))

)
or shorter

FR[X ]′ =
(
P (FFT(1))× SR PFFT(P,B)

)
So finally we get

F[X ]′ =


P (FFT(1))× S1 . . . PFFT(P,B) . . . 0 . . . 0

...
...

...
...

P (FFT(1))× SR . . . 0 . . . PFFT(P,B) . . . 0
...

...
...

...
P (FFT(1))× SRnum . . . 0 . . . 0 . . . PFFT(P,B)


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In order to have a shorter notation for the next section we will denote the submatri-
ces/tensors D1 = P (FFT(1)) and DP = PFFT(P,B). This yields

F[X ]′ =


D1 × S1 . . . DP . . . 0 . . . 0

...
...

...
...

D1 × SR . . . 0 . . . DP . . . 0
...

...
...

...
D1 × SRnum . . . 0 . . . 0 . . . DP


3.3 Fréchet Derivative times its adjoint

We want to compute (F[X ]′)T F[X ]′ in an efficient way.



ST
1 ×DT

1 . . . ST
R ×DT

1 . . . ST
Rnum

×DT
1

...
...

...
DT
P . . . 0 . . . 0
...

...
...

0 . . . DT
P . . . 0

...
...

...
0 . . . 0 . . . DT

P




D1 × S1 . . . DP . . . 0 . . . 0

...
...

...
...

D1 × SR . . . 0 . . . DP . . . 0
...

...
...

...
D1 × SRnum . . . 0 . . . 0 . . . DP



=



(∑Rnum
R=1 SRST

R

)
×DT

1D1 ST
1 ×DT

1DP . . . ST
R ×DT

1DP . . . ST
Rnum

×DT
1DP

DT
PD1 × S1 DT

PDP . . . 0 . . . 0
...

...
...

...
DT
PD1 × SR 0 . . . DT

PDP . . . 0
...

...
...

...
DT
PD1 × SRnum 0 . . . 0 . . . DT

PDP


3.4 Analysis

Hence one needs to do the following computations. First we note the (rough) number of
operations for the ones which need to be performed once:

• D1 = P (FFT(1)): log(Pnum)Pnum
2

• DT
1D1 : Pnum

2Pproj

I.e. together approximately PprojPnum
2. Now the operations which need to be done

everytime:

• PFFT(P,B) : BnumPnum log(Pnum)

• all PFFT(P,SR) : RnumPnum log(Pnum)

• all P (FFT(1))× SR : PnumPprojRnum

•
(∑Rnum

R=1 SRST
R

)
×DT

1D1 : Pnum
2Rnum
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• DT
1DP : BnumPprojPnum

• all ST
R ×DT

1DP : RnumPnumBnum

• DT
PDP : Bnum

2Pproj

I.e. together approximately RnumPnum
2.

Furthermore we need to invert the matrix (F[X ]′)T F[X ]′ later on (respectively a
matrix of the same size): Using Cholesky factorization we need 3 (Pnum + BnumRnum)3

operations and is so the by far most cost intensive operation.
Please note that we can perhaps save some operations by rewriting the algorithms.

E.g. as we will not have to compute (F[X ]′)T Y often we do not really have to compute
the whole matrix (F[X ]′)T .

3.5 Remarks

Assume that one measures all measurements with double intensiveness. This can have
two reasons. Either all receivers measure with double intensiveness or the picture is
double as bright. We have no possibility whatsoever to distinguish between these two
cases. Therefore we need at least one additional equation.

We want to have a rather stable additional quantity which does not significantly
reduce the speed of our computations. Therefore we propose to use the sum of each
sensitivity distribution SR. This has two advantages. On the one hand its the only
quantity which has an derivative independent of the actual values of SR and on the
other hand small errors should average themselves due to the law of large numbers.

3.6 Fast Forward Computation of the Fréchet Derivative

If we like to do a fast forward computation of the Fréchet derivative we can exploit the
following structure


D1 × S1 . . . DP . . . 0 . . . 0

...
...

