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1. Introduction

Many inverse problems in partial differential equations and other fields can be formulated
as nonlinear operator equations

Fzh)y =y (1)
with an injective operator F': D(F) C X — ) between Hilbert spaces X', ). We assume

that F is Fréchet differentiable on its domain D(F) and that the measured data y° are
perturbed by noise with known noise level 9, i.e.

ly =’ < 0. (2)
Often such problems are ill-posed in the sense that the solution does not depend
continuously on the data, i.e. F'~!is not continuous. One of the most successful methods
to solve such problem given a sufficiently good initial guess x is the iteratively regularized
Gauf-Newton method (IRGNM) suggested by Bakushinskii [1]. The n-th step of this
methods consists in applying Tikhonov regularization to the linearized operator equation
F'[28](2d,, — 28) = y° — F(2%) with the initial guess z(:
Ty = argmingex (| F'fap] (2040 — 20) = y° + F(a)|* + anllzg g — zoll?) - (3)
If the penalty term |29, — || is replaced by ||%_; — 2 ||%, this is called the Levenberg-
Marquardt algorithm. For a discussion of this and other iterative regularization methods
we refer to the recent monograph by Kaltenbacher, Neubauer & Scherzer [11]. For
simplicity we only consider the following a-priori choice of the regularization parameters
Q'

Qp = Oéoqna qc (07 1),0{0 >0 (4)
As usual, the regularity of the solution relative to the smoothing properties of the
operator is measured in terms of source conditions of the form

vy —at = AF T Faw,  flw] <o (5)

where A : [0, ] F'[z']]]?] — R is a monotonic increasing function satisfying A(0) = 0.
Later we will assume that o is sufficiently small. In particular, we will consider Hélder-
type source conditions

vo—al = (F'' P2y, ]| < o,p>0 (6)
and logarithmic source conditions

zo — 2" = In(F'[2"* F'[2")) " w, |lw] < o, > 0. (7)
It is always assumed that the scaling condition

IF' 21l < G <1 (8)

is satisfied, which can always be achieved by rescaling the norm in ). Then in particular
the right hand side of (7) is well-defined.

The convergence of the IRGNM for Hélder source conditions with the optimal rate
O (62+/@r+1)) was proved by Bakushinskii [1] for 1 = 1 and by Kaltenbacher, Neubauer
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& Scherzer [3| for p € [0, 1] (with o (0) for = 0). For infinitely smoothing operators F’
logarithmic source conditions typically correspond to natural smoothness conditions in
terms of Sobolev space, see [7, 8]. Under these weaker regularity assumptions the rate
of convergence of the IRGNM is O ((—1né)~?), § — 0.

Note that for linear operators F' the n-th step of the IRGNM (3) reduces to
ordinary Tikhonov regularization with regularization parameter «,,_; and initial guess
xo. The previous iterates are not used at all. From this observation it is clear that
the IRGNM can only yield optimal rates of convergence for Hélder source conditions
(6) with p < 1 since the qualification of Tikhonov regularization is py = 1 (see [5]).
To obtain optimal rates of convergence for p > 1, Kaltenbacher [9] suggested to
replace Tikhonov regularization by a regularization method with higher qualification
and consider iteration schemes of the form

By = 30+ G (P F(8]) Pd) (4 — F(ad) + Flad)(ah, — o). )

In particular, for K-times iterated Tikhonov regularization we have g,(\) = %

Recall that the qualification of iterated Tikhonov regularization is py = K, and that
only one matrix has to be inverted in each Newton step (see [5]). It is also possible to
use Landweber iteration, which has qualification ;1 = co and corresponds to the choice
Gtk -1(A) = Zf;é(l — \)/. The stopping index of the interior iteration plays the role
of the regularization parameter with the identification o« = 1/(1 + k). Therefore, with
the choice (4) the number of inner iterations grows exponentially.

A crucial ingredient of any iterative regularization method is an appropriate
stopping rule. As a first step, one may consider a-priori stopping rules which depend
on the smoothness of the solution, e.g. the index g in (6), but not on the data y° (see
[3, 8] for the IRGNM and [9, 11] for the methods (9)). However, the smoothness of
the solution is usually not known a-priori, and therefore a-priori stopping rules do not
yield optimal rates of convergence as § N\, 0. To obtain optimal rates over a range
of smoothness classes without a-priori information on the smoothness, it is necessary
to use a-posteriori stopping rules which depend not only on §, but also on 3°. It has
been shown that Morozov’s discrepancy principle for the IRGNM leads to order-optimal
convergence rates for Holder source conditions with y < 1 ([3]) and logarithmic source
condition (|7]). Moreover, it was shown in [10] that the Newton-Landweber method
with the discrepancy principle converges of optimal order for Hélder source conditions
with any v > 0. All these results require strong nonlinearity conditions on the operator
F (see (21) below) which cannot be verified for many interesting problems.

To the best of our knowledge it is not known so far how to obtain order optimal
rates for ;1 > 1/2 using just Lipschitz continuity of F’ without prior knowledge of u.
Moreover, even under stronger nonlinearity assumptions it is an open problem how to
achieve rates of optimal order for smoothness classes with index pu € (g — 1/2, o)
without prior knowledge of pi. These two problems will be solved using the Lepskij-type
stopping rule proposed in this paper.



A Lepskij-type stopping rule for reqularized Newton methods 5

The principle of choosing the regularization parameter adaptively such that the
propagated data noise error is roughly of the same size as other error terms has been
introduced by Lepskij [13] for estimating functions in white noise. Later it has been
applied to linear inverse problems with random and deterministic noise by Goldenshluger
& Pereverzev [6], Mathé & Pereverzev [14] and Bauer & Pereverzev [2].

The plan of this paper is as follows. In section 2 we introduce our Lepskij-type
stopping rule for iterative regularization methods (not necessarily of Newton-type) for
nonlinear inverse problems and prove a general convergence theorem. In the following
sections we demonstrate that the assumptions of this theorem are satisfied for the
methods discussed above under certain conditions. In section 3 we require Lipschitz
continuity of the Fréchet derivative F’ and obtain order optimal rates of convergence
as 0 \, 0 for p > 1/2. In section 4 we study Newton methods of the form (9) under
the stronger nonlinearity condition (21) for Hélder source conditions with p < 1/2
and logarithmic source conditions and show that the Lepskij stopping rule also leads to
order optimal convergence rates in this situation. Finally, in section 5 we report on tests
of the proposed stopping rule for a number of inverse problems in partial differential
equations.

2. Lepskij stopping rule

In this section we introduce the Lepskij-type stopping rule and prove a general
convergence theorem. Later we will show that the assumptions of this theorem are
satisfied for the regularized Newton methods discussed in the introduction.

)

n

Assumption 2.1 Let x° be the sequence of iterates produced by an iterative
regularization method for an initial guess xo from some admissible set and data (6,7°)

satisfying (2) for y = F(x"). We assume that

o There exists an a-priori known indexr Npax = Nmax(d) € Ny such that xfl 1s well
defined for 0 < n < Npax-

o There exists an “optimal” stopping index N € {0,1,..., Nypax} and a known
increasing function £ : Ng — [0, 00) such that

||xfl_x1-|| Sg(/’fl/)(S forn:N7"'aNmax- (10)

The function € will be chosen such that 1£(n)d is a bound on the propagated
data noise error after n iteration steps. In principle the “optimal” stopping index N in
Assumption 2.1 can be arbitrary, but we will always define it by some a-priori stopping
rule N(6, i, o) for a range of smoothness classes S, , C X’ given by (6) or (7) such that

sup  sup  E(N(4, u, 0))6 (11)

ate€Sy,o ly? —F(27)]|<o
is an order optimal bound on the error for all ;+ and o with ¢ > 0 sufficiently small. Then
assumption (10) means that the total error after the “optimal” stopping index N and
before the maximal iteration index Np.(9) is dominated by the propagated data noise
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error. For linear problems this holds true for any sufficiently large n, but for nonlinear
problems a blow-up due to nonlinearity errors may occur. The crucial point is that
there exists an a-priori known iteration index Nyax(d) > N up to which the error due
to the nonlinearity of the operator F' is negligible compared to other error terms.
Definition 2.1 (Lepskij stopping rule) Under assumption 2.1 define n, = n.(d,y°)
by
: |22 — a2 || < 2E(m)§
ny:=mins n € {0,..., Npax(6)} : " m )
{ { (9)} forallm=mn+1,..., Npax(9)

Note that the implementation of the Lepskij stopping rule does not require the
knowledge of the “optimal” stopping index N.

Theorem 2.1 Under Assumption 2.1 the error at the stopping index n, in Definition
2.1 satisfies

|25, — 2t < 3E(N)s.
Proof
Since £ is increasing, we have

25, — |l < flat = a3, || + [laf — 2% || < E(m)s + E(N)S < 26(m)d
form = N+1,..., Npax(d). This implies n, < N. Therefore,

ot —ap | < llaf — 2|l + oy — a7, || < E(N)S+2E(N)d = 3E(N)8,

and the proof is complete.