...
...

D1 × SR . . . 0 . . . DP . . . 0
...

...
...

...
D1 × SRnum . . . 0 . . . 0 . . . DP



P
b1
...

bRnum

 =


(D1 × S1)P + DPb1

...
(D1 × SR)P + DPbR

...
(D1 × SRnum)P + DPbRnum



Using the relation

(D1 × SR)P =
(
D1 × P

)
SR

we need RnumPnumPproj +RnumBnumPproj
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3.7 Fast Forward Computation of the Adjoint of the Fréchet Derivative

If we want to have a fast forward computation of the adjoint of the Fréchet Derivative
we do not necessarily need to compute the matrix first. Obviously the solution has the
following structure

ST
1 ×DT

1 . . . ST
R ×DT

1 . . . ST
Rnum

×DT
1

...
...

...
DT
P . . . 0 . . . 0
...

...
...

0 . . . DT
P . . . 0

...
...

...
0 . . . 0 . . . DT

P




M1

...
MR

...
MRnum

 =



∑Rnum
R=1 (ST

R ×DT
1 )MR

DT
PM1

...
DT
PMR

...
DT
PMRnum



Using
Rnum∑
R=1

(ST
R ×DT

1 )MR =

((Rnum∑
R=1

ST
RMR

)
×DT

1

)
1

we have an algorithm just demanding RnumPnumPproj +RnumPprojBnum steps.

3.8 Fast computation of the Forward Solution of Fréchet Derivative
times its adjoint

Now we will see how much time one looses by directly computing both of the above
together



(∑Rnum
R=1 SRST

R

)
×DT

1D1 ST
1 ×DT

1DP . . . ST
R ×DT

1DP . . . ST
Rnum

×DT
1DP

DT
PD1 × S1 DT

PDP . . . 0 . . . 0
...

...
...

...
DT
PD1 × SR 0 . . . DT

PDP . . . 0
...

...
...

...
DT
PD1 × SRnum 0 . . . 0 . . . DT

PDP



P
b1
...

bRnum

 =



((∑Rnum
R=1 SRST

R

)
×DT

1D1

)
P +

((∑Rnum
R=1 ST

RbR

)
×DT

1DP

)
1(

DT
PD1 × P

)
S1 + DT

PDPb1
...(

DT
PD1 × P

)
SR + DT

PDPbR
...(

DT
PD1 × P

)
SRnum + DT

PDPbRnum


Just computing

((∑Rnum
R=1 SRST

R

)
×DT

1D1

)
P already takesRnumPnum

2 operations. I.e.
it is by far more cost intensive than computing the two parts separately. Actually, there
is almost no difference between computing this and matrix times vector, so if we have
access to the matrix we better use this one.
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4 Reconstruction Algorithms
Our main task is the reconstruction of the image P. However, as we have seen we can
just measure the image together with the unknown receiver sensitivities. Therefore it is
impossible to gain the knowledge of P without immediately also getting the coefficients
bR,n and vice versa.

4.1 Various Algorithms and Problem Interpretations

There are several one step algorithms, which provide solutions to the problem. Among
them are GRAPPA and SENSE. However we will later stick to the interpretation as a
non-linear inverse problem.

4.1.1 SENSE

SENSitivity Encoding assumes perfect knowledge about the spatial sensitivity profile of
the array detector elements. The original paper [2] gives some instructions on how to
estimate these spatial sensitivity profiles, but it is in general a non-trivial problem in
itself. Given perfect knowledge, however, the PPI reconstruction problem reduces to a
linear system of equations with a noise disturbance. In its simplest form, the SENSE
experiment yields a regularly undersampled data set where the number of k-space lines
in the full encoding is an integer multiple of the acceleration factor. After Fourier
transformation of the undersampled data set, each pixel in the resulting image is the
sensitivity weighted superposition of the unknown true image pixels. The full linear
system of equations reduces to one small linear system of equations per pixel in the
intermediate image.