3. Holder source conditions with p > %

In this section we verify Assumption 2.1 for the Holder source conditions (6) with p > 3.
The only condition on the operator F' will be that the Fréchet derivative F” satisfy the
Lipschitz condition

[ F'[21] = F'[5]]| < Lljay — o] (12)

for all z1, 9 in D(F'). Moreover, we assume that the family of functions g, defining the
linear regularization method in (9) satisfies

C

sup  [Vga(A)| < —& (13)
AED0,#7[o1]]] Ve

for all o with some constant Cy. This holds true with C, = 1/2 for Tikhonov

regularization and C, = 1 for Landweber iteration. We cite the following recursive
estimates for the errors

E,=a2" -2} (14)
from the monograph [11| which can be deduced form the definition (9) (see Lemma

4.10 for the IRGNM and the proof of Theorem 4.16 and Corollary 4.17 for general
methods (9)).
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Lemma 3.1 Let 2° be the iterates defined by the Newton method (9) with (iterated)
Tikhonov regularization or Landweber iteration. Let p denote the qualification of
the linear method, and let C, be defined by (13). Assume that (1), (2), (6) with
1/2 < p < o, and (12) hold true and that 2’ € Br(x"). Then

C!
m‘”’_HEnn? + Oy m (15)

with constants C,Cs, and C3 (C3 = %LCg) independent of n, 0,0, and 7.

J

| Ensi]] < Craho+ Cool By || +

To analyze the behavior of || E, || it is convenient to rewrite this in terms of powers
of ¢ defined in (4):

c In || E, |
|EL|| = ¢ or Cn 1= =
nqg
(for ||E,|]| = 0 we set e, := 00). We rewrite the other constants and quantities using
this constant ¢ as well, namely «a,, = ¢"*", C| = iq“ﬂ, Cy = iq”, C; = iq'ﬂ”, Cy = iq“’g,

0= qr_mi“{71 "2} and § = qd_%f. With this notation we have

qen+1 S i (qun—l—uno-l—r + qr-l—en + q'yg—%n—%no—i—Zen + qd—%n—%no)

1, 1 1, 1
S max {qun—i—uno—l—r’qr-‘ren’q'\/g 3N 2n0+26n’qd 3n 2no}

— qmin{un-{—uno—i—r,r—l—en,'yg—%n—%no—i—Zen,d—%n—%no}
or equivalently
. 1 1
€nt1 > mins pu(n+ng) + 7,7+ €p, 3 — é(n + ng) + 2e,,d — é(n +ng) ¢

In comparison to the original recursion inequality this one is easier to analyze.

Theorem 3.2 Let 2° be the iterates defined by the Newton method (9) with (iterated)
Tikhonov regularization or Landweber iteration, and let py denote the qualification of the
linear method, i.e. ug = K for K-times iterated Tikhonov reqularization and pg = oo for
Landweber iteration. Assume that (1), (2), (6) with 1/2 < p < po, and (12) hold true.
Moreover, assume that &, o in (6) and L in (12), and 1/ag = ¢~ in (4) are sufficiently
small (explicit bounds are given in the proof). Then Assumption 2.1 is satisfied for

d_
N—1 — max (o, {T _ nJ) . N = max (0, [d+ 5 — n0)(16)
Hr g

and E(n) = 4C’ga;1/2.
In particular, the error at the Lepskij-stopping index satisfies
o, — o' < Comronts (17)
for some constant C independent of &, o, and x.

Recall that for linear problems the optimal error bound under the source condition
1 2u
(6) is 02+ +102+1 (see e.g. [5]).
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Proof
Preliminaries: We assume that

< _ min{y1, 72}

ng < + 1, 18a
0 . (18a)
1 1
erax{,u,—(,u—é) no — s + 21, =72 (M+§>}, (180)
d>2u(k —1) 4+ 2r + s, (18¢)
B (4(cwo/q)" max(Cy, Cy), 2') € D(F) (184d)

specifying the smallness conditions in the theorem. Note that (18b) implies in particular
that N — 1 < Ny
The proof consists of three steps:

(i) 2%, well-defined for —1 <n < N —1, and
eni1 > (n+mng) +r forn=-1,...,N —1. (19)

(i) z2 .1 well-defined for N <n < Ny — 1, and
1
en+12—§(n+no+1)+d for N —1<n< Ny — 1. (20)

(iii) || E,-|| < Co%ri g2,

Step 1: To prove the statement for n = —1 note that || Ey|| = ||(F'[z"]* F'[z"])*w]|| <

|w|| < o due to the scaling condition (8). Therefore, eqg > r—min{~y,v2} > r—+pu(ne—1)
by the assumption (18a) on ny.
Suppose that (19) holds for n — 1. Then 2% belongs to D(F) by assumption (18d)
(i.e. % is well defined) since v, > u(n — 1+ ng) +r > u(ng — 1) + r and hence
|EL|l < (ap/q)*4max(Ch, Cy). Moreover, it follows from the induction hypothesis, the
definition of N, n < N — 1 and the assumption (18b) that

r+ e, >r+un+ng—1)+r=pn+ne)+r+(r—p
> u(n+ o) + 7

1 1
73—§(n+n0)—|—26n273—§(n+no)+2,u(n—|—n0)—|—2r—2p

(n 4 mng) + 1+ ((u—%) (n+n0)+7’+’}/3—2,u>

7
> jln+no) +r

1 1
d—§(n+n0) :u(n+n0)+r+(—<§+,u)(n+no)+d—r)
> (n+n)+r+(—<l+ )d_r—kd—r)
Z W 0 9 ¥ ,u+%

— j(n+no) +r

Taking the minimum of these terms yields the inequality (19) for n.
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Step 2: The start of induction is fulfilled because of (19):
ey > pu(ng+N—1)+r

—< +1) ({d_TJ—d_T+1)—l(n+n)+d

1
> —§(n+n0)+d

Suppose that (20) holds for n — 1. We first show that zJ_, is well-defined. As
| E,|| < g~ (tmotD)/2+d by the induction hypothesis and

1 1 1
—§(n+no—|—1)+d2—é(NmanLno—l—l)—i—dzd/2—73/2—§Zu(no—l)—i—r

by the smallness assumption (18¢), we obtain ||E,|| < (ap/¢)"4max(Cy,Cs), so
20 € D(F). Next, using the induction hypothesis, the definition of Ny, and N, and
N — 1 <n < Np.x we obtain

1 1 1
pw(n+mng) +r :—§(n+no+1)—|—d+((u+§)(n+no)+r—d+§)

2

1 I\ d—r
> __ 1 — —
> 2(n+n0+ )+d+((u+2)ﬂ+1+r d)

1
>—§(n+n0+1)+d
1 1
r+ e, ZT—§(n+n0+1)+d2—§(n+n0+1)+d
1 1
73—§(n+n0)+26n273—§(n+n0)—(n+n0+1)+2d

1
2—§(n+no+1)—|—d+(’yg—(n+n0)+d)

1
> —§(n+n0) +d.

Taking the minimum of these terms yields (20) for n.

Step 8: The inequality (20) is equivalent to (10) in Assumption 2.1 since
)

Vo

It follows from the first two steps that Assumption 2.1 is satisfied. Therefore,

|EnLl| = qengq*%(nJrno)er =4C; =&(n)s, n=N,..., Nyax-

Theorem 2.1 yields

1d-—r

< BE(N)S < Cq s VHmoltd < 0 it < Cgmi g

for a generic constant C' independent of §, o, and z.

4. Weak source conditions

In this section we study Newton methods under Holder source conditions with p < %
and under logarithmic source conditions. In this case we need a stronger condition
restricting the degree of nonlinearity of the operator F'. We assume that there exist
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mappings R : D(F) x D(F) — L(Y,Y), Q : D(F) x D(F) — L(X,Y) and constants
YR, Yq > 0 such that
F'(z) = R(z,z)F'(z) + Q(Z, x)
I = R(z, 2)|| < v&|7 — =, (21)
1Q@, 2)ll < Col F'(2")(z — =)

for all 2,7 € Bgr(a"). For a discussion of this condition and examples where it is satisfied
we refer to [11].

Again, a crucial tool will be recursive inequalities for the norm of the error
E, = 25 — 21, and this time also for ||F’[z']e,||. These estimates are derived in [11]
(see eqgs. (4.98) and (4.102) in the proof of Theorem 4.16).

Lemma 4.1 Let 2’ be the iterates defined by the Newton method (9) with (iterated)
Tikhonov regularization or Landweber iteration, and let C, be defined by (13). Assume
that (1), (2), and (21) hold true, and let T := F'[z']. Moreover, assume that 2% €
Bgr(x") and a source condition (5) with A(t) = t*, u € (0,1/2) or A(t) = (—Int)™™,
w € (0,00) is satisfied. Then

ITEx | +C 0 (22a)

[Eniall < Caban)o + csoll Enll + cs(o + [ Enll) Jar O

and
[T Epia|l < CrA(an)v/ano + csoy/anl| Enl| + cool| TE, || (220)
|TE.,| |TE,|
E.|-|TE, C 1)
+ (010+011 Jan | Enll - |l |+ | Ci2 +ci3 Jan

where the constants cs, cg, cs, Co, C10, 11 and ci3 are small if yg and vo are small.