4.1.2 GRAPPA

GeneRAlized Autocalibrating Partially Parallel Acquisitions assumes that the missing k-
space samples of one array detector data set can be expressed as a linear combination of
neighboring k-space samples in all array detector data sets. This assumption is motivated
by the fact that the modulation of the unknown true image intensity distribution with
the spatial sensitivity profiles, which is a convolution in k-space between the spatial
frequency spectra of the true image and the sensitivity profiles, will locally distribute
the information of any k-space sample among its neighbors. Sensitivity profiles can be
generally assumed to be smooth functions in image space, and hence the corresponding
convolution kernels have compact support in k-space.

For the typically very regular undersampling schemes, the coefficients of the linear
combination reconstruction, i.e., the reconstruction convolution kernels, can be estimated
from a sufficiently large fully sampled portion of the k-space data acquired with the same
detector array. It has interestingly been shown that the calibration does not have to be
performed with the same imaging parameters as the undersampled experiment, but can
be of quite a different image contrast. However, in most cases it is beneficial to make
the calibration acquisition part of the imaging experiment itself, i.e., autocalibration.
Typically, a few extra k-space lines in the center of k-space are acquired.

GRAPPA suffers from the large range of possible choices for the reconstruction kernel
parameters, like number of support points in the individual k-space directions, and
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an infinite variety of possibilities how to use the available calibration data for kernel
coefficient estimation. This dilemma has been treated in [7]. It has on the other hand
the capability of high-quality image reconstruction, even when the spatial resolution
of the calibration measurement is inadequate for the spatial frequency content of the
sensitivity profiles, see [8].

4.1.3 Non-linear Inverse Problem

From a mathematical point of view the most sensible thing would be generating the
receiver sensitivities and the image P in one go. The big disadvantage is that we need to
handle this as a non-linear inverse problem. However this will enable us to also consider
the influence of noise.

Therefore we will need the following notation. The solution is denoted, as beforehand,
by

X = (P,S1, . . . ,SRnum)

and the exact data will be denoted by Y, the measured ones by Yδ.

4.2 Non-linear Inverse Problems

Many inverse problems, not just the one formulated beforehand, can be formulated as
nonlinear operator equations

F(X ) = Y

with an injective operator F : D(F) ⊂ X → Y between the Hilbert spaces X,Y. We
assume that F is Fréchet differentiable on its domain D(F) and that the measured data
Yδ are perturbed by noise with noise level δ, i.e.

||Y − Yδ|| ≤ δ.

These problems are ill-posed in the sense that the solution does not depend continuously
on the data, i.e. F−1 is not continuous.

There are a number of different solution algorithms for non-linear inverse problems
[5]. The most prominent ones which require a matrix inversion are the iteratively regu-
larized Gauß-Newton method and the very similar Levenberg-Marquardt method.

The Landweber method is comparably slower but does not require the inversion of a
matrix. For linear problems there also exist faster methods, e.g. ν-methods which have
no convergence proofs for non-linear problems.

Common to all of these methods is that they require an initial guess X0. The better
the initial guess, the better and faster the method gets.

4.3 IRGN-Method

One of the most successful methods to solve such problem is the iteratively regularized
Gauß-Newton method (IRGNM) suggested by Bakushinskii [9]. The n-th step of this
methods consists in applying Tikhonov regularization to the linearized operator equation

F′[X δ
n ](X δ

n+1 −X δ
n) = Yδ − F(X δ

n)

10



with the initial guess X0:

X δ
n+1 = armin

x∈X
‖F′[X δ

n ](X − X δ
n)− Yδ + F(X δ

n)‖2 + αn‖X − X0‖2

For simplicity we only consider the following a-priori choice of the regularization param-
eters αn:

αn = α0q
n, q ∈ (0, 1), α0 > 0

The regularity of the solution relative to the smoothing properties of the operator is
measured in terms of source conditions of the form