To analyze the behavior of | E,|| and ||T'E,| we again rewrite the inequalities (4.1) in
terms of powers of ¢ by introducing e,, s, € R U {oco} such that

[Enll = ¢ and  |[TE,| = ¢

We also rewrite the other constants and quantities using this constant ¢, namely
an = "7, Aay,) = ¢/ omax{Cy, s, cg, Cr, cs, co, 1} = %q” and 0C, = %qd and
Ciy = %ng:’. Furthermore we assume for our convenience that cg < i, c1g < %, e < %,
¢13 < 3Cy and v = min{7, —1}. Then

1
Cnil Zmin{l(n+n0)+r,r+en,r+sn—§(n+no), (23a)

1 1
€n + Sn — §(n+no),d— §(n+no)}

1 1
Sne1 > minf{l(n + ng) + 5(71 +ng) + 7,7+ é(n +n0) + en,r+ Sp,  (23D)

1 1
en+sn,en+25n—§(n+n0),d+7,5n—§(n+no)+d}

The analysis of this coupled recursive set of inequalities is a bit more involved:
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Theorem 4.2 Let 2° be the iterates defined by the Newton method (9) with (iterated)
Tikhonov regularization or Landweber iteration. Assume that (1), (2), and (21) hold
true and that a source condition (5) with A(t) = t*, p € (0,1/2) or A(t) = (—Int)~#,
p € (0,00) is satisfied. Moreover, assume that vr,vg in (21), o in (5), and and 1/ag
in (4) are sufficiently small (explicit bounds are given in the proof). Then Assumption
2.1 is satisfied if N € Ny is chosen such that

VanaA(an_y) > 70% > Jan_1A(ay_1), (24)
and

Npax = |2(d+ v —1)| — no, E(n) := TCya, /2.
In particular, the error at the Lepskij-stopping index n, satisfies

|2, — '] < Comonts (25)

for the Hélder source conditions and

— K
a8, — ot < Co (—mg) (26)

for logarithmic source conditions.

Proof
Preliminaries: We assume that

Iln4+nog—1)>1l(n+ng) — % for all n € Ny, (27a)
r > max{3/2, -}, (27b)
l(ng) +7—3/2>0, (27¢)
B (Tomax{Cy, cs, cg, Cr, cs, co } A (v, ), ') C D(F) (27d)
d/2—7/2—% > l(ng) +r (27¢)
I(no—1)<0and (ng—1) <0 (27

specifying the smallness conditions in the theorem.
After rewriting the definition (24) of N as

1 1
l(N+no—2)+§(N+no—2) <d—-r< l(N—l—no—l)—l—E(N-i-no—l)a(%)

it follows from assumption (27b) that N < Ny,... Moreover, we define B € R implicitly
by {(B 4 ng) + 2(B + ng) = d+~ — r and note that B < N — 1 because ¥ < —1 and
the definition of 7.

The proof consists of four steps:

(i) «%_, well-defined for —1 <n < B and
eni1 > l(n+mng) + 1, (29q)
1
Spi1 > 5(n +ng) + U(n+ng) + 1. (29b)
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(ii) 20, well-defined for B<n < N —1 and

ent1 > l(n+mng) + 1, (30a)
Spy1 = d+ 7. (300)
(iii) 2?., well-defined for N — 1 <n < N4, and
1
Cni1 > —§(n+n0+1)+d, (31a)

(iv) || B, | < C o1 674 or |En. |l < Co (—ln g) M, respectively.

Step 1: The first three statements are shown by induction. To prove the first
statement for n = —1, note that ||Ey| = [|[(F'[z]*F'[z'])*w]| < ||w| < o due to the
scaling condition (8). Therefore, eg > I(ng — 1) +r and sg > 1(ng — 1) + l(ng — 1) +r
by the assumption on ny.

Let n € Ny and assume the assertion holds true with n replaced by n — 1. To prove
that 20, is well-defined, we have to show that 2% belongs to D(F). By assumption
(27d), this follows from the induction hypothesis since ||z, — zf| < ¢* < ¢+ <
Tomax{Cy, cs, cg, C7, cs, co } A, ). To prove the inequalities, we consider the terms on
the right hand side of (23a) and (23a) separately using the induction hypothesis, the
definition of N, n < N — 1, and (27a)—(27¢):

1
r4+e, 27’+l(n—|—no)+r—§Zl(n—irno)—l—'r,

1 1 1
r+ s, — =(n +ngp) 2T+l(n+no)+—(n+n0)+r—1—§(n+n0)

2 2
> l(n+mng)+r,
entsn—=m+mng) >ln+ng)+r+=(n+mny) +l(n+mny)+r—=(n+np)
> l(n+mng)+r,
d—%(n+no) zl(n—l—no)—ir'r—l—<d—%(n+no)—l(n+no)—'r)
> (n+mng) +r

and

1 1 1
r+=n+ny)+e, >r+-(n+ny)+l(n+ng)+r——

2 2 2
1
Zl(n+n0)+§(n+n0)+r,
1 1
T+ S 2r+l(n+no)+§(n+no)+'r—1Zl(n+n0)+§(n+no)+'r’
1 3
en + Sn Zl(n+n0)+r+l(n+n0)+§(n+n0)+r—5

1
> 1(n+ nop) +§(n+n0)+r,

1 1
en—|—23n—§(n+no)2l(n—i—no)+r—l—§(n+n0)+21(n+n0)+2r—5/2
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1
zun+mﬁ+§m+n@+n
1
d+v :Kn+mﬁ+§m+n@+r
1
— (l(n+n0)+§(n+no)+r—d—7)
1
>Mn+mﬁ+§m+n@+n
1 1 1 1
sn—§(n—|—n0)+d 2l(n+no)+§(n+n0)+r—§(n+no)+d—§

1
:l(n+n0)+r+d—§

1
zun+mﬁ+§m+n@+n

Taking the minimum of these terms yields the inequalities (29a) and (29b).

Step 2: For n = | B], (30a) and (30b) follow immediately from the first step of the
proof and the definition of B. Let n € {|B] +1,..., N — 1} and assume the assertion
holds true with n replaced by n — 1. It follows as in step 1 of the proof that zJ, is
well-defined. To prove the inequalities we again consider the terms separately, using the
induction hypothesis, B <n < N — 1, the definitions of B and N, and (27b):

1
r+e, 27’+l(n—|—no)+r—§Zl(n—irno)—l—'r,

1 1
'r+3n—§(n+no) 27’—|—d+’y—§(n+no)

>l(n+mng)+r+ (d%—’y—%(n—i-no)—l(n,no))

1
>1l(n+mng)+r+ (d—r—i(n—%no)—l(n,no)) > l(n+ng) +,
1 1
en+sn—§(n+n0)2l(n+no)+r+ <d+’y—§(n—|—n0)>

1
>1(n+ng) +r+ <d—r—§(n+n0)) > 1l(n+ng) +r,

1 1
d—é(n+n0) >1(n+mng) +r+ <d—§(n+n0)—l(n+n0)—r> >1l(n+ng)+r
and

1 1 1
T+§(n+n0)+en Zr+§(n+no)+l(n+no)+r—§Zd+'y,
T+ Sy >r+d+vy>d+7,

1

en + Sy >ln+ng)+r+d+vy—=

2
>d+7,

1 1 1
en—|—23n—§(n+no)2d—|—’y—|— (l(n+no)+r+d+7—§(n+no)) —§:d+’y,

1 1
Sn—§(”+n0)+d 2d+7—§(n+no)+d2d+7-
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Taking the minimum of these terms yields the inequalities (30a) and (300).
Step 3: For n = N — 1 we get from (30a) and the definition of N (or (28)) that
ey >U(N+ng—1)+r
1 1 1

1

so (31a) holds true. (31b) follows from the second step of the proof.
Now let n € {N, ..., Nnax  and assume that the assertion holds true with n replaced

by n — 1. We first show that 41 is well-defined. By the induction hypothesis we have
||En|| < q—(n+no+1)/2+d’ and

1 1 1
—§(n+n0+1)+d2—é(Nmax+no+1)+d2d/2—7/2—5Zl(n0)+r

by the definition of Ny... Using (27d), this implies 20 € D(F). From the induction
hypothesis, the definition of Ny, and N, N < n < Ny, and (27b) we obtain

1 1
l(n+mng)+r 2—§(n+n0+1)+d+ (l(n+no)+r+§(n+no+1)—d)
1
Z—§(n+n0+1)+d,
1 1 1
T+ e, Zr—a(n+n0+1)+d+§Z—§(n+no+1)+d,

1 1 1 1
'r’+3n—§(n+no) 2r+d+’y—§(n+no+1)+§Z—§(n+no+1)—|—d,

1 1 1
en+sn—§(n+n0)2—§(n+n0+1)+d—§(n+n0+1)+d+7
1
> —5(n+no+1)+d
and

1
l(n+n0)+§(n—|—n0)—|—'r’2d+’y,

1 1 1 1
T+§(n+n0)+en ZT+§(n+no)—§(n+no+1)+d+§ZdJr%
T+ Sy >r+d+vy>d+7,

1
en + Sn 2 —gntng+1)+d+d+y=2d+7,

1 1 1
en+23n—§(n+no) Z—§(n+n0+1)+d+2d+27—§(n+n0)ZdJr%

1 1
50— 5(n +no) +d zd+y—g(ntn)+d=d+ty.