X0 −X = Λ(F′[X ]∗F′[X ])W, ‖W‖ ≤ %

where Λ : [0, ‖F′[X ]‖2] → R is a monotonic increasing function satisfying Λ(0) = 0. It
is always assumed that the scaling condition

‖F′[X ]‖ ≤ Cs < 1

is satisfied, which can always be achieved by rescaling the norm in Y.
The IRGNM for converges with optimal rate (subject to the qualification of Tikhonov

regularization itself) under rather general conditions which has been shown in [6] and
the references therein. Kaltenbacher [10] suggested to replace Tikhonov regularization
by a regularization method with higher qualification and consider iteration schemes of
the form

X δ
n+1 := X0 + gαn

(
F′[X δ

n ]∗F′[X δ
n ]
)
F′[X δ

n ]∗
(
Yδ − F(X δ

n) + F′[X δ
n ](X δ

n −X0)
)

.

In particular, for K-times iterated Tikhonov regularization we have gα(λ) = (λ+α)K−αK

λ(λ+α)K .

4.3.1 Parameter Choice

A crucial ingredient of any iterative regularization method is an appropriate stopping
rule. However, the best image in a norm sense does not need to be an optimal image
for medical applications; actually normally it is not. As in many real situations the
noise and the other problem parameters do not change considerably from measurement
to measurement it might be more sensible to determine a good regularization parameter
experimentally.

4.3.2 Matrix inversion

As we see this method requires matrix inversion methods. In principle there are two big
different possibilities. The one is using standard full inversion algorithms, the best to
use would be Cholesky inversion because of the properties of the matrix [11].
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G ← Chol
(
F′[X δ

n ]∗F′[X δ
n ] + αnId

)
Xhilf ← F′[X δ

n ]∗
(
Yδ − F(X δ

n)
)

Xupdate ← X0 −Xn

for k ← 1 . . .K

Xinput ← Xhilf + αnXupdate

Xupdate ← G−1 (G∗)−1Xinput

end

Xn+1 ← Xn + Xupdate

However as we do perturbed inversions anyway it is not necessary that the inversion
of the matrix itself is completely exact. Therefore one can alternatively use the CG
(Conjugate Gradient)-method in order to invert the matrix [11]. ε is a tuning parameter.

G ← F′[X δ
n ]∗F′[X δ

n ] + αnId

Xupdate ← F′[X δ
n ]∗
(
Yδ − F(X δ

n)
)

+ αn (X0 −Xn)

X2nd ← 0
normold ←∞
while ‖Xupdate‖ > αnε‖X2nd‖

XCG ← Xupdate +
‖Xupdate‖2

norm2
old

XCG

XHilf ← GXCG

X2nd ← X2nd +
‖Xupdate‖2

〈XCG,XHilf 〉
XCG

normold ← ‖Xupdate‖

Xupdate ← Xupdate −
norm2

old

〈XCG,XHilf 〉
XHilf

end

Xn+1 ← Xn + Xupdate

As we see this method does not require the inversion of the regularization matrix, how-
ever iterated Tikhonov is not sensible in this case and therefore omitted in the above
algorithm.

4.3.3 Speed

The IRGN method exhibits an exponential convergence speed, i.e. if δ gets smaller by a
factor of q, the number of necessary iteration steps just augments by one.
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4.4 Landweber Method

The Landweber method is defined as follows (ε is again a tuning parameter):

Xhilf ← F′[X δ
n ]∗
(
Yδ − F(X δ

n)
)

Xn+1 ← Xn + εXhilf

respectively the ν method like equation

Xhilf ← F′[X δ
n ]∗
(
Yδ − F(X δ

n)
)

Xn+1 ← Xn + εXhilf +
ε

4
(Xn −Xn−1)

As we see this method does not require matrix inversions. However this method exhibits
just linear speed. In the linear case the ν methods have quadratic speed, to the authors
knowledge no results for non-linear problems are known.