This yields the inequalities (31a) and (31b).
Step 4: Step 3 implies that

|E.| < g 3o — 70,0 — g(n)s

Jan

for n =N, ..., Nyax, i-e. (10) in Assumption 2.1 is satisfied.
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Therefore, Theorem 2.1 yields for the Hélder source condition:

1d—r

| En < Comrigmh

for some constants C, C, C which are independent of zf, § and .
For logarithmic source conditions we obtain from the second inequality in (24) that

) _
|Ex|] < 3E(N)§ =21- Cg\/T_N < Co(—Inay)™ (32)
with C' independent of 6 and o, and zf. Since \/an_3 > Alay_2)/an_2 > 7C’gg by the
first inequality in (24), we get ay < C(6/0)?. Plugging this into (32) yields (26).

5. Numerical results

We test the Lepskij stopping rule on a number of examples:

A parameter identification problem with distributed measurements. We consider the
identification of the parameter ¢ > 0 in the boundary value problem

—u"+ceu=f on (0,1),
u(0) = o, u(l) = uy

given measurements of v in [0, 1] (see [5]). Here the right-hand side f € L*([0, 1]) and
the boundary values ug,u; € R are known, in our example f =1, up = 1 and u; = 2.
We define the operator F' : D(F) — L*([0,1]) with D(F) := {c € L*([0,1]) : ¢ > 0 a.e.},
which maps a coefficient ¢ € D(F) to the corresponding solution v € H?([0, 1]). Here ¢
plays the role of = and u the role of y. This problem was discretized by a finite difference
method, and data noise was simulated by adding a centered Gaussian random variable
to u(z;) at each measurement point z;.

As discussed in [5], the Hélder source condition 6 is satisfied if ¢ — cq is H*-
smooth and satisfies certain boundary conditions. In particular, for our choice c'(z) :=
1 + sin*(72) sin(10z) and co(z) := 1, a Holder source condition with y = 1 is satisfied.
Since Tikhonov regularization has qualification o = 1, we expect the rate O (52/ 3)
for the IRGNM if the proposed Lepskij-type stopping rule is used, but only the rate
O (51/ 2) corresponding to . = 1/2 for the discrepancy principle. This effect can clearly
be observed in Fig. 1. A further discussion of the numerical results is given below.

An inverse potential problem. Our next problem concerns the identification of the shape

of a heat source ) C R? from measurement of the heat flux % and the temperature
u on some boundary I' surrounding the heat source (see [7]). We can arrange things
such that u|r = 0 by subtracting a solution to the Laplace equation. Then the forward

problem is described by the boundary value problem
Au = xaq,

u=>0 on [
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Figure 1. parameter identification problem with random noise: The plots show the
L?-errors of the reconstructed parameter ¢ as a function of the noise level 4.

where xq is the characteristic function of the domain {2, which we assume to be
star-shaped with respect to the origin. Then 9Q = {q(t)(cost,sint)" : t € [0,27]}
for a positive, 27-periodic function ¢q. The inverse problem consists in identifying

the shape of 2 given the Neumann data % of the solution on I'. Therefore, we
define F' as the operator mapping ¢ to 5%. We have chosen I' := {z : |z]z = 2},

q'(t) == (1 +0.9cos(t) + 0.1sin(2t))/(1+ 0.75cos(t)) and go(t) := 1. Random noise was
generated as in the previous problem.

It has been shown in [7] that logarithmic source conditions are equivalent to
smoothness conditions in terms of Sobolev spaces if €2 and I' are concentric circles.
Therefore, we expect that the convergence behavior is described by Theorem 4.2
(although it has not been possible to verify assumption (21)).

Inverse obstacle scattering problems. Our last example concerns the scattering of N
time-harmonic acoustic waves ugj )(a:) = exp(ikx - dY)) with directions d) and wave
number k£ by M disjoint, simply connected scattering obstacles Qy,...,Q,; C R?. On
each of the boundaries of the domain 2; we impose either Dirichlet or a homogeneous
Neumann boundary conditions for the total field u() = ugj )+ uY and require that the
scattered fields u' satisfy the Helmholtz equation (A-+k2)uf’) = 0in R2\|J,, and the
Sommerfeld radiation condition (see Colton & Kress [4]). We assume that the number
M of domains, an initial guess, and the boundary condition for each of these domains
are known. Such information can be obtained by other methods, see e.g. [12]. Then our
task is to reconstruct the shape of the scatters given the far field patterns (or scattering
amplitudes) u$) of the scattered fields u'. This problem is again exponentially ill-
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Figure 2. potential problem with random noise: The plots show the L?-errors of the
reconstructed parametrization of the curve as a function of the noise level 4.

posed, and only logarithmic source conditions can be expected to be fulfilled.

In our numerical experiments we have used the scatterers shown in Fig. 5 with
N = 8 incident waves and wave number £ = 1. On the upper obstacle we imposed a
Dirichlet boundary condition and on the lower obstacle Neumann boundary condition.
The initial guess consisted of two circles of radius 1. Random noise was generated
by adding a centered Gaussian random variable to the real and imaginary part of the
far-field patterns at each measurement point.

In Figure 4 we simulated deterministic noise by adding a fixed positive number to
the real and imaginary part of the far-field patterns at each measurement point. The
curves for Morozov’s discrepancy principle and the Lepskij stopping rule do not differ
much from the left plot in Fig. 3 since both stopping rules always terminate too early
when the total error is still dominated by the approximation error.

Discussion of the numerical results. 'We have compared our results with those for the
stopping index nd5 defined by Morozov’s discrepancy principle:

niliscr — mln{n c ]NO : ”F(&?i) — y‘;H < T(S}

Here 7 > 1 is a fixed parameter which is required to be sufficiently large in some
convergence proofs. In Fig. 1 we chose 7 = 2, which yields too small stopping indices
for large 0 and too large stopping indices for small §. For the exponentially ill-posed
problems in Fig. 2 and 3 we had to choose 7 = 4 since for smaller values of 7 the residual
never fell below 76 for small .
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Figure 3. inverse scattering problem with random noise. The plots show the L2-errors
of the reconstructed parametrizations of the curves as a function of the noise level §.
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Recall that the Lepskij-stopping index in Theorems 3.2 and 4.2 was defined by

N, :=min¢n € {0,..., Npax(d)} :

e =

26Cy6

7| < 20

(33)

forallm=mn+1,..., Nyax(0)
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Here Npax(6) := max(0,c + s|ln, O%J) with some problem dependent constant ¢ € R
and s = 1 for the weak non-linearity conditions, s = 2 for the strong non-linearity
conditions. A certain disadvantage of the proposed method is that the constant ¢ used
in the proofs can hardly be estimated analytically or computed numerically. Fortunately,
the method is not sensitive to the choice of c. ¢ just has to be sufficiently small to prevent
nonlinearity blow-off for n < N,.., but it does not influence the asymptotic rate.

The constants x = 4 and k = 7 in Theorems 3.2 and 4.2 were chosen for the
convenience of the proofs. With more technical proofs one could choose smaller values
of k > 1, but even for linear problems Assumption 2.1 is not satisfied for x < 1 if (13)
holds true with equality: In this case
Cyo

19a, (F' ] F [ ) F' ] (v = w)ll < —

is a sharp worst case bound on the propagated data noise error.

However, for stochastic noise it turns out that the left-hand side is usually
overestimated by an order of magnitude with high probability. Therefore, one usually
obtains much better results for smaller values of k. To illustrate the potential of the
proposed stopping rule, we included convergence plots with x < 1 chosen by trial and
error on the right hand sides of Fig. 1, 2 and 3. We point out again, that a choice x <1
cannot be justified in a worst-case setting. An analysis of the Lepskij stopping rule in a
statistical setting which also has to address a proper choice of £ (not necessarily of the
form &£(a) = kC,d/+/a) is intended as future research.

Let us summarize our results:

e We proved that the proposed Lepskij-type stopping rule leads to optimal rates of
convergence both for Hélder source conditions with 0 < 1 < 1y and for logarithmic
source conditions without a-priori knowledge of the smoothness of the solution.

e It does not suffer from the well-known saturation effect of the discrepancy principle.
This can be observed in numerical experiments with mildly ill-posed problems and
smooth solutions.

e For exponentially ill-posed problems the numerical results with the Lepskij stopping
rule are as good as with the discrepancy principle if we choose £ > 1 in (33) as
required by our theoretical results.

e The results can be significantly improved by choosing x < 1. A justification would
require a statistical framework for which the Lepskij stopping rule was originally
developed.
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