4.5 Initial Guess

As we have seen a crucial point is providing an initial guess for all of the proposed
methods. Possibilities are manifold and all have their advantages and disadvantages.
In particular one has to consider that the solution algorithms just change the starting
solution. Hence it is possible that artifacts at least partly persist; on the other hand we
have that the nearer the initial guess to the later solution, the smaller the error gets [6]:

• SENSE or GRAPPA
+ fast and well-known
– it is possible that we end up with the same kind of artifacts we know from
SENSE and GRAPPA

• zero solution
+ fast, no artifacts
– far away from the real solution

• small scale reconstructions
+ very likely to omit any kind of artifacts, near to the final solution
– slow

5 Numerics

5.1 Sensitivities

A major ingredient for the numerical treatment is the right initial guess for the sensitiv-
ities. This decomposes again into two parts. One is estimating this quantity out of real
data and the other is finding an appropriate but small basis system {Bn}n∈{1,...,Bnum} to
represent the sensitivities.

Considering the basis system there are several possibilities. A standard approach is
using a small area of the k-space (typically about 0.1%) to model the sensitivities. This
works considerably well if one uses a very smooth initial guess.
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5.2 Simulation

We intensively tested the method with simulated data. However in terms of reliability
we have to keep in mind that the initial “measurement” and the later simulations of
measurements needed for the solution procedure were performed in the same way.

We observed that the method worked reliably in this setting, however a good knowl-
edge of the sensitivities was of great advantage. For small noise levels reconstructions
could be (in terms of reconstruction error) more than ten times better than GRAPPA
which basically tells that the new method seems intrinsically to be much less biased.

Depending on the size and the noise level reconstruction times were considerably
long. However, this is just the case for very small noise levels, the more noise the faster
the method.

In all our applications we had the impression that IRGN with CG yielded much
better results in a shorter time than Landweber iteration. However, due to the speed of
one step of the Landweber iteration and the big improvements in the first steps it might
still be worthwhile to consider this method to go over the data shortly if time is an issue.

5.3 Application

For the application we used real data acquired on a Siemens MAGNETOM Trio a Tim
System clinical whole-body scanner operating at a magnetic flux density of 3.0 Tesla.
A full three-dimensional gradient echo data set of the head of a healthy volunteer was
acquired using the system’s 12-channel head matrix coil. The field of view was 240mm
in all three spatial directions with the frequency encoding in head-feet direction. The
resolution was 256 samples in all three spatial directions.

In order to do fast prototyping we used Matlabr 7 where we reconstructed an image
with resolution 256×256. We restricted our attention to one slice with these dimensions.
For the reconstruction we used 32 of the 256 lines in the middle and an acceleration factor
of 3, i.e. additionally every third line.

As comparison method and initial guess we used GRAPPA. In figure 1 we see
GRAPPA, the new method and a reference picture using all possible data beside each
other. As usual we applied a manual contrast enhancing step for all of these images.

Figure 1: l: New Method m: using all data (reference) r: GRAPPA
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5.4 Discussion

From a visual inspection of the results it seems that the new method yields results which
are superior to the initial GRAPPA image. An important point is that the GRAPPA
reconstruction is medically seen not usable, whereas the new method provides an image
which can be used for this purpose. Hence we can alternatively consider this new method
as an add-on which can improve images considerably in times where the full processor
power of the MRI-machines is not needed.

The proposed method integrates for the first time the sensitivity calibration step
and the image reconstruction step in PPI into a single processing step. Therefore, it
has a high potential of being superior to all existing methods, especially since the inher-
ent information about the receiver sensitivities which is contained in the undersampled
imaging data themselves is also exploited. As an interesting side remark, this method
could therefore even work if no additional calibration data are acquired.

Through its general mathematical framework, this method also appears flexible
enough to be able to incorporate other a-priori information about the unknown image
than sensitivity information of the array detectors. Many methods exploiting struc-
tural a-priori information have been proposed in the past for MRI, ranging from real-
valuedness over limited support, to model-based approaches with reference images. Being
able to incorporate any of these additional a-priori constraints would make the method
even more powerful.
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